608 research outputs found

    Convergence and dynamics of improved Chebyshev-Secant-type methods for non differentiable operators

    Full text link
    [EN] In this paper, the convergence and dynamics of improved Chebyshev-Secant-type iterative methods are studied for solving nonlinear equations in Banach space settings. Their semilocal convergence is established using recurrence relations under weaker continuity conditions on first-order divided differences. Convergence theorems are established for the existence-uniqueness of the solutions. Next, center-Lipschitz condition is defined on the first-order divided differences and its influence on the domain of starting iterates is compared with those corresponding to the domain of Lipschitz conditions. Several numerical examples including Automotive Steering problems and nonlinear mixed Hammerstein-type integral equations are analyzed, and the output results are compared with those obtained by some of similar existing iterative methods. It is found that improved results are obtained for all the numerical examples. Further, the dynamical analysis of the iterative method is carried out. It confirms that the proposed iterative method has better stability properties than its competitors.This research was partially supported by Ministerio de Economia y Competitividad under grant PGC2018-095896-B-C22.Kumar, A.; Gupta, DK.; Martínez Molada, E.; Hueso, JL. (2021). Convergence and dynamics of improved Chebyshev-Secant-type methods for non differentiable operators. Numerical Algorithms. 86(3):1051-1070. https://doi.org/10.1007/s11075-020-00922-9S10511070863Hernández, M.A.: Chebyshev’s approximation algorithms and applications. Comput. Math. Appl. 41(3-4), 433–445 (2001)Ezquerro, J.A., Grau-Sánchez, Miquel, Hernández, M.A.: Solving non-differentiable equations by a new one-point iterative method with memory. J. Complex. 28(1), 48–58 (2012)Ioannis , K.A., Ezquerro, J.A., Gutiérrez, J.M., hernández, M.A., saïd Hilout: On the semilocal convergence of efficient Chebyshev-Secant-type methods. J. Comput. Appl. Math. 235(10), 3195–3206 (2011)Hongmin, R., Ioannis, K.A.: Local convergence of efficient Secant-type methods for solving nonlinear equations. Appl. Math. comput. 218(14), 7655–7664 (2012)Ioannis, Ioannis K.A., Hongmin, R.: On the semilocal convergence of derivative free methods for solving nonlinear equations. J. Numer. Anal. Approx. Theory 41 (1), 3–17 (2012)Hongmin, R., Ioannis, K.A.: On the convergence of King-Werner-type methods of order 1+21+\sqrt {2} free of derivatives. Appl. Math. Comput. 256, 148–159 (2015)Kumar, A., Gupta, D.K., Martínez, E., Sukhjit, S.: Semilocal convergence of a Secant-type method under weak Lipschitz conditions in Banach spaces. J. Comput. Appl. Math. 330, 732–741 (2018)Grau-Sánchez, M., Noguera, M., Gutiérrez, J.M.: Frozen iterative methods using divided differences “à la Schmidt–Schwetlick”. J. Optim. Theory Appl. 160 (3), 931–948 (2014)Louis, B.R.: Computational Solution of Nonlinear Operator Equations. Wiley, New York (1969)Blanchard, P.: The dynamics of Newton’s method. Proc. Symp. Appl. Math. 49, 139–154 (1994)Parisa, B., Cordero, A., Taher, L., Kathayoun, M., Torregrosa, J.R.: Widening basins of attraction of optimal iterative methods. Nonlinear Dynamics 87 (2), 913–938 (2017)Chun, C., Neta, B.: The basins of attraction of Murakami’s fifth order family of methods. Appl. Numer. Math. 110, 14–25 (2016)Magreñán, Á. A.: A new tool to study real dynamics: the convergence plane. Appl. Math. Comput. 248, 215–224 (2014)Ramandeep, B., Cordero, A., Motsa, S.S., Torregrosa, J.R.: Stable high-order iterative methods for solving nonlinear models. Appl. Math. Comput. 303, 70–88 (2017)Pramanik, S.: Kinematic synthesis of a six-member mechanism for automotive steering. Trans Ame Soc. Mech. Eng. J. Mech. Des. 124(4), 642–645 (2002

    Extending the applicability of a fourth-order method under Lipschitz continuous derivative in Banach spaces

    Get PDF
    We extend the applicability of a fourth-order convergent nonlinear system solver by providing its local convergence analysis under Lipschitz continuous Fréchet derivative in Banach spaces. Our analysis only uses the first-order Fréchet derivative to ensure the convergence and provides the uniqueness of the solution, the radius of convergence ball and the computable error bounds. This study is applicable in solving such problems for which earlier studies are not effective. Furthermore, the convergence region for the scheme to approximate the zeros of various polynomials is studied using basins of attraction tool. Various computational tests are conducted to validate that our analysis is beneficial when prior studies fail to solve problems.The first author has been supported by the University Grants Commission, India.Publisher's Versio

    Single-grid spectral collocation for the Navier-Stokes equations

    Get PDF
    The aim of the paper is to study a collocation spectral method to approximate the Navier-Stokes equations: only one grid is used, which is built from the nodes of a Gauss-Lobatto quadrature formula, either of Legendre or of Chebyshev type. The convergence is proven for the Stokes problem provided with inhomogeneous Dirichlet conditions, then thoroughly analyzed for the Navier-Stokes equations. The practical implementation algorithm is presented, together with numerical results

    Numerically stable improved Chebyshev-Halley type schemes for matrix sign function

    Full text link
    [EN] A general family of iterative methods including a free parameter is derived and proved to be convergent for computing matrix sign function under some restrictions on the parameter. Several special cases including global convergence behavior are dealt with. It is analytically shown that they are asymptotically stable. A variety of numerical experiments for matrices with different sizes is considered to show the effectiveness of the proposed members of the family. (C) 2016 Elsevier B.V. All rights reserved.This research was supported by Ministerio de Economia y Competitividad MTM2014-52016-C2-2-P and by Generalitat Valenciana PROME-TEO/2016/089.Cordero Barbero, A.; Soleymani, F.; Torregrosa Sánchez, JR.; Ullah, MZ. (2017). Numerically stable improved Chebyshev-Halley type schemes for matrix sign function. Journal of Computational and Applied Mathematics. 318:189-198. https://doi.org/10.1016/j.cam.2016.10.025S18919831
    corecore