1,750 research outputs found

    Application of adaptive equalisation to microwave digital radio

    Get PDF

    Proceedings of the second "international Traveling Workshop on Interactions between Sparse models and Technology" (iTWIST'14)

    Get PDF
    The implicit objective of the biennial "international - Traveling Workshop on Interactions between Sparse models and Technology" (iTWIST) is to foster collaboration between international scientific teams by disseminating ideas through both specific oral/poster presentations and free discussions. For its second edition, the iTWIST workshop took place in the medieval and picturesque town of Namur in Belgium, from Wednesday August 27th till Friday August 29th, 2014. The workshop was conveniently located in "The Arsenal" building within walking distance of both hotels and town center. iTWIST'14 has gathered about 70 international participants and has featured 9 invited talks, 10 oral presentations, and 14 posters on the following themes, all related to the theory, application and generalization of the "sparsity paradigm": Sparsity-driven data sensing and processing; Union of low dimensional subspaces; Beyond linear and convex inverse problem; Matrix/manifold/graph sensing/processing; Blind inverse problems and dictionary learning; Sparsity and computational neuroscience; Information theory, geometry and randomness; Complexity/accuracy tradeoffs in numerical methods; Sparsity? What's next?; Sparse machine learning and inference.Comment: 69 pages, 24 extended abstracts, iTWIST'14 website: http://sites.google.com/site/itwist1

    A New Variable Regularized Transform Domain NLMS Adaptive Filtering Algorithm-Acoustic Applications and Performance Analysis

    Get PDF
    published_or_final_versio

    New FxLMAT-Based Algorithms for Active Control of Impulsive Noise

    Get PDF
    In the presence of non-Gaussian impulsive noise (IN) with a heavy tail, active noise control (ANC) algorithms often encounter stability problems. While adaptive filters based on the higher-order error power principle have shown improved filtering capability compared to the least mean square family algorithms for IN, however, the performance of the filtered-x least mean absolute third (FxLMAT) algorithm tends to degrade under high impulses. To address this issue, this paper proposes three modifications to enhance the performance of the FxLMAT algorithm for IN. To improve stability, the first alteration i.e. variable step size FxLMAT (VSSFxLMAT)algorithm is suggested that incorporates the energy of input and error signal but has slow convergence. To improve its convergence, the second modification i.e. filtered x robust normalized least mean absolute third (FxRNLMAT) algorithm is presented but still lacks robustness. Therefore, a third modification i.e. modified filtered-x RNLMAT (MFxRNLMAT) is devised, which is relatively stable when encountered with high impulsive noise. With comparable computational complexity, the proposed MFxRNLMAT algorithm gives better robustness and convergence speed than all variants of the filtered-x least cos hyperbolic algorithm, and filtered-x least mean square algorithm

    The design and implementation of a microprocessor controlled adaptive filter

    Get PDF
    This thesis describes the construction and implementation of a microprocessor controlled recursive adaptive filter applied as a noise canceller. It describes the concept of the adaptive noise canceller, a method of estimating the received signal corrupted with additive interference (noise). This canceller has two inputs, the primary input containing the corrupted signal and the reference input consisting of the additive noise correlated in some unknown way to the primary noise. The reference input is filtered and subtracted from the primary input without degrading the desired components of the signal. This filtering process is adaptive and based on Widrow-Hoff Least-Mean-Square algorithm. Adaptive filters are programmable and have the capability to adjust their own parameters in situations where minimum piori knowledge is available about the inputs. For recursive filters, these parameters include feed-forward (non-recursive) as well as feedback (recursive) coefficients. A new design and implementation of the adaptive filter is suggested which uses a high speed 68000 microprocessor to accomplish the coefficients updating operation. Many practical problems arising in the hardware implementation are investigated. Simulation results illustrate the ability of the adaptive noise canceller to have an acceptable performance when the coefficients updating operation is carried out once every N sampling periods. Both simulation and hardware experimental results are in agreement

    A New Variable Regularized QR Decomposition-Based Recursive Least M-Estimate Algorithm-Performance Analysis and Acoustic Applications

    Get PDF
    published_or_final_versio

    Linear and nonlinear adaptive filtering and their applications to speech intelligibility enhancement

    Get PDF

    Sparse Nonlinear MIMO Filtering and Identification

    Get PDF
    In this chapter system identification algorithms for sparse nonlinear multi input multi output (MIMO) systems are developed. These algorithms are potentially useful in a variety of application areas including digital transmission systems incorporating power amplifier(s) along with multiple antennas, cognitive processing, adaptive control of nonlinear multivariable systems, and multivariable biological systems. Sparsity is a key constraint imposed on the model. The presence of sparsity is often dictated by physical considerations as in wireless fading channel-estimation. In other cases it appears as a pragmatic modelling approach that seeks to cope with the curse of dimensionality, particularly acute in nonlinear systems like Volterra type series. Three dentification approaches are discussed: conventional identification based on both input and output samples, semi–blind identification placing emphasis on minimal input resources and blind identification whereby only output samples are available plus a–priori information on input characteristics. Based on this taxonomy a variety of algorithms, existing and new, are studied and evaluated by simulation
    • …
    corecore