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A New Variable Regularized Transform Domain
NLMS Adaptive Filtering Algorithm—Acoustic
Applications and Performance Analysis

S. C. Chan, Member, IEEE, Y.J. Chu, and Z. G. Zhang, Member, IEEE

Abstract—This paper proposes a new regularized transform
domain normalized LMS (R-TDNLMS) algorithm and studies its
mean and mean square convergence performances. The proposed
algorithm extends the conventional TDNLMS algorithm by im-
posing a regularization term on the filter coefficients to reduce the
variance of estimators due to the lacking of excitation in a certain
frequency band or in the presence of modeling errors. Difference
equations describing the mean and mean square convergence
behaviors of this algorithm are derived so as to characterize its
convergence condition and steady-state excess mean square error
(MSE). It shows that regularization can help to reduce the MSE
by trading slight bias for variance. Based on this analysis, a new
formula to select the regularization parameter for white Gaussian
inputs is proposed, which leads to a new variable regularized
TDNLMS (VR-TDNLMS) algorithm. Computer simulations are
conducted to examine the improved convergence performance,
steady-state MSE and robustness to power-varying inputs of
the proposed algorithm and verify the effectiveness of the the-
oretical analysis. Furthermore, the application of the proposed
VR-TDNLMS algorithm to the design and implementation of
acoustic system identification and active noise control (ANC)
systems show that they considerably outperforms traditional
TDNLMS algorithms at low excitation or in the presence of mod-
eling errors. Moreover, the theoretical analysis provides simple
design formulas for achieving a given excess MSE (EMSE) and
step-size bound for stable operation.

Index Terms—Performance analysis, transform domain, vari-
able regularization.

I. INTRODUCTION

DAPTIVE filters are frequently used in acoustic applica-

tions such as system identification, acoustic echo cancel-
lation (AEC), active noise control (ANC) and related problems.
Both the recursive least squares (RLS) algorithm [1] and the
well known least mean square (LMS) algorithm [1], [2] as well
as their variants [3]-[9] are commonly used. Due to numerical
stability and computational simplicity, the LMS has received
much attention in acoustic applications. An important class of
the LMS algorithm is the transform domain normalized LMS
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(TDNLMS) algorithm [3]-[9], which exploits the decorrelation
properties of transformations, such as discrete Fourier transform
(DFT), discrete cosine transform (DCT), and wavelet transform
(WT), to approximately whiten the input signal. This helps to
reduce the eigenvalue spread of the input autocorrelation ma-
trix and hence significantly improves the convergence speed of
the conventional LMS algorithm.

An important problem of the TDNLMS and other LMS al-
gorithms is their sensitivity to the level of the excitation signal,
which may vary significantly over time as in speech and other
audio signals. At low excitation, the estimated power of each
transformed coefficient may become very small and the mean
square errors (MSE) may increase significantly due to normal-
ization of the transform coefficients by their estimated power.
Another problem is its sensitivity to modelling errors, which is
frequently encountered in systems such as ANC. In [7], a small
constant is introduced to avoid numerical instabilities when the
estimated input power is close to zero. Alternatively, a com-
monly used technique to address this issue is to introduce some
kind of regularization into these algorithms. For example, if an
L regularization term on the filter coefficient is incorporated
into the MSE cost function of conventional LMS algorithm, one
obtains the classical Leaky LMS algorithm [1]. A constrained
transform domain adaptive IIR filter structure for ANC was
also proposed in [8], where soft and hard constraints analogous
to regularization were applied to different transformed coeffi-
cients of a direct form adaptive IIR filter to mitigate the in-
stability problem of the conventional filtered-U adaptive algo-
rithm due to the poor frequency response of loudspeakers in
ANC systems. Unlike the conventional TDNLMS algorithm,
individual normalization of the transformed coefficient was not
performed and hence it may still be sensitive to the eigenvalue
spread problem of the conventional LMS algorithm. L2 regular-
ization has also been widely used in RLS algorithms [10], [11].
Moreover, the performances of the weighted Ls-based RLS and
recursive least M-estimation algorithms have been analyzed in
[11]. Ly regularization, on the other hand, tends to produce
sparse solutions as in [12], while the smoothly clipped absolute
deviation (SCAD) [13] regularization and additional sparse en-
hancing transformations [14] have the advantage of asymptotic
unbiased solution.

In this paper, a new regularized TDNLMS (R-TDNLMS) al-
gorithm is proposed. A weighted Lo regularization term on the
adaptive filter coefficients is first incorporated in the MSE cost
function in order to reduce the estimation variance. To quan-
tify the performance of the proposed algorithm, its mean and

1558-7916/$31.00 © 2012 IEEE
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mean square convergence behaviors for Gaussian input and ad-
ditive noise are analyzed. Difference equations describing the
mean and mean square convergence behaviors of the proposed
algorithm are derived. According to these difference equations,
the convergence of these equations is analyzed by a new ap-
proach based on Lyapunov function. Analytical expressions for
the steady-state excess MSE (EMSE) are derived. It is shown
that the Lo regularization introduces a bias to the Wiener solu-
tion. On the other hand, the regularization term helps to decrease
the estimation variance at low input excitation and improve the
convergence speed, especially for colored input. Moreover, by
analyzing the effect of the Lo regularization parameter on the
steady-state MSE of the weight vector for white Gaussian in-
puts, a new formula for selecting the regularization parameter
is obtained. This gives rise to the proposed variable regularized
TDNLMS (VR-TDNLMS) algorithm.

Simulation results show that the proposed VR-TDNLMS
algorithm has faster convergence rate and lower EMSE than
the conventional TDNLMS algorithm. The theoretical analysis
is also found to agree well with the simulation results. Fur-
thermore, the application of the proposed algorithm to several
acoustic applications including the design and implementation
of acoustic system identification and ANC systems are studied.
Simulation results show that the proposed VR-TDNLMS algo-
rithm has better immunity to the variation in input signal power
and robustness to modeling errors. Moreover, the theoretical
analysis provides simple design formulas for achieving a given
EMSE and step-size bound for stable operation.

The rest of the paper is organized as follows: in Section II, the
R-TDNLMS algorithm is derived. The mean and mean square
convergence behaviors of the proposed algorithm are then de-
rived in Section III, from which the proposed regularization pa-
rameter selection method is obtained. The application of the pro-
posed VR-TDNLMS algorithm to the system identification and
ANC system is studied in Section IV. Finally, conclusions are
drawn in Section V.

II. THE PROPOSED R-TDNLMS ALGORITHM

Consider the identification of an L-order linear time-in-
variant (LTI) finite impulse response (FIR) system with
coefficient vector wg by an adaptive filter of the same length
w(n) = [wi(n),wa2(n),...,wr(n)]*. The unknown system
and adaptive filter are both excited by an input z(n) and the
measured output of the system is d(n), which is assumed to be
corrupted by an additive noise n(n), i.e.

d(n) = wiz(n) + n(n), )

where £(n) = [¢(n),z(n—1),...,2(n— L+1)]7 is the input
signal vector. The adaptive filter aims to minimize a certain error
measure of the estimation error e(n) = d(n) — y(n), where
y(n) = w” (n)z(n) is the output of the adaptive filter.

In conventional adaptive filtering, the mean square errors,
ense = El[e?(n)], is minimized. Usually, x5 is approxi-
mated by an exponentially weighted least square error function
givenby Jrs(n) = > 1, A" "e?(4), where A is a positive for-
getting factor between 0 and 1. In Ls regularization [10], [11],
a regularization term on the coefficient weight vector is intro-
duced in order to reduce the variance of the estimator especially

when the covariance matrix of (n) is close to singular due to
lacking of excitation. Then, the corresponding objective func-
tion becomes Jp_rs(n) = Y iy A" ‘e?(i)+£||w(n)||3, where
¢ is anon-negative regularizatlon parameter. Other popular reg-
ularization methods include the 7.; and SCAD regularization,
which help to reduce the variance for system with sparse im-
pulse response [13], [14].

In this paper, we shall consider the weighted L» regulariza-
tion because it can be used to approximate the 1.; and SCAD
regularization by changing the weight appropriately over time
[14], [15].

Efficient batch algorithms for solving the Lo and L regular-
ization problems have been addressed in a number of previous
works such as [16]. In this work, we are interested in the re-
cursive implementation similar to adaptive filtering for online
applications. In particular, we shall focus on the development
of a new regularized TDNLMS algorithm and the selection of
the regularization parameter.

To start with, we consider the following weighted Lo regu-
larization problem

n

=D A () + €| Dw Cull3, @

i=1

Jw_2(n)

where C is an orthogonal transformation and Dy is a positive
diagonal matrix. It will become apparent that the regularization
penalizes the transformed weight vector Caw with large ampli-
tude. Dy can be made adaptive so as to approximate different
regularization methods. For instance, Dy, () is an identity ma-
trix for Lo regularization or the generalized inverse of the diag-
onal matrix diag{+/|Wi(n —1)|,-- -, /|Wr{n — 1)|}, where
W(n) = Cw(n) = [Wi(n),...,Wr(n)]? for Ly regular-
ization. Note, C serves as a sparsity-enhancing transformation,
which may improve further the performance of the system [14].

A first order necessary condition for optimality is
Vu(Jwr_a2(n)) = 0, where 0 is a null vector. Since the
problem is convex, this is also the global optimal condition.
Since the gradient of (2) with respect to w is

722)\71 i

where Ry = D%;VDW is a regularization matrix, and the
optimal solution wp satisfies the following system of linear
equation:

V (Ju L 2 fL +2€OTRW C’w (3)

G..(n)wg = ryq(n), “
where 7.4(n) = > ¢ A" 'd(i)z(i) is the cross-correla-
tion vector, and G..(n) = R,.(n) + ECTRWC’ is the
regularized covariance matrix of z(n) with R..(n) =
S A" ix(i)z(i)T the covariance matrix of x(n). The
problem is also referred to as ridge regression in statistics and
it can be computed by solving the system of linear equation
above.

The above problem can also be solved by the Newton’s
method given any vector w(n). The next iteration is given by
=w(n)— %MG;} (n)V

w(n + 1) w (Jwr2(n) Ly, )
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where 1 is the step-size parameter and V., (Jyw 1. _2(1))w(n) is
the gradient evaluated at w(n). For the weighted L problem,
the Newton method will converge in one step with ;1 = 1. The
remaining problem is then to compute G} (n) recursively over
time. Although the change in R,..(n) over time is rank-one, the
possible change in ¢C” Ry, C is full rank. One simplification is
to decompose the full rank regularization Dy, C into rank-one
rows and apply them successively to the QR decomposition to
realize full-rank regularization with a given strength [10], [14].
This gives rise to a numerically better behaved QR decomposi-
tion-based algorithm.

In this paper, we seek to simplify the implementation further
with the aim to derive a TDNLMS-like algorithm. The key is
to assume that an appropriate orthogonal transformation can be
chosen such that CG,,} (n)C" ~ D,, where D, is a diagonal
matrix. In other words, G';El (n) is approximately diagonalized
by C and consequently we only need to estimate ID.,. The matrix
C can be chosen as the DCT, DFT etc because of their good
decorrelation property. Using this property and pre-multiplying
(5) by C, (5) can be simplified to

W(nt1)=W(n) - s (CG,Hm)OT) (O (e 2(m)
~W(n)— %qu (CVy (Jwia(n)).

where W(n) = Cw(n). Moreover, by employing the fact

CV., (Jx/VL_Q (71)) = -2 Z )\ﬂiIE’(I)X(*(TL) + 25waW(7Z),
i=1

one obtains the following simplified update equation

Win+1l) = I-ptD, Ry )W (n)+uD, Z A e(i) X o(n),

i=1
(6)
where X (n) = Cz(n) is the transformed input vector, and
I is the identity matrix. Furthermore, if one approximates the
weighted error Y., A" ‘e(i)X ¢(n) using the instantaneous
error, (6) will reduce to

Win+1)=U - péD,RBw)W(n)+ uD,Xc(n)e(n). (7)

Next, we examine the approximation of the diagonal matrix
D, ~ CG,!(n)C" or in other words G,.(n) ~ C'D,'C.
First, we note from (4) that G, (n) = R,..(n)+¢ C" Ry C and
hence G, (n) = C"(CR,.(n)C" + ¢Rw)C ~ C"D,'C.
If the transform matrix C approximately diagonalizes R...(n),
then CT (A, + éRw)C ~ CTD,'C and £, = Azl +
£[Rw); ;» where £; ! is the i-th diagonal element of D AL,
is the i-th eigenvalue of R,..(n), and [Ryy] ; ; denotes the (i, 1)
element of Ry . Since [CR,..C"]. . = E[XZ ,(n)], which can
be estimated recursively as /

Tk (n+1) = Aok (n) + (1= N)XE (),

and R,..(n) for large n is equal to (1/(1 — X)) E[z(n)2T (n)] =
(1/((Q = X)R,., we have [A,], = (1/((1— A))ok,, (n). For
convenience, one can absorb the scaling 1/(1 — A) into z and
&. Thus the estimate [D], in (7) can be simplified as

1
ei(n) ~ (a?yc_z (n) +¢ [Rw]i,i) ; ®)

Consequently, (7) and (8) constitute the proposed R-TDNLMS
algorithm. For simplicity, we shall consider the case with a fixed
step-size . Other possible and simpler update of &;(n) is

eiln) & (e + 0% (m) 9)

where ¢ is a positive constant. IfC' = I, one gets the regularized
LMS algorithm as follows:

w(n+1) = (I — péRw)w(n) + px(n)e(n).  (10)
When D, = Ry = I, (10) reduces to the familiar Leaky
LMS algorithm [1]. The matrix Dy can be chosen from the cur-
rent weight vector to approximate L.; or SCAD regularization,
which generalizes the classical Leaky LMS algorithm. How-
ever, it is known that the convergence speed of the conven-
tional LMS algorithm is sensitive to eigenvalue spread of the
input covariance matrix E[£(n)z? (n)]. The proposed regular-
ized TDNLMS approximately whitens the input by means of
an appropriate orthogonal transformation and element-wise nor-
malization of the transformed coefficients, which leads to an
improved performance. The proposed R-TDNLMS differs from
the constrained transform domain adaptive filter in [8] in that the
latter focus on direct form IIR filter with D, = Ry = I, which
makes its basic form identical to the Leaky LMS algorithm, ex-
cept that the transformation C is a skinny M x [ matrix with
L > M, so that some of the transformed coefficients which lie
at the poor frequency bands of the speaker are simply ignored
to avoid instability. This removal can be viewed as hard con-
straints, while the regularization serves as soft constraints of the
system to improve system stability. However, since the trans-
formed coefficients are not normalized, it will still be sensitive
to possible eigenvalue spread of the input covariance matrix.
Moreover, it cannot be used directly to implement approximate
L1 and SCAD regularizations.

Unlike most previous works which employ a constant
regularization parameter, we propose to make & adaptive,
which gives rise to a new variable regularized TDNLMS
(VR-TDNLMS) algorithm. In order to derive such a parameter
selection method to be discussed in Section III-C, we first
examine the convergence behaviors and steady-state EMSE of
the R-TDNLMS algorithm.

III. PERFORMANCE ANALYSIS

In this section, the convergence performance of the proposed
R-TDNLMS algorithm with Gaussian input and additive noises
is analyzed. The following assumptions are made:

(A1) {xz(n)} is Gaussian distributed sequence with zero mean
and covariance matrix R,.,.;

(A2) W(n),z(n) and n(n) are statistically independent;

(A3) n(n) is white Gaussian distributed with zero mean and
variance 0',,2’.

(A4) the elements in D, ¢;(n), are uncorrelated with W (n)
and z(n) due to the recursive averaging effect of (Tg(c .
in (8).

(A2) is the commonly used independence assumption,
which is a good approximation for large L and for small
to medium step-sizes to simplify the convergence analysis
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of adaptive algorithms. Moreover, we denote the optimal
transformed weight vector by Wy = R}i ~xoPax, where
Ry.x. = E[Xc(n)XZ(n)] is the transform domain input
covariance matrix and Py x. = F[d(n)X ¢(n)] is the cross-cor-
relation vector between X (n) and d(n). Wy is related to the
optimal Wiener solution wg by wo = R{iy xoPax = CWy.

A. Mean Convergence Analysis

We now present the mean convergence behavior of the pro-
posed algorithm. First, we assume that the algorithm is conver-
gent. The condition of convergence will be shown later in this
section. Taking expectation on both sides of (7), we have

EW(in+1)]=EW(n)]+uD,

APixc — (Bxoxe + ERw) E[W(n)]}. (11)
At the steady state, (11) reads
Wr = (Rx.x. +ERw) ' Pax,, (12)

where W = E[W(c0)] is the desired transformed regular-
ized Wiener solution. The bias introduced can be estimated by
rewriting (12) as

(T+¢RyLx Rw) Wr = Rylx Pux. =Wo.  (13)
Let AW = W, — Wi be the bias from the Wiener solution.

Using the expansion (I—-P) 1 = > P* for P with spectral
radius less than 1, one gets

AW =Wy Wr = Wy-Y (~eRY R ) Wo. (1)
k=0

Here, we have assumed that the spectral radius of £Rf\r2 xoBw
is less than 1. This is valid if £ is sufficiently small and Rx . x .
is nonsingular. For mild regularization, £ is small and a first
order approximation of the bias is AW = 5R}2 xoBwWy.
Next we examine the convergence rate by introducing the

weight error vector #(n) = W(n) — Wg(n) in (11), which
yields

Erun+1)]=T-pD, (Rx,x. +&Rw)| Ev(n)]. (15)
Let TN]KT}T be the eigendecomposition of R,. =

Dl/ZRX( \(D 1/2 with R\(X( = RX( \( + ng[ Using
(15) and the change of variable V(n) = U D;l/z v(n), we
get the difference equation for the i-th element of £[V(n)] as
follows

EV(n+1)], =1 - ph)E[V(n)],, (16)

where Xi is the :-th eigenvalue of 1?..... Thus, the mean weight
vector of the adaptive filter will converge if

2
O<pu< =.

i

amn

Therefore, the maximum possible step-size iS ftmax = 2/ Xmax,
where Apax is the maximum eigenvalue of R... Moreover,
since the maximum eigenvalue of Rx.x. = Rx.x. + {Rw
is larger than that of Rx ., x,. for positive £, Apnax will be larger
than the maximum eigenvalue of the conventional covariance
matrix Rx_ x, in the TDNLMS algorithm. Therefore, the use
of regularization will reduce slightly the maximum possible
step-size.

It can be also seen that if the input covariance matrix Rx . x.
has zero eigenvalues, these eigenmodes can never converge and
the solution may be significantly biased. With sufficient regular-
ization, the eigenvalues of R,.. can be made nonzero and hence
the solution will be given by (12) with a controllable bias.

B. Mean Square Convergence Analysis

To evaluate the mean square behavior, we multiply v(n)
in (7) by its transpose and take expectation to obtain a dif-
ference equation for the weight error covariance matrix
E,.(n) = E[v(n)vT(n)] as follows

Eo(n+1)
=E,.(n)—p (D RXCXC‘-‘UU( n) +Ev'v(n)RXUXCDxT>
+ 12D, B (Xo(n)e(n)—ERw W (n))
(XEmem) -eW" ()R ) [ DT (18)

By noting that e(n) = [Wo — W(n)]TXo(n) + n(n) =

" X (n)+n(n), wheres = Wo—W i —v(n) = AW —uv(n),
the last term in (18) can be rewritten as
S(n) = p*D,[Ag(n) — A1 (n) — As(n) + A3(n)

+RXCXG US]D?

where the expectatlons are summarized for further analys1s as
follows Ag(n 2" EXcm)XEM)E(n)Xc(n) X5,
Al(n) = ERXC(\CHML( )RW and Ag( ) =
g?RWsW(n)RW with Zi(n) = AWAW? + Z,,(n) —

() AWT — AW (n), Epu(n) = WRWR + Euo(n) +
Fn)Wp + Wrt! (n), Zpu(n) = AWWEL — E,.(n) +
(n)Wy — AW (n), and 5(n) = E[v(n)].

Next, we consider the stability of the algorithm.

Stability and Step-Size Bound: Multiplying both sides
of (18) by D, ' and taking the trace operation @(n) =
Tr(D,'E,,(n)), we get

olnt+1)= 99(7L)—[2/1,TT (RXcXc o (n)) — TT(D;ls(TL)> ] ,
(19)

where (n) serves the role of the Lyapunov function, which is
always positive. Since the driving terms in (19) with respect to
o2, W, and AW are finite, and E[v] converges to zero if (17)
is satisfied, we only need to consider those terms in =, (n).

Moreover, as @(n) is positive, if the term inside the bracket in
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(19) is positive, then the system is guaranteed to be stable. In-
serting Ag(n), A1(n), A2(n) and As(n) into (18) and simpli-
fying, one gets the following sufficient condition for stability:

2NTT (j?Xc'Xc EU‘”(”)) > N2’7(n‘)7 (20)

where we define the following term for simplicity
v(n) =2Tr (RxoxoZwu(n)Rxoxo D)
+Tr(Rx.x.Zv(n)Tr(Rx.x.D:)
+&Tr (Bx,xoZve(n)RwD,)
+&Tr (RwZE,.(n)Rx . x.D»)
+ 2Ty (Ry B, (n)Rw D).

Here, we have used the Gaussian factor theorem to obtain:
E Xc(n)Xg(n)sm,(n)Xc(n)Xg(n)}
= 2RXCXC Ee (n)RXcXG +Tr (RXCXC EU,U(TL)) RXCXC

so as to arrive at the first two terms of v(n) in (20).

Since, v(n) depends on =, (n), (20) cannot be used directly
to determine a bound on . for practical application. Fortunately,
we can use the facts that Tr(AB) < Tr(A)Tr(B) for A, B >
0 and Tr(AB) = Tr(BA) to obtain an upper bound for y(n)

as follows:

y(n) < 1”"(1?x¢u¥055vw(”)) v 2D
where
Y =2Tr (Rx.xeD.Ty) + Tr (Rxox.D.) Tr(T,)

-1
F2UTr(Ryy Do) + 2T (RWD,,ERI,,VRXCXC)
~—1
and I'; = Rx.x.Rx.x.. By cancelling the term
Tr(Rx,x.Ew(n)) on both sides of (20) using (21), one
gets the following conservative upper bound of ; for mean
squares convergence:

2

HR-TDLMS < (22)

For conventional TDLMS algorithm without regularization, one
hasI', = I and & = 0, which yields the familiar step-size bound
for mean square convergence:

2

XX 7‘)

1 15 <
HTDLMS > 3T (

Again, one notices that the regularization slightly reduces
the step-size bound for mean square convergence as compared
with the conventional algorithm. As we shall show later that the
price paid by this reduction is rewarded by the reduced MSE if
Rx x. is ill-conditioned.

When C = D, = I it will further reduce to the conventional
LMS algorithm. It can be seen that (22) reduces to the classical
results of Weinstein [17], which was obtained by solving the
difference equations followed by certain simplification. It there-
fore suggests that the proposed stability analysis method based
on the Lyapunov function and the trace operator is a very conve-
nient and powerful tool for analyzing the stability and deriving

the maximum possible step-size for adaptive filters. We now de-
rive an expression for the steady-state EMSE.

Steady-State EMSE: 1f the algorithm converges, E[v(o0)] =
0, and the last term in (18) will reduce to

S(o00)= ’D.. [Ao(oo) — A1(00) — Aa(00) + Az(oc)
+ R)(C,'XCU%}DZ:‘
Ag(00) =2Rx . x 0 Evo(00)Rx o x + 262 Ry

+Tr ([AWAWT + B (0 )} Ry, x. ) Ry, x.,
Ax(o0)=A7 (00) =€ (ERw — Rxoxo Bun(o0)Bur )
Ay(00) =€* (R + R Byu(o0) By )

where Ry = RwW W LRy

and we have used the identity Rx,x AW = (RyWg.
Therefore,

Ap(o0)— A1 (00) — Az(00)+ Az(o0)
=2(Rx.x,+&Rw) E,(00) (Bx.x. +E{Rw)
—¢£ (RX(;X(;—'uu( )RM + Ry ‘—'bb( )RXGXC)
+Tr (AWAW RXGXC' +E‘U’U(OO)R4Y(;}((;) RX(:X(;
+& Ry — &’ Rw E (o) Ry .
Assuming #? and £2 are small, we can drop the last term to get
S(OO) ~ [LQDJ; [QEXCXC E’U’U(w)R‘YcXC
-¢£ (RXCX(, Z,0(c0)Rw
+RU :UU( )RXCXC)

+ (1. + 025,) Rcoxo + R | DY, 23)

where Jo = Tr(Eyw(c0)Rx,x.) is the steady-state EMSE,
and o2, = TrH{AWAWT Rx_ x,.) + o} is the minimum en-
ergy of the residue. This also gives an upper bound of the MSE
since we dropped only the negative terms. Substituting (23) into
(18) gives the following equation describing the weight error co-
variance at the steady state:

Evv (OO) %Em (DO)
— (DR xo Bun(50) + Er(o0) R x DY)
+ 2/~’4 DJCR)(C,'XC EU‘U (OO)R)(c X¢ D
+M2D~F |:(J* ‘|‘U§1m) RXC X +€21~2W':| DZ (24)
where again we have dropped the negative term to obtain a sim-

plified upper bound of the covariance.
By expressing ¥(n) in the transformed coordinate: V' (n) =

~T
U D;l/ 2v(n), (24) can be further simplified to

o0) — ;L[NXEVV(OO) — ;LEV‘/(QO)K
+12T(00) + 2p2 A=y (00)A,

Evy(oo) = Evv(

(25)

where the driving term is I'(oc) = (J. + 02, )1 + I'2
- T
with Ty = UDY?Rx.x.DY?U and T, =
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have wused the fact

~ ~ ~T
§2UDi/2RWDi/2U and we
~ T s e
A\ =U D)’Rx.x.DYU.

To solve for the EMSE, we first note that the diagonal values
of (25) read

—2p); [Bvv (o)), , + 1°

+[T2(0)];,)
(26)

[EVV(OC)],:J: ~ [E"V(OO)].- :

(2X 1Bvvioo) + (o + o) ()]

where [I'1(oc)], ; = I'1;, and [['2(o0)], ; = I'2.;. Then we have
the EMSE around the converged solution as:
]* = TT’(EVV(OC)RXCXC)
~T ~
= Tr(Eyv(cc)U DIRx.x,D: U). 27)

If the transform can appr0x1mately diagonalize R.., then
R,, = Dl/ZR;sr Xe D = I, and U is approximately equal
to the identity matrix. Hence,

U DRy x DU =A—¢U DERywDEU
~A— (D:RyD:.

Moreover, for diagonal dominance Ry, we further have

J. =Tr (Evv(oc) (K _¢D? RWD;é))

~ Y iEn
i=1

where Ry _;; is the ¢-th diagonal value of Ryy.
[Evv(oc)]; ; from (26), one gets

Moo (N7 R}, @9)

Solving for

- M 2
Eyy(oc)];,; = =———=— [(Je +005) T1i + T24]
Sy (o)l 201 — M) 1 )T 2]
(29)
Consequently, J, is found to be
1 2
J* o 2“ ( lnln(i)TD + (755) . (30)
(1 - 1udrn)
where (rbTD - Z (Fl L(/\t - g RU Ll)/)\ (1 - AL.“))

(/)E - Z (FQ L( i 55 RVV Ll)/)\ ( - AL/li))
Since the total MSE including the bias is Jp =
E[(AWT X ¢ (n)) ] + J., we have from (30) the desired
steady-state EMSE as

1\:|>~

(o2 dTD + ¢) .

Jn = W Ry Ry, x RuWo + 25 (1~ Sudbro)
— 5HOTD

(€2))

C. Selection of Regularization Parameter

The regularization parameter plays an important role in the
performance of the R-TDNLMS algorithm in terms of steady-
state EMSE and convergence rate. Using the performance anal-
ysis above, we now derive the regularization parameter £ to
balance the bias and variance components in the MSE devi-
ation from the Wiener solution. For mathematical tractability,
we shall assume that the input is white with a variance 2 and

Ry =I.Hence D, = s 'Iisa diagonal matrix, where ¢ is
the estimate of input signal power a?. Then, (30) can be sim-
plified to (/)TD = (1/)\(1 - )\;L))Ef 1I'1,4, where A=A
1+ &0, RW_,L- ;= 1+ e 1Ry _i,; and the second 1dent1ty
follows from the fact that the input power is assumed to be well
estimated, i.e. o) & ¢. Similarly, ¢, = Ef:lfgw/()\(l — ).
Combining these results, and using U = I, (31) can be approx-
imated as

S (ol + €0, W)

Jr =~ &0 2 |Woll5 +
n % 80,2 W T

1
. B SHO -
=202 |Woll; (1+~ 2Mmin™ (32

b1
A1 = Ap) M1 =)

where |W, ||§ is the norm of the system impulse response which
is usually assumed to be known a priori [18]. It can be seen
that the first and second terms on the right hand side corre-
spond, respectively, to the bias and variance of MSE. Moreover,
02 = 02 + 02||AW|3, where AW = Ry Ry W.

min

Therefore,
Lu(1+L o2l
2wl 14 220 2]
AL = Ap) AL = Ap)

It can be seen that the first and second term on the right hand side
corresponds, respectively, to the variance and bias of the MSE.
In order to obtain a balanced performance in practical applica-
tions, we propose to choose £ so that the two terms are equal to
each other. Consequently, the desired regularization parameter
satisfies

. (33)

su(1+ L) 2
(1 " (I+& 11— pul+ 55‘1))> ¢

_ ol
(I+&e )1 —pd+&e )’

which upon solving yields

/I,L(T"

Eopt = d (34)
\ [0l (1 + 301+ 1)

Therefore, by estimating the input signal power online with a

given prior noise power, the regularization parameter can be ad-

justed automatically, which yields the proposed variable regu-

larized TDNLMS algorithm.

IV. SIMULATION RESULTS

Computer simulations are conducted to evaluate the conver-
gence behavior of the proposed algorithm and verify the ana-
lytical results obtained in section IIl. As a comparison, we also
consider the conventional TDNLMS algorithm. The DCT trans-
formation is employed due to its wide usage and efficiency in
practice. The power of the input element is estimated recursively
asei(n) = (1 —ac)ei(n—1) + e X2 ;(n) + & with a.. = 0.01
and ¢ either a small constant for stationary input or £(n)[Rw], ;.
as shown in (8), for power-varying input. All simulations are av-
eraged over 100 independent runs if not specified.
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TABLE I
EXPERIMENTAL EMSE RESULTS OF PROPOSED REGULARIZATION PARAMETER FOR FIRST ORDER AR INPUT
L 15 50
SNR
(dB) H 0.007 0.03 0.001 0.005
f 0. lfopl fopl Sfopl 0.1 fopl fopl Sé)pl 0.1 fopl gopl Sfopl 0. léopl fopt Sfopl
0 0.07 0.68 34 0.13 1.3 6.4 0.06 0.6 3 0.12 1.2 6.2
EMSE 4.2 2.4 8.4 10.2 7.5 17 142 11.0 18.9 19.7 15.9 20.6
& 0.1 Eopt S5&opt 0.1 Sopt Sopt 0.1 Eopt S&opt 0.1&pt Sopt S5&opt
10 0.02 0.22 1.1 0.04 0.37 1.8 0.02 0.2 0.99 0.04 0.38 1.9
EMSE -4.6 -5.6 0.7 1.2 -1.4 5.6 4.8 2.3 9.3 11.1 8.0 13.7
& 0. lfop/ fopz Sfopl (llfopl fopl Sfopl O.Ifam fopl Sfopz 0. lg'{o;u fgpz Sfopz
20 0.007 0.07 0.34 0.013 0.13 0.64 0.006 0.06 0.3 0.012 0.12 0.62
EMSE -14.0 -14.2 -8.3 -7.3 -9.0 -2.1 -4.9 -5.0 0.1 2.0 0.4 5.5

A. Experiment 1: Colored Gaussian Input

This experiment is based on the system identification model
in (1). The following first order autoregressive (AR) process is
employed as the input: «(n) = 0.9z(n— 1)+ g(n), where g(n)
is a zero-mean and white Gaussian noise. The unknown system
to be estimated is an L-order FIR filter. Different signal-to-noise
ratios (SNRs) at the system output are used to examine the effect
of the regularization on the proposed algorithm under different
conditions. First, simulation results of the steady-state EMSE
for the R-TDNLMS algorithm using different regularization pa-
rameters and step-sizes are compared in Table I. In the simula-
tions, the SNR tested are 0 dB, 10 dB and 20 dB and we eval-
uate two different filter lengths: L. = 15 and 50. The step-sizes
for L. = 15 are ;» = 0.007 and 0.03 whereas the step-sizes for
L =50 are 4 = 0.001 and 0.005. The regularization parameters
are calculated according to (34) and & = 0.1, Eopr and 5E,pt
are used as comparison. ¢ is chosen to be 0 since the power of
the input element is constant. It can be seen from Table I that
the R-TDNLMS algorithm using £ = &,,,+ achieves the lowest
steady-state EMSE values compared to those using & = 0.1&,,
and 5¢,,; in each case. This suggests that with proper prior in-
formation such as the noise power and the norm of the FIR
system, (34) is an effective method for selecting the regulariza-
tion parameter to reduce the MSE.

To further examine the performance of the proposed
VR-TDNLMS algorithm, the convergence curves for EMSE are
compared to the conventional TDNLMS algorithm in Fig. 1.
Moreover, to verify the analysis in Section I1I, the theoretical pre-
dictions of the steady-state EMSE are compared with simulation
results. The settings are L = 15,£ = &,,; with SNR = 0 dB,
10 dB and 20 dB. To see the effect of regularization, we use the
same step-size for both algorithms, i.e. x = 0.007. It can be seen
that the VR-TDNLMS algorithm generally converges faster and
to a lower steady-state EMSE than the conventional TDNLMS
algorithm. The improvement is more significant when the SNR
is low as expected. The estimated steady-state EMSE also agrees
well with the simulation results. Therefore, the EMSE at (33)
given the regularization parameter in (34) gives an expression
relating the EMSE with a desired step-size. Hence, it is possible
to select a step-size to achieve a given EMSE. We shall further
illustrate this approach in the design and implementation of an
ANC system in sub-section C' below.

B. Experiment 2: Application to Acoustic System Identification

In this experiment, we compare the performance of both
the I.; and L, based VR-TDNLMS (L1-VR-TDNLMS and

L4-VR-TDNLMS) algorithms with the conventional TDNLMS
in an acoustic system identification problem. The input is a
segment of audio signal with a sampling rate of 8 kHz as shown
in Fig. 2(b) and the SNR is chosen as 15 dB. The unknown
system is shown in Fig. 2(a). It is used to simulate the impulse
response inside an enclosure such as a vehicle and the filter
length is L = 200.

The step-size for the algorithms is 0.005. For the L»-VR-
TDNLMS algorithm, the regularization parameter is adaptively
updated based on (34) as follows:

1 oy
sl (ﬂ(n))
1.(n) = 72 - (35)
[IWol5 (1 + Su(1 + 1))
where 72 is an estimate of the averaged input power and

a2(n) = Aei(n — 1) + (1 — A)z?(n) is the ensemble av-
erage of the input power at time instant 7, estimated by using
a forgetting factor A = 0.99. On the other hand, for the
L;-VR-TDNLMS, we have &g, (n) = £pa(n)|Wy|. Thus, the

regularization parameter can be simply derived as [14]

1 ol
£r,(n) =32 —EML <U‘?’(")) )
* "N (1+ %/1,(1 + L))

(36)

Consequently, € is chosen to be §;(n)[Rw ], ;,{ = L1, L». Since
in many practical applications, exact prio’r information about
the system, such as the averaged input and noise power, is not
exactly known but an upper bound of these quantities may be
estimated, the sensitivity of the above choice of &;(n) is also
tested by using 0.1&;(n) in the VR-TDNLMS algorithm as a
comparison. The learning curves of EMSE of different algo-
rithms are shown in Fig. 2(c). It can be seen that the TDNLMS
algorithm is very sensitive to the input signal when the input
power is varying considerably. The VR-TDNLMS algorithms,
on the other hand, have a high immunity to variation in input
power and they achieve much lower EMSE values compared
to the conventional TDNLMS algorithm. The performance of
Ly and L regularizations seem to be similar in this case. For
L1 regularization, we also examine the use of multiple updates
at each time instant. This is because the use of the previous
weight vector in the weighted Ly regularization is only an ap-
proximate solution of the L regularization problem. To obtain
a better approximation, we perform one to three updates at each
time instant using the first order AR process as input. It can
be seen that for one single update, the performance is similar
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Fig. 1. Learning curves of EMSE for the time-invariant channel identification
problem with first-order AR input in experiment 1 at SNR. = (a)0 dB (b) 10 dB
and (c) 20 dB. L = 15.

to the Ly norm as shown in Fig. 2(c). As the number of itera-
tion increases, improved convergence rate is observed whereas
the EMSE is degraded as shown in Fig. 3. This is because the
L, regularization assumes that the transformed coefficients are
sparse and hence the effective number of coefficients to be es-
timated is smaller. This explains why the initial convergence is
faster. On the other hand, since the L; is biased as the impulse
response is not sparse, hence it exhibits a bias at the steady state,
giving rise to higher EMSE. If the impulse response is indeed
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©

Fig. 2. Learning curves of EMSE (c) for the time-invariant channel (a) iden-
tification problem with music input (b) in experiment 2 at SNR = 13 dB.
L = 200.
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Fig. 3. Learning curves of EMSE for the L, -VR-TDNLMS with different it-
eration numbers in experiment 2 at SNR = 15 dB. The input is the first order
AR process. L = 100.

sparse, better EMSE will be observed. Therefore, the two reg-
ularization methods should be properly chosen to suit different
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Fig. 4. The diagram of an ANC system.

applications. In the mismatched case, where the regularization
may be insufficient, the performance of the VR-TDNLMS al-
gorithms may be slightly degraded.

C. Experiment 3: Application to ANC

In this experiment, an ANC system as shown in Fig. 4
is considered [19]. The impulse responses of the pri-
mary and secondary paths are denoted by {pp(n),k =
1,2,...,L,} where k denotes the length of the path and
{sr(n),k = 1,2,..., L}, respectively. An error microphone
is used to pick up the residual signal e(n) to be minimized.
Thus after cascading with {s.(n)}, the ANC controller
w(n) = [wi(n),...,wr(n)]T approximates {—pi(n)} so
that the undesirable contribution from the noise source {x(n)}
is minimized. Since {sx(n)} is unknown, it is replaced by
its estimate {$x(n)} and the input to the adaptive filter is
Zs(n) = x(n)*3k(n), where “*” stands for discrete time
convolution. Since {x(n)} is filtered by {3x(n)}, the resultant
algorithm is called the Filtered-x (Fx)-based algorithm.

We now consider the application of the proposed
VR-TDNLMS algorithm for estimating the Wiener solu-
tion of the ANC controller. More precisely, the coefficient
vector of the FXTDNLMS algorithm is updated as

Win+1)=W(n) — uD,.Czx,(n)e(n), (37
and for the proposed variable regularized FXTDNLMS (VR-
FxTDNLMYS) algorithm, it is given by

Win+1)=(I - p&(n)D, Ry )W (n) — uD,Cx;(n)e(n),
(38)
where &, (n) = [F.(n), 4s(n —1),...,2.(n — L, + 1)]T.
Since the secondary path is usually not known exactly,
the system matrix in the Wiener solution of the Fx-based
algorithms is in general asymmetric [20]. Therefore, the ANC
system may run into instability [21] because the eigenvalues of
the covariance matrix may be negative. This can be improved
by better secondary path modeling [20], [22]. In order to solve
this problem, regularization techniques can also be employed
to improve the robustness of the ANC controller [23], [24]
since the additional diagonal term in (12) will help to improve
the positive-definiteness of the system matrix. Moreover, the
VR-FXTDNLMS algorithm above is a good alternative to
the existing regularized FXLMS (R-FXLMS) algorithm [23]
because of its fast response and robustness to errors in the
secondary-path modeling. In this simulation, the FXTDNLMS,

TABLE 11
STABILITY CONDITION
m 0.1 Hmax | MHmax | 2,umax | 1 O,Umax | 20,umax
Short path
White 0 0 1 100 100
AR 0 0 0 1 100
Long path
White 0 0 1 100 100
AR 0 0 1 100 100

m: indicates the divergences for 100 times of Monte Carlo runs. m = 0: no
divergence observed; m = 1: diverge at a very small probability (less than 3

times); m = 100: diverge at each trial.

R-FxLMS in [23] and the L, based VR-FXTDNLMS algo-
rithms are evaluated.

For the VR-FXTDNLMS algorithm, the upper bound of step-
size for stability in (22) is firstly examined. In order to examine
the accuracy of these upper bounds, different situations have
been simulated. Since the results are quite consistent, we only
present parts of them to save space. First, a short path length
is used. The length of the primary path is 12. The secondary
path is estimated offline with a modeling error of —6 dB after
normalized by the norm of the true secondary path. Both white
and colored Gaussian input sequences are tested. For the col-
ored input, the sequence is generated as a first order AR process
as described in Experiment 1. The background noise variance
is 0.064. The step-size upper bound is then calculated to be
Bmax = 0.05 and ppax = 0.01, respectively, for the white
and colored inputs. Then, we employ different step-sizes, i.e.
# = 0.1 imax, Umax> 2lmax; 10tmax and 20p,,.x, and examine
the stability conditions, which is summarized in Table II. Note,
100 random runs are used to examine if there is any possibility
of instability. It is then repeated by using longer path lengths, i.e.
the length of the primary path is 100. For the white and colored
inputs, fimax 18 calculated to be 0.004 and 0.001, respectively.
From the convergence conditions, we expect that the system be-
comes unstable when the step-size exceeds the upper bounds. It
can be seen that the bound is quite accurate, since beyond which
the system usually becomes unstable for all or parts of the 100
random runs. It can be seen that the algorithm may still be stable
or the probability of divergence is low (less than 3 divergences
were observed in 100 runs) when the step-size is close to the
bound, say 2 times of fi,,.x. Overall, it can be seen that the the-
oretical prediction provides valuable information about the se-
lection of step-sizes for stable operation.

In the second experiment, we shall propose a design proce-
dure for ANC systems based on the theoretical analyses ob-
tained in Section III and illustrate its usefulness by a design
example.

The settings are identical to the above example for the longer
path length. The desired steady-state EMSE J, for the ANC
controller is set to be 0.06 (around —12 dB) and 0.015 (around
—18 dB), respectively, for white and colored inputs. Given the
desired EMSE, we have to determine two unknown parameters
1 and &. One solution is to solve it iteratively from some initial
guess of the step-size z¢. Substituting the initial value of y into
(34), one gets an updated optimal regularization parameter £.
We can then update p¢ from the updated £ according to (30) and
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TABLE III
PROPOSED DESIGN PROCEDURE FOR ANC SYSTEMS

Given the desired steady-state EMSE for the ANC controller, &,
as well as the prior knowledge or estimate of the input power and
noise variances, o .

Step 1  Calculate the regularization parameter from (34):
Ex Yoo (W, I (+340+L)
where f1=2J. [(c}¢,,) is a tentative step-size and o2 =
o} +o% . ol is the variance of the system residue
x(n)*p(n)+w*xy(n) obtained numerically.
Step 2  Calculate the step-size of the ANC controller x from (30)
using the small step size (SSS) approximation:
~ 2J.
B ottt
where o2, ~ 62 (23), ¢, = 3= (1= &) (1 + £&&7) , and
g 2 2 82 W (1= &) [+ &5 in (30), with W,
being the i-th element of W;.
Step 3 Check the stability conditions for the ANC controller and

the secondary-path estimator in (22). If this condition is
violated, a smaller x should be chosen.

so on. Our simulation results show that, given an appropriate
initial guess, one time of iteration could give a satisfactory re-
sult. This procedure is summarized in Table III for the ANC
design.

Usually, a small step-size is used to achieve a good perfor-
mance. Thus, an appropriate initial guess of ;. can be calcu-
lated from /i = 2.J./(c2¢1p), where 07 = o7 + o, and o,
is the variance of the system residue x(n)*pr(n) + w*zs(n)
[20], which can be obtained numerically. Using this initial step-
size, an approximate regularization parameter can be calculated
(Step 1 in Table III). Under the small step-size assumption, the
step-size for the ANC controller can be calculated from (30) to
be pn & 2J,/(02,,¢1D + ¢¢), where the term (1/2)pgrp in
the denominator is ignored since y is small. In addition, the fol-
lowing approximation for ¢p and ¢¢ can be used, i.e. ¢p ~
Sl —ei) (1t ée Y and e » 01, e Wi (1 -
Esfl)/(l + Eefl), with Wx_; being the i-th element of W g.
Consequently, the desired step-sizes are ;1 =0.0025 and 0.0008,
respectively, for white and colored inputs. Finally, applying the
two step-sizes to (22), we found that the stability constraints are
satisfied (Step 3).

The calculated step-sizes are used in the ANC system for
the VR-FXTDNLMS algorithm. The regularization parameter is
chosen according to (35). The EMSE curves, according to (5),
are plotted in Fig. 5. It shows that, the VR-FXTDNLMS algo-
rithm using the two designed step-sizes achieves approximately
steady-state EMSEs at — 12 dB and — 18 dB, respectively for the
white and colored inputs, which are close to the desired values.
This illustrates the effectiveness of the proposed design proce-
dure for ANC systems.

Moreover, the mismatched case with a smaller regularization
parameter of 0.1&(n), is also tested as a comparison. Their con-
vergence performance is also compared with the R-FxLMS al-
gorithm under the same setting. For R-FXLMS, the step-sizes
and regularization parameters are tuned to arrive at a similar
steady-state EMSE. The resultant step-sizes for white and col-
ored inputs are chosen to be 0.002 and 0.0005, respectively, and
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—x - (2) R-FXLMS (mismatch)

Q)] —  -(3) R-FXLMS

—— (4) R-FXTDNLMS (mismatch)
‘ — (5) R-FXTDNLMS

EMSE (dB)

3) (5)

150 1000 2000 3000 4000 5000
Iteration Number
(a)
0 G T T
/| = = = (1) FXTDNLMS
-2 I — - (2) R-FXLMS (mismatch)
i — _(3) R-FXLMS
-Ar m {' — s (4) R-FXTDNLMS (mismatch) | |
6L ™ N — (5) R-FXTDNLMS |

EMSE (dB)

4000

2000 3000
Iteration Number

(b)

0 1000 5000

Fig. 5. Performance comparison of various algorithms for the ANC problem
with (a) white input and (b) colored input. The background noise variance is
0.064. The modeling error is —6 dB.

the regularization parameter is found to be 0.1. As a compar-
ison, a mismatched regularization parameter of € = (.01 is also
used in the R-FXLMS algorithm.

Fig. 5 shows the EMSE learning curves of the various algo-
rithms. It can be seen that for both white and colored inputs,
the FXTDNLMS algorithm diverges since the modeling error
of the secondary-path results in a singular system matrix. The
regularized algorithms, on the other hand, show improved ro-
bustness under such circumstances. Moreover, the transform do-
main algorithm accelerates the convergence speed for the col-
ored input. For the colored input, the FXTDNLMS algorithm
with 0.1£(n) seems to achieve a lower steady-state EMSE. This
is probably because the modeling error of the secondary path
is not taken into account when selecting the regularization pa-
rameter, though the latter contributes effectively to improve the
positive definiteness of the resultant system.

V. CONCLUSIONS

A new R-TDNLMS algorithm and its mean and mean square
convergence performances have been presented. The proposed
algorithm extends the conventional TDNLMS algorithm by
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imposing a regularization term on the filter coefficients to reduce
the variance of estimators due to the lacking of excitation or in
the presence of modeling errors. Difference equations describing
the mean and mean square convergence behaviors of this algo-
rithm are derived so as to characterize its convergence condition
and steady-state EMSE. Based on this analysis, a new formula
to select the regularization parameter for white Gaussian inputs
is proposed, which leads to a new VR-TDNLMS algorithm. The
improved convergence performance, steady-state EMSE and
robustness to power-varying inputs of the VR-TDNLMS algo-
rithm and the effectiveness of the theoretical analysis are verified
by computer simulations. The application of the proposed
VR-TDNLMS algorithm to the design and implementation
of acoustic system identification and ANC systems are also
illustrated by design examples. Improvements over traditional
TDNLMS algorithms at low excitation or in the presence of
modeling errors are observed. Moreover, the theoretical analysis
provides simple design formulas for achieving a given EMSE
and step-size bound for stable operation.
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