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Abstract—This paper proposes a new variable regularized
QR decomposition (QRD)-based recursive least M-estimate
(VR-QRRLM) adaptive filter and studies its convergence per-
formance and acoustic applications. Firstly, variable regular-
ization is introduced to an efficient QRD-based implementation
of the conventional RLM algorithm to reduce its variance and
improve the numerical stability. Difference equations describing
the convergence behavior of this algorithm in Gaussian inputs and
additive contaminated Gaussian noises are derived, from which
new expressions for the steady-state excess mean square error
(EMSE) are obtained. They suggest that regularization can help to
reduce the variance, especially when the input covariance matrix is
ill-conditioned due to lacking of excitation, with slightly increased
bias. Moreover, the advantage of the M-estimation algorithm over
its least squares counterpart is analytically quantified. For white
Gaussian inputs, a new formula for selecting the regularization
parameter is derived from the MSE analysis, which leads to the
proposed VR-QRRLM algorithm. Its application to acoustic path
identification and active noise control (ANC) problems is then
studied where a new filtered-x (FX) VR-QRRLM ANC algorithm
is derived. Moreover, the performance of this new ANC algorithm
under impulsive noises and regularization can be characterized
by the proposed theoretical analysis. Simulation results show that
the VR-QRRLM-based algorithms considerably outperform the
traditional algorithms when the input signal level is low or in the
presence of impulsive noises and the theoretical predictions are in
good agreement with simulation results.

Index Terms—Adaptive filters, ANC, performance analysis, re-
cursive M-estimation, variable regularization.

I. INTRODUCTION

S YSTEM identification is frequently encountered in many
applications such as acoustics [1], communications, power

system measurement in industrial and biomedical engineering/
informatics, etc. Recursive least-squares (RLS) algorithm is an
effective adaptive filtering algorithm which has been widely
used in these applications. Traditional RLS algorithms estimate
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the coefficients of a linear model in a least-squares (LS) sense
by minimizing the sum of squared residual errors. Since the LS
estimation implicitly assumes that the additive noise is Gaussian
distributed, the performance of conventional LS-based adap-
tive filters will be considerably degraded in impulsive noise
environment [2], [3]. To address this problem, the robust least
mean square M-estimate (LMM) [4], [5] or the RLSM-estimate
(RLM) [6], [7] algorithms were proposed, so that the adverse
effect of impulsive noises can be effectively mitigated. To im-
prove the numerical stability of the RLM algorithms in finite
wordlength implementation, a QRD-based RLM (QRRLM) al-
gorithm was developed [8].
Another possible problem with the RLS-based algorithms

is that the covariance matrix of input signals may become
poorly conditioned or even singular. This is often encountered
in acoustic applications such as adaptive echo cancellation
(AEC) where the level of the excitation signal may vary signif-
icantly over times. In such situation, most RLS-like algorithms
will show dramatically increased estimation variance or even
suffer from instability. To address this ill-conditioned problem,
a commonly used technique is to introduce some kind of
regularization into these algorithms. In fact, regularization
techniques have attracted much interest recently as a useful tool
for reducing the estimation variance [9], especially when only
a small number of data samples are available [10]. They have
also been successfully applied to a wide variety of areas such as
audio signal processing, etc, to improve the convergence speed
and decrease the steady-state misadjustment in conventional
RLS [11]–[15] and LMS-based [16]–[19] adaptive filtering
algorithms. Most of the above regularized RLS algorithms are
very sensitive to the round off error. It is therefore desirable
to devise a regularized RLS algorithm using the QRD, which
has much better numerical properties and can be effectively
implemented in hardware without multiplications using the
coordinate rotation digital computer (CORDIC) algorithm.
In this paper, a new VR-QRRLM algorithm is proposed.

It employs M-estimation in combating impulsive noises and
a variable weighted regularization to reduce the estima-
tion variance. An efficient QRD implementation that may
improve the numerical stability is also considered. In addition,
to quantify the performance of the R-QRRLM algorithm, the
mean and mean square convergence analyses with a fixed
regularization parameter for Gaussian inputs and additive
noises are first performed. They rely on the Price’s theorem
[20] and the generalized Abelian integral functions recently

1558-7916/$31.00 © 2012 IEEE
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introduced in [4], [21] to evaluate various expectations. While
convergence behaviors of the RLS and the RLM algorithms
have been considered previously in [22] and [7] respectively,
the performance of the regularized case is considerably more
complicated. Using an extension of the Price’s theorem for
contaminated Gaussian (CG) noise [23], we are able to ana-
lyze the performance of the R-QRRLM algorithm. A similar
approach has been successfully applied to the analysis of the
NLMS and M-estimate NLMS (NLMM) [21] algorithms for
Gaussian inputs and CG noise. Difference equations describing
the mean and mean square performance of the algorithm
for Gaussian inputs and Gaussian or CG additive noises are
obtained. Moreover, the convergence of these equations is
thoroughly analyzed to obtain analytical expressions for the
steady-state excess mean square error (EMSE). By analyzing
the effect of regularization parameter on the steady-state
MSE of the weight vector for white Gaussian inputs, a new
formula for selecting the regularization parameter is obtained.
This gives rise to the proposed VR-QRRLM algorithm.
In the preliminary version of the R-QRRLM algorithm [19],

the regularization parameter is determined using the cross
validation as is commonly used in the statistical communities
[10]. This is later extended by transforming the input and using
smoothly-clipped-absolute-deviation (SCAD) [25] to further
promote sparsity. Similar to this performance analysis, we
further exploit in this work the simplicity offered by white
Gaussian inputs so as to derive an explicit formula for the
regularization parameter of the VR-QRRLM algorithm.
To illustrate the usefulness of the R-QRRLM and

VR-QRRLM algorithms, their applications to system identi-
fication and ANC problems are studied. In particular, a new
FX-VR-QRRLM ANC algorithm is proposed with its conver-
gence performance characterized. The new FX-VR-QRRLM
employs the error signal, which is the only signal available
from the error microphone, directly for updating the weight
vector. Thus, improved robustness in CG noises and better
convergence performance over conventional ANC realizations
using the approximated desired signal can be obtained. The
proposed theoretical analysis helps to address challenging
problems in its performance analysis and related algorithms
under impulsive noises and regularization. It is also found to be
in good agreement with computer simulation.
It should be noted that we considerably extend our previous

work in [13] in the following aspects. Different from the brief
analytic results in [13], the detailed derivations of the differ-
ence equations are provided and the effect of the regularization
term on the tradeoff between variance and bias is thoroughly
investigated. Also, the analysis is further extended to the case
of CG noises and instead of choosing the regularization pa-
rameter using an empirical formula as in [13], an analytic for-
mula is derived to determine this parameter by considering the
steady-state MSE deviation of the regularized optimal solution
from theWiener solution. Apart from these contributions, exten-
sive simulations have been carried out to demonstrate the effec-
tiveness of the proposed algorithm as well as the performance
analyses. In particular, a practical application of the proposed
algorithm to an ANC system is considered and a new variant
of the proposed algorithm, called FX-VR-QRRLM algorithm,
is developed.

The rest of the paper is organized as follows. In Section II,
the R-QRRLM algorithm is proposed. Section III is devoted to
the performance analysis of the R-QRRLM algorithm and the
selection of the regularization parameter for the VR-QRRLM
algorithm is addressed in Section IV. Computer simulations for
verifying the theoretical analyses and comparison with other
RLS-like algorithms are presented in Section V. Its applica-
tions to acoustic system identification and ANCwill also be pre-
sented. Finally, conclusions are drawn in Section VI.

II. REGULARIZED QRRLM ALGORITHM

A. QRRLM Algorithm

Consider the adaptive system identification problem where
an input signal is applied simultaneously to an -order
adaptive transversal filter with weight vector

and an unknown system to be
identified with an impulse response .
Let be
the input vector. Then the output of the adaptive filter is

. The measured output of the system is
used as the desired signal of the adaptive filter

(1)

where denotes the additive noise or possible modeling
error. The adaptive filter aims to minimize error measurement
of the estimation error .
In the RLM algorithm [6], [7], the following M-estimate cost

function is minimized

(2)

where serves the purpose of an exponential window
which puts less weight to errors at distant past. For example, it
can be chosen as , where is a constant forgetting factor
(FF) or can be updated adaptively as in variable FF algorithms
[22]. is an M-estimate function such as the modified Huber
(MH) function in (3) or other appropriate functions, say the
Hampel’s three part redescending function [26] or the bisquare
functions [27],

(3)

is a threshold used to control the suppression of outliers and
adaptation speed. It can be seen that large estimation error,
which may be due to outliers, is significantly suppressed by the
M-estimate function. In the adaptive threshold selection (ATS)
method proposed in [6], [7], is assumed to be Gaussian
distributed except being corrupted occasionally by additive
impulsive noises. By estimating the variance of “impulse-free”
estimation error , it is possible to detect and reject the
impulses in . Specifically, the probability of greater
than a given threshold is , where erfc is
the complementary error function, and is the standard
deviation of . By using the robust variance estimate [6]:

(4)



CHAN et al.: NEW VR-QRRLM ALGORITHM—PERFORMANCE ANALYSIS AND ACOUSTIC APPLICATIONS 909

the following adaptive threshold can be obtained:

(5)

where is the median value of the vector
, is the length of

the estimation window, is a finite sample correction
factor, is a positive FF close to but smaller than one and
is a constant used to control the suppression of impulsive inter-
ference and the corresponding reduction in convergence rate.
A reasonable value of is 2.576 and the window length
is usually chosen between 5 and 9 [5]. It should be noted that,
the error nonlinearity of the M-estimation function (M-nonlin-
earity) helps to suppress the impulsive noise in exchange for a
slightly slower adaptation rate than that in the Gaussian noise,
which has been studied in [24]. Therefore, the performance
of the M-estimation based algorithms, such as convergence
speed, is generally very slightly degraded in the Gaussian noise
environment, as compared to its LS counterparts.
By setting the first partial derivative of with respect

to (w.r.t.) to zero, it was shown in [6] that the optimal
weight vector satisfies the M-estimate normal equation:

(6)

where and
are the M-es-

timate covariance matrix of and the M-estimate
cross-correlation vector of and , respectively,
and . In order to prevent the
values of and from continuously decreasing
when a series of impulses is encountered, can be
updated as follows [7]

(7)

where if , or otherwise.
Applying the iterative reweighted LS method to (6), the fol-

lowing RLM algorithm can be obtained [8]

(8)

where is the recursive update of . For the LS
cost function, , whereas for the MH cost function,

when is smaller than the threshold , and
zero otherwise. For the latter, the factor in the
denominator of can be dropped without affecting the
solution. Eqn. (8) can also be efficiently implemented using a
QR-based implementation [8] as summarized in Tables I (the
first QRD only). This QRRLM algorithm is mathematically
equivalent to but has higher numerical stability than the RLM
algorithm. Also, it is known that the arithmetic complexity of
the QRRLM algorithm is of the order [8].

B. R-QRRLM and VR-QRRLM

In some acoustic and related applications, the input to the
adaptive filter is speech or other acoustic signals. Hence, the
adaptive filter may not be persistently excited when the input

TABLE I
THE R-QRRLM/VR-QRRLM ALGORITHM

signal level is very low. Consequently, the covariance matrix
may be ill-conditioned and a large estimation variance

will result. To address this potential problem, we propose to
include a regularization term on the adaptive filter coefficients
in the M-estimate objective function to limit the variation in the
coefficient vector . This gives the following regularized
M-estimate objective function:

(9)

where is the regularization function with being
the regularization parameter. The commonly-used regu-
larization functions include the regularization func-
tion: ; regularization function:

, and SCAD function [10]. To solve (9),
the iterative reweighted LS method is frequently used, where
the regularization function is approximated locally by a
quadratic function of and the resultant objective function
becomes

(10)

where is a weighting matrix used to approximate different
regularization methods. For instance, is an identity ma-
trix for regularization or the generalized inverse of the ma-
trix for regular-
ization. Unlike the cost function in (2), the regularized problem
in (9) or (10) cannot be solved simply by the recursive QRD al-
gorithm due to the additional regularization term. A solution is
to apply the regularization successively using QRD. More pre-
cisely, at each time instant, the QRD is executed once for the
data vector and once for the regular-
ization vector , where is the -th row of
the regularization matrix [19] and . If the vector is
applied sequentially, then . Therefore the com-
plexity of the R-QRRLM algorithm is twice that of the QRRLM
algorithm.
If the regularization parameter is made variable at each

iteration, the R-QRRLM algorithm yields the VR-QRRLM al-
gorithm. The selection of variable regularization parameter will
be presented later in Section IV, since it is developed from the
mean square convergence analysis introduced in Section III. As
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will be seen later in Section IV, since only a few extra multipli-
cations are needed for calculating , the complexity of the
VR-QRRLM algorithm is comparable to that of the R-QRRLM
algorithm.

III. PERFORMANCE ANALYSIS OF R-QRRLM

The above QR implementation of the regularized RLM algo-
rithm can be written as the following equivalent update

(11)

where , . For notational
simplicity, we have also used ,
and . If the MH cost function or non-
linearity is used, can be chosen as without
affecting the update. The last two terms on the right hand side
correspond, respectively, to the data and regularization updates.
We shall study the case for Gaussian inputs and addi-

tive noises first and then extend this to CG noises later in
Section III-C. For simplicity, we shall consider the case with
fixed FF and use the following assumptions:

(A1) is zero-mean Gaussian distributed with co-
variance matrix ;
(A2) is white Gaussian-distributed with zero-mean
and variance and it is uncorrelated with ;
(A3) the weight error vector is independent of

and ;
(A4) ,

where
;

(A5) The MH or LS cost function is used.
(A3) is the independent assumption which is commonly intro-

duced to simplify the analysis. On the other hand, (A4) assumes
that the robust covariance estimate is close to the con-
ventional covariance estimate , which in turn can be
approximated by its expected value. (A1) has been verified in
[7] while (A2) is commonly used in the analysis of the RLS [22]
and RLM algorithms. From (A4), we can evaluate by
using the following identity: , where

. According
to the averaging principle, is assumed to be indepen-

dent of and . Hence, we have

(12)

Here, is assumed to be a constant matrix . Therefore,
and

for large .

A. Mean Convergence Analysis

We now present the mean convergence behavior of the pro-
posed algorithm with the LS or MH cost function for Gaussian
inputs and additive noises. First, we assume that the algorithm

is convergent. The condition of convergence will be shown later
in this section. Then, we can subtract the optimal solution of the
R-QRRLM algorithm, , from (11), and take the expecta-
tion on its both sides over to obtain:

(13)

where ,
, and

is the weight error vector. For no-
tational simplicity, the expectation over ,

, is denoted as . Note, we have used the approxi-
mation (A4) in obtaining (13) and theMH and LS cost functions
assumed in (A5) allow us to drop the factor in the de-
nominator to simplify the evaluation. For other M-nonlinearity
[21], it also serves as a good approximation. By dropping the
time index of , , and , and using (A3), and can be
simplified to

(14)

(15)

Moreover, it is shown in Appendix A that

(16)

Here ,
, ,

; , ,
with and
being respectively the eigen-decomposition of
and , . For notational
convenience, we have dropped the time argument of

, and . is a diagonal matrix with
its -th entry given by the Abelian integral,

,

where is the -th eigenvalue of . Similarly,

(17)

where ,
with

and being the -th element of and ,

is a diagonal matrix, and is the -th element of

.
Substituting (14)–(17) into (13), the following difference

equation is obtained

(18)

where for notational simplicity, is simply written as
. As mentioned, we first assume that the algorithm con-

verges so as to determine . Then, we shall show that the
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algorithm is convergent for sufficiently close to 1 with persis-
tent excitation. If the algorithm converges,

and the second term in (18) becomes zero. Consequently,

(19)

where . At the steady state,
since the M-estimate should clip error signal

with extremely large amplitude, which is possibly corrupted
by impulses. Then the optimal solution to the R-QRRLM
algorithm can be derived

(20)
where and has been used.
Moreover, as

for large , it follows that
. If

is sufficiently small compared with the identity
matrix, then and

, where
is the exponential integral function. Thus,
and (20) is reduced to

(21)

To achieve a given regularization or diagonal loading, say
, at the -th diagonal, we can set the regularization ma-

trix as .

Note, the solution is biased. Let
. The one gets from (21) that

and after some manipulation
.

To study the convergence rate of the proposed algorithm, we
shall focus on the term in the curved bracket in (18), which can
be further simplified to

(22)

by expressing in the canonical coordinate
. Therefore, the mean weight error vector will con-

verge if .
It can be seen from (I-4) in Appendix A that, for small ,

and increases with . For and LS objec-
tive function, we obtain the conventional RLS algorithm and
the Abelian integral reduces to the exponential integral. More-
over,

(23)

where we have used the identity
. From (23), it can be seen that

for sufficiently close to 1, one gets

(24)

Furthermore, since for most M-nonlinearity
[21], and hence the mean error weight
vector of the algorithm is convergent if is nonsingular
or the system is persistently exciting. If is singular
due to the lacking of input excitation, the regularization term
will help to reduce the variance of the estimator as revealed by
the mean square convergence analysis below. However, it can
be seen from (21) that a bias which is proportional to will be
introduced. Hence, regularization should be applied only when

is ill-conditioned. The selection of the regularization
parameter will be investigated in Section IV.

B. Mean Square Convergence Analysis

Assuming depends weakly on , then
post-multiplying by its transpose and taking expecta-
tion gives

(25)

where
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and . is evaluated in Appendix B to
be

(26)

where , the symbol “ ” de-
notes element-wise matrix product and ,

, ,
, is a matrix with its -th entry given

by the integral and

and is

a diagonal matrix with the -th element given by

.
Similarly, it was found after some manipulation that

(27)

where is a diagonal
matrix with its -th element

.

(28)

Substituting (26)–(28) into (25) yields

(29)

We now analyze the steady-state EMSE of the algorithm. It
is shown in Appendix C that the algorithm is also convergent in
the mean square sense. Hence, at the steady state, we have

(30)

Here , and
,

. There-
fore, the -th diagonal element of , ,
satisfies:

(31)

where , ( , 2) denotes the -th element of .
Solving (31), one gets

(32)

from which the steady-state EMSE can be determined as

Since , we have

(33)

If ATS is used, it can be shown that ,
and are nearly constant [21]. Hence

(34)

Since

, one gets from (34) after some ma-
nipulation that:

(35)

where ,

and

.
For the RLS algorithm, . For R-QRRLM

with MH-nonlinearity and ATS,
, which is a constant close to one,

and . Hence,
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and is slightly larger than . Thus, their per-
formances in Gaussian noise are very similar. In the presence
of outliers, however, the performance of the regularized RLS
algorithm, like the conventional RLS algorithm, will be signif-
icantly degraded compared to the regularized RLM algorithm.
This is also observed from simulation results to be presented in
Section V.

C. Mean and Mean Square Behaviors in CG Noise

We now analyze the mean and mean square behaviors of the
R-QRRLM algorithm in CG noise environment. It will shed
light on how the LS-based algorithm is affected by the impul-
sive noise and why the M-estimate algorithms are more robust
theoretically. From the previous analysis, we note that the as-
sumption of Gaussian input and additive noise allows us to use
the Price’s theorem to decouple with the complicated effect of
the nonlinearity. For most M-estimate functions which suppress
outliers with large amplitude, the convergence rate will only be
slightly impaired after employing ATS. We shall show in the
following that the impulsive noise can be effectively suppressed
and the EMSE is similar to the case where only Gaussian noise is
present. On the other hand, the EMSE of the LS-based algorithm
will be substantially affected by the impulsive CG noise. Al-
though the Price’s theorem is originally proposed for Gaussian
variants, it was shown in [23] to be applicable to independent
mixtures, and hence Gaussian mixtures. This extension of the
Price’s theorem [20] was employed in the analysis of the LMS
and NLMS algorithms with MH nonlinearity and CG noise in
[21] and a related algorithm in [4]. Similar techniques were also
employed in analyzing the RLM [7] and the N-RLS algorithms
[24].
1) Mean Behavior: For the analysis in this section, is a CG

noise defined as

(36)

where and are both independent and identically
distributed (i.i.d.) and zero mean Gaussian sequences with vari-
ance and , respectively. is an i.i.d. Bernoulli random
sequence whose value at any time instant is either 0 or 1 with
occurrence probability . Therefore, is a
Gaussian mixture consisting of two components
and , each with zero mean

and variance and , respectively. Accordingly,

(37)

where is an arbitrary quantity whose statistical
average is to be evaluated. Since , and are
Gaussian distributed, each of the expectation on the right hand
side can be evaluated using the Price’s theorem. Consequently,
the results in Section III-A can be carried forward to the CG
noise case by firstly changing the noise power respectively to
and , and then combining the two results using (37).
Recall the relation of the mean weight-error vector in (13):

(38)

where
,

. and are, respectively, the expectation for

w.r.t. and . Similarly and
are, respectively, the expectation for w.r.t.
and . From (14), ,
for , , where
and .
Hence, , where

.

On the other hand, it was found that .

Thus . Consequently, the difference
(38) becomes

(39)

At the steady state, we have from (39) the optimal solution to
the R-QRRLM algorithm after some manipulations as:

(40)

Again, if is sufficiently small, then and
. Consequently,

and (40) is reduced to

(41)

For notational convenience, the approximate symbol has been
replaced by the equality symbol. This yields the same form as
(21), except for . Similar argument regarding the mean
convergence in Section III-A also applies to (41).
2) Mean Square Behavior: Using a similar approach as in

Section III-B, it can be shown that

(42)
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where and

. Hence, the
steady-state EMSE is

(43)
For the regularized RLS algorithm, ,

, then

(44)

For the R-QRRLM algorithm with MH-nonlinearity and
ATS, if , then
is a constant close to one given is not too large. Sim-
ilarly, as and

. Consequently, the
steady-state EMSE for the R-QRRLM algorithm with MH
nonlinearity and ATS is

(45)

Since , the EMSE is still similar to its con-
ventional LMS-based counterparts in Gaussian noise environ-
ment. This illustrates the robustness of the regularized RLM al-
gorithms. The increase in EMSE of the RLS algorithm over the
RLM algorithm is

(46)

We note from (46) that the improvement of the M-estimation
algorithms over the LS-based algorithm is proportional to the
power of the impulsive components, which is reasonable and
expected.

IV. VARIABLE REGULARIZATION PARAMETER SELECTION

The regularization parameter plays an important role in the
performance of the R-QRRLM algorithm in aspects such as
steady-state EMSE, convergence rate and tracking capability.
Using the performance analysis obtained previously, we now
derive the regularization parameter from the MSE deviation
of around the Wiener solution.
To proceed further, we assume that the input

is white with variance and . Hence

. In addition, for mild
regularization, is small and from (30), we have

.
Using a similar approach, we can obtain that

, where we

have used the fact in deriving
the approximated expression. Since is small com-

pared to , and ,

.
As this expression is somewhat difficult to be simplified fur-

ther, we shall employ the following upper bound of
by using the identity when and
are positive definite matrices:

Combining these results, we obtain an approximation of (35):

(47)

where . We now can determine the
regularization parameter from the steady-state MSE of
around as follows .
First of all, we note that for white input .

On the other hand, from Section III-A, we can obtain

, where we have assumed
that the regularization is mild and hence
and used the fact that for white input. Moreover,

. Therefore,

It can be seen that the first and second (inside the square bracket)
terms on the right hand side correspond, respectively, to the bias
and variance of the MSE. In order to obtain a balanced perfor-
mance in practical applications, we propose to choose so that
the two terms are equal to each other. Consequently, the desired
regularization parameter, satisfies
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Fig. 1. Convergence curves for EMSE in CG noise with (a) white Gaussian input and (b) first-order AR input. , , dB.

where it is assumed that . Since
, and

are very small when is close to 1, we further have:

Since , the desired is

(48)

where .

V. EXPERIMENTAL RESULTS AND ACOUSTIC APPLICATIONS

We now evaluate the performance of the proposed algorithm
and compare its performance with other conventional RLS algo-
rithms. First, a system identification problem is used to examine
the convergence speed, tracking capability, robustness in CG
noises and steady-state EMSE of various algorithms. The mean
and mean square convergence analyses developed in Section III
will also be evaluated. Then the VR-QRRLM algorithm is ap-
plied to the ANC system, resulting in a new FX-VR-QRRLM
algorithm. Unless specified otherwise, all the simulation results
have been averaged over 300Monte Carlo runs. The Abelian in-
tegrals as in Appendices are calculated by using the steady-state
value of , i.e. for simplicity since it has been
found that the theoretical prediction is in good agreement with
simulations.

A. Performance in CG Noises

Experiment 1: This experiment is carried out in the system
identification. The convergence performance and robustness to
impulsive noises of the VR-QRRLM algorithm are evaluated
and compared with the QRRLS and QRRLM algorithms using
white and colored inputs. The system order is . The white

Gaussian input is of zero mean and unit variance whereas the
colored input is simulated by a first-order auto-regressive (AR)
process: , where is a
Gaussian process with zero mean and variance 0.1. For the CG
noise, is used to generate impulsive noises, and the
impulse occurrence probability is . The signal-to-
noise ratio (SNR) is defined by , where is
the power of the system output . is
chosen to achieve an dB. For illustration purpose,
the locations of the impulses are fixed at time index 400, 800,
and 1300, in each independent run. The FF for all the algo-
rithms is set to be . The parameters for estimating
the noise variance in (4) are and . The
performance of the algorithms is evaluated using EMSE with
respect to the optimal Wiener solution. Figs. 1(a) and (b) de-
pict the performance of algorithms with white and colored in-
puts, respectively. First, it can be seen that the QRRLM and
VR-QRRLM algorithms are robust to impulsive noises. In con-
trast, the performance of the QRRLS algorithm is deteriorated
by these impulses severely. Secondly, all algorithms in test seem
to have similar initial convergence performance. After the ini-
tial stage, however, the VR-QRRLM algorithm converges at a
faster speed and to a lower steady-state EMSE. The improve-
ment for the colored input is significant as shown in Fig. 1(b)
because the small eigenvalues of the input covariance matrix
have been greatly compensated by regularization and hence the
steady-state EMSE is reduced.
Experiment 2: This experiment examines the tracking ca-

pability of the proposed algorithm for sudden system changes
under different SNRs and compares it with the traditional
QRRLM [8] algorithm. The impulsive noise here is the same
as that in Experiment 1. The system order is and the
channel changes suddenly after the 800-th iteration. The FF
is chosen as 0.99. The learning curves for EMSE are plotted
in Figs. 2(a) and (b) for white Gaussian and first-order AR
inputs, respectively. As can be seen, in the first 800 iterations,
the VR-QRRLM algorithm generally converges faster and to a
lower steady-state EMSE compared to the QRRLM algorithm.
The advantages of the VR-QRRLM algorithm over QRRLM
are more significant when the input is colored and the SNR
is low. After the system changes at the 800-th sample, the
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Fig. 2. Learning curves for EMSE in CG noise for sudden-change channels with (a) white Gaussian input and (b) first-order AR input. , .

TABLE II
COMPARISON OF THE EXPERIMENTAL AND PREDICTED STEADY-STATE EMSES FOR WHITE GAUSSIAN INPUT

Fig. 3. Convergence curves for with white Gaussian input for and
at dB.

VR-QRRLM algorithm maintains a better convergence perfor-
mance and lower steady-state EMSE.

B. Mean Convergence Behavior

We now evaluate the mean convergence analysis of the
R-QRRLM algorithm based on system identification. The
system
is employed. The norm of the mean weight-error
vector is used as the performance measure:

, where

is the -th component of the weight-error vector at time
in the -th independent run w.r.t. 1) the Wiener solution:

, or 2) the optimal solution in
(21): . is the total number of
independent runs, which is set to be 5000 in this experiment.
Fig. 3 plots the learning curves of and for
the R-QRRLM algorithm. The settings are as follows: the FF
is , the regularization parameter is or 0.04
and dB. It can be seen from the curves
that the bias w.r.t. the Wiener solution increases significantly
with . Since converges to a lower value than

, it suggests that the algorithm converges to
rather than to and the bias is introduced because of the
regularization. Simulations with different FFs show similar
results and are not presented due to page limitation.

C. Mean Square Convergence Behavior

The mean square convergence behavior is also examined by
system identification. Simulation results for the steady-state
EMSE of the R-QRRLM algorithm are compared with the-
oretical predictions as shown in Tables II and III for both
white and colored inputs. In the simulations, we set 5, 25;

0.995, 0.99, 0.98; , , with being
the selected regularization parameter as suggested in (48);
and dB, 10 dB. It can be seen that the simulation
and theoretical results agree well with each other, given the
approximation used. In general, the theoretical results are closer
to simulations when the regularization parameter is smaller.
It can also be seen that the EMSE with is the smallest
compared to that with and in each case,
which suggests the effectiveness of (48).
To further verify the performance analysis in Section III, the

theoretical predictions of the convergence curves for EMSE are
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TABLE III
COMPARISON OF THE EXPERIMENTAL AND PREDICTED STEADY-STATE EMSES FOR FIRST ORDER AR INPUT

Simu: simulation results; Theo: theoretical results.

Fig. 4. Comparison of simulation and theoretical learning curves for EMSE with (a) white Gaussian input and (b) first-order AR input. , , and
.

compared to the simulation results in Figs. 4(a) and (b). The
settings are , , with dB
and 10 dB. It can be seen that the theoretical learning curves of
EMSE agree well with simulations for both white and colored
inputs. Here the integrals as in the Appendices are calculated by
using for calculation simplicity.

D. Application to Acoustic System Identification

For some online acoustic system identification problems, the
input signal usually has varying power. In this simulation, the
performance of several algorithms is compared when the input
is a segment of music. The impulse response has 100 taps. It
is assumed that there is a double talk from the 3000 to 3100-th
sample. The SNR is 10 dB. The FF for all the algorithms tested
is 0.997. The regularization parameter for the R-QRRLM algo-
rithm is 0.1 and 0.001 while and .
The performance of various algorithms is shown in Fig. 5. It
can be seen that although the QRRLS algorithm has a faster ini-
tial convergence speed, it is very sensitive to the input signal
level and double talk which resembles a long series of impulsive
noises. For the R-QRRLM algorithm, if a small regularization
parameter, say , is used, it is still sensitive to input
power. On the other hand, if is increased to a larger value,
i.e. , the algorithm becomes much less sensitive to the
input signal power variation but it converges to a higher EMSE
value. The VR-QRRLM algorithm, however, adaptively selects
the regularization parameter and offers both high immunity to
variation in input signal power and impulsive noises.

Fig. 5. Performance comparison of various algorithms for EMSE at
dB. .

E. Application to ANC

In this experiment, an ANC system using the FX algo-
rithm as shown in Fig. 6 is considered [28].

denotes the primary path while
is the secondary path. The impulse re-

sponses for both paths are assumed to be of finite duration
for simplicity. An error microphone is used to pick up the
residual signal to be minimized. Thus, the ANC controller

approximates
after cascading with so that the undesirable con-
tribution from the noise source is minimized. Since



918 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 21, NO. 5, MAY 2013

is unknown, it is replaced by its estimate and
the input to the adaptive filter is , where
“ ” stands for the discrete time convolution. Let be
the background noise and other acoustic signals at the error
microphone, then the error signal picked up by the microphone
is

(49)

where , and
. The mean square error of can

be minimized by the well-known FX-LMS algorithms. Since
they are very sensitive to impulsive interferences, robust
M-estimate algorithms have been proposed to enhance the
performance of the FX-LMS algorithm in the presence of
impulses [29]. On the other hand, since the secondary path is
not known exactly, regularization techniques can improve the
performance of the ANC controller. Since a fast response and
reliable performance are required in ANC systems in order
to avoid undesirable artifacts generated by the speaker, the
proposed VR-QRRLM algorithm is a good alternative to the
existing FX-LMM algorithm [29] because of its fast response
and robustness to errors in the secondary path modeling. How-
ever, in ANC system, only is observed, rather than
as required by the VR-QRRLM algorithm. In [37], the problem
is solved by approximating as .
Since is usually unknown, will lead to an
increased EMSE. To solve this problem, we make use of (8)
and compute the Kalman gain vector using the QRD in
the VR-QRRLM algorithm. In fact, obtained from the
QRD in Table I is the Cholesky factor of the regularized input
correlation matrix , i.e.

, which is also equal to .

can be readily computed if
is available. Using the Cholesky factorization,

. The term in the square
bracket, , can be computed by
back-substitution, since is a lower triangular ma-
trix. The same applies to , since
is an upper triangular matrix. The input to the controller is

, which is obtained by filtering the input through
the estimate of the secondary path with an impulse
response vector of
taps. Hence above should be replaced by in ANC.
Alternatively, a simpler implementation with slightly lower
arithmetic complexity is to compute the change in ,

, directly from the QRD. More details
can be found in [38].
The convergence performance of ANC systems using

the conventional FX-LMS algorithm has been analyzed in
[30]–[34]. The effect of online secondary-path modeling was
recently addressed in [34]. Though LMM-based algorithms
for robust ANC in impulsive noises have been proposed in
[29], [35], the performance analysis of ANC under impulsive
noise and regularization remains a challenging problem [36].
Here, we shall make use of the general analytical approach pre-
sented in Section III to study the performance of the proposed
FX-VR-QRRLM algorithm for ANC with regularization and
impulsive noise.

Fig. 6. Block diagram of an ANC system.

First we note that the input to the FX-VR-QRRLM is
, , and

. In our model in Section III, the desired
signal is assumed to be ,
where is the length- optimal
Wiener solution, which is given by

, where ,
, ,
,

, and
is the impulse response vector of

the primary path and it is assumed to be stationary. The
additive noise is now given by ,
where is the disturbance
recorded which is assumed to be CG distributed and

is the additional modeling error which is equal to
. Since is assumed

to be zero mean, is zero mean. For simplicity, it is
approximated to be white Gaussian distributed with variance

. This will allow our performance analysis
in Section III to be applied to the FX-VR-QRRLM algorithm.
Though it is possible to extend the approach in Section III and
evaluate all the expectations involving in a more accu-
rate analysis, the approach taken here simplifies considerably
the derivation and gives us reasonably accurate information
about the EMSE and other quantities. For instance, from (41),
we immediately have the steady state solution of the ANC
controller .

(50)

It can be seen that a bias over that Wiener solution is again
introduced. The corresponding EMSE is given by (45). To
verify the performance analysis above, an experiment is carried
out. The primary path has 100 taps and the secondary path
has 50 taps, which is estimated offline with a modeling error
of 14 dB after being normalized by the true secondary path.
The noise is a white Gaussian sequence and the SNR is
10 dB. A series of impulsive interference occurring from the
1500 to 1600-th sample is used to simulate the situation of
double talks or other interferences. The FF of VR-QRRLM is
chosen as 0.998. Parameters for estimating the noise variance
are and . The simulated and estimated
MSEs of the residue error are plotted in Fig. 7. It can
be seen that the theoretical results agree well with simulation
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Fig. 7. Comparison of simulation and theoretical learning curves for MSE with
dB. Modeling error: 14 dB. .

Fig. 8. Performance comparison of various algorithms for the ANC system:
the learning curves of MSE with dB. Modeling error: 14 dB.
Step-size for LMS and LMM:0.001. FF for QRRLM and VR-QRRLM: 0.998.

results. The deviation between the two curves in transient is
mainly attributed to the assumptions used such as is
white.
In the second simulation, the FX-LMS, FX-LMM [29],

FX-QRRLM and the proposed FX-VR-QRRLM algorithms
are evaluated. As a comparison, the FX-VR-QRRLM using
the estimated desired signal as proposed in [37] is also
shown. The settings are identical to those in the previous
example except that a series of impulsive interference occurs
from 4000 to 4100-th samples. For the FX-LMS and FX-LMM
algorithms, the step-size is 0.001; for the FX-QRRLM and
FX-VR-QRRLM algorithms, the FF is chosen as 0.998 so
that all algorithms achieve comparable MSE. Note, in cal-
culating the regularization parameter, the modeling errors in
both primary and secondary path have been absorbed to the
background noise variance. The MSE of the residue error

is plotted in Fig. 8. It can be seen that 1) all the robust
algorithms are insensitive to impulsive interferences, 2) the
QRRLM based algorithms converge faster than the LMS-based
algorithms, 3) the FX-VR-QRRLM using the approximated
desired signal has higher variance (and occasionally
stability problems), and 4) the FX-VR-QRRLM is more stable
compared to FX-QRRLM when the secondary path modeling

error exists and the regularization technique further reduces the
steady-state MSE over the FX-QRRLM algorithm.

VI. CONCLUSION

A new variable regularized QRD-based RLM adaptive fil-
tering algorithm and its mean and mean square convergence
performance have been presented. It extends the conventional
RLM algorithm by imposing a variable regularization term
on the coefficients to reduce the variance of the estimator. An
efficient recursive QRD-based implementation is developed to
improve its numerical stability. Difference equations describing
the mean and mean square convergence behaviors of the algo-
rithm in Gaussian inputs and additive CG noises are derived.
The bias over the classical Wiener solution introduced by the
regularization is quantified. New expressions for the steady-
state EMSE are derived and it suggests that the variance will
decrease while the bias will increase with the regularization
parameter. Therefore, the algorithm is especially useful when
the input covariance matrix is ill-conditioned or singular due
to lacking of excitation. The advantage of the M-estimation al-
gorithm over its least square counterparts is also analytically
quantified. For white Gaussian inputs, the regularization param-
eter can be determined based on the analysis, leading to the
proposed VR-QRRLM algorithm. The theoretical results are in
good agreement with simulations. Moreover, simulation results
of several acoustic applications, namely system identification
and ANC, show that the VR-QRRLM based algorithms out-
perform the traditional ones considerably when the input signal
level is low and in the presence of considerable modeling error
or impulsive noises. Using the proposed theoretical analysis,
the challenging problem of performance analysis of the pro-
posed FX-VR-QRRLM ANC algorithm under impulsive noise
and regularization is also characterized.

APPENDIX A
EVALUATION OF

The expectation
is evaluated in this Appendix. For

simplicity, all time indices have been omitted here. As
and are assumed to be statistically independent, and
are zero-mean jointly Gaussian with covariance matrix ,
one gets

(I-1)
where and is the probability
density function (PDF) of the Gaussian noise. Similar to [21],
we consider the integral

(I-2)

Then . Differentiating (I-2) w.r.t. , one gets
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(I-3)

where . For nota-
tional convenience, we drop the time argument of
the quantities derived from . Assume that

,

then . Let the eigen-de-
composition of be and

. Then , and

.
Since is symmetric, it admits the eigen-decom-

position . Thus,

(I-4)

Hence

, where is a diagonal

matrix with the -th diagonal entry .
Noting that the determinants of and are respectively

1 and , one can rewrite
(I-3) as

(I-5)

where ,

, and is the expectation
of conditioned on when are jointly
Gaussian with covariance matrix . Since and are
assumed as jointly Gaussian in Assumption (A1) and (A2), the
Price theorem [20] can be invoked to obtain the -th element
of , , as follows:

(I-6)

where , is the -th row of ,
and .

Substituting (I-6) into (I-5) and integrating w.r.t. yields

(I-7)

where the constant of integration is equal to zero because of the
boundary condition . Here, we assumed that the term

inside the bracket depends weakly on so that we can
move it outside the integral of . This is a good approximation
for M-nonlinearity [21].
Next, we evaluate the term . Noting

that with , one gets

(I-8)
where the integral of the -th diagonal entry of
given is

.
Finally, from (I-6)–(I-8), we have

(I-9)

APPENDIX B
EVALUATION OF

We evaluate
. Similar to the derivation of , is

given by

(II-1)

Similar to [21], we define

(II-2)

Comparing (II-2) with (II-1), it can be seen that . To
evaluate , differentiating (II-2) twice w.r.t. , one gets

, where the and have been
defined in Appendix A. is the
expectation of taken over and conditioned
on . First, consider the -th element of . We get from
the Price theorem

,
where are jointly Gaussian variables with
covariance matrix . For notational simplicity, we
write as . Integrating
w.r.t. gives: , with

being the integration con-
stant. Using Price’s theorem, we have

. Integrating again,
one gets . Combining above, we
have and hence

. Substituting into
gives
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(II-3)
Integrating (II-3) w.r.t. and letting yields

(II-4)

The last approximation is obtained by observing
that and depend weakly on
for M-nonlinearity [21]. can be evaluated as
in [21],

, where the -th ele-
ment of the integral is

,
and . Similarly,

,

where

is the -th diagonal entry of
.

APPENDIX C
MEAN SQUARE CONVERGENCE OF R-RLM

From (35), we can see that the EMSE is bounded as long as

where and
. Since

for MH nonlinearity and ,
the first inequality is more important than the other. From the
definition of , it follows that ,
where is the eigenvalue of . Hence
increases with since . For , we have the

RLS algorithm and the Abelian integrals will reduces to the
exponential integral. If is positive definite, it can be
shown that is less than 2 and the algorithm is convergent
in the mean square sense. For the regularized algorithm,
is greater than 1 and we need to study the upper bound of

, where

with .

Suppose that is increased to . One
get

where only two terms of the expansion have been written.
If , then

For most M-nonlinearity, the condition is
satisfied. Therefore, when increases, increases and both
and decrease. Since the RLS algorithm with

is convergent when is positive definite, the regularized
algorithm is also convergent.
Moreover, as increases, the variance part of the EMSE, i.e.

, will decrease whereas the
bias term will increase. This is in accordance with the be-
havior of the ridge regression and related regularization.
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