34,697 research outputs found

    Bichromatically driven double well: parametric perspective of the strong-field control landscape reveals the influence of chaotic states

    Full text link
    The aim of this work is to understand the influence of chaotic states in control problems involving strong fields. Towards this end, we numerically construct and study the strong field control landscape of a bichromatically driven double well. A novel measure based on correlating the overlap intensities between Floquet states and an initial phase space coherent state with the parametric motion of the quasienergies is used to construct and interpret the landscape features. "Walls" of no control, robust under variations of the relative phase between the fields, are seen on the control landscape and associated with multilevel interactions involving chaotic Floquet states.Comment: 9 pages and 6 figures. Rewritten and expanded version of arXiv:0707.4547 [nlin.CD]. Accepted for publication in J. Chem. Phys. (2008

    Energy-optimal steering of transitions through a fractal basin boundary.

    Get PDF
    We study fluctuational transitions in a discrete dy- namical system having two co-existing attractors in phase space, separated by a fractal basin boundary. It is shown that transitions occur via a unique ac- cessible point on the boundary. The complicated structure of the paths inside the fractal boundary is determined by a hierarchy of homoclinic original sad- dles. By exploiting an analogy between the control problem and the concept of an optimal fluctuational path, we identify the optimal deterministic control function as being equivalent to the optimal fluctu- ational force obtained from a numerical analysis of the fluctuational transitions between two states

    Coarse-Grained Picture for Controlling Quantum Chaos

    Full text link
    We propose a coarse-grained picture to analyze control problems for quantum chaos systems. Using optimal control theory, we first show that almost perfect control is achieved for random matrix systems and a quantum kicked rotor. Second, under the assumption that the controlled dynamics is well described by a Rabi-type oscillaion between unperturbed states, we derive an analytic expression for the optimal field. Finally we numerically confirm that the analytic field can steer an initial state to a target state in random matrix systems.Comment: REVTeX4 with graphicx package, 11 pages, 10 figures; replaced fig.1(a) and 2(a

    Thermodynamics of adiabatic feedback control

    Full text link
    We study adaptive control of classical ergodic Hamiltonian systems, where the controlling parameter varies slowly in time and is influenced by system's state (feedback). An effective adiabatic description is obtained for slow variables of the system. A general limit on the feedback induced negative entropy production is uncovered. It relates the quickest negentropy production to fluctuations of the control Hamiltonian. The method deals efficiently with the entropy-information trade off.Comment: 6 pages, 1 figur

    Dynamics of delay induced composite multi-scroll attractor and its application in encryption

    Get PDF
    This work was supported in part by NSFC (60804040, 61172070), Key Program of Nature Science Foundation of Shaanxi Province (2016ZDJC-01), Innovative Research Team of Shaanxi Province(2013KCT-04), Fok Ying Tong Education Foundation Young Teacher Foundation(111065), Chao Bai was supported by Excellent Ph.D. research fund (310-252071603) at XAUT.Peer reviewedPostprin

    Optimal fluctuations and the control of chaos.

    Get PDF
    The energy-optimal migration of a chaotic oscillator from one attractor to another coexisting attractor is investigated via an analogy between the Hamiltonian theory of fluctuations and Hamiltonian formulation of the control problem. We demonstrate both on physical grounds and rigorously that the Wentzel-Freidlin Hamiltonian arising in the analysis of fluctuations is equivalent to Pontryagin's Hamiltonian in the control problem with an additive linear unrestricted control. The deterministic optimal control function is identied with the optimal fluctuational force. Numerical and analogue experiments undertaken to verify these ideas demonstrate that, in the limit of small noise intensity, fluctuational escape from the chaotic attractor occurs via a unique (optimal) path corresponding to a unique (optimal) fluctuational force. Initial conditions on the chaotic attractor are identified. The solution of the boundary value control problem for the Pontryagin Hamiltonian is found numerically. It is shown that this solution is approximated very accurately by the optimal fluctuational force found using statistical analysis of the escape trajectories. A second series of numerical experiments on the deterministic system (i.e. in the absence of noise) show that a control function of precisely the same shape and magnitude is indeed able to instigate escape. It is demonstrated that this control function minimizes the cost functional and the corresponding energy is found to be smaller than that obtained with some earlier adaptive control algorithms

    Pulsive feedback control for stabilizing unstable periodic orbits in a nonlinear oscillator with a non-symmetric potential

    Full text link
    We examine a strange chaotic attractor and its unstable periodic orbits in case of one degree of freedom nonlinear oscillator with non symmetric potential. We propose an efficient method of chaos control stabilizing these orbits by a pulsive feedback technique. Discrete set of pulses enable us to transfer the system from one periodic state to another.Comment: 11 pages, 4 figure

    Time-delayed feedback control in astrodynamics

    Get PDF
    In this paper we present time-delayed feedback control (TDFC) for the purpose of autonomously driving trajectories of nonlinear systems into periodic orbits. As the generation of periodic orbits is a major component of many problems in astodynamics we propose this method as a useful tool in such applications. To motivate the use of this method we apply it to a number of well known problems in the astrodynamics literature. Firstly, TDFC is applied to control in the chaotic attitude motion of an asymmetric satellite in an elliptical orbit. Secondly, we apply TDFC to the problem of maintaining a spacecraft in a periodic orbit about a body with large ellipticity (such as an asteroid) and finally, we apply TDFC to eliminate the drift between two satellites in low Earth orbits to ensure their relative motion is bounded

    An optimal gains matrix for time-delay feedback control

    Get PDF
    In this paper we propose an optimal time-delayed feedback control (TDFC) for tracking unstable periodic orbits (UPOs). It is shown that TDFC will drive a trajectory onto a periodic orbit while minimising an integral of a cost function of the error in periodicity and the control e®ort. This optimal TDFC relies on the linearisation about the delayed trajectory not the UPO itself and therefore can be implemented without a priori knowledge of a reference orbit. This optimal TDFC is applied to the problem of tracking an unstable periodic orbit in the nonlinear equations describing the circular restricted three-body problem. The results of this investigation demonstrate that TDFC could e±ciently drive a spacecraft onto a periodic orbit in the vicinity of a (UPO) halo orbit
    corecore