45,860 research outputs found

    Some control design experiments with HIFOO

    Full text link
    A new MATLAB package called HIFOO was recently proposed for H-infinity fixed-order controller design. This document illustrates how some standard controller design examples can be solved with this software

    Fuzzy Controller Design for Nonlinear Systems

    Full text link
    In this article is studied problem of Fuzzy Controller Design For Nonlinear Systems With Case Study Of TORA System. Fuzzy control for nonlinear systems is proposed on the framework from model of Takagi-Sugeno fuzzy model and PDC(paralel distributed compensation) controller. A lyapanouv-based stabilizing fuzzy control design for nonlinear systems using Takagi-Sugeno fuzzy models is applied. The stability analysis and control design problems are reduced to linear of matrix inequality (LMI) problems. So that method of fuzzy controller design are solve a set of LMI. Approach of PDC, robust and optimal controller are applied to a nonlinear control benchmark problem with case study of TORA system. The designed fuzzy controllers are yield an asymtotic stable closed-loop system. The fuzzy controller Simulation results are given to ilustrate the utility of the present fuzzy control

    A Fast Algorithm for Sparse Controller Design

    Full text link
    We consider the task of designing sparse control laws for large-scale systems by directly minimizing an infinite horizon quadratic cost with an â„“1\ell_1 penalty on the feedback controller gains. Our focus is on an improved algorithm that allows us to scale to large systems (i.e. those where sparsity is most useful) with convergence times that are several orders of magnitude faster than existing algorithms. In particular, we develop an efficient proximal Newton method which minimizes per-iteration cost with a coordinate descent active set approach and fast numerical solutions to the Lyapunov equations. Experimentally we demonstrate the appeal of this approach on synthetic examples and real power networks significantly larger than those previously considered in the literature

    Adaptive Backstepping Controller Design for Stochastic Jump Systems

    Get PDF
    In this technical note, we improve the results in a paper by Shi et al., in which problems of stochastic stability and sliding mode control for a class of linear continuous-time systems with stochastic jumps were considered. However, the system considered is switching stochastically between different subsystems, the dynamics of the jump system can not stay on each sliding surface of subsystems forever, therefore, it is difficult to determine whether the closed-loop system is stochastically stable. In this technical note, the backstepping techniques are adopted to overcome the problem in a paper by Shi et al.. The resulting closed-loop system is bounded in probability. It has been shown that the adaptive control problem for the Markovian jump systems is solvable if a set of coupled linear matrix inequalities (LMIs) have solutions. A numerical example is given to show the potential of the proposed techniques

    Reduced Order Controller Design for Robust Output Regulation

    Get PDF
    We study robust output regulation for parabolic partial differential equations and other infinite-dimensional linear systems with analytic semigroups. As our main results we show that robust output tracking and disturbance rejection for our class of systems can be achieved using a finite-dimensional controller and present algorithms for construction of two different internal model based robust controllers. The controller parameters are chosen based on a Galerkin approximation of the original PDE system and employ balanced truncation to reduce the orders of the controllers. In the second part of the paper we design controllers for robust output tracking and disturbance rejection for a 1D reaction-diffusion equation with boundary disturbances, a 2D diffusion-convection equation, and a 1D beam equation with Kelvin-Voigt damping.Comment: Revised version with minor improvements and corrections. 28 pages, 9 figures. Accepted for publication in the IEEE Transactions on Automatic Contro

    Active Sticks: a New Dimension in Controller Design

    Get PDF
    A smart stick controller was built which actively produces a force to interact with the subject's hand and to aid in tracking. When the human tracks in this situation, the man-machine system can be viewed as the combination of two closed loop feedback paths. The inner loop occurs as a result of a tactile information channel effecting the man-controller interaction through force with this stick in the active mode (the stick generates a force) and the passive mode (the stick not generating a force) are reported. The most noteworthy observation is a significant increase in apparent neuromotor bandwidth and consequently better tracking performance
    • …
    corecore