123 research outputs found

    A Survey on Sensor Networks from a Multiagent Perspective

    Get PDF
    Sensor networks (SNs) have arisen as one of the most promising technologies for the next decades. The recent emergence of small and inexpensive sensors based upon microelectromechanical systems ease the development and proliferation of this kind of networks in a wide range of actual-world applications. Multiagent systems (MAS) have been identified as one of the most suitable technologies to contribute to the deployment of SNs that exhibit flexibility, robustness and autonomy. The purpose of this survey is 2-fold. On the one hand, we review the most relevant contributions of agent technologies to this emerging application domain. On the other hand, we identify the challenges that researchers must address to establish MAS as the key enabling technology for SNs.This work has been funded by projects IEA(TIN2006-15662-C02-01), Agreement Technologies (CONSOLIDER CSD2007-0022, INGENIO 2010), EVE (TIN2009-14702-C02-01,TIN2009-14702-C02-02) and Generalitat de Catalunya under the gran t2009-SGR-1434. Meritxell Vinyals is supported by the Spanish Ministry of Education (FPU grant AP2006-04636)Peer Reviewe

    Energy Harvesting Wireless Communications: A Review of Recent Advances

    Get PDF
    This article summarizes recent contributions in the broad area of energy harvesting wireless communications. In particular, we provide the current state of the art for wireless networks composed of energy harvesting nodes, starting from the information-theoretic performance limits to transmission scheduling policies and resource allocation, medium access and networking issues. The emerging related area of energy transfer for self-sustaining energy harvesting wireless networks is considered in detail covering both energy cooperation aspects and simultaneous energy and information transfer. Various potential models with energy harvesting nodes at different network scales are reviewed as well as models for energy consumption at the nodes.Comment: To appear in the IEEE Journal of Selected Areas in Communications (Special Issue: Wireless Communications Powered by Energy Harvesting and Wireless Energy Transfer

    Real-Time Guarantees For Wireless Networked Sensing And Control

    Get PDF
    Wireless networks are increasingly being explored for mission-critical sensing and control in emerging domains such as connected and automated vehicles, Industrial 4.0, and smart city. In wireless networked sensing and control (WSC) systems, reliable and real- time delivery of sensed data plays a crucial role for the control decision since out-of-date information will often be irrelevant and even leads to negative effects to the system. Since WSC differs dramatically from the traditional real-time (RT) systems due to its wireless nature, new design objective and perspective are necessary to achieve real-time guarantees. First, we proposed Optimal Node Activation Multiple Access (ONAMA) scheduling protocol that activates as many nodes as possible while ensuring transmission reliability (in terms of packets delivery ratio). We implemented and tested ONAMA on two testbeds both with 120+ sensor nodes. Second, we proposed algorithms to address the problem of clustering heterogeneous reliability requirements into a limit set of service levels. Our solutions are optimal, and they also provide guaranteed reliability, which is critical for wireless sensing and control. Third, we proposed a probabilistic real-time wireless communication framework that effectively integrates real-time scheduling theory with wireless communication. The per- packet probabilistic real-time QoS was formally modeled. By R3 mapping, the upper-layer requirement and the lower-layer link reliability are translated into the number of trans- mission opportunities needed. By optimal real-time communication scheduling as well as admission test and traffic period optimization, the system utilization is maximized while the schedulability is maintained. Finally, we further investigated the problem of how to minimize delay variation (i.e., jitter) while ensuring that packets are delivered by their deadlines

    EC-CENTRIC: An Energy- and Context-Centric Perspective on IoT Systems and Protocol Design

    Get PDF
    The radio transceiver of an IoT device is often where most of the energy is consumed. For this reason, most research so far has focused on low power circuit and energy efficient physical layer designs, with the goal of reducing the average energy per information bit required for communication. While these efforts are valuable per se, their actual effectiveness can be partially neutralized by ill-designed network, processing and resource management solutions, which can become a primary factor of performance degradation, in terms of throughput, responsiveness and energy efficiency. The objective of this paper is to describe an energy-centric and context-aware optimization framework that accounts for the energy impact of the fundamental functionalities of an IoT system and that proceeds along three main technical thrusts: 1) balancing signal-dependent processing techniques (compression and feature extraction) and communication tasks; 2) jointly designing channel access and routing protocols to maximize the network lifetime; 3) providing self-adaptability to different operating conditions through the adoption of suitable learning architectures and of flexible/reconfigurable algorithms and protocols. After discussing this framework, we present some preliminary results that validate the effectiveness of our proposed line of action, and show how the use of adaptive signal processing and channel access techniques allows an IoT network to dynamically tune lifetime for signal distortion, according to the requirements dictated by the application

    Energy Efficient and Secure Wireless Sensor Networks Design

    Get PDF
    Wireless Sensor Networks (WSNs) are emerging technologies that have the ability to sense, process, communicate, and transmit information to a destination, and they are expected to have significant impact on the efficiency of many applications in various fields. The resource constraint such as limited battery power, is the greatest challenge in WSNs design as it affects the lifetime and performance of the network. An energy efficient, secure, and trustworthy system is vital when a WSN involves highly sensitive information. Thus, it is critical to design mechanisms that are energy efficient and secure while at the same time maintaining the desired level of quality of service. Inspired by these challenges, this dissertation is dedicated to exploiting optimization and game theoretic approaches/solutions to handle several important issues in WSN communication, including energy efficiency, latency, congestion, dynamic traffic load, and security. We present several novel mechanisms to improve the security and energy efficiency of WSNs. Two new schemes are proposed for the network layer stack to achieve the following: (a) to enhance energy efficiency through optimized sleep intervals, that also considers the underlying dynamic traffic load and (b) to develop the routing protocol in order to handle wasted energy, congestion, and clustering. We also propose efficient routing and energy-efficient clustering algorithms based on optimization and game theory. Furthermore, we propose a dynamic game theoretic framework (i.e., hyper defense) to analyze the interactions between attacker and defender as a non-cooperative security game that considers the resource limitation. All the proposed schemes are validated by extensive experimental analyses, obtained by running simulations depicting various situations in WSNs in order to represent real-world scenarios as realistically as possible. The results show that the proposed schemes achieve high performance in different terms, such as network lifetime, compared with the state-of-the-art schemes

    Medium Access Control and Network Coding for Wireless Information Flows

    Get PDF
    This dissertation addresses the intertwined problems of medium access control (MAC) and network coding in ad hoc wireless networks. The emerging wireless network applications introduce new challenges that go beyond the classical understanding of wireline networks based on layered architecture and cooperation. Wireless networks involve strong interactions between MAC and network layers that need to be jointly specified in a cross-layer design framework with cooperative and non-cooperative users. For multi-hop wireless networks, we first rediscover the value of scheduled access at MAC layer through a detailed foray into the questions of throughput and energy consumption. We propose a distributed time-division mechanism to activate dynamic transmitter-receiver assignments and eliminate interference at non-intended receivers for throughput and energy-efficient resource allocation based on stable operation with arbitrary single-receiver MAC protocols. In addition to full cooperation, we consider competitive operation of selfish users with individual performance objectives of throughput, energy and delay. We follow a game-theoretic approach to evaluate the non-cooperative equilibrium strategies at MAC layer and discuss the coupling with physical layer through power and rate control. As a cross-layer extension to multi-hop operation, we analyze the non-cooperative operation of joint MAC and routing, and introduce cooperation stimulation mechanisms for packet forwarding. We also study the impact of malicious transmitters through a game formulation of denial of service attacks in random access and power-controlled MAC. As a new networking paradigm, network coding extends routing by allowing intermediate transmitters to code over the received packets. We introduce the adaptation of network coding to wireless environment in conjunction with MAC. We address new research problems that arise when network coding is cast in a cross-layer optimization framework with stable operation. We specify the maximum throughput and stability regions, and show the necessity of joint design of MAC and network coding for throughput and energy-efficient operation of cooperative or competitive users. Finally, we discuss the benefits of network coding for throughput stability in single-hop multicast communication over erasure channels. Deterministic and random coding schemes are introduced to optimize the stable throughput properties. The results extend our understanding of fundamental communication limits and trade-offs in wireless networks

    Methodologies for the analysis of value from delay-tolerant inter-satellite networking

    Get PDF
    In a world that is becoming increasingly connected, both in the sense of people and devices, it is of no surprise that users of the data enabled by satellites are exploring the potential brought about from a more connected Earth orbit environment. Lower data latency, higher revisit rates and higher volumes of information are the order of the day, and inter-connectivity is one of the ways in which this could be achieved. Within this dissertation, three main topics are investigated and built upon. First, the process of routing data through intermittently connected delay-tolerant networks is examined and a new routing protocol introduced, called Spae. The consideration of downstream resource limitations forms the heart of this novel approach which is shown to provide improvements in data routing that closely match that of a theoretically optimal scheme. Next, the value of inter-satellite networking is derived in such a way that removes the difficult task of costing the enabling inter-satellite link technology. Instead, value is defined as the price one should be willing to pay for the technology while retaining a mission value greater than its non-networking counterpart. This is achieved through the use of multi-attribute utility theory, trade-space analysis and system modelling, and demonstrated in two case studies. Finally, the effects of uncertainty in the form of sub-system failure are considered. Inter-satellite networking is shown to increase a system's resilience to failure through introduction of additional, partially failed states, made possible by data relay. The lifetime value of a system is then captured using a semi-analytical approach exploiting Markov chains, validated with a numerical Monte Carlo simulation approach. It is evident that while inter-satellite networking may offer more value in general, it does not necessarily result in a decrease in the loss of utility over the lifetime.In a world that is becoming increasingly connected, both in the sense of people and devices, it is of no surprise that users of the data enabled by satellites are exploring the potential brought about from a more connected Earth orbit environment. Lower data latency, higher revisit rates and higher volumes of information are the order of the day, and inter-connectivity is one of the ways in which this could be achieved. Within this dissertation, three main topics are investigated and built upon. First, the process of routing data through intermittently connected delay-tolerant networks is examined and a new routing protocol introduced, called Spae. The consideration of downstream resource limitations forms the heart of this novel approach which is shown to provide improvements in data routing that closely match that of a theoretically optimal scheme. Next, the value of inter-satellite networking is derived in such a way that removes the difficult task of costing the enabling inter-satellite link technology. Instead, value is defined as the price one should be willing to pay for the technology while retaining a mission value greater than its non-networking counterpart. This is achieved through the use of multi-attribute utility theory, trade-space analysis and system modelling, and demonstrated in two case studies. Finally, the effects of uncertainty in the form of sub-system failure are considered. Inter-satellite networking is shown to increase a system's resilience to failure through introduction of additional, partially failed states, made possible by data relay. The lifetime value of a system is then captured using a semi-analytical approach exploiting Markov chains, validated with a numerical Monte Carlo simulation approach. It is evident that while inter-satellite networking may offer more value in general, it does not necessarily result in a decrease in the loss of utility over the lifetime
    • 

    corecore