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This dissertation addresses the intertwined problems of medium access control

(MAC) and network coding in ad hoc wireless networks. The emerging wireless

network applications introduce new challenges that go beyond the classical under-

standing of wireline networks based on layered architecture and cooperation. Wire-

less networks involve strong interactions between MAC and network layers that

need to be jointly specified in a cross-layer design framework with cooperative and

non-cooperative users.

For multi-hop wireless networks, we first rediscover the value of scheduled

access at MAC layer through a detailed foray into the questions of throughput

and energy consumption. We propose a distributed time-division mechanism to

activate dynamic transmitter-receiver assignments and eliminate interference at non-

intended receivers for throughput and energy-efficient resource allocation based on

stable operation with arbitrary single-receiver MAC protocols.

In addition to full cooperation, we consider competitive operation of selfish



users with individual performance objectives of throughput, energy and delay. We

follow a game-theoretic approach to evaluate the non-cooperative equilibrium strate-

gies at MAC layer and discuss the coupling with physical layer through power and

rate control. As a cross-layer extension to multi-hop operation, we analyze the

non-cooperative operation of joint MAC and routing, and introduce cooperation

stimulation mechanisms for packet forwarding. We also study the impact of mali-

cious transmitters through a game formulation of denial of service attacks in random

access and power-controlled MAC.

As a new networking paradigm, network coding extends routing by allow-

ing intermediate transmitters to code over the received packets. We introduce the

adaptation of network coding to wireless environment in conjunction with MAC.

We address new research problems that arise when network coding is cast in a

cross-layer optimization framework with stable operation. We specify the maximum

throughput and stability regions, and show the necessity of joint design of MAC

and network coding for throughput and energy-efficient operation of cooperative or

competitive users. Finally, we discuss the benefits of network coding for throughput

stability in single-hop multicast communication over erasure channels. Determinis-

tic and random coding schemes are introduced to optimize the stable throughput

properties. The results extend our understanding of fundamental communication

limits and trade-offs in wireless networks.



MEDIUM ACCESS CONTROL AND NETWORK CODING
FOR WIRELESS INFORMATION FLOWS

by

Yalin Evren Sagduyu

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2007

Advisory Committee:

Professor Anthony Ephremides, Chair/Advisor
Professor Prakash Narayan
Professor Dianne O’Leary
Professor Sennur Ulukus
Professor Min Wu



c© Copyright by

Yalin Evren Sagduyu

2007



DEDICATION

To my family.

ii



ACKNOWLEDGMENTS

First, I would like to thank my advisor Prof. Ephremides for his guidance and

encouragement. I am very fortunate to have him as my mentor. Also, I would like

thank the members of my dissertation committee, Prof. Narayan, Prof. O’Leary,

Prof. Ulukus and Prof. Wu, for reading my thesis and taking part in my doctoral

defense.

I have the endless gratitude for my family. I thank my father Prof. Halil Sag-

duyu, my mother Nihal Sagduyu, my brother Emre and my love Ariunaa. Nothing

would be possible without their support and love.

iii



Table of Contents

List of Tables viii

List of Figures ix

1 Introduction 1

2 Medium Access Control (MAC) in Multi-Hop Wireless Networks: A New
Look at Multiple Access and Time Division 9
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Group TDMA in Two-Destination Networks . . . . . . . . . . . . . . 12

2.2.1 Group TDMA Algorithm . . . . . . . . . . . . . . . . . . . . . 14
2.2.2 Throughput Efficiency of Group TDMA Algorithm . . . . . . 16

2.3 Group TDMA under Protocol Model . . . . . . . . . . . . . . . . . . 18
2.4 Group TDMA in General Multi-Destination Systems . . . . . . . . . 20

2.4.1 Throughput-Optimal Time Allocation . . . . . . . . . . . . . 22
2.4.2 Group TDMA for Finite Node Population . . . . . . . . . . . 26

2.5 Receiver Activation in Wireless Networks . . . . . . . . . . . . . . . . 28
2.6 Time Allocation for Receiver Activation . . . . . . . . . . . . . . . . 31

2.6.1 Throughput-Efficient Time Allocation . . . . . . . . . . . . . . 31
2.6.2 Energy-Efficient Time Allocation . . . . . . . . . . . . . . . . 33

2.7 Distributed Operation of Receiver Activation and Group TDMA . . . 35
2.8 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.9 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 41

3 A Game-Theoretic Look at MAC in Wireless Networks: Non-Cooperative
Random Access for Selfish and Malicious Users 42
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2 System Model, Rewards and Costs . . . . . . . . . . . . . . . . . . . 48
3.3 Two Selfish Transmitters with Saturated Packet Queues . . . . . . . 50

3.3.1 Non-Cooperative Equilibrium . . . . . . . . . . . . . . . . . . 50
3.3.2 Comparison with Cooperative Equilibrium . . . . . . . . . . . 53
3.3.3 Improvement of Non-cooperative Equilibrium through Pricing 55

3.4 Extensions to Stable Operation with Two Selfish Transmitters . . . . 57
3.5 Effects of Malicious Operation on Non-Cooperative Equilibrium . . . 61
3.6 Adaptive Update Mechanisms for Distributed Operation . . . . . . . 67
3.7 Arbitrary Number of Transmitters . . . . . . . . . . . . . . . . . . . . 71

3.7.1 Arbitrary Number of Selfish Transmitters . . . . . . . . . . . . 71
3.7.2 Comparison with Scheduled Access . . . . . . . . . . . . . . . 74
3.7.3 Arbitrary Sets of Selfish and Malicious Transmitters . . . . . . 76

3.8 Extensions to Multiple Receivers in Broadcast Communication . . . . 81
3.9 Repeated Random Access Games for Backlogged Transmissions . . . 83

3.9.1 Non-Cooperative Equilibrium Strategies . . . . . . . . . . . . 85
3.9.2 Comparison of Selfish and Cooperative Strategies . . . . . . . 86

iv



3.10 Randomized Power and Rate Control Game . . . . . . . . . . . . . . 88
3.11 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 91

4 Power-Controlled MAC Games for Non-Cooperative Wireless Access 94
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.2 System Model, Rewards and Costs . . . . . . . . . . . . . . . . . . . 96
4.3 Utility Function Type 1 . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.3.1 Two Selfish Transmitters . . . . . . . . . . . . . . . . . . . . . 98
4.3.2 One Selfish and One Malicious Transmitter . . . . . . . . . . . 100

4.4 Utility Function Type 2 . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.4.1 Two Selfish Transmitters . . . . . . . . . . . . . . . . . . . . . 104
4.4.2 One Selfish and One Malicious Transmitter . . . . . . . . . . . 105

4.5 Best Response Update Mechanisms for Distributed Operation . . . . 106
4.6 Comments on Social Equilibrium . . . . . . . . . . . . . . . . . . . . 107
4.7 Arbitrary Number of Selfish and Malicious Transmitters . . . . . . . 109

4.7.1 Utility Function Type 1 . . . . . . . . . . . . . . . . . . . . . 109
4.7.2 Utility Function Type 2 . . . . . . . . . . . . . . . . . . . . . 110
4.7.3 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . 110

4.8 Alternative Measures for Transmission Rates . . . . . . . . . . . . . . 111
4.9 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 113

5 A Game-Theoretic Analysis of Joint MAC and Routing in Non-Cooperative
Wireless Networks 114
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.2 Network Model for the Simple Relay Channel . . . . . . . . . . . . . 117

5.2.1 Cooperation Stimulation Mechanism for Relaying . . . . . . . 119
5.3 A Framework for Two-User Stochastic Games . . . . . . . . . . . . . 120
5.4 Communication over Relay Channel as a Stochastic Game . . . . . . 123

5.4.1 State Definition . . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.4.2 Action Space and Mixed Stationary Strategies . . . . . . . . . 123
5.4.3 State Transition Matrix and Utility Functions . . . . . . . . . 124

5.5 Performance Evaluation of Relay Channel Communication . . . . . . 126
5.6 Distributed Adaptive Algorithm with Limited Information . . . . . . 132
5.7 Improvement of the Game Model: A New Relaying Rule . . . . . . . 136

5.7.1 Modified State Definition and Mixed Stationary Strategies . . 137
5.7.2 Modified State Transition Matrix and Utility Functions . . . . 138
5.7.3 Numerical Analysis of the Performance Improvement . . . . . 140
5.7.4 An Analytical Look at the Equilibrium Strategies . . . . . . . 140
5.7.5 Improvement by Immediate Transmissions of New Packets . . 143

5.8 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 144

6 Cross-Layer Design of MAC and Network Coding in Wireless Networks 146
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
6.2 Cross-Layer Design of Network Coding and MAC . . . . . . . . . . . 151

6.2.1 An Example of Wireless Network Coding . . . . . . . . . . . . 151

v



6.2.2 Joint Design of Network Coding and Conflict-free Scheduling . 154
6.2.2.1 Network Flow Optimization . . . . . . . . . . . . . . 155
6.2.2.2 Step 1 (Construction of Conflict-Free Network Real-

izations) . . . . . . . . . . . . . . . . . . . . . . . . . 157
6.2.2.3 Step 2 (Time Allocation for MAC Schedules) . . . . 158
6.2.2.4 Example for Cross-Layer Design . . . . . . . . . . . . 160

6.3 Construction of Wireless Network Codes . . . . . . . . . . . . . . . . 161
6.3.1 Wireless Network Flows with Omnidirectional Transmissions . 162
6.3.2 Basic Method for Constructing Wireless Network Codes . . . 163
6.3.3 Example for Constructing Wireless Network Codes . . . . . . 170
6.3.4 Properties of Linear Wireless Network Codes and Interactions

with MAC Schedules . . . . . . . . . . . . . . . . . . . . . . . 171
6.3.5 Network Coding with Arbitrary MAC through Group TDMA 174

6.4 Improved Joint MAC and Network Coding Methods . . . . . . . . . . 175
6.4.1 Subtree Decomposition Method . . . . . . . . . . . . . . . . . 175
6.4.2 Common Network Coding Method by Subtree Decomposition 177
6.4.3 Scheduling by Subtree Decomposition: Method A . . . . . . . 179
6.4.4 Scheduling by Subtree Graph Coloring: Method B . . . . . . . 181
6.4.5 Scheduling by Exhaustive Search: Method C . . . . . . . . . . 183
6.4.6 Properties of Scheduling Methods A, B and C . . . . . . . . . 184
6.4.7 Distributed Implementation Issues . . . . . . . . . . . . . . . 185

6.5 Performance Comparison of Network Coding and Plain Routing . . . 186
6.6 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 189

7 Joint Optimization of MAC and Network Coding in Wireless Queueing Net-
works with Multiple Sources 191
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
7.2 MAC and Network Layer Model . . . . . . . . . . . . . . . . . . . . . 196
7.3 Cross-Layer Throughput Optimization Problem . . . . . . . . . . . . 200
7.4 Achievable Throughput Region for Saturated Queues . . . . . . . . . 201
7.5 Stability Region for Possibly Emptying (Non-Saturated) Queues . . . 204
7.6 Throughput Optimization Trade-offs . . . . . . . . . . . . . . . . . . 208

7.6.1 Upper Bounds on Multicast Communication . . . . . . . . . . 209
7.6.2 Broadcast Communication . . . . . . . . . . . . . . . . . . . . 210
7.6.3 Unicast Communication . . . . . . . . . . . . . . . . . . . . . 211
7.6.4 Joint Optimization of Throughput Rates λΣ and λmin . . . . . 213

7.7 Energy Properties and Trade-offs with Throughput Objectives . . . . 215
7.7.1 Transmission and Processing Energy Costs for Saturated Queues216
7.7.2 Transmission and Processing Energy Costs in Stable Operation219

7.8 Extension to Random Access . . . . . . . . . . . . . . . . . . . . . . 222
7.8.1 Methods for Source Packet Transmissions in Random Access . 223
7.8.2 Achievable Throughput Region in Random Access . . . . . . . 224
7.8.3 Throughput Optimization in Random Access . . . . . . . . . . 228

7.9 Non-Cooperative Network Coding Operation . . . . . . . . . . . . . . 229
7.9.1 Reward-Based Cooperation Stimulation . . . . . . . . . . . . . 231

vi



7.9.2 Non-Cooperative Random Access . . . . . . . . . . . . . . . . 235
7.10 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 237

8 Effects of Network Coding on Queueing Stability in Wireless Access 239
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
8.2 Single-Source Broadcast System Model . . . . . . . . . . . . . . . . . 242
8.3 Suboptimal Retransmission Policies . . . . . . . . . . . . . . . . . . . 244
8.4 Random Network Coding Policy . . . . . . . . . . . . . . . . . . . . . 246

8.4.1 Stable Throughput Properties . . . . . . . . . . . . . . . . . . 247
8.4.2 Transmission and Processing Energy Costs . . . . . . . . . . . 251
8.4.3 Extensions to Compound Random Access of Two Source Nodes252

8.5 Optimal Coded Retransmission Policy for the Single Source Case . . 256
8.5.1 Feedback, Packet Overhead and Complexity Issues . . . . . . 260

8.6 Optimal Coded Retransmission Policy for Two Source Nodes . . . . . 262
8.7 Extensions to Unicast Communication . . . . . . . . . . . . . . . . . 265
8.8 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 269

9 Conclusions 271

Bibliography 277

vii



List of Tables

4.1 The Nash Equilibrium Strategies for Two Selfish Transmitters. . . . . 99

4.2 The Nash Equilibrium Strategies for One Selfish and One Malicious
Transmitter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.1 Comparison of Non-cooperative and Cooperative Expected Utilities. . 131

5.2 Expected Equilibrium Utilities with the First Improvement. . . . . . 141

5.3 Expected Equilibrium Utilities with the First and Second Improvements144

6.1 Network Coding Solution for the Network in Figure 6.1. . . . . . . . . 153

6.2 Performance Comparison of Plain Routing and Network Coding for
the Network in Figure 6.1. . . . . . . . . . . . . . . . . . . . . . . . . 153

6.3 Transmission Schedule Assignments by Methods A, B, C. . . . . . . . 184

6.4 Maximum Improvement of Network Coding over Plain Routing. . . . 187

viii



List of Figures

1.1 Open Systems Interconnection (OSI) reference model for wireline net-
works. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 A simple two-destination network example for Group TDMA algorithm. 14

2.2 The maximum stable throughput and energy consumption rate. . . . 18

2.3 Two-destination network operating under Protocol model. . . . . . . 19

2.4 The maximum value of the normalized stable throughput S∗

Smax
. . . . . 21

2.5 Simple multi-destination network model. . . . . . . . . . . . . . . . . 21

2.6 Tandem networks with (a) minimum, (b) maximum number of receivers. 24

2.7 The hybrid configurations for tandem networks with (a) minimum,
(b) maximum number of receivers. . . . . . . . . . . . . . . . . . . . . 25

2.8 Planar networks with (a) minimum, (b) maximum number of re-
ceivers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.9 Average value of N/n and 1
N

(
∑N

i=1 Ni) in tandem networks of length
L = 100 as functions of the number of nodes n and transmission
radius r. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.10 Example of time allocation among four receiver groups. . . . . . . . . 34

2.11 The maximum stable throughput for Group TDMA and simultaneous
operation of transmitter-receiver pairs. . . . . . . . . . . . . . . . . . 39

2.12 The system lifetime for energy-efficient and topology-based receiver
activation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1 Random access system with multiple transmitters and single receiver. 48

3.2 The minimum value of attack parameters c
(1)
1,2 + c

(2)
1,2 as function of

energy cost E2 such that malicious node 2 can reduce the throughput
of selfish node 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.3 The throughput λ1 of selfish node 1 as function of attack parameters
c
(1)
1,2 + c

(2)
1,2 in non-cooperative equilibrium. . . . . . . . . . . . . . . . . 65

3.4 Best-response updates. . . . . . . . . . . . . . . . . . . . . . . . . . . 69

ix



3.5 Heuristic updates based on channel feedback only. . . . . . . . . . . . 70

3.6 The total throughput
∑n

i=1 λi as function of rewards and costs. . . . . 74

3.7 The equilibrium transmission probability of selfish transmitters. . . . 75

3.8 The equilibrium throughput of selfish transmitters. . . . . . . . . . . 76

3.9 The equilibrium utility of selfish transmitters. . . . . . . . . . . . . . 77

3.10 The improvement of cooperation over non-cooperative equilibrium. . . 78

3.11 The non-cooperative equilibrium transmission probabilities. . . . . . . 80

3.12 The non-cooperative equilibrium throughput of the selfish transmitter. 81

3.13 The non-cooperative equilibrium utilities. . . . . . . . . . . . . . . . . 82

3.14 Performance comparison of the cooperative and non-cooperative ran-
dom access strategies with the retransmission probability assignment
of pn = 1/n. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.15 Non-cooperative equilibrium strategies for power and rate control game. 91

3.16 Non-cooperative equilibrium utilities for the random access game
G(n) and joint power and rate control game PRG(n). . . . . . . . . . 92

4.1 SINR value γ1 of selfish transmitter 1 for utility function type 1. . . . 103

4.2 Transmission powers P1 and P2 for utility function type 1. . . . . . . 104

4.3 Utilities u1 and u2 for utility function type 1. . . . . . . . . . . . . . . 105

4.4 SINR value γ1 of selfish transmitter 1 for utility function type 2. . . . 106

4.5 Transmission powers P1 and P2 for utility function type 2. . . . . . . 107

4.6 Utilities u1 and u2 for utility function type 2. . . . . . . . . . . . . . . 108

4.7 Transmission powers for utility function type 1. . . . . . . . . . . . . 111

4.8 Transmission powers for utility function type 2. . . . . . . . . . . . . 112

5.1 The simple relay channel model. . . . . . . . . . . . . . . . . . . . . . 118

5.2 Effects of energy cost E1,3 on non-cooperative equilibrium strategies. . 127

x



5.3 Effects of reward c for cooperation stimulation on non-cooperative
equilibrium strategies. . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.4 Effects of new packet generation probability λ1 at node 1 on non-
cooperative equilibrium strategies. . . . . . . . . . . . . . . . . . . . . 129

5.5 Effects of new packet generation probability λ2 at node 2 on non-
cooperative equilibrium strategies. . . . . . . . . . . . . . . . . . . . . 130

5.6 Temporal evolution of p1
1(t) and p1

2(t) for distributed adaptive algorithm.134

5.7 Temporal evolution of p2
1(t) and p2

3(t) for distributed adaptive algorithm.135

6.1 Wireless network example for network coding. . . . . . . . . . . . . . 152

6.2 Example of cuts between nodes s and y for the network in Figure 6.1. 159

6.3 Wireless network realizations N f = {N f
1 , N f

2 , N f
3 } for the network in

Figure 6.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

6.4 Example to illustrate the difference between the wired and wireless
information flows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

6.5 The hypothetical wired network graph N g. . . . . . . . . . . . . . . . 164

6.6 Illustrative example of introducing an artificial node ṽ for each trans-
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Chapter 1

Introduction

It is a fundamental, and still open, problem to characterize and compute the

ultimate and achievable communication limits in wireless networks. The general

operation of wireless networks as well as the resulting cross-layer interactions have

not been fully developed or clearly understood yet. The wireless communication

properties introduce new cross-layer design problems [1] that do not exist in wireline

networks based on the layered (OSI) network reference model (shown in Figure 1.1)

[2]. The classical network operation relies in an essential way on cooperation of nodes

for common network tasks. However, wireless networks consist of entities that may

cooperate or possibly compete with each other for limited network resources such

as bandwidth and energy [3]. Hence, it is necessary to analyze selfish and malicious

user behavior in wireless network operation.

This dissertation research is focused on the joint design considerations at the

medium access control (MAC) and network layers (together with several implica-

tions on the physical layer) in ad hoc wireless networks with cooperative and non-

cooperative users. The MAC layer of wireless networks coordinates simultaneous

transmissions for reliable communication, whereas network layer operations select

routes and forward information units of data packets between source-destination

pairs. Power and rate control have strong connections to MAC and network layer
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Figure 1.1: Open Systems Interconnection (OSI) reference model for wireline net-

works.

operations, and therefore they need to be jointly designed.

As the ad hoc wireless network model, we assume omnidirectional transmis-

sions that are synchronized into unit time slots. Each node is equipped with a

single transceiver and hence cannot simultaneously transmit and receive packets in

the same time slot. Therefore, it is necessary to partition the nodes into the disjoint

transmitter and receiver sets at any time instant. We do not allow multiple packet

transmissions by any node in a single time slot. We assume that nodes receive im-

mediate and correct feedback on the channel outcomes from their receivers through

separate conflict-free channels.

We consider two different models to represent the interference effects among

simultaneous transmissions. (1) Collision Channel Model: We assume circular trans-

mission (reception) ranges with sharp boundaries. No successful transmission or in-

terference is possible beyond those ranges. We model each link as a classical collision

channel with three possible channel outcomes: idle, success, and collision that occur,

2



respectively, if none, one or more than one packets simultaneously reach the same

receiver in the same time slot. This model is also extended to allow probabilistic

packet captures of simultaneous transmissions. (2) Physical Channel Model: Any

transmission is successfully received, if the Signal-to-Interference-plus-Noise-Ratio

(SINR) achieved at the receiver exceeds a fixed threshold. This model incorporates

transmission powers, channel gains and additive (Gaussian) noise power.

To have a good understanding of the cross-layer design issues and complex

trade-offs imposed by wireless communication properties, we first consider the prob-

lem of MAC in multi-destination networks from the different perspectives of stability,

distributed operation, throughput and energy efficiency.

We propose a two-step time-division mechanism as a polynomial-time solution

to throughput and energy-efficient link scheduling and resource allocation in wire-

less networks. As the first step, a topology-based greedy heuristic determines the

receiver sets to be activated over separate time intervals that depend on the resid-

ual battery energies at the individual transmitters. After activating each receiver

group separately, the Group TDMA scheme of the second step allocates interfering

transmitter groups (with packets addressed to different destinations) within dis-

joint time fractions to decouple the feedback from different destinations for stable

operation. A linear program formulation chooses the time allocation of different

transmitter groups to optimize the stable throughput rates with reliable feedback.

For any activated transmitter group, we rely on an arbitrary single-receiver (ei-

ther contention-based or conflict-free) MAC protocol to coordinate transmissions

at intended receivers. Distributed implementation is possible through the use of

3



graph-coloring arguments.

As the network size grows with arbitrary traffic demands and capabilities,

it becomes more difficult to manage the cooperation of nodes for common MAC

and network layer tasks (for which the individual objectives of nodes may strongly

conflict with each other). The cooperation can be realized externally by a central

authority, or we can let nodes make individual decisions for distributed operation to

optimize their performance objectives that involve throughput rewards, transmis-

sion energy costs and packet delay costs. In this context, distributed cooperation

reinforcement mechanisms are necessary to improve the network performance.

We formulate a stochastic game framework to extend the wireless network

analysis to non-cooperative operation with nodes competing for limited network re-

sources of bandwidth and energy. At the MAC layer, we formulate a non-cooperative

random access game of selecting individual probabilities of transmitting packets to

a common receiver. Specifically, we derive the transmission strategies in Nash equi-

librium depending on the throughput rewards, energy and delay costs. Adaptive

best-response update mechanisms are introduced for distributed implementation

and the results are compared with the social equilibrium strategies based on full

cooperation of transmitters. The analysis of non-cooperative operation is extended

to a repeated game model for backlogged packet transmissions. We also incorporate

power and rate control in MAC games by further exploiting the capture effects in

the communication channel.

Non-cooperative nodes may not be only selfish but may also pursue malicious

objectives of blocking random access of the other selfish nodes. The next objective
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is to evaluate the impact of malicious transmitters that have the dual objectives of

jamming the packet transmissions of the other selfish nodes as well as optimizing

their individual performance measures. The analysis provides insights for the op-

timal strategies to block random access of the other nodes as well as the optimal

defense mechanisms against the possible denial of service attacks of malicious nodes.

We also extend the game model to power-controlled MAC with a more general chan-

nel model based on SINR criterion. The goal is to formulate a non-cooperative game

of selecting the individual transmission powers and to evaluate the interactions be-

tween selfish and malicious transmitters with throughput and energy objectives.

Next, we extend the non-cooperative MAC operation to a simple form of multi-

hop communication over a relay channel. The MAC and plain routing operations

are formulated as a joint stochastic game among selfish source and relay nodes

competing over collision channels to deliver packets to a common destination node

using alternative paths. We rely on a reward mechanism to stimulate cooperation

for packet forwarding. In this context, we evaluate the conflicting MAC and routing

strategies of direct communication and relaying packets over an intermediate node.

The next question is how we can effectively change the fundamental operation

of wireless networks (e.g. how to code, decode and route packets, etc.) to extend the

communication limits beyond the classical understanding of replicating and forward-

ing packets along the path from sources to destinations. We answer this fundamental

question using the emerging idea of network coding that extends plain routing oper-

ation by allowing intermediate relay nodes to code and decode packets rather than

simply forwarding them over predetermined routes. We formulate wireless network
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coding in conjunction with conflict-free scheduled access. In this context, we intro-

duce the graph-theoretic notion of wireless broadcast cuts and define wireless flows

on network graphs by taking into account the omnidirectional nature of wireless

transmissions. We derive the optimal linear network codes for wireless networks

with a single source node and discuss their properties in conjunction with the un-

derlying MAC protocols. Then, we use the subtree graph decomposition methods

to present distributed implementation of joint MAC and wireless network coding.

The performance is compared to the classical plain routing approach through a de-

tailed foray into the questions of coding complexity, throughput, delay, and energy

efficiency. We also combine network coding with contention-based random access

through the application of Group TDMA method.

The basic assumption of uninterrupted availability of source packets in periodic

network coding operation guarantees saturated queues at source and relay nodes.

This assumption is reasonable to understand the fundamental capacity limits but

cannot result in stable network operation with finite packet delay. Therefore, we

need to relax the assumption of saturated queues and explore the network stability

problem with packet underflow through a cross-layer optimization framework of

MAC and network coding. A single scalar criterion is not sufficient to reflect all

communication demands of multiple source-destination pairs and it is necessary to

construct a region of attainable transmission rates at which reliable communication

can occur. In this context, we address the problem of specifying the maximum

throughput and stability regions for multiple source nodes. We also evaluate the

trade-offs between throughput and (transmission and processing) energy measures.
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For non-cooperative operation, we extend the game formulation of plain routing

to network coding operation (in conjunction with MAC) and present reward-based

cooperation stimulation mechanisms.

The benefits of wireless network coding are not limited to multi-hop operation.

We apply network coding to specify the stable throughput region for single-hop mul-

ticast erasure channels with probabilistic reception. We show that the plain policy of

retransmitting uncoded packets to multiple receivers is suboptimal. Instead, we in-

troduce dynamic network coding policies based on the instantaneous queue content

to optimize the stable operation to the achievable bounds of the maximum through-

put rates. We also evaluate the performance of several low-complexity solutions

based on random or deterministic network coding.

The dissertation is organized as follows. Chapter 2 addresses the problem

of stable MAC in multi-destination wireless networks and proposes a time-division

solution to throughput and energy-efficient resource allocation. In addition to coop-

erative strategies, a game-theoretic approach is followed in Chapter 3 to look at the

problem of non-cooperative MAC for single-receiver random access of selfish and

malicious transmitters. The analysis is also extended to combine random access

with power and rate control for non-cooperative transmissions of backlogged pack-

ets. Chapter 4 incorporates a more general SINR-based channel model in the game

formulation. Then, Chapter 5 extends the analysis to multi-hop communication and

develops a stochastic game of joint MAC and routing among selfish source and relay

nodes in a simple relay channel.

As an extension of plain routing, we introduce wireless network coding in
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Chapter 6 and jointly develop network coding and MAC in a cross-layer framework

of optimizing throughput rates, energy costs and packet delay. Then, we replace the

model of continuous packet traffic with stable operation of possibly emptying packet

queues and derive the maximum throughput and stability regions for multiple source

nodes in Chapter 7. We also evaluate the fundamental trade-offs among through-

put and (transmission and processing) energy costs, and study the non-cooperative

operation of MAC and wireless network coding. The benefits of network coding are

further discussed in Chapter 8 for single-hop multicast erasure channels. Specifi-

cally, we show the equivalence of the maximum throughput and stability regions

through the application of coded packet retransmissions. Finally, we summarize the

dissertation work and discuss future research directions in Chapter 9.
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Chapter 2

Medium Access Control (MAC) in Multi-Hop Wireless Networks: A

New Look at Multiple Access and Time Division

We study the problem of MAC based on scheduled access through a detailed

foray into the questions of throughput and energy consumption in multi-hop wire-

less networks. We consider destructive interference effects represented by collision

channels and rule out simultaneous transmission and reception by any node. This

requires partitioning of nodes into disjoint sets of transmitters and receivers at any

time instant. Under the assumption of circular transmission (reception) ranges

with sharp boundaries, a greedy receiver activation heuristic is developed relying

on the network connectivity map to determine distinct receiver groups to be ac-

tivated within disjoint time intervals. For energy efficiency, we choose the time

allocation to each receiver group depending on the residual battery energy available

at the respective transmitters. Upon activating each receiver group separately, the

additional mechanism of Group TDMA (Time Division Multiple Access) schedules

transmissions interfering at non-intended destinations over separate time intervals.

This method preserves the reliable feedback information for stable operation. The

two-step time-division structure of receiver activation and Group TDMA offers a

distributed link scheduling solution to throughput and energy-efficient resource al-

location in multi-hop wireless networks.
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2.1 Introduction

In wireless access, whether in cellular or general ad hoc networks, throughput

and energy efficiency have paramount importance and involve trade-offs that have

not been clearly developed or understood yet. For efficient resource allocation, we

strip out all complexities of the multi-hop routing operation at the network layer

and consider throughput and energy-efficient scheduling of one-hop transmissions.

Throughput-optimal channel access scheduling in wireless networks is known to be

an NP-complete problem without polynomial-time solutions [4, 5]. For practical

use, it is necessary to develop suboptimal heuristics including energy consumptions

and node lifetimes as the additional performance measures.

In this chapter, we outline a throughput and energy-efficient MAC approach

that allows distributed implementation and supports multi-hop communication as

required by autonomous and large scale wireless ad-hoc or sensor networks with

high throughput needs and energy constraints.

The extent of studies on multiple access has been traditionally limited to

simple networks with multiple transmitters and a single destination. This model is

clearly not sufficient to represent the self-organizing wireless networks with multiple

number of dynamically changing transmitter-receiver pairs. As an extension of MAC

operation to multi-destination networks, the interference effects at non-intended

destinations need to be eliminated for feedback reliability in stable operation (as

outlined by [6] in conjunction with energy-efficient wireless access). For the case of

two fixed receivers, the problem of contention-based access has been studied in [7, 8]
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for wireless networks and conflict-resolution algorithms have been used to explore the

bounds on the maximum stable throughput. The resulting Group TDMA algorithm

separates in time the interfering groups of nodes with packets addressed to different

destinations [7]. Each group is assigned separate fractions of time depending on the

packet traffic needs. The Group TDMA method was analyzed in terms of throughput

properties in [8] for a two-destination network and the optimal time allocation was

determined as function of the offered loads independently of the underlying MAC

protocol employed within each receiver’s area.

We need to extend the model of fixed transmitter-receiver assignments to dy-

namic wireless networks, where all nodes are both capable and obligated to transmit

and receive packets either as parts of source-destination pairs or for relaying pur-

poses (as required by the multi-hop operation in large scale wireless networks). If

we further assume that only a single transceiver per node is available, we need to

activate nodes either as a transmitter or receiver for disjoint time intervals.

We introduce a greedy receiver activation method based on partial knowledge

of the network connectivity map to partition nodes into disjoint transmitter-receiver

sets. Rather than ensuring conflict-free schedules as in standard link scheduling, we

allow multiple transmission assignments to each receiver and rely on an arbitrary

single-receiver (either contention-based or conflict-free) MAC protocol to resolve

the unavoidable packet conflicts while satisfying performance measures, such as

throughput, energy efficiency or complexity. To obtain reliable feedback information

from each receiver, Group TDMA eliminates the secondary conflicts in terms of

packet collisions due to transmissions at the non-intended receivers.
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The predetermined receiver groups are separately activated in a time-division

mechanism. We can use the battery energies and node lifetimes as decision criteria

in time allocation for distinct receiver groups in order to make best use of finite

energy resources. The intuitive idea is to extend node lifetimes by allocating more

time to transmissions by those nodes that have the higher residual energy.

In summary, we outline a resource allocation and link scheduling scheme based

on a two-step time-division operation. The first step allocates disjoint fractions

of time (depending on residual energy at transmitters) to activate distinct sets of

receivers (predetermined on the basis of network topology). For each receiver group,

the second step creates time orthogonality (based on throughput properties) between

transmitter groups interfering at non-intended destinations.

The chapter is organized as follows. We introduce the Group TDMA algorithm

for a two-destination network in section 2.2. We extend the analysis to more realistic

interference models and arbitrary multi-destination networks in sections 2.3 and

2.4, respectively. We introduce the receiver activation heuristic in section 2.5 and

discuss the throughput and energy-efficient time allocation methods in section 2.6.

The distributed implementation issues are discussed in section 2.7. We present

numerical results in section 2.8 and draw conclusions in section 2.9.

2.2 Group TDMA in Two-Destination Networks

Consider a fixed assignment of disjoint sets of transmitter and receiver nodes.

Although scheduled access has distinct advantages (especially at heavy traffic con-
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ditions), some form of random access is unavoidable in wireless systems. At a

minimum, it is necessary on the reservation sub-channel in dynamic allocation pro-

tocols. Therefore, we consider a random-access-based (single-receiver) MAC pro-

tocol, although almost any MAC protocol can be assumed. In random access, the

splitting-based collision resolution algorithms provide higher stable throughput than

the stabilized slotted Aloha algorithm [9]. Splitting a group of collided packets can

be implemented based on various criteria, such as coin toss, node or packet ID, time

of arrival or residual energy [6]. In this chapter, we use the FCFS (First-Come-

First-Served) algorithm as the single-receiver MAC protocol to resolve the primary

packet collisions. A new collision resolution period is initiated, whenever a packet

collision occurs. All packets that arrive within a specified time allocation interval

are transmitted in the first period of time allocation. If there is another collision,

the time allocation window is further shortened and the same procedure is repeated,

until all packets involved in the original collision are successfully received.

We extend the problem of multiple access to the simple network in Figure

2.1 with two receivers and multiple number of transmitters that are within the

reception range of at least one of the receivers. Transmission ranges are circular

with sharp boundaries and beyond that range no transmission or interference can

be observed. Transmitters generate packets at a common rate and have immediate

access to the ternary channel feedback only from their intended destinations. We

assume infinite number of unbuffered transmitters in each region. Nodes follow an

arbitrary MAC protocol with the maximum stable throughput Smax achievable in

the single-destination case.
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Figure 2.1: A simple two-destination network example for Group TDMA algorithm.

We denote the receivers in Figure 2.1 as R1 and R2. For each time instant (or

slot), we identify four distinct groups of transmitters. We define A1 and A2 as the

disjoint transmitter groups in the reception range of only R1 and R2, respectively.

Nodes from groups A1 and A2 randomly generate packets that are transmitted only

to R1 and R2, respectively. We define A3 as the group of transmitters that have

both receivers in their transmission ranges. Nodes of group A3 transmit either to R1

or to R2 with equal probability. At each time we divide node group A3 into groups

A31 and A32, where nodes in A3i, i = 1, 2, are transmitting to the receiver Ri.

2.2.1 Group TDMA Algorithm

The problems of deriving optimal channel access schedules for multi-hop net-

works and network partitioning into activation sets are both NP-complete, and

require heuristic suboptimal solutions for practical use. If we use FCFS with the so

called first improvement [9] as the single-destination MAC protocol, there is the po-

tential instability problem created by the misinterpretation of the channel feedback,

since collisions at any receiver Ri can be caused by packets that are destined for

either receiver. This has the equivalent effect of introducing errors in the feedback

14



signals. If a collision is followed by an idle slot, the current allocation interval is

split into smaller subintervals. However, if an idle is misinterpreted as a collision at

any receiver Ri, the allocation interval is split indefinitely, resulting in a deadlock

situation [9, 7, 8]. For instance, the feedback error at receiver R1 occurs, if nodes

from A1 and A31 are idle, whereas multiple nodes from A32 transmit to R2 and also

interfere at receiver R1.

Group TDMA algorithm solves the feedback reliability problem in two-destination

networks, by scheduling transmissions of node groups {A1, A2}, A31 and A32 over

three non-overlapping time fractions of x1, x2 and x3, respectively. Thus, cross-

collisions among transmitters with different destinations are ruled out resulting in

multiple access operations as in two separate single-destination systems. We define

f1, f2, f31 and f32 as fractions of the traffic load generated by groups A1, A2, A31

and A32, respectively. Then, the total packet arrival rate λ must satisfy

λfi ≤ x1Smax, i = 1, 2, λf3i ≤ xi+1Smax, i = 1, 2, (2.1)

where 0 ≤ f1, f2, f31, f32 ≤ 1,
∑2

i=1 fi + f3i = 1, 0 ≤ x1, x2, x3 ≤ 1, and
∑3

i=1 xi = 1.

The optimal temporal allocation and the maximum stable throughput are given by

x∗
1 =

max(f1, f2)

max(f1, f2) + f31 + f32

, (2.2)

x∗
i+1 =

f3i

max(f1, f2) + f31 + f32

, i = 1, 2, (2.3)

λ∗ =
Smax

max(f1, f2) + f31 + f32

. (2.4)

Clearly, λ∗ can improve, if we allow node group A1 (or A2) to transmit also

during A31’s time x2 (or A32’s time x3). Hence, λ∗ is actually a lower bound on the

general maximum throughput.
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2.2.2 Throughput Efficiency of Group TDMA Algorithm

For a network of two receivers and unlimited transmitter population, we con-

sider alternative multiple access schemes of (a) activating all transmitter-receiver

pairs simultaneously, (b) activating receivers one at a time. We define S ′
max and

Smax as the maximum stable throughput achievable by the unlimited node popula-

tion (for a single destination) with the neighboring node interference and without

interference from the adjoining groups.

Theorem 2.2.1 The maximum stable throughput rates λ∗
a and λ∗

b under MAC schemes

(a) and (b) are given by

λ∗
a ≤ S ′

max

max(f1, f2) + f31 + f32

, (2.5)

λ∗
b = Smax. (2.6)

Proof: MAC scheme (a): Because of the coupling between MAC operations we

have to use a single-receiver MAC protocol with stable throughput S ′
max ≤ Smax

(e.g. FCFS algorithm without the first improvement. We can find an upper bound

on the stable throughput, if we combine the transmissions of A31 and A32 with the

other (intended or non-intended) transmissions to R2 and R1, respectively (i.e. we

assume that A31 and A32 also contribute to the throughput for receiver R2 and R1,

respectively). The resulting stable throughput λc satisfies

λc(fi + f31 + f32) ≤ S ′
max ≤ Smax , i = 1, 2. (2.7)

The optimal solution for λ∗
a ≤ λ∗

c ≤ λ∗ is given by Eq. (2.5).
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MAC scheme (b): If we separately activate the receivers R1 and R2 for y1

and y2 fractions of time (0 ≤ y1, y2 ≤ 1, y1 + y2 = 1), then the resulting stable

throughput λb satisfies

λb(fi + f3i) ≤ yi Smax , i = 1, 2, (2.8)

and the optimal solution for λ∗
b ≤ λ∗ is given by Eq. (2.6). 2

Theorem 2.2.2 The Group TDMA algorithm can achieve a higher maximum stable

throughput than the MAC schemes (a) and (b).

Proof: Since max(f1, f2) ≤ f1 +f2 and S ′
max ≤ Smax, λ∗ in Eq. (2.4) is greater than

the throughput rates λ∗
a and λ∗

b given by Eqs. (2.5) and (2.6), respectively. 2

The time allocation could be also based on the energy efficiency objectives.

Let Ei(λ, xi) and E3i(λ, x3) denote the rates of the cumulative energy consumptions

of transmitter groups Ai and A3i, i = 1, 2, respectively. For any fixed throughput

rate λ < λ∗, this would lead to the alternative problem of choosing the time fractions

x to minimize the total energy consumption rate given by

E(λ, x) =
2∑

i=1

x1 (Ei(λ, x1) + xi+1 E3i(λ, xi+1)) (2.9)

subject to the stability conditions (2.1). For numerical results, we let the FCFS

algorithm operate as the single-receiver algorithm under Group TDMA. We define

S = λ
2

as the stable throughput per destination and assume unit energy consumption

per transmission. We illustrate in Figure 2.2 the maximum stable throughput per

destination and energy consumption rate per time slot (to achieve the maximum

stable throughput) as function of f3 (provided that f1 = f2 and f31 = f32).
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Figure 2.2: The maximum stable throughput and energy consumption rate.

2.3 Group TDMA under Protocol Model

We can also adapt a more realistic criterion for successful packet reception,

namely the Protocol model [10] that extends the interference effects beyond trans-

mission ranges such that all nodes have the common range r for transmissions and

any node Xi successfully transmits to the intended receiver XR(i), if and only if

|Xi − XR(i)| ≤ r and |Xk − XR(i)| ≥ (1 + ∆) r (2.10)

for every other concurrent transmitter Xk, k 6= i, where the quantity ∆ ≥ 0 ac-

counts for a guard zone that prevents a neighboring node from transmitting over

the same single channel at the same time. Figure 2.3 shows the two-destination

network to illustrate the Group TDMA operation under Protocol model. We par-
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Figure 2.3: Two-destination network operating under Protocol model.

tition the network into five subregions with distinct transmission and interference

properties. Regions 1 and 2 contain nodes that have only receivers R1 and R2 as

their destinations, respectively, and cannot cause interference at the other receiver.

Nodes in the reception ranges of both receivers are included in region 3. On the

other hand, region 4 consists of nodes that are in the reception range of R1 but can

also interfere at R2. Similarly, region 5 consists of nodes that are in the reception

range of R2 but can also interfere at R1.

We denote by f ′
i the fraction of the traffic load generated by transmitters in

region i = 1, ..., 5. The set of nodes in region i is denoted by Ai. We partition

A3 into two subgroups A3,1 and A3,2 such that A3,i, i = 1, 2, with traffic load f ′
3,i

contains nodes with packets destined to receiver Ri. Group TDMA allocates the

transmissions from {A1, A2}, {A3,1, A4} and {A3,2, A5} within disjoint time fractions

x′
1, x′

2 and x′
3, respectively. Thus, the interference effects at non-intended receivers

are eliminated and we obtain reliable feedback in the presence of additional inter-

ference effects of the Protocol model. The total stable throughput λ (achievable at
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two destinations by the Group TDMA algorithm) must satisfy

λf ′
i ≤ x′

1Smax, i = 1, 2, (2.11)

λ(f ′
3i + f ′

i+3) ≤ x′
i+1Smax, i = 1, 2. (2.12)

The optimal temporal allocation and the maximum stable throughput are

x′
1
∗

=
max(f ′

1, f
′
2)

max(f ′
1, f

′
2) + f ′

3 + f ′
4 + f ′

5

, (2.13)

x′∗
i+1 =

f ′
3i + f ′

i+3

max(f ′
1, f

′
2) + f ′

3 + f ′
4 + f ′

5

, i = 1, 2, (2.14)

λ∗ =
Smax

max(f ′
1, f

′
2) + f ′

3 + f ′
4 + f ′

5

. (2.15)

Since fi = f ′
i + f ′

i+3 and f3i = f3i′ , i = 1, 2, we have max(f ′
1, f

′
2) + f ′

4 + f ′
5 ≥

max(f1, f2) = max(f ′
1 + f ′

4, f
′
2 + f ′

5), and the maximum stable throughput is a de-

creasing function of ∆ ≥ 0. Thus, the increase in interference effects reduces the

maximum throughput of the Group TDMA algorithm. For f ′
1 = f ′

2, f ′
4 = f ′

5 and

f ′
3,1 = f ′

3,2, Figure 2.4 depicts the maximum stable throughput per destination S∗,

namely λ∗

2
, as function of the load fraction f ′

3 for different values of ∆. For the rest

of the chapter, we continue with the initial assumption of ∆ = 0, although similar

results can be derived for the general case with ∆ ≥ 0.

2.4 Group TDMA in General Multi-Destination Systems

We illustrate the Group TDMA operation in a multi-destination network using

the simple network with three activated receivers shown in Figure 2.5. If nodes

{1, 6, 10} are the activated receivers, we groups nodes {2, 5} in A1, node 7 in A2,

and nodes {9, 11, 12} in A3. Nodes 3 and 4 belong to A4,1 or A4,2 depending on
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whether their packets are addressed to node 1 or 6, respectively. Node 8 belongs to

A5,2 or A5,3, if its packets are addressed to node 6 or 10, respectively. Then, nodes

from three distinct transmitter groups {A1, A2, A3}, {A4,1, A5,3} and {A4,2, A5,2} are

activated over non-overlapping time fractions of x1, x2 and x3, respectively, where

0 ≤ xi ≤ 1, i = 1, 2, 3, and
∑3

i=1 xi = 1.

1

3

4

7

6
8

9

10
2

5
11

12

Figure 2.5: Simple multi-destination network model.
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2.4.1 Throughput-Optimal Time Allocation

Consider a given set of receivers Gi and a fixed distribution of traffic loads.

Nodes transmitting to any receiver in group Gi are divided into disjoint groups

Gi,k, k = 1, ..., ci, such that nodes in the same group can transmit without causing

interference to each other at non-intended receivers. The transmitter group Gi,k is

activated within xi,k fraction of time such that
∑ci

k=1 xi,k = 1. We define R
(j)
i,k as the

jth element of the receiver set Ri,k that can be reached by Gi,k. We define A
(j)
i,k as

the subset of nodes that belong to the kth transmitter group Gi,k and have packets

destined to the receiver R
(j)
i,k . The fraction of the traffic load generated by A

(j)
i,k is

f
(j)
i,k . If λi is the total rate of packet arrival to nodes transmitting to the receiver

group Gi, nodes in Gi,k, k = 1, ..., ci, jointly satisfy

λif
(j)
i,k ≤ xi,kSmax, ∀j : R

(j)
i,k ∈ Ri,k. (2.16)

The optimal value of xi,k and λi are given by

x∗
i,k =

max
j:R

(j)
i,k∈Ri,k

f
(j)
i,k

∑ci

k=1 max
j:R

(j)
i,k∈Ri,k

f
(j)
i,k

, k = 1, ..., ci , (2.17)

λ∗
i =

Smax∑ci

k=1 max
j:R

(j)
i,k∈Ri,k

f
(j)
i,k

. (2.18)

As an example, consider a tandem network topology with the fixed set Gi

ordered from left to right. Transmitters that are only in the reception range of one

receiver belong to the transmitter group Gi,1. The rest of transmitters are divided

into subgroups Gi,2 and Gi,3 that consist of nodes transmitting only to the odd and

even-numbered receivers, respectively. In general, we have ci ≤ 3 and ci ≤ 13 for

tandem and planar networks, respectively. We consider infinite number of nodes
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uniformly distributed on a tandem network of length L or on a two-dimensional

planar network of area A. The common transmission radius is r. We define λ∗
i as

the maximum stable throughput achievable (under the Group TDMA algorithm)

for receiver group Gi, and we define S∗
i =

λ∗
i

Ni
as the maximum stable throughput

per destination in receiver group Gi, where Ni is the size of the given receiver set Gi.

We assume that the distance between activated receivers is at least r in accordance

with the receiver activation that we will introduce in section 2.5.

Theorem 2.4.1 Consider a tandem network with nodes distributed on a length of

L ≫ r. The quantities λ∗
i and S∗

i satisfy

SmaxL

4r
≤ λ∗

i ≤
SmaxL

2r
, (2.19)

Smax

4
≤ S∗

i ≤ Smax. (2.20)

Proof: (I) Consider the case of tandem networks with the minimum overlapping

between reception ranges (i.e. with the minimum number of receivers) such that

there exist several non-interfering single-destination systems, as depicted in Figure

2.6-(a). We have Ni = L
2r

, f
(j)
i,2 = 0, f

(j)
i,3 = 0, for all j such that Ri,j ∈ Gi, and

∑
j:Ri,j∈Gi

f
(j)
i,1 = 1. The maximum achievable stable throughput can be computed

from Eq. (2.18) as λ∗
i = Smax

1
Ni

= SmaxL
2r

. The maximum value of the stable throughput

per destination, namely S∗
i = λ∗

i /Ni, is given by Smax. This particular case imposes

an upper bound on S∗
i for general multi-destination systems.

(II) Next, consider the case with the maximum possible overlapping between re-

ception ranges for all receivers, as shown in Figure 2.6-(b). We have Ni = L
r

+ 1,

f
(j)
i,1 = 0 for all j such that Ri,j ∈ Gi, and

∑
j:Ri,j∈Gi

(f
(j)
i,2 + f

(j)
i,3 ) = 1. The maximum
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(b)

(a)

L

Figure 2.6: Tandem networks with (a) minimum, (b) maximum number of receivers.

value of the total stable throughput can be expressed for the particular tandem

network configuration as λ∗
i = Smax

2r
L

1
2
+ 2r

L
1
2

= SmaxL
2r

. The maximum stable throughput

per destination is computed as S∗
i = Smax

L
2(L+r)

≈ Smax

2
, for L ≫ r.

(III) Finally, consider the hybrid case that includes both non-overlapping and max-

imally overlapping reception ranges, i.e. f
(jk)
i,k > 0, k = 1, 2, 3, for at least one com-

bination of {j1, j2, j3} such that Ri,jk
∈ Gi, k = 1, 2, 3. This network configuration

maximizes
∑3

k=1 maxj:Ri,j∈Gi
f

(j)
i,k and minimizes λ∗

i according to Eq. (2.18). Figure

2.7 depicts hybrid cases of (a) minimum and (b) maximum number of destinations.

The lower bound is λ∗
i = Smax

2r
L

+ 2r
2L

+ 2r
2L

= SmaxL
4r

. Since L−r
r

≥ Ni ≥ L+3r
2r

, the upper and

lower bounds on S∗
i are 2

3
Smax

L
L+3r

≈ 2
3
Smax and Smax

L
4(L−r)

≈ Smax

4
for L ≫ r. The

comparison of cases (I)-(III) leads to conditions (2.19)-(2.20). 2

Theorem 2.4.2 Consider a planar network with nodes distributed on an area of

A ≫ πr2. The quantities λ∗
i and S∗

i satisfy

SmaxA

(3
√

3 + π)r2
≤ λ∗

i ≤
SmaxA

πr2
, (2.21)

Smaxπ

3(3
√

3 + π)
≤ S∗

i ≤ Smax. (2.22)

Proof: (I) Consider the case of planar networks with the minimum overlapping be-
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(a)

(b)

L

Figure 2.7: The hybrid configurations for tandem networks with (a) minimum, (b)

maximum number of receivers.

tween reception ranges (i.e. with the minimum number of the receivers) as depicted

in Figure 2.8-(a). If we assume A ≫ πr2 to eliminate the boundary effects on the

distribution of nodes, we obtain Ni ≈ A
πr2 , f

(j)
i,1 = πr2

A
, f

(j)
i,k = 0, k = 2, ..., 13, for all

j : R
(j)
i,k ∈ Ri,k. From Eq. (2.18), we obtain λ∗

i = SmaxA
πr2 and S∗

i =
λ∗

i

Ni
is Smax.

(a) (b)

Figure 2.8: Planar networks with (a) minimum, (b) maximum number of receivers.

(II) Next, consider the case with the maximum overlapping between reception

ranges of receivers, as shown in Figure 2.8-(b). The non-negative load fractions are

f
(j)
i,k = 1

4
(4π−6

√
3)r2

A
+ 1

3
(6
√

3−3π)r2

A
=

√
3r2

2A
for 2 ≤ k ≤ 7 and j such that R

(j)
i,k ∈ Ri,k.

From Eq. (2.18), we have λ∗
i = SmaxA

3
√

3r2 . If we assume that the distance between

receivers is at least r, then successful transmissions to any receiver node should

disable transmissions to at most 6 other neighbor receivers. The area of (mr)2π
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includes at most 1 +
∑m

x=1 6x = 1 + 3m + 3m2 receivers, where m is a positive

integer. For A ≫ πr2, we have Ni ≈ 3A
πr2 , if we ignore the boundary effects. Then,

the maximum stable throughput per destination is given by S∗
i = Smaxπ

9
√

3
.

(III) Finally, consider the hybrid case that includes both non-overlapping and max-

imally overlapping reception ranges, i.e. f
(jk)
i,k > 0, k = 1, ..., 7, for at least one

combination of {j1, ..., j7} such that Rjk

i,k ∈ Gi for k = 1, ..., 7. We obtain the lower

bound λ∗
i = SmaxA

(3
√

3+π)r2 . For A ≫ πr2, we have at most 3A
πr2 receivers and the lower

bound on S∗
i is Smaxπ

3(3
√

3+π)
. The comparison of cases (I)-(III) leads to (2.21)-(2.22). 2

We cannot directly apply the throughput-optimal solutions of Group TDMA to

finite node population, since Smax strongly depends on the number of transmitters.

2.4.2 Group TDMA for Finite Node Population

Instead of revisiting the MAC stability problem with finite number of trans-

mitters [11, 12, 13], we assume that the maximum stable throughput of MAC pro-

tocol Smax(Ti) is known as function of the number of transmitters Ti. We define

|A(j)
i,j | = Tif

(k)
i,j as the fixed cardinality of transmitter group A

(j)
i,k . If λi denotes the

rate of packet generation by nodes transmitting to Gi, then nodes in transmitter

group Gi,k, k = 1, ..., ci, with packets destined to receiver R
(j)
i,k must jointly satisfy

λif
(j)
i,k ≤ xi,k Smax(|A(j)

i,k |), ∀j : R
(j)
i,k ∈ Ri,k, (2.23)

where xi,k is the fraction of time allocated to group Gi,k. If we define Si,k as

max
j:R

(j)
i,k∈Ri,k

{f (j)
i,k (Smax(|A(j)

i,k |))−1}.
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The optimal value of xi,k is

x∗
i,k =

Si,k∑ci

k=1 Si,k

(2.24)

and the maximum value of λi is

λ∗
i =

1∑ci

k=1 Si,k

. (2.25)

As an example, we consider the activated receiver group Gi with two receivers.

Each receiver has two transmitters in their reception ranges, whereas the intersection

of reception ranges includes one transmitter. Transmitters are divided into four

groups each of size one. Nodes from groups {A(1)
i,1 , A

(2)
i,1 }, A

(1)
i,2 and A

(2)
i,3 are activated

for xi,1, xi,2 and xi,3 fractions of time, respectively. If traffic load is homogeneously

distributed among transmitters, we have f
(1)
i,1 = f

(2)
i,1 = 1/3, f

(1)
i,2 = f

(2)
i,3 = 1/6. From

Eqs. (2.24)-(2.25), the optimal time allocation is x∗
i,1 = 1/2, x∗

i,2 = x∗
i,3 = 1/4 and

the maximum achievable throughput is λ∗
i = 3

2
Smax(1) where Smax(1) = 1 is feasible.

On the average, 3
4

packets per slot can be transmitted to each receiver.

We define λi,a and λi,b as the stable throughput of multiple access schemes

(a) and (b) from section 2.2. We find an upper bound on λi,a, if we combine

transmissions from A
(1)
i,1 with A

(1)
i,2 and transmissions from A

(2)
i,1 with A

(2)
i,3 . The stable

throughput λi,c of the improved system must satisfy λi,c(f
(1)
i,1 +f

(2)
i,1 +f

(j)
i,j+2) ≤ Smax(2),

for j = 1, 2, where the optimal value is λ∗
i,c = 3

2
Smax(2) ≥ λ∗

i,a, which is the maximum

throughput of MAC scheme (a). The transmissions to receiver Rj, j = 1, 2, are

separately activated by MAC scheme (b) over fractions of time yi,j so that we have

λi,b
1
2
≤ yi,j Smax(2), for j = 1, 2. The maximum stable throughput is λ∗

i,b = Smax(2)

and λ∗
i ≥ max(λ∗

i,a, λ
∗
i,b), which indicates the throughput efficiency of Group TDMA.
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2.5 Receiver Activation in Wireless Networks

We need to partition nodes into disjoint transmitter and receiver sets at any

time instant. We assume that each node lies within the transmission (reception)

range of at least one other node. An arbitrary node is chosen to initiate the first

receiver group. The decision is either random or follows any priority-based rule.

Then, the activated receiver designates any node within a fixed receiving range as

transmitter. We exclude nodes already selected as transmitter or receiver from the

list of receiver candidates and continue with sequential assignments of transmitters

and receivers, until all nodes are chosen either as receiver or transmitter at least

once. We determine other distinct receiver activation groups, until every node is

included in at least one receiver group.

We use the network in Figure 2.5 to illustrate the receiver activation heuristic.

We pick node 1 as the first activated receiver. Nodes {2, 3, 4, 5} that are in the

receiving range of node 1 are selected as transmitters. If node 6 is the second

activated receiver, nodes {7, 8} become the corresponding transmitters. Similarly, if

node 10 is the third activated receiver, nodes {9, 11, 12} are selected as transmitters.

We exclude nodes {1, 6, 10} as receiver candidates and repeat the same procedure,

until all nodes are activated as receiver at least once. If network topology does not

allow a node to become a transmitter, it is activated as a receiver. For instance, the

node sets {1, 6, 10}, {2, 4, 7, 12}, {5, 3, 8, 12}, {9, 11, 6, 1} form receiver groups to be

activated over disjoint time intervals. Consider a tandem network of length L and

two-dimensional planar network of area A ≫ πr2 with n nodes and transmission
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(reception) radius r. We define Ni as the size of receiver group Gi, 1 ≤ i ≤ N , and

N as the number distinct receiver groups.

Theorem 2.5.1 (a) For finite number of n nodes,

1 ≤ Ni ≤ min

(
g(n),

⌊
L

r

⌋
+ 1

)
in tandem networks, (2.26)

where g(1) = 1, g(n) =

⌈
2(n − 1)

3

⌉
, n > 1.

1 ≤ Ni ≤ min

(
h(n),

⌊
3A

πr2

⌋)
in planar networks, (2.27)

where h(1) = 1, h(n) =

⌈
12(n − 1)

13

⌉
, n > 1.

For uniform distribution of unlimited node population,

⌈
L

2r

⌉
≤ Ni ≤

⌊
L

r

⌋
+ 1 in tandem networks, (2.28)

⌈
A

πr2

⌉
≤ Ni ≤

⌊
3A

πr2

⌋
in planar networks. (2.29)

(b) For finite number of n nodes,

⌈
n

min(g(n),
⌊

L
r

⌋
+ 1)

⌉
≤ N ≤ n in tandem networks, (2.30)

⌈
n

min(h(n),
⌊

3A
πr2

⌋
)

⌉
≤ N ≤ n in planar networks. (2.31)

For uniform distribution of unlimited node population,

1⌊
L
r

⌋
+ 1

≤ lim
n→∞

N

n
≤ 1 in tandem networks, (2.32)

1⌊
3A
πr2

⌋ ≤ lim
n→∞

N

n
≤ 1 in planar networks. (2.33)

Proof: (a) We can locate at most
⌊

L
r

⌋
+ 1 activated receivers on a tandem network

of length L, since the distance between activated receivers is at least r. There are

29



at most
⌊

3A
πr2

⌋
activated receivers on a planar network of area A. We define di as

the maximum number of neighboring receivers that any receiver from Gi can have

(such that their reception ranges intersect). We can show by plain geometry that

we have at least one node and at most ⌈di(n − 1)/(di + 1)⌉ nodes for n > 1 (or just

one node for n = 1) in any receiver group. Since the distance between activated

receivers is at least r, we have di = 2 and di = 12 for tandem and planar networks.

Thus, we get conditions (2.26) and (2.27).

For the case of infinite node population with uniform distribution, all portions

of the network must be covered by reception ranges of any activated receiver group

to ensure that every node is designated either as receiver or transmitter at any time

instant. For a tandem network of length L, we must have at least
⌈

L
2r

⌉
activated

receivers in each receiver group. This is only possible, if the reception ranges of

activated receivers cover the entire network with minimum overlapping. We can

locate at most
⌊

L
r

⌋
+1 activated receivers on a tandem network of length L such that

the distance between activated receivers is equal to r. Hence, we obtain condition

(2.28). Similarly, we must have at least
⌈

A
πr2

⌉
activated receivers in each receiver

group for a planar network of area A. Ignoring the boundary effects, we can locate

at most
⌊

3A
πr2

⌋
activated receivers on a planar network of area A with the maximum

overlapping between reception ranges and the minimum distance r between receivers.

Thus, we obtain condition (2.29).

(b) Receiver activation produces minimum number of distinct receiver groups,

if we include maximum number of receivers (with minimum overlapping between

reception ranges) in each receiver group and every node appears only in one re-
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ceiver group. The lower bound on N is
⌈

n
maxi Ni

⌉
. We have min(g(n),

⌊
L
r

⌋
+ 1) and

min(h(n),
⌊

3A
πr2

⌋
) as the maximum values of Ni for tandem and planar networks. We

obtain the maximum number of distinct receiver groups, if each group includes only

one receiver such that we have n as the upper bound on N . This leads to conditions

(2.30) and (2.31). For the unlimited node population, we have maxi Ni =
⌊

L
r

⌋
+ 1

and maxi Ni =
⌊

3A
πr2

⌋
in tandem and planar networks, respectively. The upper bound

on N is still n. If we evaluate N
n

as n goes to infinity, we obtain conditions (2.32) and

(2.33). 2

For tandem networks with uniform node distribution, we illustrate N/n and

1
N

(
∑N

i=1 Ni) (averaged over different network topologies) as functions of the number

of nodes n in Figure 2.9.

2.6 Time Allocation for Receiver Activation

2.6.1 Throughput-Efficient Time Allocation

We assume infinite-energy systems and apply the Group TDMA algorithm

separately for each activated receiver group. We define F
(j)
i,k as the fraction of traf-

fic load generated by A
(j)
i,k for the entire network operation such that we obtain

∑N
i=1

∑ci

k=1

∑
j:R

(j)
i,k∈Ri,k

F
(j)
i,k = 1 and f

(j)
i,k = F

(j)
i,k (

∑ci

k=1

∑
j:R

(j)
i,k∈Ri,k

F
(j)
i,k )−1 for all

values of i, j and k. Transmitter group Gi,k = {A(j)
i,k , j : R

(j)
i,k ∈ Ri,k} is activated for

Xi,k fraction of time such that
∑N

i=1

∑ci

k=1 Xi,k = 1, Xi,k = τixi,k and τi =
∑ci

k=1 Xi,k.

If λ is the overall packet arrival rate, then all transmitter nodes in Gi,k, k = 1, ..., ci,
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Figure 2.9: Average value of N/n and 1
N

(
∑N

i=1 Ni) in tandem networks of length

L = 100 as functions of the number of nodes n and transmission radius r.

must jointly satisfy

λF
(j)
i,k ≤ Xi,k Smax, ∀j : R

(j)
i,k ∈ Ri,k. (2.34)

The optimal temporal allocation can be expressed as

X∗
i,k =

max
j:R

(j)
i,k∈Ri,k

F
(j)
i,k

∑N
i=1

∑ci

k=1 max
j:R

(j)
i,k∈Ri,k

F
(j)
i,k

(2.35)

for any i = 1, ..., N and k = 1, ..., ci. The total maximum throughput achievable at

all receivers is

λ∗ =
Smax∑N

i=1

∑ci

k=1 max
j:R

(j)
i,k∈Ri,k

F
(j)
i,k

. (2.36)

The throughput-optimal time allocation τ ∗
i =

∑ci

k=1 X∗
i,k to receiver group Gi,

i = 1, ..., N , is
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τ ∗
i =

∑ci

k=1 max
j:R

(j)
i,k∈Ri,k

F
(j)
i,k

∑N
i=1

∑ci

k=1 max
j:R

(j)
i,k∈Ri,k

F
(j)
i,k

. (2.37)

2.6.2 Energy-Efficient Time Allocation

We propose to use residual energies and node lifetimes as measures of time

allocation to distinct receiver groups in energy-limited systems. We define RGm

as the receiver group activated in the mth activation period with allocated time of

length tm. The energy of each node is equally dedicated for transmissions to each

receiver in its transmission range. We denote by Em(Gi) the total energy available

for transmissions to receiver group Gi before the mth activation period. The objec-

tive of the energy-efficient temporal allocation is to maximize the residual system

lifetime LT = min1≤i≤N LTi, where LTi is the lifetime of energy supplies for trans-

missions to receiver group Gi. The intuitive solution is RGm = arg maxiEm(Gi), i.e.

we activate at any time instant only the receiver group for which the transmitters

have the highest residual cumulative energy.

The optimal solution is RGm = arg maxiEm(Gi) for all m with lim tm →

0. The quantity LT is optimized by load balancing that equalizes the cumulative

residual energies Em(Gi), i = 1, ..., N , over successive periods m so that no node

group (transmitting to any receiver group) runs out of energy earlier than other

groups. Receiver activation period m + 1 is initiated, if Em+1(RGk) < Em+1(Gi)

for all i such that Gi 6= RGm. The fraction of time allocated to Gi is given by

τi = 1
LT

∑LT
m=0 tm1(RGm = Gi), where 1 is an indicator function. To resolve the
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ambiguity in activation order after the period m∗ = arg minm∈Z0
{Em(Gi) = Em∗ ,

i = 1, ..., N}, for a positive constant Em∗ and the set of nonnegative integers Z0,

the optimal value of tm, m ≥ m∗, is chosen inversely proportional to Em(Gi) for

RGm = Gi, where Em(Gi) denotes the rate of change in Em(Gi) per unit time during

the mth period. Instead of the optimal solution with the infinitesimal activation

durations tm for m ≥ m∗, a sub-optimal but practical solution is to activate first

the receiver group with the highest total energy of corresponding transmitters, i.e.

RGm = arg maxiEm(Gi), and then to replace RGm with another receiver group for

receiver activation period m+1, if Em+1(RGm) falls below minGi 6=RGm Em+1(Gi)−κ.

The constant κ prevents rapid changes in the activation process. The length of the

mth activation period tm is κ
Em(Gi)

for RGm = Gi. A sample solution is shown in

Figure 2.10 for four receiver groups. If we let κ = 0, the value of LTi for the optimal
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Figure 2.10: Example of time allocation among four receiver groups.

time allocation is arg min{p∈Z0}{E0(Gi) −
∑p

m=0 Em(Gi)tm1(RGm = Gi) ≤ 0} and

the maximum value of LT is found as

LT ∗ = max
{(RGm,tm),m∈Z0}

min
1≤i≤N

LTi , (2.38)
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which has the particular solution LTi = LT ∗, i = 1, ..., N .

We assume Em(Gi) = E(Gi), m ∈ Z0, for any receiver group Gi with the

maximum (initial) energy E0(Gi). This is valid for systems with arbitrarily large (or

renewable) energy supplies or unlimited node population. The quantity τi · LT =

∑LT
m=0 tm 1(RGm = Gi) denotes total time allocated to the operation of receiver

group Gi over the time interval [0, LT ]. The system lifetime LT is maximized by

choosing τi · LT = E0(Gi)
E(Gi)

. The optimal value of τi is

τ ∗
i =

E0(Gi)(E(Gi))
−1

∑N
i=1 E0(Gi)(E(Gi))−1

, i = 1, ..., N. (2.39)

Transmitter group Gi,k achieves stable throughput rate of λif
(j)
i,k over xi,k

fraction of time such that the effective stable rate is
λif

(j)
i,k

xi,k
. The values of E(Gi),

i = 1, ..., N , depend on the underlying MAC protocol, load fractions and temporal

allocation for Group TDMA algorithm, and are given by

E(Gi) =

ci∑

k=1

xi,k

∑

j:R
(j)
i,k∈Ri,k

ǫ (λif
(j)
i,k /xi,k), (2.40)

where ǫ(y) is the minimum rate of energy consumption by any single-receiver MAC

protocol operating under Group TDMA algorithm with the effective stable rate of

y packets per slot.

2.7 Distributed Operation of Receiver Activation and Group TDMA

The standard link scheduling [4, 5, 14] assigns channels (i.e. time slots, fre-

quencies or codes) to connecting links between nodes so that all links assigned to

the same channel are conflict-free. The network topology is described by a directed
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graph where directional links between nodes are only possible if nodes are within

each other’s transmission-reception ranges. For conflict-free packet transmission, (I)

nodes cannot simultaneously transmit and receive packets, (II) nodes cannot trans-

mit packets to multiple destinations in the same time slot, (III) primary packet

conflicts, i.e. multiple number of simultaneous transmissions to the same receiver,

are not allowed, (IV) secondary packet conflicts, i.e. interference effects at the non-

intended receivers, are not allowed. Conflict-free scheduling can be formulated as a

link coloring problem. The problems of determining the edge chromatic number of

graph (i.e. the fewest number of colors necessary to color each graph edge so that

no two graph edges incident on any graph vertex have the same color) [15] and op-

timal link scheduling [4, 5] are equivalent and NP-complete. Instead of solving the

standard scheduling problem, we rely on a receiver activation heuristic to determine

disjoint subsets of transmitter and receivers at each time instant (so that condition

(I) is satisfied and possible violations of other conditions are reduced, but not elim-

inated, for all links) and on the Group TDMA method to create time orthogonality

between links violating conditions (II) and (IV).

We can set up the transmitter group classification as a link coloring problem.

We assume that transmitters can discover receivers up to a two-hop distance. Two

receivers are called neighbors, if there is at least one transmitter in the intersection

of their reception ranges. Interfering transmitter groups are assigned to distinct

fractions of time, i.e. different colors are assigned to links from different transmitter

groups. Transmitters with only one receiver in their transmission ranges acquire

membership in group A1 and all links from A1 are given color C1. Next, an arbitrary
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receiver R1 is selected such that any transmitter that has multiple receivers in its

transmission range including R1 as the intended destination initiates a transmitter

group A2, i.e. links from A2 to R1 are given a new color C2. Next, we consider all

neighbors of R1. If R2 is a neighboring receiver of R1, we assign different colors to

all links from transmitters in the intersection of R1 and R2 to the particular receiver

R2. We continue with coloring links to receivers one by one. Transmitters that

originate links with new colors initiate new transmitter groups.

For receiver activation group Gi, we denote by ai the maximum number of

intersections of reception ranges (i.e. the maximum number of neighbors) for each

receiver and we denote by ei the modified edge chromatic number, which is the min-

imum number of colors necessary to color graph edges so that no two graph edges

violating condition (IV) have the same color, i.e. links to neighbor receivers are

assigned different colors. Note that ai + 1 ≤ ei which follows from plain geometry.

Since the separation between receiver nodes is greater than the reception radius r

(as a consequence of receiver activation), there exists a fixed upper-bound on the

number of intersections of reception ranges for each receiver. At most 13 different

colors are needed for planar networks (with ai = 12) and at most 3 different colors

are needed for tandem networks (with ai = 2). As a result, transmitters with any

intended destination R choose one of the finite number of available group mem-

berships different than those previously acquired by other transmitter groups with

intended destinations that are neighbors to R. Packets are addressed randomly to

any of the receivers in the transmission range so that condition II is also satisfied.

If the receiver activation has already partitioned nodes to subsets of trans-
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mitters and receivers (so that condition (I) is satisfied for all links), the remaining

problem of creating time orthogonality among transmitter groups (so that condi-

tions (II) and (IV) are satisfied for all possible links) can be solved in polynomial

time by the distributed Group TDMA method.

2.8 Performance Evaluation

We consider static tandem and planar networks of 1000 unbuffered nodes.

We consider systems with first unlimited energy supply and then with hard finite

energy-constraints. For the latter case, we assume that each node has an amount of

initial battery energy Emax = 106 (unit energy). Each packet transmission consumes

πr2 units of battery energy. We assume that nodes generate packet transmissions

with the same rate according to a common Poisson process and employ the FCFS

collision resolution algorithm to resolve the primary packet conflicts.

The value of the common transmission (reception) radius characterizes the

distribution of the activated transmitter-receiver pairs on the network and specifies

the overlapping between the reception regions, on which the operation of receiver

activation and Group TDMA strongly depends. We introduce the quantities 2r
L

and

πr2

A
, which denote the ratios of the transmission range to the network length and

to the network area in tandem and planar networks, respectively. We first apply

the topology-based receiver activation heuristic (without energy-efficient solutions)

to unlimited energy systems and compare the Group TDMA algorithm with the

simultaneous operation of the activated receivers. For both cases, equal fractions of
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time are allocated to each receiver group. The maximum (single-hop) throughput

per destination is shown in Figure 2.11 as functions of 2r
L

and πr2

A
. Group TDMA

achieves higher throughput than the simultaneous operation of transmitter-receiver

pairs. The achievable stable throughput is larger in tandem networks, since the

reception ranges overlap less. In general, the network approaches a single one-

destination system for large values of r, whereas the number of one-destination

systems increases with smaller values of r.
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Figure 2.11: The maximum stable throughput for Group TDMA and simultaneous

operation of transmitter-receiver pairs.

We also impose hard energy constraints such that the initial battery energy of

each node is 106 energy units. Each packet transmission consumes πr2 energy units.

We compare the energy-efficient receiver activation to the topology-based receiver

activation that allocates equal time fractions to each receiver group. We let the
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Figure 2.12: The system lifetime for energy-efficient and topology-based receiver

activation.

Group TDMA algorithm operate with the maximum stable throughput under both

receiver activation methods. The system lifetime is defined as the duration of time

interval from the start of the network operation until the first time when the energy

supplies for transmissions to any activated receiver group are depleted. Figure

2.12 depicts the system lifetimes for both receiver activation heuristics in tandem

and planar networks. Simulation results verify that the energy-efficient receiver

activation outperforms the solutions based on equal time allocations in terms of

energy properties. The gap between the two heuristics increases for intermediate

values of r, where there are several potentially interfering multi-destination systems.

The performance of both methods becomes identical as r increases, so in the end

we have a single activated receiver in each receiver activation group.

40



2.9 Summary and Conclusions

We rediscovered the value of scheduled access in wireless networks from the

perspectives of stable throughput and energy efficiency. We proposed a two-step

time-division mechanism based on receiver activation and Group TDMA as dis-

tributed link scheduling with suboptimal but polynomial-time solutions. We de-

veloped a topology-based greedy heuristic to determine distinct receiver groups to

be activated within disjoint fractions of time, and determined temporal allocations

based on cumulative battery energies left at transmitter groups to extend the node

lifetimes. We used the Group TDMA method to formulate a linear programming

solution to the problem of throughput-optimal temporal allocation for transmis-

sions to each activated receiver group, and derived bounds on the maximum stable

throughput for tandem and planar networks. We also evaluated the performance

improvement by energy-efficient receiver activation and throughput-efficient Group

TDMA. We discussed distributed implementation based on the full cooperation of

nodes. The associated synchronization and overhead issues should be further con-

sidered. The extension to the non-cooperative operation at the MAC layer will be

discussed in Chapters 3-5. The analysis will be extended to the joint design of MAC

and network layers in Chapters 5-7.
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Chapter 3

A Game-Theoretic Look at MAC in Wireless Networks:

Non-Cooperative Random Access for Selfish and Malicious Users

In wireless access, transmitter nodes need to make individual decisions for

distributed operation and do not necessarily cooperate with each other. The non-

cooperative transmitter behavior at the MAC layer may be purely selfish or may

also reflect malicious objectives of generating interference to prevent the successful

transmissions of the other nodes. In this chapter, we address the single-receiver ran-

dom access problem for non-cooperative transmitters with individual performance

objectives of optimizing throughput rewards, transmission energy costs and delay

costs. We evaluate the interactions between selfish and malicious transmitters by

formulating a non-cooperative game of selecting the individual probabilities of trans-

mitting packets to a common receiver. Specifically, we derive the non-cooperative

transmission strategies in Nash equilibrium. The analysis provides insights for the

optimal strategies to block random access of selfish nodes as well as the optimal de-

fense mechanisms against the possible denial of service attacks of malicious nodes in

wireless networks. The results are also compared with the cooperative equilibrium

strategies that optimize the total system utility (separately under random access

and scheduled access). In this context, a pricing scheme is presented to improve the

non-cooperative operation. For distributed implementation, we formulate an adap-
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tive mechanism of the best-response strategy updates. We also introduce adaptive

heuristics based on the channel feedback only provided that the system parameters

are not explicitly known at the individual transmitters. Alternatively, we consider a

repeated game model and let nodes randomly choose to transmit or to wait depend-

ing on the number of backlogged nodes in the random access system. The capture

effects in the communication channel are further exploited to develop a joint power

and rate control game in conjunction with random access.

3.1 Introduction

Game theory is a powerful tool to analyze the interactions among decision-

makers with conflicting interests and finds a rich extent of applications in com-

munication systems including network routing, load balancing, resource allocation,

flow and power control. There is an emerging interest in game-theoretic studies for

random access of selfish users contending for collision channels [16, 17, 3, 18, 19].

Random access has been extensively studied as a cooperative throughput op-

timization problem [11, 12, 13, 20]. The analysis of the achievable throughput and

stability properties has been extended from the classical collision channel model

without packet captures to the multi-packet reception channels with a more realis-

tic model for packet captures and interference effects [21, 22].

As the number of transmitters increases, it becomes more difficult to coor-

dinate reliable transmissions between transmitter-receiver pairs. Instead, we can

consider the non-cooperative operation, in which selfish nodes select the transmis-
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sion probabilities to optimize their individual performance objectives. A system in

which nodes behave selfishly is inherently distributed and therefore more scalable

compared to the centralized form of MAC. Selfish behavior of nodes can also in-

crease the fairness of the system, since no node can achieve performance gains by

breaking the rules of the underlying channel access scheme.

For finite number of transmitters without queue buffers, the problem of non-

cooperative random access has been studied in [3, 17, 19, 23] for collision channels

under the assumption that each packet arrives at a new node, and whenever a packet

is successfully transmitted, it leaves the system. The effects of packet captures

in non-cooperative random access have been evaluated in [24, 25]. The stability

properties have been discussed in [26] and [18] for the ALOHA system model with

and without queue buffers.

A distributed game has been proposed in [16] to achieve any given requirements

of fixed throughput rates. For arbitrary throughput objectives, non-cooperative ran-

dom access has been formulated in [27] jointly with the network layer decisions in

a network utility optimization framework. Additional costs for unsuccessful packet

transmissions have been considered in [28] for non-cooperative random access sys-

tems, and the optimal pricing strategies have been derived in [29] for selfish trans-

mitters to improve the non-cooperative equilibrium.

In this chapter, our first objective is to extend the throughput and stabil-

ity studies of random access with finite number of transmitter nodes to the non-

cooperative operation. We strip off all complexities introduced by multi-hop opera-

tion and analyze the fundamental interactions of selfish nodes randomly transmitting
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packets to a single receiver at the MAC layer. As the starting point, we consider

the case of saturated queues at selfish transmitter nodes with the objectives of max-

imizing their individual utilities that reflect throughput rewards, transmission en-

ergy and delay costs. We evaluate the non-cooperative transmission probabilities in

non-cooperative Nash equilibrium such that no node in equilibrium can unilaterally

improve the individual performance.

The results are also compared with the cooperative equilibrium strategies that

optimize the total utility. In this context, we introduce a pricing scheme to stimulate

the cooperation of transmitters and improve the non-cooperative operation to the

cooperative equilibrium. The random access results are also compared with the

scheduled access solutions and the resulting performance loss is evaluated.

Next, we allow packet queues to empty and determine the non-cooperative

equilibrium strategies to minimize the energy costs while keeping the packet queues

stable for fixed packet arrival rates. Finally, we extend the model to multiple receiver

nodes and evaluate the transmission strategies for broadcast communication with

each packet addressed to multiple receiver nodes.

Non-cooperative nodes may also pursue malicious objectives such as blocking

the packet transmissions of the other selfish nodes. In this context, the channel

jamming effects of malicious transmitters have been evaluated in [30] in terms of

the best worst case (minimax) performance for multi-hop operation in ALOHA

multiple access systems. From a network security point of view, a non-cooperative

game framework has been developed in [31] for intrusion detection systems without

MAC interactions. The possible misbehavior of transmitters has been formulated
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in [32] for IEEE 802.11 MAC protocol and different methods have been introduced

in [33] to detect and prevent the operation of colluding selfish transmitters.

The second objective of this chapter is to develop a framework for the denial

of service attacks as a stochastic game among non-cooperative selfish nodes (that

randomly transmit packets to a common receiver) and malicious nodes (that attack

the other selfish nodes by jamming their packet transmissions). The results lead

to the optimal denial of service attack and defense strategies for random access

systems. In particular, we evaluate the possible performance loss, if selfish nodes

defect by becoming malicious in their transmission strategies.

For distributed implementation, we present a repeated play of the random

access game and develop a best-response update mechanism, in which nodes inde-

pendently adjust their transmission strategies in response to the channel outcome.

For the case of imperfect knowledge of system parameters, we also introduce a

stochastic update mechanism based on the channel feedback only and point at the

deviation of the results from the non-cooperative Nash equilibrium.

The third objective of this chapter is to formulate a repeated game model

of selecting transmission probabilities depending on the contention for the chan-

nel, namely the number of potential transmitters. For that purpose, we consider a

fixed number of backlogged packets waiting for retransmissions without additional

packet arrivals until all packet conflicts are resolved. In addition, we propose to

include additional power and rate control strategies in random access games as a

more efficient way to exploit the capture phenomena in the communication channel.

Following a single packet capture model, we evaluate by numerical results the pos-
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sible performance improvement of joint power and rate control strategies over the

limited actions of choosing retransmission probabilities.

The chapter is organized as follows. In section 3.2, we introduce the random

access system model and describe the non-cooperative and cooperative games to-

gether with the underlying reward and cost structures. In section 3.3, we consider

saturated queues and derive the non-cooperative equilibrium strategies for the case

of two selfish nodes and compare the results with the full cooperation as well as with

the cooperation stimulation based on pricing. We extend the analysis in section 3.4

to stable operation of two selfish transmitter nodes with possibly emptying packet

queues. For the case of saturated queues, we introduce malicious node behavior in

section 3.5 and evaluate non-cooperative equilibrium with one selfish and one mali-

cious transmitter node with or without throughput and delay objectives. In section

3.6, we describe distributed adaptive mechanisms for different cases with and with-

out explicit information on system parameters. For the case of saturated queues, we

also extend the random access problem to arbitrary number of selfish and malicious

transmitters and compare the random access strategies with (cooperative) scheduled

access solutions in section 3.7. We present extensions to broadcast communication

with multiple receivers in section 3.8. Alternatively, we formulate in section 3.9 a

repeated random access game depending on the number of backlogged transmitters.

As an extension, we introduce power and rate control games in conjunction with

random access in section 3.10. We draw conclusions and discuss future work in

section 3.11.
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3.2 System Model, Rewards and Costs

We assume that multiple nodes randomly transmit packets with fixed proba-

bilities to a common receiver, as shown in Figure 3.1. Each transmitter has a packet

queue of infinite buffer capacity. Let pi denote the transmission probability of node

i from the set N of n transmitters. We assume multi-packet reception channels with

possible packet captures. A packet of node i is successfully received with probability

qi|J , if nodes in set J (including node i) transmit in the same time slot. Throughout

this chapter, we will often specialize the results to the particular case of classical

collision channels with qi|J = 1 for J = {i} and qi|J = 0 for J 6= {i}.

1

p
n

   Receiver

p
Transmitter 1

Transmittern

Figure 3.1: Random access system with multiple transmitters and single receiver.

Any selfish node i has the objective of choosing the transmission probability

pi to maximize the individual utility function ui that reflects the difference between

the throughput rewards and costs of of transmission energy and delay per time slot.

We define λi as the throughput rate of node i, ri as the reward for any successful

packet transmission of node i, Ei as the average transmission energy cost of node

i per time slot, and Di as the average delay-type cost of node i per time slot. Let

Mi ⊆ N − {i} denote the set of nodes attacked by malicious node i that has the
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objective of blocking the packet transmissions of any node j ∈ Mi. Node i receives

the reward c
(1)
i,j , if the transmission of node j ∈ Mi fails. On the other hand, node

i incurs cost c
(2)
i,j , if the transmission of node j ∈ Mi is successful. We define Ci as

the difference between the reward of node i for blocking random access of the other

selfish nodes in Mi and the cost of node i for missing the opportunity to prevent

successful packet transmissions of the other selfish nodes in Mi in any time slot. The

utility of any (selfish or malicious node i) as function of transmission probabilities

p is defined as

ui(p) = riλi − Ei −Di + Ci . (3.1)

The non-cooperative optimization problem for any node i is defined as

max
pi

ui(p) . (3.2)

For saturated queues, λi denotes the average number of successful packet trans-

mission per time slot. For stable operation with random packet arrivals, λi denotes

the packet arrival rate at node i such that the packet queue at node i is stable,

i.e. it is asymptotically finite with finite packet delay. For node i, we let Ei denote

the energy cost of any packet transmission and Di denote the delay-type cost for

each slot of waiting or unsuccessful transmission under the assumption of saturated

queues. The throughput reward ri normalizes the values of Ei and Di in the utility

function ui of node i with respect to the throughput rate λi.

We can also consider the cooperative transmission strategies that maximize the

weighted sum of utilities over all transmission probabilities. For the non-negative
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weight constants βi, i ∈ N , the cooperative optimization problem is defined as

max
p

n∑

i=1

βi ui(p) . (3.3)

3.3 Two Selfish Transmitters with Saturated Packet Queues

Consider N = {1, 2} with two selfish transmitters (i.e. Mi = {∅}, i = 1, 2).

3.3.1 Non-Cooperative Equilibrium

Node i transmits a packet with probability pi and it is successfully received

with probability qi|i, if the other node decides not to transmit, or captured with

probability qi|{1,2}, if the other node also transmits in the same time slot. We

assume 0 ≤ qi|{1,2} ≤ qi|i ≤ 1 for i = 1, 2. The region of the achievable throughput

rates is given by

λ1 ≤ p1

(
p2q1|{1,2} + (1 − p2)q1|1

)
, (3.4)

λ2 ≤ p2

(
p1q2|{1,2} + (1 − p1)q2|2

)
. (3.5)

We consider two transmitter nodes 1 and 2 with the selfish objectives of max-

imizing the individual utilities u1 and u2, respectively. Nodes 1 and 2 receive the

respective throughput rewards r1λ1 and r2λ2 per time slot on the average. The

throughput rates λ1 and λ2 need to satisfy the conditions (3.4)-(3.5) with equality

to maximize the individual utility ui(p1, p2) = riλi − Ei − Di. In any time slot,

any selfish node incurs a delay cost, if it decides to wait or its packet transmis-

sion is unsuccessful. The delay costs are D1 = D1(1 − (1 − p2)q1|1 − p2q1|1,2) and
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D2 = D2(1 − (1 − p1)q2|2 − p1q2|1,2) for unsuccessfully transmitting nodes 1 and 2,

respectively, or D1 = D1 and D2 = D2 for waiting nodes 1 and 2, respectively.

The average energy cost Ei per time slot is piEi for any node i = 1, 2, since

node i transmits one of the available packets with probability pi in any time slot.

As a result, the expected utilities of nodes 1 and 2 are given by

u1(p1, p2) = p1

(
(r1 + D1)

(
(1 − p2)q1|1 + p2q1|1,2

)
− D1 − E1

)
+ (1 − p1)(−D1), (3.6)

u2(p1, p2) = p2

(
(r2 + D2)

(
(1 − p1)q2|2 + p1q2|1,2

)
− D2 − E2

)
+ (1 − p2)(−D2), (3.7)

respectively. We define Ai = {W,T} as the set of actions of node i, where W and

T are actions of waiting and transmitting. Let p−i denote the strategy of the node

other than node i. The non-cooperative Nash equilibrium strategies p∗1 and p∗2 satisfy

ui(p
∗
i , p

∗
−i) ≥ ui(pi, p

∗
−i) , i = 1, 2 , (3.8)

for any node i and strategy pi such that no node i can unilaterally improve the

individual utility ui beyond the non-cooperative Nash equilibrium.

Given p∗−i, the expected utility ui of every action ai ∈ Ai, which is in support

of p∗i , should be the same for any non-cooperative node i in Nash equilibrium. The

resulting mixed strategies 0 ≤ p∗i ≤ 1, satisfy ui(1, p
∗
−i) = ui(0, p

∗
−i) for any i.

Otherwise, node i can shift the probability distribution to the action with higher

conditional expected utility and end up with a pure strategy of p∗i = 0 or p∗i = 1.

Theorem 3.3.1 There exist possibly multiple non-cooperative strategies in Nash

equilibrium.

(a) The mixed equilibrium strategies are given by
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p∗1 =
(
q2|2 − q2|1,2

)−1
(

q2|2 −
E2

r2 + D2

)
, (3.9)

p∗2 =
(
q1|1 − q1|1,2

)−1
(

q1|1 −
E1

r1 + D1

)
, (3.10)

if qi|1,2 ≤ Ei

ri+Di
≤ qi|i, i = 1, 2.

(b) The pure equilibrium strategies are given by p∗i = 1, i = 1, 2, if Ei

ri+Di
≤ qi|1,2, or

p∗i = 0, i = 1, 2, if Ei

ri+Di
≥ qi|i, or p∗1 = 1, p∗2 = 0, if E1

r1+D1
≤ q1|1 and E2

r2+D2
≥ q2|1,2,

or p∗1 = 0, p∗2 = 1, if E2

r2+D2
≤ q2|2 and E1

r1+D1
≥ q1|1,2.

Proof: The conditional expected utilities of node 1 are given by

u1(1, p2) = (r1 + D1)((1 − p2)q1|1 + p2q1|1,2) − D1 − E1, (3.11)

u1(0, p2) = −D1, (3.12)

and the conditional expected utilities of node 2 are given by

u2(p1, 1) = (r2 + D2)((1 − p1)q2|2 + p1q2|2,2) − D2 − E2, (3.13)

u2(p1, 0) = −D2. (3.14)

Given the strategy p∗−i of the node other than node i, the expected utility

ui of every action ai ∈ Ai, which is in support of p∗i , should be the same for each

node i. The resulting indifference condition of ui(0, p
∗
−i) = ui(1, p

∗
−i), i = 1, 2, for

non-cooperative Nash equilibrium leads to the mixed equilibrium strategies given

by Eqs. (3.9)-(3.10) provided that qi|1,2 ≤ Ei

ri+Di
≤ qi|i, i = 1, 2. Otherwise, node i

can shift the probability distribution to the action with higher conditional expected

utility and end up with a pure strategy given by pi = 0 or pi = 1.

52



If the indifference condition cannot be satisfied for any feasible set of the

transmission probabilities such that 0 ≤ pi ≤ 1, i = 1, 2, each node i performs with

probability 1 the action of higher conditional expected utility. The resulting pure

equilibrium strategy of node i = 1, 2 is p∗i = 1, if ui(1, p
∗
−i) > ui(0, p

∗
−i), or p∗i = 0, if

ui(1, p
∗
−i) < ui(0, p

∗
−i). 2

The Nash equilibrium strategies may not be unique depending on systems

parameters. For instance, if qi|i = 1, qi|1,2 = 0, ri = 1, Di = 0 and 0 < Ei < 1,

i = 1, 2, the Nash equilibrium strategies (p∗1, p
∗
2) are (1−E2, 1−E1), (1, 0) or (0, 1).

For the classical collision channels, the non-cooperative equilibrium strategies

of Eqs. (3.9)-(3.10) are given by p∗1 = 1− E2

r2+D2
and p∗2 = 1− E1

r1+D1
, and the through-

put rate region is described as λ1 ≤ E1

r1+D1

(
1 − E2

r2+D2

)
and λ2 ≤ E2

r2+D2

(
1 − E1

r1+D1

)

for 0 ≤ Ei

ri+Di
≤ 1, i = 1, 2. The envelope of the throughput rate pairs λ1 and λ2 over

0 ≤ Ei ≤ ri +Di, i = 1, 2, coincides with the boundary of the achievable throughput

region
√

λ1 +
√

λ2 = 1 [12], if
∑2

i=1
Ei

ri+Di
= 1. If E1 = 0 and E2 = 0, nodes choose

aggressive transmission strategies of p∗i = 1, i = 1, 2, such that λi = 0, i = 1, 2. The

non-zero energy costs prevent zero throughput rates, whereas the delay costs punish

the idle slots and motivate nodes to transmit with higher probability, i.e. the energy

and delay costs mutually balance the non-cooperative equilibrium strategies.

3.3.2 Comparison with Cooperative Equilibrium

Transmitter nodes in full cooperation have the common objectives of maxi-

mizing the weighted utility sum uΣ that is defined to be
∑2

i=1 βiui for non-negative
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weight constants βi, i = 1, 2.

Theorem 3.3.2 The cooperative equilibrium strategies that maximize uΣ are given

by

p∗1 =
β2(q2|2(r2 + D2) − E2)∑2
i=1 βi(qi|i − qi|1,2)(ri + Di)

, (3.15)

p∗2 =
β1(q1|1(r1 + D1) − E1)∑2
i=1 βi(qi|i − qi|1,2)(ri + Di)

. (3.16)

Proof: The weighted utility sum uΣ of Eqs. (3.6) and (3.7) is concave in pi, i = 1, 2.

The optimal solutions of Eqs. (3.15)-(3.16) follow from ∂uΣ

∂pi
= 0 for i = 1, 2. 2

The total utility is optimized by the strategies from Eqs. (3.15) and (3.16) to

uc
Σ =

∏2
i=1 βi(qi|i(ri + Di) − Ei)∑2

i=1 βi(qi|i − qi|1,2)(ri + Di)
−

2∑

i=1

βiDi, (3.17)

whereas the non-cooperative equilibrium utility ui of node i is −Di such that the

total utility unc
Σ is −∑n

i=1 βiDi, if qi|{1,2} ≤ Ei

ri+Di
≤ qi|i, i = 1, 2. Whether the

cooperative equilibrium strategies that maximize the total utility can also maximize

the throughput rates depends on the packet capture probabilities as well as on the

energy and delay costs. As an example, we consider the classical collision channels

with qi|i = 1 and qi|1,2 = 0, i = 1, 2, and assume symmetric rewards and costs,

i.e. ri = r, Di = D and Ei = E, i = 1, 2. The equilibrium transmission proba-

bility of each selfish transmitter is 1 − E
r+D

and throughput of each transmitter is

(
1 − E

r+D

)
E

r+D
packets per time slot. The transmission probability in cooperative

equilibrium with βi = 1, i = 1, 2, is 1
2

(
1 − E

r+D

)
and the resulting throughput rate

of each transmitter is 1
4

(
1 − E

r+D

) (
1 + E

r+D

)
packets per time slot. As a result, the

non-cooperative equilibrium can achieve higher throughput rates compared to the
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utility-optimal cooperative operation, if 3E > r + D, i.e. higher energy costs can

make the non-cooperative operation more throughput-efficient.

3.3.3 Improvement of Non-cooperative Equilibrium through Pricing

Non-cooperative nodes are more aggressive in their transmission strategies

than cooperative nodes and cannot necessarily achieve the optimal utilities in coop-

erative equilibrium. In this context, we can introduce a linear pricing mechanism

to improve the performance of the non-cooperative operation. We assume that the

receiver charges a price ei in any time slot for any successful packet transmission by

node i. This is reflected in the utility function of any node i = 1, 2 by replacing the

throughput reward ri with a discounted amount ri − ei such that the utility ui of

any node i is reduced to ui − λiei. The non-cooperative equilibrium strategies are

p∗1 =
q2|2 − E2

r2−e2+D2

q2|2 − q2|1,2

, (3.18)

p∗2 =
q1|1 − E1

r1−e1+D1

q1|1 − q1|1,2

. (3.19)

Next, we answer the question of how the receiver should choose the prices

e1 and e2 for the efficient network operation. First, note that there exist linear

prices for which the non-cooperative equilibrium strategies can be made equal to

the cooperative equilibrium strategies that can be achieved in the absence of pricing.

These utility-optimal prices are given by

e∗1 =
β2(q2|2 − q2|1,2)(r2 + D2)(q1|1(r1 + D1) − E1)

β1E1(q1|1 − q1|1,2) + β2q1|1(q2|2 − q2|1,2)(r2 + D2)
, (3.20)

e∗2 =
β1(q1|1 − q1|1,2)(r1 + D1)(q2|2(r2 + D2) − E2)

β2E2(q2|2 − q2|1,2) + β1q2|2(q1|1 − q1|1,2)(r1 + D1)
. (3.21)
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From the receiver point of view, the desirable measures to be optimized are the

total achievable throughput rate and the total revenue (namely the total amount of

prices collected at the receiver). First, we consider the problem of optimizing the

weighted sum of throughput rates
∑2

i=1 αiλi for the non-negative weight constants

αi, i = 1, 2. The throughput-optimal transmission probabilities in full cooperation

are given by

p∗1 =
α2q2|2

α1(q1|1 − q1|1,2) + α2(q2|2 − q2|1,2)
, (3.22)

p∗2 =
α1q1|1

α1(q1|1 − q1|1,2) + α2(q2|2 − q2|1,2)
. (3.23)

There exist linear prices such that the total throughput rate
∑n

i=1 αiλi can

be maximized by the non-cooperative equilibrium strategies given by Eqs. (3.18)-

(3.19) with pricing to the throughput-optimal cooperative equilibrium value. The

corresponding prices are chosen as

e∗1 = r1 + D1 −
E1

(
α1(q1|1 − q1|1,2) + α2(q2|2 − q2|1,2)

)

α2(q2|2 − q2|1,2)q1|1
, (3.24)

e∗2 = r2 + D2 −
E2

(
α1(q1|1 − q1|1,2) + α2(q2|2 − q2|1,2)

)

α1(q1|1 − q1|1,2)q2|2
. (3.25)

If we consider the classical collision channels and assume symmetric rewards

and costs such as ri = r, Di = D, Ei = E and αi = α, i = 1, 2, the throughput-

optimal symmetric prices are given by r+D−2E for both transmitters. The resulting

pricing mechanism can maximize the individual throughput rate to 1
2

packets per

time slot. On the other hand, the non-cooperative equilibrium strategies with prices

e∗1 and e∗2 that satisfy

Ei

2∑

k=1

e∗k(qk|k − qk|1,2) = qi|i(ri − e∗i + Di)e
∗
j(qj|j − qj|1,2) (3.26)
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for i = 1, 2, j = 1, 2 and i 6= j can optimize the total revenue
∑2

i=1 eiλi achievable

by the receiver per time slot.

3.4 Extensions to Stable Operation with Two Selfish Transmitters

Assume that packets arrive at transmitters 1 and 2 with fixed rates λ1 and λ2,

respectively, according to independent and stationary random processes. Consider

a dominant system Si, i = 1, 2, in which node i transmits dummy packets with

probability pi, if the queue at node i is empty [12]. For S1, provided that node 2

transmits with probability p2, the transmission is successful with probability q2|2, if

node 1 decides not to transmit with probability 1−p1, or with probability q2|{1,2}, if

node 1 decides to transmit with probability p1. As a result, we obtain the condition

λ2 ≤ p2(q2|2 − p1(q2|2 − q2|1,2)) for the throughput rate of node 2. On the other

hand, node 1 sees a probability of success rate that is p1q1|1, when node 2 does

not have packets (which occurs with probability 1− λ2

p2(q2|2−p1(q2|2−q2|1,2))
according to

Little’s result [9]), and that is p1((1 − p2)q1|1 + p2q1|{1,2}), when node 2 has packets

(which occurs with probability λ2

p2(q2|2−p1(q2|2−q2|1,2))
). Hence, we obtain the condition

λ1 < p1q1|1(1− λ2

p2(q2|2−p1(q2|2−q2|1,2))
) + p1(q1|1 − p2(q1|1 − q1|1,2))

λ2

p2(q2|2−p1(q2|2−q2|1,2))
for

the throughput rate of node 1. As given in [21], the stable throughput rates for

dominating system S1 satisfy

λ1 < p1q1|1 −
p1(q1|1 − q1|1,2)λ2

q2|2 − p1(q2|2 − q2|1,2)
for λ2 ≤ p2q2|2 − p1p2(q2|2 − q2|1,2). (3.27)

Similarly, the stable throughput rates for dominating system S2 satisfy

λ2 < p2q2|2 −
p2(q2|2 − q2|1,2)λ1

q1|1 − p2(q1|1 − q1|1,2)
for λ1 ≤ p1q1|1 − p1p2(q1|1 − q1|1,2). (3.28)
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Since the queue lengths in systems S1 and S2 are at least as long as the queue

lengths in original system, the union of rates given by (3.27) and (3.28) defines the

stability region S(p1, p2).

Assume that the packet arrival rates λ1 and λ2 are fixed and known. We

assume the classical collision channels for simplicity, although the results can be

easily extended to the general multi-packet reception channels. We consider the

stability of packet queues as a constraint for both transmitters. We do not consider

finite packet delay costs in stable operation. A detailed discussion of the delay

properties in random access systems has been presented in [21]. The non-cooperative

optimization problem of any transmitter node i = 1, 2 is given by

max
pi

(riλi − piEi) s.t. (λ1, λ2) ∈ S(p1, p2). (3.29)

Theorem 3.4.1 For fixed packet arrival rates λ1 and λ2 and arbitrarily small pos-

itive constants ǫ1 and ǫ2, the non-cooperative transmission probabilities p∗1 and p∗2 in

Nash equilibrium satisfy

p∗1(q1|1 − p∗2(q1|1 − q1|1,2)) = λ1 − ǫ1, (3.30)

p∗2(q2|2 − p∗1(q2|2 − q2|1,2)) = λ2 − ǫ2, (3.31)

where p1q1|1(q2|2 − q2|1,2) + p2q2|2(q1|1 − q1|1,2) < q1|1q2|2.

Proof: According to Loynes theorem [34], a queue is stable, if the arrival process

and service process of the queue are all stationary, and the average arrival rate is

less than the average service rate. We do not analyze the stability at the boundary

points of equality between the average arrival rates and service rates. Therefore,
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we need to convert the problem to a standard constrained optimization problem by

replacing the stability conditions (3.27) and (3.28) by

λ1 ≤ p1q1|1 −
p1(q1|1 − q1|1,2)λ2

q2|2 − p1(q2|2 − q2|1,2)
− ǫ1, (3.32)

λ2 ≤ p2q2|2 −
p2(q2|2 − q2|1,2)λ1

q1|1 − p2(q1|1 − q1|1,2)
− ǫ2, (3.33)

where ǫ1 and ǫ2 are arbitrarily small positive constants. Since ri, λi and Ei are all

non-negative and fixed, the optimization problem (3.29) is equivalent to

min
pi

pi s.t. (λ1, λ2) ∈ S(p1, p2). (3.34)

We use the Lagrange multiplier method to solve (3.34). Let cj = ηj and

gj(p1, p2) = λj − pj

(
qj|j − (qj|j−qj|1,2)λk

qk|k−pj(qk|k−qk|1,2)

)
, j = 1, 2, and k = 1, 2, k 6= j. Then,

the Lagrange Multiplier function is defined as

Li(p1, p2) = pi −
m∑

j=1

ηj(gj(x) − cj). (3.35)

The Karush-Kuhn-Tucker (KKT) conditions for the optimal solutions of (3.34)

are given by

∂L(p1, p2)

∂pi

= 0, i = 1, 2, ηj ≥ 0, gj(x) ≤ cj, ηj(gj(x) − cj) = 0, j = 1, ...,m.(3.36)

If ηj = 0, j = 1, 2, we have ∂L(p1,p2)
∂pi

= 1, i = 1, 2 and we cannot satisfy KKT

conditions (3.36). Therefore, we need ηj > 0, j = 1, 2, and conditions (3.32)-(3.33)

need to be satisfied with equality, i.e. the given arrival rates λ1 and λ2 must be

located arbitrarily close to the boundary of the stability region S. The constraints

are convex in p1 and p2 (provided that p1q1|1(q2|2−q2|1,2)+p2q2|2(q1|1−q1|1,2) < q1|1q2|2.

Then, this condition is both necessary and sufficient. The utility of node i can be
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increased only if a decrease in pi does not violate the stability conditions (3.32)-

(3.33). Assume that the arrival rates λ1 and λ2 are arbitrarily close to the boundary

of S for given p1 and p2.

If p1q1|1(q2|2 − q2|1,2) + p2q2|2(q1|1 − q1|1,2) < q1|1q2|2, node i can reduce the

transmission probability pi without violating the stability conditions until the ar-

rival rates λ1 and λ2 are located at the intersection of the two stability conditions

for both transmitters. Any further reduction in pi violates the stability condi-

tions, and the packet arrival rates λ1 and λ2 fall out of the stability region S.

As a result, the values of p1 and p2 chosen arbitrarily close to stability region

S constitute a Nash equilibrium. This statement would not hold for the condi-

tion p1q1|1(q2|2 − q2|1,2) + p2q2|2(q1|1 − q1|1,2) > q1|1q2|2, which however cannot exist

in Nash equilibrium, since nodes can reduce their transmission probabilities uni-

laterally without violating the stability conditions until this condition is violated.

The arrival rates λ1 and λ2 for any transmission probabilities p1 and p2 such that

p1q1|1(q2|2 − q2|1,2) + p2q2|2(q1|1 − q1|1,2) > q1|1q2|2 are located at the intersection of

the stability conditions in another stability region for different transmission proba-

bilities p′1 and p′2 such that p1q1|1(q2|2 − q2|1,2) + p2q2|2(q1|1 − q1|1,2) < q1|1q2|2, where

p′1 =
q2|2(q1|1−p2(q1|1−q1|1,2))

q1|1(q2|2−q2|1,2)
and p′2 =

q1|1(q2|2−p1(q2|2−q2|1,2))

q2|2(q1|1−q1|1,2)
. This equivalent stability

region is achievable by smaller transmission probabilities and energy costs.

As a result, the non-cooperative transmission probabilities need to be chosen

such that the given arrival rates λ1 and λ2 are located arbitrarily close to the busy

service rates p1(q1|1−p2(q1|1−q1|1,2)) and p2(q2|2−p1(q2|2−q2|1,2)), where p1q1|1(q2|2−

q2|1,2) + p2q2|2(q1|1 − q1|1,2) < q1|1q2|2. 2
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In addition to selfish or cooperative operation, a node may also pursue mali-

cious objectives of blocking random access of the other selfish nodes, as we discuss

next for saturated queues.

3.5 Effects of Malicious Operation on Non-Cooperative Equilibrium

Assume N = {1, 2} and consider one selfish transmitter 1 and one malicious

transmitter 2 (i.e. M1 = {∅} and M2 = {1}). First, we assume that malicious node

2 does not have throughput or delay objectives, i.e. r2 = 0 and D2 = 0.

Theorem 3.5.1 There exist possibly multiple non-cooperative strategies in Nash

equilibrium.

(a) The mixed equilibrium strategies are given by

p∗1 = E2

((
q1|1 − q1,1,2

) (
c
(1)
2,1 + c

(2)
2,1

))−1

, (3.37)

p∗2 =
(
q1|1 − q1|1,2

)−1
(

q1|1 −
E1

r1 + D1

)
, (3.38)

if q1|1,2 ≤ E1

r1+D1
≤ q1|1 and 0 ≤ E2 ≤ (q1|1 − q1|1,2)(c

(1)
2,1 + c

(2)
2,1).

(b) The pure equilibrium strategies are given by p∗i = 1, i = 1, 2, if E1

r1+D1
≤ q1|1,2

and E2 ≤ (q1|1 − q1|1,2)(c
(1)
2,1 + c

(2)
2,1), or p∗i = 0, i = 1, 2, if E1

r1+D1
≥ q1|1 and E2 ≥ 0, or

p∗1 = 1, p∗2 = 0, if E1

r1+D1
≤ q1|1 and E2 ≥ (q1|1 − q1|1,2)(c

(1)
2,1 + c

(2)
2,1), or p∗1 = 0, p∗2 = 1,

if E1

r1+D1
≥ q1|1,2 and E2 ≤ 0.

Proof: The conditional expected utilities of node 1 are the same as in the case of

two selfish nodes. The conditional expected utilities of node 2 are changed to

u2(p1, 1) = p1(1 − q1|1,2)c
(1)
2,1 − p1q1|1,2c

(2)
2,1 − E2, (3.39)
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u2(p1, 0) = p1(1 − q1|1)c
(1)
2,1 − p1q1|1c

(2)
2,1. (3.40)

The indifference condition of ui(0, p
∗
−i) = ui(1, p

∗
−i), i = 1, 2, for non-cooperative

Nash equilibrium leads to the mixed equilibrium strategies given by Eqs. (3.37)-

(3.38), if q1|1,2 ≤ E1

r1+D1
≤ q1|1 and 0 ≤ E2 ≤ (q1|1 − q1|1,2)(c

(1)
2,1 + c

(2)
2,1). If the

indifference condition cannot be satisfied for any feasible set of transmission proba-

bilities such that 0 ≤ pi ≤ 1, i = 1, 2, each node i performs with probability 1 the

action of higher conditional expected utility. The pure equilibrium strategy of node

i = 1, 2 is p∗i = 1, if ui(1, p
∗
−i) >i (0, p∗−i), or p∗i = 0, if ui(1, p

∗
−i) < ui(0, p

∗
−i). 2

The equilibrium strategies are independent of any reward that is offered to

the malicious node for the purpose of forcing the selfish node to stay idle. If we

assign a reward c
(3)
2,1 to node 2 for each idle slot of node 1, the additional reward

term c
(3)
2,1(1−p1) cancels in the indifference condition given by u2(1, p1) = u2(0, p1) in

non-cooperative Nash equilibrium. Therefore, there is no need for this extra reward

to describe the malicious transmitter behavior.

The mixed non-cooperative strategies p∗2 of node 2 in Nash equilibrium (given

by Eqs. (3.10) and (3.38)) are the same regardless of whether node 2 is selfish or ma-

licious. In other words, malicious operation of node 2 only changes the equilibrium

strategy of the selfish node 1 to be attacked. If node 2 is selfish, we have

λ1 =
q2|2 − E2

r2+D2

q2|2 − q2|1,2

(
1 −

(
q1|1 − q1|1,2

)−1
(

q1|1 −
E1

r1 + D1

))
. (3.41)

If node 2 is malicious, the throughput rate λ1 of node 1 is changed to

λ1 = E2

1 −
(
q1|1 − q1|1,2

)−1
(
q1|1 − E1

r1+D1

)

(
q1|1 − q1|1,2

)
(c

(1)
2,1 + c

(2)
2,1)

. (3.42)
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Node 2 can reduce the throughput rate λ1 of node 1 by switching to malicious

operation, i.e. the denial of service attack of node 2 is successful, if and only if

(
q1|1 − q1|1,2

) (
c
(1)
2,1 + c

(2)
2,1

)
> E2

(
q2|2 − q2|1,2

)(
q2|2 −

E2

r2 + D2

)−1

, (3.43)

i.e. the reward for jamming transmissions of node 1 should be high enough for

node 2 to compensate the increase in energy cost and the decrease in individual

throughput rate.

If both nodes are in selfish equilibrium and node 2 switches to malicious op-

eration, the utility u2 becomes an increasing function of p2 under condition (3.43).

Node 2 would increase p2 to improve u2 and node 1 would react by decreasing p1.

For large values of p2, the energy cost of node 2 dominates the rewards for blocking

transmissions of node 1. Therefore, node 2 chooses the same transmission proba-

bility p2 as in the selfish equilibrium case, whereas p1 is reduced below the selfish

equilibrium value, if condition (3.43) holds. For the classical collision channels with

qi|i = 1 and qi|1,2 = 0, i = 1, 2, Figure 3.2 depicts the minimum value of c
(1)
1,2 + c

(2)
1,2

(as function of the energy cost E2) such that node 2 can reduce the throughput rate

λ1 of node 1. For symmetric costs Ei = E, ri + Di = 1, i = 1, 2, and c
(1)
1,2 = c

(2)
1,2,

Figures 3.3 depicts the throughput rates in non-cooperative equilibrium as function

of c
(1)
1,2 + c

(2)
1,2 for different values of energy cost E.

Consider the mixed equilibrium strategies for E ≤ r + D and E ≤ c
(1)
2,1 +

c
(2)
2,1. The transmission probability of any node in cooperative equilibrium is reduced

to half of the value in selfish operation. If transmitter 2 becomes malicious, the

only change occurs in the transmission probability of selfish transmitter 1. The
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Figure 3.2: The minimum value of attack parameters c
(1)
1,2 +c

(2)
1,2 as function of energy

cost E2 such that malicious node 2 can reduce the throughput of selfish node 1.

utility in cooperative equilibrium is strictly greater than the case of selfish operation.

However, the throughput rates under selfish operation can be higher than those

under cooperative operation (particularly for large values of energy costs provided

that 3E > R+D). On the other hand, when transmitter 2 becomes malicious, it may

increase its own utility depending on the cost and reward parameters. Furthermore,

the malicious operation of transmitter 2 may be better than selfish operation in

terms of reducing the throughput rate of transmitter 1, which occurs only if the

malicious attack parameters are relatively greater than the energy cost provided

that (c
(1)
2,1 + c

(2)
2,1)
(
1 − E

r+D

)
> E.

Next, we assume that malicious node 2 has also packets to transmit and pur-

sues the additional objectives of optimizing the throughput rewards and delay costs
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Figure 3.3: The throughput λ1 of selfish node 1 as function of attack parameters

c
(1)
1,2 + c

(2)
1,2 in non-cooperative equilibrium.

(i.e. r2 > 0 and D2 > 0) in addition to the energy costs and malicious objectives of

blocking random access of selfish node 1.

Theorem 3.5.2 There exist possibly multiple non-cooperative strategies in Nash

equilibrium.

(a) The mixed equilibrium strategies are given by

p∗1 =
E2 − (r2 + D2)q2|2

(q1|1 − q1|1,2)
(
c
(1)
2,1 + c

(2)
2,1

)
− (q2|2 − q2|1,2)(r2 + D2)

, (3.44)

p∗2 =
(
q1|1 − q1|1,2

)−1
(

q1|1 −
E1

r1 + D1

)
, (3.45)

if q1|1,2 ≤ E1

r1+D1
≤ q1|1 and 0 ≤ E2 − (r2 +D2)q2|2 ≤ (q1|1 − q1|1,2)(c

(1)
2,1 + c

(2)
2,1)− (q2|2 −

q2|1,2)(r2 + D2).

(b) The pure equilibrium strategies are given by p∗i = 1, i = 1, 2, if E1

r1+D1
≤ q1|1,2 and
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E2 ≤ (q1|1−q1|1,2)(c
(1)
2,1 + c

(2)
2,1)+q2|1,2(r2 +D2), or p∗i = 0, i = 1, 2, if E1

r1+D1
≥ q1|1 and

E2 ≥ (r2 + D2)q2|2, or p∗1 = 1, p∗2 = 0, if E1

r1+D1
≤ q1|1 and E2 ≥ (q1|1 − q1|1,2)(c

(1)
2,1 +

c
(2)
2,1) + q2|1,2(r2 + D2), or p∗1 = 0, p∗2 = 1, if E1

r1+D1
≥ q1|1,2 and E2 ≤ (r2 + D2)q2|2.

Proof: The conditional expected utilities of node 1 are the same as the case of

two selfish nodes or the case of one selfish node and one malicious node without

throughput or delay objectives. The conditional expected utilities of node 2 are

changed to

u2(p1, 1) = (r2 + D2)((1 − p1)q2|2 + p1q2|1,2) (3.46)

+p1(1 − q1|1,2)c
(1)
2,1 − p1q1|1,2c

(2)
2,1 − E2 − D2,

u2(p1, 0) = p1(1 − q1|1)c
(1)
2,1 − p1q1|1c

(2)
2,1 − D2. (3.47)

The indifference condition of ui(0, p
∗
−i) = ui(1, p

∗
−i), i = 1, 2, for non-cooperative

Nash equilibrium leads to the mixed equilibrium strategies given by Eqs. (3.44)-

(3.45), if q1|1,2 ≤ E1

r1+D1
≤ q1|1 and 0 ≤ E2− (r2 +D2)q2|2 ≤ (q1|1− q1|1,2)(c

(1)
2,1 + c

(2)
2,1)−

(q2|2 − q2|1,2)(r2 + D2).

If the indifference condition cannot be satisfied for any feasible set of trans-

mission probabilities such that 0 ≤ pi ≤ 1, i = 1, 2, each node i performs with

probability 1 the action of higher conditional expected utility. The pure equilib-

rium strategy of node i = 1, 2 is p∗i = 1, if ui(1, p
∗
−i) > ui(0, p

∗
−i), or p∗i = 0, if

ui(1, p
∗
−i) < ui(0, p

∗
−i). 2

Malicious node 2 cannot reduce the throughput rate of node 1 compared to

selfish operation for any given value of c
(1)
2,1 > 0 and c

(2)
2,1 > 0. The denial of service

attack of node 2 is unsuccessful, unless node 2 receives a smaller throughput reward
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r′2 (compared to the selfish operation with throughput reward r2). For the classical

collision channels with qi|i = 1 and qi|1,2 = 0, i = 1, 2, the value of r′2 needs to satisfy

r′2 < r2

(
1 −

(
c
(1)
2,1 + c

(2)
2,1

)
E−1

2

)
−
(
c
(1)
2,1 + c

(2)
2,1

) (
D2E

−1
2 − 1

)
. (3.48)

Hence, node 2 needs to compromise between selfish throughput and malicious

attack objectives.

3.6 Adaptive Update Mechanisms for Distributed Operation

We consider adaptive update mechanisms as distributed random access algo-

rithms. Each node independently chooses the transmission probability based on the

channel feedback from the receiver. We distinguish two separate cases with and

without availability of information on system parameters (such as rewards, costs

and capture probabilities) at individual transmitter nodes.

Nodes can observe the channel outcome, namely whether it is an idle slot, a

successful packet transmission or a packet collision. Therefore, nodes are aware of

the actual action of each other in each time slot but do not know the transmission

probabilities of each other. As a distributed algorithm, we consider a repeated play

such that nodes adjust their transmission strategies in response to the observations

of the channel outcome by playing the optimized best response to the empirical

frequencies of each other’s actions. The equilibrium strategies coincide with the

Nash equilibrium strategies, if the empirical frequencies converge [35]. Let Bi(p−i) =

arg max pi∈[0,1] ui(pi, p−i) denote the best-response function of node i, where p−i is

the transmission probability of the node other than node i. Let Ai(t) be 1 or 0, if
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node i transmits a packet at time slot t or not. The empirical frequency pi(t + 1) of

node i at time t + 1 is defined as the running average of actions of node i = 1, 2:

pi(t + 1) = min

(
max

(
pi(t) +

1

t + 1
(Ai(t) − pi(t)), 0

)
, 1

)
. (3.49)

The strategy of node i = 1, 2 at time t + 1 is the optimal response to the

running average of the opponent’s actions:

pi(t + 1) = Bi(p−i(t)) , i = 1, 2. (3.50)

Consider the equilibrium transmission probabilities p∗i , i = 1, 2, given in Eqs.

(3.9)-(3.10) or (3.37)-(3.38) or (3.44)-(3.45) depending on whether the system con-

sists of two selfish nodes, or one selfish node and one malicious node in the absence or

presence of throughput and delay objectives, respectively. Provided that p∗i ∈ [0, 1],

i = 1, 2, we have A1(t) = 1, if p2(t) ≤ p∗2, or A1(t) = 0, otherwise, and we have

A2(t) = 1, if p1(t) ≥ p∗1, or A2(t) = 0, otherwise.

The choice of the initial transmission probabilities affects which of the possibly

multiple Nash equilibrium strategies the algorithm will track and converge to. The

analysis of the convergence properties of the best-response update mechanism is

outside the scope of this chapter. For the classical collision channels with qi|i = 1

and qi|1,2 = 0, i = 1, 2, and system parameters Ei = 0.25, Di = 0, i = 1, 2, and

r1 = 1, we illustrate in Figure 3.4 how the transmission probabilities evolve from

the equilibrium of two selfish nodes with p∗1 = 0.75 and p∗2 = 0.75 (for r2 = 1 and

c
(1)
2,1 = c

(2)
2,1 = 0) to the equilibrium of one selfish and node one malicious node with

p∗1 = 0.5 and p∗2 = 0.75 (for r2 = 0 and c
(1)
2,1 = c

(2)
2,1 = 0.25).
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Figure 3.4: Best-response updates.

The proposed update mechanism given by Eqs. (3.49)-(3.50) depends on the

availability of the reward and cost information at all transmitter nodes. Next, we

assume that the reward and cost parameters are unknown in a distributed oper-

ation and nodes vary their transmission strategies as function of time depending

on the channel feedback only. We define the step-size sequence ǫ(t) that satisfies

limt→∞ ǫ(t) = 0,
∑∞

t=1 ǫ(t) = ∞ and
∑∞

t=1 ǫ(t)2 < ∞ as suggested by the stochastic

approximation theory, and we define the update sequence ζi(t) ∈ {−1, 0, 1}, i = 1, 2.

The strategy of node i = 1, 2 is updated at time t + 1 as

pi(t + 1) = min (max (pi(t) + ǫ(t) ζi(t) , 0) , 1) . (3.51)

We consider the approach that nodes do not change strategies, as long as

their decisions in the previous time slot have been successful given the opponent’s

decision. If any node i is successful given the opponent’s decision at time t, ζi(t) = 0.
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Figure 3.5: Heuristic updates based on channel feedback only.

If any node i transmits at time slot t and it is an unsuccessful decision given the

opponent’s decision, node i reduces the transmission probability, i.e. ζi(t) = −1.

Similarly, if any node i waits at time slot t and it is an unsuccessful decision given

the opponent’s decision, node i increases the transmission probability, i.e. ζi(t) = 1.

Any selfish node prefers successful transmission over waiting and prefers wait-

ing over packet collision. Similarly, any malicious node prefers blocking random

access of another node over waiting and prefers unnecessary transmission without

blocking over missing a denial of service attack opportunity. Consider the case of

one selfish node and one malicious node without throughput or delay objectives. In

any time slot, node 1 is successful in its decision, if node 1 transmits, while node 2 is

waiting, or if node 1 waits, while node 2 is transmitting. Similarly, we assume that

node 2 is successful in its decision, if node 2 transmits, while node 1 is transmitting,
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or if node 2 waits, while node 1 is waiting. The update sequences are defined as

ζ1(t) = −1, ζ2(t) = 0, if Ai(t) = 1, i = 1, 2, or ζ1(t) = 0, ζ2(t) = 1, if A1(t) = 1,

A2(t) = 0, or ζ1(t) = 0, ζ2(t) = −1, if A1(t) = 0, A2(t) = 1, or ζ1(t) = 1, ζ2(t) = 0,

Ai(t) = 0, i = 1, 2. Due to the constraints on the availability of parameter informa-

tion, the resulting transmission strategies can significantly deviate from the Nash

equilibrium, as shown in Figure 3.5 for the step-size sequence ǫ(t) = 1
t
, t ≥ 1

3.7 Arbitrary Number of Transmitters

In this section, we extend the results to arbitrary sets of selfish and malicious

transmitter nodes in random access for the case of saturated queues. Following

the conjecture in [22], future work should investigate the equivalence of the non-

cooperative strategies for saturated queues and stable operation. Let p−i
denote

the transmission probabilities of nodes other than node i. For any pi, i ∈ N , the

non-cooperative Nash equilibrium strategies p∗i , i ∈ N , satisfy

ui(p
∗
i , p

∗
−i

) ≥ ui(pi, p
∗
−i

) , i ∈ N. (3.52)

3.7.1 Arbitrary Number of Selfish Transmitters

Theorem 3.7.1 Consider transmitter set N of n selfish nodes. If qi|N ≤ Ei

ri+Di
≤

qi|i, i ∈ N , the non-cooperative mixed strategies p∗i , i ∈ N , in Nash equilibrium

satisfy

∑

J⊆N :i∈J

qi|J
∏

j∈J−{i}
p∗j
∏

k/∈J

(1 − p∗k) =
Ei

ri + Di

, i ∈ N, (3.53)
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and the non-cooperative equilibrium throughput of node i is given by

λ∗
i = p∗i

Ei

ri + Di

, i ∈ N. (3.54)

Proof: The expected utility ui(0, p−i
) of waiting node i is −Di and the expected

utility ui(1, p−i
) of transmitting node i is λ′

i − (1 − λ′
i)Di − Ei, where λi = piλ

′
i

satisfies

λi ≤
∑

J⊆N :i∈J

qi|J
∏

j∈J−{i}
p∗j
∏

k/∈J

(1 − p∗k), i ∈ N. (3.55)

The indifference condition given by ui(0, p−i
) = ui(1, p−i

) for non-cooperative

Nash equilibrium leads to the equalities of λ′
i =

∑
J⊆N :i∈J qi|J

∏
j∈J−{i} p∗j

∏
k/∈J(1 −

p∗k) = Ei

ri+Di
, i ∈ N , and the equilibrium throughput of node i follows from λ∗

i = p∗i λ
′
i

and it is given by Eq. (3.54). 2

Next, we consider classical collision channels with qi|J = 1, J = {i}, and

qi|J = 0, J 6= {i}.

Theorem 3.7.2 For classical collision channels, the mixed strategies in Nash equi-

librium are

p∗i = 1 −
(

ri + Di

Ei

) ( n∏

j=1

Ej

rj + Dj

) 1
n−1

, i ∈ N. (3.56)

Proof: Let xi = 1 − pi and yi = Ei

1+Di
for i = 1, ..., n. Define λi = piλ

′
i. From Eq.

(3.54), we have λ′
i =

∏
j 6=i xj = yi for any i such that xk yk = xl yl for any k and l.

If condition
∏

j 6=k xj = yk is rewritten as
∏

j 6=k
xiyi

yj
= yk, i.e. (xiyi)

n−1 =
∏n

j=1 yj,

Eq. (3.56) follows by setting yi = Ei

ri+Di
and xi = 1

yi
(
∏n

j=1 yj)
1

n−1 in pi = 1−xi for i =

1, ..., n. 2
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From Eqs. (3.54) and (3.56), the non-cooperative throughput of node i in

Nash Equilibrium is

λ∗
i =

(
Ei

ri + Di

)
−
(

n∏

j=1

Ej

rj + Dj

) 1
n−1

(3.57)

for classical collision channels. The utility ui of node i in Nash equilibrium is equal to

−Di and the non-cooperative total utility unc
Σ is −∑n

i=1 Di, whereas the cooperative

total utility is

uΣ =
n∑

i=1

pi((ri + Di)
∏

j 6=i

(1 − pj) − Ei − Di (3.58)

for βi = 1, i = 1, ..., n. Eq. (3.58) is concave in pi and can be maximized by the

transmission probabilities pi, i = 1, ..., n, that satisfy ∂uΣ

∂pi
= 0, i = 1, ..., n. The

total utility improvement uc
Σ − unc

Σ is
∑n

i=1 pi((ri + Di)
∏

j 6=i(1 − pj) − Ei). For

the symmetric energy and delay costs such that Ei

ri+Di
= ES

rS+DS
for i = 1, ..., n, the

improvement uc
Σ−unc

Σ is maximized by the common transmission probability p∗ that

satisfies (1−p∗)n−2(1−np∗) = ES

rS+DS
. From Eq. (3.54), the common non-cooperative

throughput is given by ES

rS+DS
−( ES

rS+DS
)

n
n−1 for the symmetric energy and delay costs

and is maximized to 1
n

(
1 − 1

n

)n−1
provided that ES = (rS + DS)

(
1 − 1

n

)n−1
.

The total throughput
∑n

i=1 λi is illustrated in Figure 3.6. If the energy costs

are high and the delay costs are low, the non-cooperative operation can improve the

total throughput in the system compared to utility-optimal cooperation. For rS = 1

and DS = 0, Figures 3.7, 3.8 and 3.9 depict the transmission probability, individual

throughput rate and utility, respectively, as function of the number of transmitters

n in non-cooperative and cooperative equilibrium for different values of energy cost

ES. Selfish nodes are more aggressive in their transmission strategies compared to
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cooperative nodes. The equilibrium transmission probability, throughput rate and

cooperative utility decrease as the number of selfish transmitters competing for the

channel increases.
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Figure 3.6: The total throughput
∑n

i=1 λi as function of rewards and costs.

3.7.2 Comparison with Scheduled Access

Consider deterministic scheduled access such that nodes are centrally sched-

uled in any time slot to transmit a packet or to wait.

Theorem 3.7.3 The utility-optimal scheduled access dedicates the channel to node

group J ⊆ N with the largest positive value of
∑

i∈J⊆N βi((ri + Di)qi|J − Ei) and

can improve the total utility uΣ =
∑n

i=1 βiui of non-cooperative random access by

the amount of
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Figure 3.7: The equilibrium transmission probability of selfish transmitters.

max
J⊆N

[
∑

i∈N

βi((ri + Di)qi|i − Ei)

]+

, (3.59)

where [x]+ = x, if x > 0, and [x]+ = 0, if x ≤ 0.

Proof: Let τJ denote the disjoint time fraction allocated to transmissions of node

group J ⊆ N such that 0 ≤ τJ ≤ 1 and
∑

J⊆N τJ ≤ 1. The utility of node i is

ui =
∑

J⊆N :i∈J

τJ

(
riqi,J − Ei − (1 − qi|J)Di

)
− (1 −

∑

J⊆N :i∈J

τJ)Di (3.60)

and the resulting value of total utility is

uΣ =
∑

i∈N

(
∑

J⊆N :i∈J

τJ βi ((ri + Di)qi,J − Ei)

)
−
∑

i∈N

βiDi (3.61)

=
∑

J⊆N

τJ

(
∑

i∈J

βi ((ri + Di)qi,J − Ei)

)
−
∑

i∈N

βiDi. (3.62)

We need to dedicate the channel to node group J with the largest positive

value of
∑

i∈J⊆N βi((ri +Di)qi|J −Ei) to maximize uΣ. If a non-zero time fraction is
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Figure 3.8: The equilibrium throughput of selfish transmitters.

allocated to another node group J ′, we can improve uΣ by shifting the time allocation

of node group J ′ to the particular node group J . As a result, uΣ is maximized to

uΣ = max
J⊆N

(
∑

i∈N

βi

[
((ri + Di)qi|J − Ei)

]+
)

−
∑

i∈N

βiDi. (3.63)

If
∑

i∈J⊆N βi((ri + Di)qi|J − Ei) < 0 for all J ⊆ N , then no node transmits.

The improvement uc
Σ − unc

Σ is given by Eq. (3.63), where unc
Σ = −∑i∈N Di. 2

For the classical collision channels and symmetric costs of Ei

ri+Di
= ES

rS+DS
,

i ∈ N , Figure 3.10 compares the non-cooperative equilibrium utility unc
Σ of random

access with the cooperative equilibrium utility uc
Σ of random or scheduled access.

3.7.3 Arbitrary Sets of Selfish and Malicious Transmitters

Any malicious node i ∈ N has the objective of blocking random access of the

other selfish nodes in node set Mi ⊆ N − {i}. The conditional expected utilities of
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Figure 3.9: The equilibrium utility of selfish transmitters.

any node i ∈ N are

ui(1, p−i
) = (ri + Di)

∑

J⊆N :i∈J

qi|J
∏

j∈J−{i}
pj

∏

k/∈J

(1 − pk) − Ei − Di (3.64)

+
∑

j∈Mi

c
(1)
i,j pj


1 −

∑

J⊆N :(i,j)⊆J

qj|J
∏

k∈J−{i,j}
pk

∏

l /∈J

(1 − pl)




−
∑

j∈Mi

c
(2)
i,j pj

∑

J⊆N :i∈J,j∈J

qj|J
∏

k∈J−{i,j}
pk

∏

l /∈J

(1 − pl),

ui(0, p−i
) =

∑

j∈Mi

c
(1)
i,j pj


1 −

∑

J⊆N :i/∈J,j∈J

qj|J
∏

k∈J−{j}
pk

∏

l /∈J,l 6=i

(1 − pl)


 (3.65)

−Di −
∑

j∈Mi

c
(2)
i,j pj

∑

J⊆N :i/∈J,j∈J

qj|J
∏

k∈J−{j}
pk

∏

l /∈J,l 6=i

(1 − pl)

for transmitting and waiting, respectively. The mixed non-cooperative strategies p∗i ,

i ∈ N , in Nash equilibrium satisfy the indifference condition of ui(1, p
∗
i
) = ui(0, p

∗
i
),

whereas the pure non-cooperative strategy of node i in Nash equilibrium is given

by p∗i = 0, if ui(1, p
∗
−i

) < ui(0, p
∗
−i

), and p∗i = 1, if ui(1, p
∗
−i

) > ui(0, p
∗
−i

). Consider
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Figure 3.10: The improvement of cooperation over non-cooperative equilibrium.

the classical collision channels with qi|J = 1 for J = {i} and qi|J = 0 for J 6= {i}.

Partition the node set N into the disjoint sets S and M of selfish and malicious

transmitters. Assume symmetric costs Ei = ES, Di = DS, ri = rS, c
(1)
i,j = 0, c

(2)
i,j = 0

for i ∈ S and Ei = EM , Di = DM , ri = rM , Mi = S, c
(1)
i,j = c(1), c

(2)
i,j = c(2)

for i ∈ M and j ∈ S. Let m denote the number of malicious nodes. The mixed

non-cooperative strategies in Nash equilibrium have the symmetric form of p∗i = pS,

i ∈ S, and p∗i = pM , i ∈ M , and satisfy

(1 − pS)n−m−1(1 − pM)m =
ES

rS + DS

, (3.66)

(rM + DM) (1 − pS)n−m(1 − pM)m−1

+(n − m)pSc(1)(1 − pS)n−m−1(1 − pM)m−1 (3.67)

+(n − m)pSc(2) (1 − pS)n−m−1(1 − pM)m−1 = EM .
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From Eq. (3.68), the non-cooperative throughput of any selfish node i ∈ S is

λS =
ES

rS + DS

pS . (3.68)

For the classical collision channels, only one transmission is sufficient to block

the random access of all other selfish nodes, i.e. independent transmissions of mul-

tiple malicious nodes increases the energy costs without extra benefits in terms of

reducing the throughput rate of selfish nodes. The average utility of any malicious

node is maximized for m = 1. Therefore, if malicious nodes are allowed to cooper-

ate with each other, they should form a coalition such that only one node transmits

at a time to minimize the energy costs and maximize the utilities. If we consider

multi-packet reception channels such that the packet capture probability decreases

as the number of simultaneous transmissions increases, it may be desirable that

multiple malicious nodes transmit simultaneously to block the transmissions of the

other selfish nodes.

Next, we present numerical results to investigate the interactions between self-

ish and malicious nodes. We assume EM = 0.1, c(1) = 0.25, c(2) = 0.25, DS = 0,

DM = 0, rS = 1, rM = 0 and m = n − 1, i.e. there is only one selfish transmitter.

Figure 3.11 shows the symmetric transmission probability in non-cooperative equi-

librium as function of the number of transmitters n for different values of energy

cost ES. Selfish node needs to increase the transmission probability to maintain

the throughput rate for increasing number of malicious nodes. On the other hand,

malicious nodes need to transmit less frequently, as more nodes switch to the mali-

cious operation. Both equilibrium transmission probabilities of selfish and malicious
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Figure 3.11: The non-cooperative equilibrium transmission probabilities.

nodes decrease with increasing energy costs, i.e. nodes become less aggressive in their

transmission strategies, when the energy costs are high.

Figure 3.12 shows the throughput rate of the selfish node in non-cooperative

equilibrium. The throughput rate of selfish node increases with the number of

transmitters n, since the selfish node starts transmitting with higher probability,

while malicious nodes transmit with smaller probabilities. We also observe that

both selfish and malicious nodes transmit less frequently, when the energy costs

increase, and the overall effect is an increase in the throughput rate.

Figure 3.13 shows the individual utility in non-cooperative equilibrium. The

utility of the selfish node is equal to the zero delay cost and the utility of any mali-

cious node increases with n. Malicious nodes with smaller transmission probabilities

are more successful in denial of service attacks. The simultaneous operation of ma-
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Figure 3.12: The non-cooperative equilibrium throughput of the selfish transmitter.

licious nodes reduces the individual energy cost and increases the individual utility.

A single malicious node is more effective in reducing the throughput of selfish node

at the expense of increasing the individual energy cost compared to the simultane-

ous operation of malicious nodes. Malicious nodes can reduce the throughput of the

selfish node further for smaller energy costs and can increase their utilities.

3.8 Extensions to Multiple Receivers in Broadcast Communication

Let q
(j)
i|J denotes the probability that the transmission of node i is successfully

received by receiver node j, if nodes in set J transmit in the same time slot. We

consider next the broadcasting operation of two selfish nodes randomly transmit-

ting packets addressed to two receivers. A packet transmission contributes to the

throughput only if it is received by both receivers. Broadcast communication in
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Figure 3.13: The non-cooperative equilibrium utilities.

random access will be addressed in Chapters 6-8 through the application of network

coding. Each node is required to transmit linear combinations of packets based on

the channel feedback from receivers [36] such that the achievable throughput of node

i = 1, 2 can be optimized to the Max-flow Min-cut bound of

λ1 ≤ p1(min
j=1,2

(p2q
(j)
1|{1,2} + (1 − p2)q

(j)
1|1)), (3.69)

λ2 ≤ p2(min
j=1,2

(p1q
(j)
2|{1,2} + (1 − p1)q

(j)
2|2)). (3.70)

The conditional expected utilities are given by ui(1, p−i) = (minj=1,2(pkq
(j)
i|{1,2}+

(1 − pk)q
(j)
i|i ))(ri + Di) − Ei − Di for k 6= i and ui(0, p−i) = −Di. The indifference

condition of ui(1, p−i) = ui(0, p−i) for non-cooperative Nash equilibrium leads to the

equality of minj=1,2 gi,j(pk) = Ei

1+Di
, where gi,j(pk) = pkq

(j)
i|{1,2} + (1 − pk)q

(j)
i|i . So, the

mixed strategies in Nash equilibrium are given by
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p∗1 =
q
(j∗)
2|2 − E2

r2+D2

q
(j∗)
2|2 − q

(j∗)
2|1,2

, for j∗ = arg minj=1,2 g2,j(p
∗
1), (3.71)

p∗2 =
q
(j∗)
1|1 − E1

r1+D1

q
(j∗)
1|1 − q

(j∗)
1|1,2

, for j∗ = arg minj=1,2 g1,j(p
∗
2). (3.72)

The resulting throughput rate λi is Ei

ri+Di
p∗i and the utility ui is −Di, i = 1, 2.

3.9 Repeated Random Access Games for Backlogged Transmissions

We consider a conflict resolution situation with a fixed number of n transmit-

ters with backlogged packets waiting for retransmission (without additional packet

arrivals until all backlogged packets are successfully transmitted). In this case, each

packet corresponds to a new transmitter node and whenever the packet is success-

fully received, it leaves the system. We allow nodes to select their retransmission

probabilities depending on the contention for the channel, namely the number of po-

tential transmitters. For any node i, the cost of transmission is Ei and the reward

for successful transmission is ri. As a delay cost, we decrease the expected future

payoff of any node i by a discount factor of δi over each time slot of unsuccessful

transmission or waiting. In the presence of n backlogged nodes, we define pi,n as the

transmission probability and ui,n as the expected utility of node i. We define T and

W as the actions of transmitting and waiting with the corresponding expected util-

ities of ui,n(T ) and ui,n(W ) for node i, respectively. The transmission probabilities

vary depending on the number of backlogged packets n. This approach is based on

the perfect knowledge of n at each transmitter in any time slot and can be realized
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by the immediate and correct receiver feedback over separate conflict-free channels.

When players face uncertainty (which occurs at every decision point of the

game), they need to evaluate their uncertain future payoffs reflected in their utility

functions and players attempt to maximize the expected values of their utilities. The

expected utility is determined by randomizing the decisions between transmitting

and waiting, and it is given by

ui,n = pi,nui,n(T ) + (1 − pi,n)ui,n(W ) (3.73)

for node i. In random access game G(n), node i selects in any time slot the prob-

ability of transmitting, pi,n, to maximize the expected utility ui,n in the presence

of n backlogged nodes. We consider a symmetric capture model and define qk as

the probability that any node i successfully transmits, when there are total of k + 1

nodes (including node i) simultaneously transmitting in the given slot. The expected

utilities of node i are given by

ui,n(T ) = −Ei +
n−1∑

k=0

P (Ki,n = k)(riqk + δi(1 − qk)
k∑

j=0

ui,n−j

(
k

j

)
qk

j(1 − qk)
k−j),(3.74)

ui,n(W ) = δi

n−1∑

k=0

P (Ki,n = k)
k∑

j=0

ui,n−j

(
k

j

)
qk−1

j(1 − qk−1)
k−j (3.75)

for transmitting and waiting, respectively, where the random variable Ki,n denotes

the number of transmitting nodes except node i. For tractable analysis, we consider

symmetric games with identical users and common reward and cost parameters of

ri = r, Ei = E and δi = δ. Nodes have the same possible actions, utilities, feedback

and capture statistics such that they have the same retransmission strategies given

the same state of the game. We have pi,n = pn, ui,n = un and P (Ki,n = k) = P (Kn =
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k) =
(

n−1
k

)
pk

n(1 − pn)n−1−k. The symmetric expected utilities ui,n(T ) = un(T ) and

ui,n(W ) = un(W ) depend only on the values of pn, uk, qk, 1 ≤ k ≤ n − 1.

3.9.1 Non-Cooperative Equilibrium Strategies

We consider the non-cooperative strategies in Nash equilibrium such that no

node can improve the utility through individual effort, if the strategies of the other

nodes remain the same. Random access can be described by multi-stage games of

extensive form, which specify the complete order of moves in time in addition to the

complete list of payoffs and the available information at each decision point in time.

At each stage of the game, nodes follow a mixed strategy with the possible actions of

transmitting and waiting. The equilibrium of extensive form games is characterized

by a subgame perfect equilibrium, where nodes play the Nash equilibrium strategies

at each possible subgame that can be reached over successive stages.

The decision at each stage of the random access game can be exactly described

by a state (i.e. the number of backlogged nodes), which is a general property of the

class of Markov games [17]. For Markov games, the subgame perfect equilibrium

can be replaced by the Markov perfect equilibrium, in which each node’s decision

solely depends on the current state of the game. Given the state information, the

Markov perfect equilibrium at each stage of the game can be computed as the Nash

equilibrium of the mixed strategy game of normal form.

The symmetric Markov perfect equilibrium for the non-cooperative random

access game G(n) (in the presence of n backlogged nodes) can be computed as
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the transmission probability p∗n that makes the payoffs of transmission and waiting

equal to each other, i.e. un(T ) = un(W ), provided that Markov perfect equilibrium

strategies are played for all possible future games G(k), 1 ≤ k < n. Since the

best strategy in the absence of other backlogged nodes is to transmit, the initial

conditions are u∗
1 = rq0 − E and p∗1 = 1 (provided that rq0 > E). Starting with

n = 2, we set un(T ) = un(W ) = un, and recursively solve the equality of symmetric

Eqs. (3.74) and (3.75) to obtain the Markov perfect equilibrium strategy p∗n and the

utility u∗
n for each game state n ≥ 2. We consider a physical layer capture model

based on SINR criterion. A packet of node i is successfully received, if

Pi

1
L

∑
k∈S\{i} Pk + σ2

≥ γ∗, (3.76)

where Pi is the power level of node i, γ∗ is the predetermined fixed SINR threshold,

σ2 is the variance of Gaussian background noise, S denotes the set of transmitter

nodes, and L is the processing gain. We have L = 1 for narrowband systems,

and L > 1 for spread-spectrum CDMA systems. We assume a symmetric model

with Pi = P . In section 3.10, we will modify the game model by allowing nodes

to choose the probabilities of transmitting at different powers (and rates) from a

fixed set. The resulting successful transmission probability depends on the number

transmitters such that qk = 1, for 0 ≤ k ≤
⌊

L(P−γ∗σ2)
γ∗P

⌋
and qk = 0 otherwise.

3.9.2 Comparison of Selfish and Cooperative Strategies

The Markov perfect equilibrium strategies p∗n for the non-cooperative random

access game G(n) is computed by solving the non-linear equations of form un(T )
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= un(W ) with the constrained solution space p∗n ∈ [0, 1]. Numerical solutions in

the least squares sense can be found by minimizing the penalty function |un(T ) −

un(W )|2. For numerical solutions, we can use the logarithmic barrier method to

eliminate the constraints through Lagrangians and then apply the Newton’s method

to perform the necessary unconstrained optimization.

On the other hand, the cooperative random access game can be cast as a team

problem of maximizing the total system utility uΣ,n =
∑n

i=1 ui,n for each game state

n. From (3.73)-(3.75), the recursive equation for uΣ,n is given by

uΣ,n = −Enpn +
n∑

k=0

(
n

k

)
pk

n(1 − pn)n−k

k∑

j=0

(
k

j

)
qj
k−1(1 − qk−1)

k−j(rj + δuΣ,n−j)(3.77)

with the initial conditions of uΣ,1 = rq0 − E and p1 = 1.
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Figure 3.14: Performance comparison of the cooperative and non-cooperative ran-

dom access strategies with the retransmission probability assignment of pn = 1/n.
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For numerical results, we assume L = 5, γ∗ = 0.5 and σ2 = 0.1P . Fig-

ure 3.14 compares the performance of the cooperative and non-cooperative random

access games with the probability assignments of pn = 1
n
, which is known to be

the optimal strategy for classical collision channel without packet captures, if the

throughput is the only performance measure. We first assume cost parameters of

E = 0.1 and δ = 0.95. The retransmission strategy pn = 1
n

achieves performance

results close to the cooperative operation of nodes, and clearly outperforms the non-

cooperative equilibrium retransmission strategies. If we impose strict cost parame-

ters δ = 0.75 and E = 0.5, the performance difference between the cooperative and

non-cooperative strategies decreases, as illustrated in Figure 3.14. For large number

of backlogged nodes, selfish operation achieves higher expected utilities than dic-

tating nodes to use 1
n

as the probability of retransmitting, whereas the cooperation

among nodes leads to strictly higher utilities than the Nash equilibrium strategies.

3.10 Randomized Power and Rate Control Game

We allow nodes to employ distributed power and rate control schemes to adjust

their capture probabilities in a stochastic game for random access. A cooperative

scheme for selecting random power levels has been introduced in [37, 38], where

nodes randomly transmit at discrete power levels to maximize the channel utilization

in each time slot without taking the transmission and delay costs into account. The

power and rate control problems have been analyzed before for non-cooperative

cellular access [39, 50]. However, these studies are based on one-stage pure strategy
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games and cannot capture the essence of the repeated random access operation.

Instead, we allow selfish nodes to randomize their power and rate control strategies

(over a discrete and finite strategy space) over successive time slots.

We consider the same feedback information and game state as before. In the

joint power and rate control game PRG(n), each node randomly chooses transmis-

sion power from the set P and transmission rate from the set R. The choice of zero

transmission power or rate is equivalent to the action of waiting. We define pi,n(Sj)

as the probability that node i chooses power and rate pair Sj ∈ J , where J = PxR.

As a result, the overall expected utility is given by

ui,n =
∑

Sj∈J

ui,n(Sj)pi,n(Sj), (3.78)

where ui,n(Sj) is the utility of node i that chooses action Sj for the game state n.

Each node i selects the probability pi,n(Sj) for all Sj = (Pj, Rj), where Pj ∈ P

and Rj ∈ R, to maximize the expected utility ui,n in the presence of n backlogged

nodes. For the game PRG(n), we define Kj,n as the number of nodes that select

the transmission power and rate pair Sj ∈ J given game state n, and we define

the capture probability qn(Sj|{Kj,n = kj, Sj ∈ J}) as the probability that any node

with action Sj is successful, if Kj,n = kj nodes employ each action Sj ∈ J .

A node selects any transmission rate Rj ∈ R (bits per time slot) by employing

a different adaptive modulation scheme. Specifically, we assume that each node

employs m-ary Quadrature Amplitude Modulation (QAM) (with constellation size

of m = 2Rj) or chooses to wait (m = 1). The probability of successful packet

reception of a node depends on the SINR value achieved at the receiver and on
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the modulation scheme (i.e. transmission rate). We consider a symmetric system

with identical nodes and denote by fm(γ) the probability that a node with action

Sj = (Pj, Rj), where Rj = log2 m, satisfies the SINR condition of γ ≥ γ∗. We use

the same utility functions of (3.74) and (3.75) as before. For any node with action

Sj, the energy cost is changed from E to EPj, if Rj > 0, and the throughput reward

is changed from r to rRj, whereas the capture probability is redefined as

qn(Sj|{Kj,n = kj, Sj ∈ J}) (3.79)

= fm

(
Pj 1(Rj > 0)

1
L
((kj − 1)Pj1(Rj > 0) +

∑|J |
i6=j kiEi 1(Ri > 0) + σ2

)
,

where 1(·) denotes the indicator function, which assigns the value 1 to a true state-

ment and the value 0 to a false statement. The Markov perfect equilibrium in

PRG(n) game corresponds to the power and rate control strategies P (x, y), for

all (x, y) ∈ J , that yield equal expected utilities. To find the symmetric equilib-

rium strategies, we need to equate the expected utilities of all joint power and rate

strategies. For numerical results, we use MATLAB to solve the resulting equalities.

The power levels (measured in unit power) are chosen from the set P =

{0, 1, 2, 3, 4, 5} and the ambient noise power is 0.1 unit power. The transmis-

sion rates (measured in number of bits per time slot) are selected from the set

R = {0, 1, 2, 3, 4}. The cost parameters are E = 0.1 and δ = 0.95. For comparison,

we also consider the non-cooperative game of selecting retransmission probabilities

for fixed and common transmission powers and rates, and modify the throughput

rewards and costs accordingly. We then evaluate the performance of the original

random access game G(n) by averaging or optimizing the expected utilities over the
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Figure 3.15: Non-cooperative equilibrium strategies for power and rate control game.

possible transmission power and rate levels common for each node.

The strategies and the corresponding expected utilities of the joint power

and rate control game PRG(n) are shown in Figures 3.15 and 3.16, respectively.

We also include in Figure 3.16 the expected utilities obtained in game G(n) that

are averaged or optimized over the common assignments of power and rate levels.

Numerical results indicate that the power and rate control game PRG(n) improves

the non-cooperative performance over the plain random access game G(n).

3.11 Summary and Conclusions

We addressed the problem of non-cooperative random access with selfish and

malicious transmitters. First, we modeled selfish nodes as individual decision mak-
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Figure 3.16: Non-cooperative equilibrium utilities for the random access game G(n)

and joint power and rate control game PRG(n).

ers with throughput, energy and delay objectives, and derived the non-cooperative

transmission probabilities in Nash Equilibrium. Then, we evaluated the effects of

malicious nodes that have the additional objectives of blocking the transmissions

of the other nodes. A distributed implementation followed from the adaptive best-

response update algorithms. We also illustrated the performance loss compared to

the cooperative strategies that maximize the weighted utility sum. In addition, a lin-

ear pricing scheme was introduced to improve the non-cooperative equilibrium and

distributed implementation was outlined. We also formulated a repeated random

access game of selecting retransmission probabilities depending on the contention

for the channel. Finally, we extended the model to a power and rate control game.

The game model is based on the perfect knowledge of the number of packets
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contending for the channel at each time slot. This is realized by immediate and

correct feedback from the receiver. Future work needs to look at the effects of partial

or erroneous feedback on the non-cooperative MAC operation. We will extend the

model to power-controlled MAC in Chapter 4. The ultimate goal is to envision a

passage to the multi-hop operation that would extend the strategy space and require

more complicated utility functions [40]. We will formulate a cross-layer framework

to represent the non-cooperative network operation through the joint consideration

of MAC with plain routing in Chapter 5 and with network coding in Chapter 7.

93



Chapter 4

Power-Controlled MAC Games for Non-Cooperative Wireless Access

We extend the non-cooperative operation to power-controlled MAC with SINR-

based channel model. We formulate a non-cooperative game of selecting the individ-

ual transmission powers and evaluate the interactions between selfish and malicious

transmitters at the MAC layer. We consider the performance objectives of optimiz-

ing the throughput rewards and energy costs reflected in the node utilities subject

to power constraints. We show the existence and uniqueness of the non-cooperative

Nash equilibrium strategies for two different classes of utility functions that repre-

sent either the linear combination or ratio of successful transmission rate and power

consumption. We also discuss the social equilibrium strategies that maximize the

total system utility. For distributed operation, we introduce adaptive best-response

update mechanisms that converge to the non-cooperative equilibrium. Finally, we

consider an alternative successful packet reception criterion based on fixed SINR

threshold and show that the existence and uniqueness of Nash equilibrium strongly

depend on the system parameters.

4.1 Introduction

The problem of power-controlled MAC has been extensively studied before

[41, 42, 43] for multiple nodes simultaneously transmitting to a single receiver. The
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main objective of distributed power control is to minimize the power consumption

while achieving the target SINR at the receiver for each transmitter. Power control

can be formulated as a non-cooperative game between selfish transmitters [44, 45, 46]

and can be combined with random access or rate control in a cross-layer design, as

outlined in Chapter 3.

Any transmitter may also have the malicious objective of reducing the trans-

mission rate or increasing the power consumption of the other selfish transmitter

nodes while minimizing the individual power consumption. The interactions of self-

ish and malicious transmitters have been evaluated in Chapter 3 for random access

[25]. For Gaussian multi-access channel, the problem of fair rate allocation has

been studied in [47] as a cooperative game of selfish nodes that can form coalition

to threaten each other with jamming the channel. In this chapter, we assume a

SINR-based successful packet reception criterion and formulate a non-cooperative

power control game between selfish and malicious transmitters with performance

objectives of throughput and power efficiency. We consider the problem of maxi-

mizing two different utility functions that represent the ratio or linear combination

of the successful packet transmission rate and power consumption subject to power

constraints. We evaluate the unique non-cooperative strategies of transmission pow-

ers in Nash equilibrium such that no node can unilaterally change the strategy to

improve the individual performance. We also consider another successful packet re-

ception criterion such that a packet is successfully received if the transmitter’s signal

power exceeds a fixed SINR threshold. In that case, we show that the Nash equi-

librium solutions may not be unique or may not exist depending on the throughput
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reward and power cost parameters.

For distributed operation, we introduce adaptive update mechanisms such

that each node repeatedly plays the best-response strategy. We also discuss the

social equilibrium strategies that maximize the weighted sum of the individual node

utilities in the system. Our objective is to provide insights for the optimal strategies

of jamming the channels of the selfish transmitter nodes as well as for the optimal

defense mechanisms against the denial of service attacks of malicious transmitter

nodes in power-controlled MAC operation.

The chapter is organized as follows. In section 4.2, we formulate the non-

cooperative power control game and introduce throughput rewards and energy costs.

We discuss two classes of utility functions in sections 4.3 and 4.4, and derive the

on-cooperative strategies in Nash equilibrium for two transmitters. We introduce

the best response updates in section 4.5 for distributed implementation. Then, we

discuss in section 4.6 the social equilibrium strategies that optimize the weighted

sum utility. The results are extended to the arbitrary number of selfish and malicious

transmitters in section 4.7. We discuss in section 4.8 an alternative measure for the

transmission rates based on a fixed SINR threshold, and evaluate the existence and

uniqueness of Nash equilibrium strategies. We collect final remarks in section 4.9.

4.2 System Model, Rewards and Costs

Consider set N of (selfish and malicious) transmitters and one common re-

ceiver. Each node i transmits one packet in each time slot with power Pi. We
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assume saturated queues and continuous packet transmissions. The channel gain

from transmitter i to the receiver is hi and the additive noise power is σ2. We con-

sider a SINR-based channel model such that the successful transmission probability

of any selfish node i is expressed as the throughput reward function fi(γi), where

γi = hiPi∑
k 6=i hkPk+σ2 is the SINR value achieved at the receiver. We focus on a simple

receiver model based on matched filter. However, the results can be extended to any

linear receiver. The throughput reward function fi depends on modulation, coding

and packet size. We assume that fi is a continuous, differentiable and increasing

function of γi, fi(0) = 1, fi(∞) = 0 and fi has a sigmoidal shape such that there

exists γ∗
i below which fi is convex and above which fi is concave. The desirable

properties of functions to represent the transmission rates have been discussed in

[45]. As an example, we have fi(γi) = (1 − e−γi)K for DPSK modulation with K

bits in each packet. We will relax some of these assumptions in section 4.8, and

consider an alternative function fi to show that the Nash equilibrium strategies do

not need to exist or to be unique.

Let Mi denote the set of selfish transmitters attacked by malicious trans-

mitter i. Any selfish or malicious transmitter i has the objective of maximiz-

ing fi(γi) or fi(γj, j ∈ Mi) =
∑

j∈Mi
(1 − fj(γj)), respectively. Also, any node i

needs to minimize the power consumption Pi. We consider Pi = [Pmin
i , Pmax

i ] as

the constraint set for the transmission power Pi of any node i. The objectives of

non-cooperative transmitters can be extended to include the delay-type costs [48].

Let Di denote the average number of time slots necessary to deliver the packet

of node i under transmission to the receiver. For saturated queues, Di has an
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exponential distribution such that Pr(Di = d) = fi(γi)(1 − fi(γi))
d−1. The de-

lay constraint Pr(Di ≤ Dmin) ≥ βmin for node i can be written as a lower bound

γi > γmin
i , where γmin

i = f−1
i

(
1 − (1 − βmin)

1
Dmin

)
. Any malicious node may have

the objective of imposing Pr(Di ≤ Dmax) ≤ βmax for selfish transmitter i such that

γmax
i = f−1

i

(
1 − (1 − βmax)

1
Dmax

)
. We will continue with the power constraints only,

although the results can be easily adapted to include SINR constraints [49]. Let P

denote the set of transmission powers. The non-cooperative optimization problem

for transmitter i is given by

max
Pi∈Pi,i∈N

ui(P ) . (4.1)

Our objective is to find the non-cooperative Nash equilibrium strategies P ∗
i ∈

Pi, i ∈ N , such that no node can unilaterally improve individual performance, i.e.

ui(P
∗) ≥ ui(Pi, P

∗
−i) for any Pi ∈ Pi , (4.2)

where P−i is the set of transmission powers of nodes except i.

4.3 Utility Function Type 1

Each node i has the objective of choosing Pi ∈ Pi to maximize the utility

function ui. Consider the utility function ui as the ratio of fi(γi) and Pi such that

ui(P ) =
fi(γi)

Pi

. (4.3)

4.3.1 Two Selfish Transmitters

Assume that each transmitter i = 1, 2 is selfish with the objective of optimizing

utility function ui(P1, P2) = fi(γi)
Pi

. The problem of maximizing ui(P1, P2) over Pi ∈
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Pi has the unique solution given by max(min(P ∗
i , Pmax

i ), Pmin
i ) such that P ∗

i satisfies

∂ui(P1,P2)
∂Pi

= 0, since fi(γi

Pi
is a quasi-concave function of Pi (i.e. there exists a value

of Pi below which fi(γi)
Pi

is non-decreasing and above which fi(γi)
Pi

is non-increasing).

We assume that the receiver uses matched filter such that γi = hipi

hjpj+σ2 for j 6= i.

Since ∂γi

∂Pi
= γi

Pi
for any linear receiver, the condition ∂ui(P1,P2)

∂Pi
= 0 is equivalent to

f ′
i(γi)γi = fi(γi), where f ′

i is the partial derivative of fi with respect to γi. Since

ui(P1, P2) is a quasi-concave in Pi for any given transmission power P−i, there exists

a unique equivalent SINR solution γ∗
i > 0 that satisfies f ′

i(γ
∗
i )γ

∗
i = fi(γ

∗
i ). For

i = 1, 2, we can solve γ∗
i =

hiP
∗
i

hjP ∗
j +σ2 , j 6= i, for P ∗

i , i = 1, 2. As a result, there exist

unique non-cooperative Nash equilibrium strategies given by

P ∗
i = max

(
min

(
σ2

hi

γ∗
i

1 + γ∗
j

1 − γ∗
1γ

∗
2

, Pmax
i

)
, Pmin

i

)
, (4.4)

where f ′
i(γ

∗
i )γ

∗
i = fi(γ

∗
i ), i = 1, 2. For different values of γ∗

i , i = 1, 2, we evaluate in

Table 4.1 the non-cooperative Nash equilibrium strategies P ∗
i , i = 1, 2.

Table 4.1: The Nash Equilibrium Strategies for Two Selfish Transmitters.

γ∗
1 = 0 P ∗

1 = Pmin
1 , P ∗

2 = max
(
min

(
σ2

h2
γ∗

2 , Pmax
2

)
, Pmin

2

)

γ∗
2 = 0 P ∗

1 = max
(
min

(
σ2

h1
γ∗

1 , Pmax
1

)
, Pmin

1

)
, P ∗

2 = Pmin
2

γ∗
1γ∗

2 = 0 P ∗
1 = Pmax

1 , P ∗
2 = Pmax

2

γ∗
1γ∗

2 > 1 P ∗
1 = Pmin

1 , P ∗
2 = Pmin

2

The equilibrium SINR values γ∗
i , i = 1, 2, follow from the equations f ′

i(γi)γi =

fi(γi), i = 1, 2, and are independent of the equilibrium transmissions powers P ∗
i ,

i = 1, 2, which, however, strongly depend on the equilibrium SINR values, as Table
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4.1 illustrates. If the equilibrium SINR γi = 0 of any selfish transmitter i diminishes

to 0, then it transmits with the minimum power Pmin
i to minimize the power cost,

while the other selfish node needs to combat the background noise only to achieve the

individual equilibrium SINR γ∗
k, k 6= i, and transmits with the minimum power σk

hk
γ∗

k,

provided that the equilibrium transmission power satisfies the power constraints.

As the equilibrium SINR values increase, nodes start increasing their trans-

mission powers to combat the noise and additional interference from the other selfish

node. The equilibrium transmission powers increase up to the maximum levels, as

γ∗
1γ

∗
2 approaches the value 1.

If the equilibrium SINR values are high enough such that γ∗
1γ

∗
2 > 1, then both

nodes achieve sufficiently high throughput rewards such that their only objective is

to minimize the transmission power cost such that both nodes transmit with the

minimum values of their transmission powers.

4.3.2 One Selfish and One Malicious Transmitter

Assume that transmitter 1 is selfish with utility function u1(P1, P2) = f1(γ1)
P1

and transmitter 2 is malicious with utility function u2(P1, P2) = 1−f1(γ1)
P2

. The

problem of maximizing u1(P1, P2) over P1 ∈ P1 has the unique solution given by

max(min(P ∗
1 , Pmax

1 ), Pmin
1 ) such that P ∗

1 satisfies ∂u1(P1,P2)
∂P1

= 0 for any P2, since

f1(γ1)
P1

is a quasi-concave function of P1. The problem of maximizing u2(P1, P2) over

P2 ∈ P2 has the unique solution given by P ∗
2 = max(min(P 2, P

max
2 ), Pmin

2 ) such that

P 2 satisfies ∂u2(P1,P2)
∂P2

= 0 for any P1. The condition ∂u1(P1,P2)
∂P2

= 0 is equivalent to
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f ′
1(γ1)γ1

h2P2

h2P2+σ2 = 1 − f1(γ1), since ∂γ1

∂P2
= − γ1h2

h2P2+σ2 for the matched filter receiver.

If u1(P1, P2) is quasi-concave in P1, u2(P1, P2) is quasi-concave in P2, i.e. there exist

unique non-cooperative Nash equilibrium solutions P ∗
i = max(min(P i, P

max
i ), Pmin

i ),

i = 1, 2, such that P 1 = σ2

h1
γ∗

1
f1(γ∗

1 )

2f1(γ∗
1 )−1

and P 2 = σ2

h2

1−f1(γ∗
1 )

2f1(γ∗
1 )−1

, where the resulting

SINR value is the unique solution to f ′
1(γ

∗
1)γ

∗
1 = f1(γ

∗
1). In summary, the unique

non-cooperative Nash equilibrium solutions are given by

P ∗
1 = max

(
min

(
σ2

h1

γ∗
1

f1(γ
∗
1)

(2f1(γ∗
1) − 1)

, Pmax
1

)
, Pmin

1

)
, (4.5)

P ∗
2 = max

(
min

(
σ2

h2

(1 − f1(γ
∗
1))

(2f1(γ∗
1) − 1)

, Pmax
2

)
, Pmin

2

)
, (4.6)

where f ′
1(γ

∗
1)γ

∗
1 = fi(γ

∗
1). The equilibrium transmission powers depend on the

throughput reward function evaluated at the equilibrium SINR γ∗
1 of selfish trans-

mitter 1, as Table 4.1 indicates.

For f1(γ
∗
1) < 0.5, the throughput reward of selfish node 1 is small enough

such that node 1 transmits only with the minimum power to minimize the power

cost and consequently individual utility. In the mean time, any further reduction

of the throughput reward of selfish node 1 cannot increase the utility of malicious

node 2 and therefore node 2 also needs to transmit with the minimum power only.

For f1(γ
∗
1) > 0.5, selfish node 1 needs to increase transmission power to increase

the equilibrium SINR γ∗
1 and consequently throughput reward f(γ∗

1). In the mean

time, malicious node 2 also increases transmission power to decrease the throughput

reward of node 1. If the equilibrium SINR maximizes f1(γ
∗
1) to 1, then malicious

node 2 needs to transmit with the minimum power level to minimize the power cost

without any effect on the utility of selfish node 1 and node 1 only needs to combat
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the background noise to achieve the equilibrium SINR γ∗
1 .

We compare three different cases of (a) single transmitter 1 (stand-alone),

(b) selfish transmitter 1 and selfish transmitter 2, and (c) selfish transmitter 1 and

malicious transmitter 2. The value of P ∗
1 in case (b) is greater than or equal to

the value of P ∗
1 in case (c), as the comparison of Eqs. (4.4) and (4.6) reveals. For

different values of fi(γ
∗
i ), i = 1, 2, we evaluate in Table 4.2 the non-cooperative Nash

equilibrium strategies P ∗
i , i = 1, 2.

Table 4.2: The Nash Equilibrium Strategies for One Selfish and One Malicious

Transmitter.

f1(γ
∗
1) = 0 P ∗

1 = Pmin
1 , P ∗

2 = Pmin
2

f1(γ
∗
1) = 0.5 P ∗

1 = Pmax
1 , P ∗

2 = Pmax
2

f1(γ
∗
1) = 1 P ∗

1 = max
(
min

(
σ2

h1
γ∗

1 , Pmax
1

)
, Pmin

1

)
, P ∗

2 = Pmin
2

Introduction of selfish transmitter 2 does not affect the SINR values of trans-

mitter 1. Transmitter 2 (selfish or malicious) in cases (b) and (c) increases power

cost P1 and reduces utility u1 compared to case (a). Malicious operation of trans-

mitter 2 in case (c) increases the power cost P1 compared to selfish operation in case

(b), if and only if

f1(γ
∗
1) <

1 + γ∗
2

1 + γ∗
2(2 + γ∗

1)
. (4.7)

For numerical results, we assume hi = 1, Pmin
i = 0, Pmax

i = ∞, i = 1, 2,

σ2 = 0.1 and f1(γ1) = (1−e−γ1)K , which denotes the success rate, if nodes use DPSK

(Differentiable Phase Shift Keying) modulation, where K represents the number of
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bits in each packet. We compare two different cases before and after malicious

transmitter 2 attacks selfish transmitter 1. Figure 4.1 depicts the transmission

powers P1 and P2 as function of K. The SINR value achievable by transmitter 1 is

shown in Figure 4.2 as function of K.
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Figure 4.1: SINR value γ1 of selfish transmitter 1 for utility function type 1.

The individual utilities u1 and u2 are depicted in Figure 4.3 as function of K.

Malicious operation of transmitter 2 increases power cost P1 and reduces utility u1

of transmitter 1 (but cannot change γ1).

4.4 Utility Function Type 2

As considered in [50] and [51] for selfish transmitters, we redefine the utility

function ui of node i as the linear combination of fi(γi) and Pi with non-negative
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Figure 4.2: Transmission powers P1 and P2 for utility function type 1.

constant αi such that

ui(P ) = fi(γi) − αipi . (4.8)

4.4.1 Two Selfish Transmitters

Assume that each transmitter i = 1, 2 is selfish with utility function ui(P1, P2) =

fi(γi) − αiPi. For transmitter i = 1, 2, the problem of maximizing ui(P1, P2) over

Pi ∈ Pi has the unique solution given by P ∗
i = max(min(P i, P

max
i ), Pmin

i ) such that

P i satisfies ∂ui(P1,P2)
∂Pi

= 0 for any given transmission power level P−i of the node other

than i. The condition ∂ui(P1,P2)
∂Pi

= 0 is equivalent to f ′
i(γi)γi = αiPi, i = 1, 2, such

that for γ∗
i =

hiP
∗
i

hjP ∗
j +σ2 for j 6= i there exist unique non-cooperative Nash equilibrium

solutions given by

P ∗
i = max

(
min

(
f ′

i (γ∗
i )

γ∗
i

αi

, Pmax
i

)
, Pmin

i

)
. (4.9)
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Figure 4.3: Utilities u1 and u2 for utility function type 1.

4.4.2 One Selfish and One Malicious Transmitter

Assume that transmitter 1 is selfish with utility function u1(P1, P2) = f1(γ1)−

α1P1 and transmitter 2 is malicious with utility function u2(P1, P2) = 1 − f1(γ1) −

α2P2. The condition ∂u1(P1,P2)
∂P1

= 0 is equivalent to f ′
1(γ1)γ1 = α1P1. By us-

ing f2(γ1) = 1 − f1(γ1), the condition ∂u2(P1,P2)
∂P2

= 0 is equivalent to f ′
1(γ1)γ1 =

α2

h2
(h2P2 + σ2). If we combine the conditions ∂ui(P1,P2)

∂Pi
= 0, i = 1, 2, we obtain the

unique SINR value γ∗
1 = max

(
min

(
h1α2

h2α1
, γmax

1

)
, γmin

1

)
of transmitter 1. Therefore,

there exist unique Nash equilibrium solutions given by

P ∗
1 = max

(
min

(
f ′

1 (γ∗
1)

γ∗
1

α1

, Pmax
1

)
, Pmin

1

)
, (4.10)

P ∗
2 = max

(
min

(
f ′

1 (γ∗
1)

γ∗
1

α2

− σ2

h2

, Pmax
2

)
, Pmin

2

)
, (4.11)

where γ∗
1 = h1α2

h2α1
. For numerical results, we assume hi = 1, αi = 1, Pmin

i = 0,

Pmax
i = ∞, i = 1, 2, σ2 = 0.1 and f1(γ1) = (1 − e−γ1)K . We compare two different
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cases before and after malicious transmitter 2 attacks selfish transmitter 1. Figure

4.4 depicts the transmission powers P1 and P2 as function of K. The SINR value

achievable by transmitter 1 is shown in Figure 4.5 as function of K. The individual

utilities u1 and u2 are depicted in Figure 4.6. Malicious operation of transmitter 2

reduces SINR value γ1 and utility u1 of transmitter 1 (but may or may not increase

power cost P1 depending on function f1).
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Figure 4.4: SINR value γ1 of selfish transmitter 1 for utility function type 2.

4.5 Best Response Update Mechanisms for Distributed Operation

We consider one selfish and one malicious transmitter, and assume that each

node explicitly knows SINR value γ1. We consider the adaptive best-response update

mechanisms such that at any iteration time k + 1 node i = 1, 2 chooses

Pi(k + 1) = arg max Pi∈Pi,i=1,2 ui(Pi, Pj(k)), j 6= i. (4.12)
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Figure 4.5: Transmission powers P1 and P2 for utility function type 2.

An iterative power control algorithm P (k + 1) = A(P (k)), where P (k) =

[P1(k), P2(k)], is said to be standard [43], if matrix A satisfies A(P ) > 0, A(P ′) ≥

A(P ), if P ′ ≥ P , and µA(P ) > A(µP ) for µ > 1. The best-response updates

given by Eq. (4.12) result in standard power control algorithm and converge to the

non-cooperative Nash equilibrium solutions.

4.6 Comments on Social Equilibrium

We consider the problem of jointly maximizing the weighted utility sum, i.e.

max
Pi∈Pi, i=1,2

∑

i=1,2

βi ui(P1, P2), (4.13)

where βi is the weight assigned to the utility ui of node i. We assume one selfish

and one malicious transmitter, and consider utility function type 2 (although similar

results hold for utility function type 1). We use the Lagrangian multiplier method
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Figure 4.6: Utilities u1 and u2 for utility function type 2.

such that the objective is to maximize

L(P1, P2) =
2∑

i=1

(βiui(P1, P2) − λ1,i(Pi − Pmax
i ) − λ2,i(−Pi + Pmin

i )) (4.14)

over Pi ∈ Pi = [Pmin
i , Pmax

i ], i = 1, 2, for non-negative constants λi,j, i = 1, 2 and

j = 1, 2. The KKT conditions for the optimal solutions are given by

∂L(P1, P2)

∂Pi

= 0, (4.15)

Pi ≤ Pmax
i , λ1,i > 0, λ1,i(Pi − Pmax

i ), (4.16)

Pi ≥ Pmin
i , λ2,i > 0, λ2,i(−Pi + Pmin

i ) (4.17)

for i = 1, 2. Condition (4.15) can be expressed as

(β1 − β2)f
′
1(γ1)

γ1

P1

− β1α1 − λ1,1 + λ2,1 = 0, (4.18)

−(β1 − β2)f
′
1(γ1)

γ1h2

h2P2 + σ2
− β2α2 − λ1,2 + λ2,2 = 0. (4.19)
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Conditions (4.18)-(4.19) are satisfied, if and only if

β1αi + λ1,i − λ2,i = 0, i = 1, 2. (4.20)

We need to satisfy λ2,1 > 0 and λ2,2 > 0, whereas λ1,1 = 0 and λ1,2 = 0.

Therefore, the KKT conditions (4.17) require that Pi = Pmin
i , i = 1, 2. The same

solutions also hold for the case of two selfish transmitters.

4.7 Arbitrary Number of Selfish and Malicious Transmitters

Consider disjoint sets S and M (of arbitrary cardinality) of selfish and mali-

cious transmitters. Any transmitter i ∈ M attacks all transmitters in set S. Define

fi,j(γj) as the reward or cost received by node i, when node j achieves the SINR

value of γj.

4.7.1 Utility Function Type 1

The utility of transmitter i ∈ S is ui(P ) = fi(γi)
Pi

and the utility of node i ∈ M is

ui(P ) =
∑

j∈S fi,j(γj)

Pi
. For simplicity, we assume fi,j(γj) = 1−fj(γj) for any malicious

node i, where γj =
hjPj∑

k/∈j hkPk+σ2 . For any selfish transmitter i ∈ S, the condition

∂ui(P )
∂Pi

= 0 is equivalent to f ′
i(γi)γi = fi(γi). By definition, the utility function fi(γi)

Pi

is quasi-concave in Pi. Therefore, there exists a unique equilibrium SINR value of γ∗
i

that satisfies f ′
i(γ

∗
i )γ

∗
i = fi(γ

∗
i ). For any malicious transmitter i ∈ M , the condition

∂ui(P )
∂Pi

= 0 is equivalent to

∑

j∈S

f ′
j(γj)γj

(
hi∑

k/∈j hkPk + σ2

)
=
∑

j∈S

(1 − fj(γj)). (4.21)
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The non-cooperative Nash equilibrium strategies for f ′
i(γ

∗
i )γ

∗
i = fi(γ

∗
i ), i ∈ S,

are given by P ∗
i = max(min(P i, P

max
i ), Pmin

i ), where

P i =
1

hi

∑
j∈S(1 − fj(γ

∗
j ))

∑
j∈S

fj(γ∗
j )γ∗

j

hjP ∗
j

, i ∈ M, (4.22)

P i =
1

hi

γ∗
i (
∑

k 6=i

hkPk + σ2) , i ∈ S. (4.23)

4.7.2 Utility Function Type 2

The utility of node i ∈ S is ui(P ) = fi(γi) − αiPi and the utility of node

i ∈ M is ui(P ) =
∑

j∈S(1 − fj(γj)) − αiPi. From ∂ui(P )
∂Pi

= 0, i ∈ N , the non-

cooperative Nash equilibrium strategies such that
∑

j∈S
αj

hj
γ∗

j = αi

hi
, i ∈ M , are given

by P ∗
i = max(min(P i, P

max
i ), Pmin

i ), where

P i =
1

αi

f ′
i(γ

∗
i )γ

∗
i , i ∈ S, (4.24)

P i =
hjP

∗
j

hiγ∗
j

(
∑

k 6=i,k 6=j

hkP
∗
k + σ2) , i ∈ M, for any j ∈ S. (4.25)

4.7.3 Numerical Results

Assume αi = 1, hi = 1, Pmin
i = 0, Pmax

i = ∞, i ∈ N , σ2 = 0.1 and

fi(γi) = (1−e−γi)2, i ∈ S. The symmetric non-cooperative Nash equilibrium strate-

gies are depicted as function of the number of malicious transmitters in Figure 4.7 for

one selfish transmitter and utility function type 1. The symmetric non-cooperative

Nash equilibrium strategies are depicted as function of the number of selfish trans-

mitters in Figure 4.8 for one malicious transmitter and utility function type 2. As

the number of malicious nodes increases, a smaller power level is sufficient to jam
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transmissions of selfish nodes, whereas the power level of selfish node is not affected

for utility function type 1 and decreases for utility function type 2.
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Figure 4.7: Transmission powers for utility function type 1.

4.8 Alternative Measures for Transmission Rates

So far, we modeled the transmission rate of transmitter i by a continuous and

differentiable function fi. In this section, we consider a successful packet reception

criterion based on SINR threshold that restricts function fi to

fi(γi) =





1 , if γi ≥ Γi

0 , otherwise

(4.26)

such that a packet is successfully received, if transmitter i exceeds the predetermined

SINR threshold. We consider one selfish and one malicious transmitter with utility

function type 1. If Pi = [0,∞), i = 1, 2, there exists no finite power level in non-
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Figure 4.8: Transmission powers for utility function type 2.

cooperative Nash equilibrium, since given any Pi, i = 1, 2, node j 6= i needs to

increase transmission power Pj to improve performance. If Pi = [0, Pmax
i ], i = 1, 2,

there may exist multiple Nash equilibrium strategies

P ∗
1 = Γ1

h2P
max
2 + σ2

h1

, P ∗
2 ∈ [0, Pmax

2 ], if Γ1
h2P

max
2 + σ2

h1

< Pmax
1 < ∞,(4.27)

P ∗
1 ∈ [0, Pmax

1 ], P ∗
2 =

h1Pmax
1

Γ1
− σ2

h2

, if

h1Pmax
1

Γ1
− σ2

h2

< Pmax
2 < ∞, (4.28)

P ∗
i = 0, i = 1, 2, if

Γ1σ
2

h1

> Pmax
1 (4.29)

depending on system parameters. On the other hand, if we consider utility function

type 2, there exist unique Nash equilibrium strategies

P ∗
1 = Γ1

h2P
max
2 + σ2

h1

, P ∗
2 = 0, if Γ1

h2P
max
2 + σ2

h1

< min

(
Pmax

1 ,
1

α1

)
, (4.30)

P ∗
1 = 0, P ∗

2 =

h1Pmax
1

Γ1
− σ2

h2

, if

h1Pmax
1

Γ1
− σ2

h2

< min

(
Pmax

2 ,
1

α2

)
. (4.31)
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4.9 Summary and Conclusions

We addressed the problem of power control for selfish and malicious trans-

mitters, and formulated a non-cooperative game of selecting transmission powers to

optimize the individual objectives of throughput and energy efficiency. We used two

different utility functions to derive the non-cooperative Nash equilibrium strategies.

For distributed implementation, we presented the best-response update mechanisms

that converge to Nash equilibrium. We also discussed the social equilibrium strate-

gies that optimize the total system utility. The extension to multi-hop communi-

cation requires more complicated utility functions, as we will consider in Chapter

5 for the case of random access with collision channels. Further implications on

energy and delay efficiency should be also explored. Our analysis was based on

the assumption of uninterrupted availability of packets to be transmitted by self-

ish transmitters. Future work should consider the stable operation with random

packet arrivals and possibly emptying packet queues, as we discussed in Chapter 3

for random access.
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Chapter 5

A Game-Theoretic Analysis of Joint MAC and Routing in

Non-Cooperative Wireless Networks

We extend the non-cooperative MAC operation to multi-hop communication

and address the cross-layer problem of joint MAC and routing over a single relay

channel. A stochastic game is formulated for transmitter and relay nodes competing

over collision channels to deliver packets to a common destination node using alter-

native paths. We rely on a reward mechanism to stimulate cooperation for packet

forwarding and evaluate the conflicting multiple access and routing strategies of

direct communication and relaying through a detailed foray into the questions of

cooperation incentives, throughput, delay and energy efficiency. We assume random

packet arrivals such that the transmission strategies depend on the availability of

packets at source and relay queues. We study the interactions among the equilibrium

strategies under the separate models of selfish and cooperative network operation.

We also developed a distributed adaptive algorithm for the case of unknown system

parameters.

5.1 Introduction

We have studied in Chapters 3 and 4 the non-cooperative wireless network

operation at the MAC layer. The extension to multi-hop operation introduces new
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challenges and requires game models with extended strategy spaces and more com-

plicated utility functions. If the transmission signal is modeled as decaying with dis-

tance, transmitter nodes might prefer relaying packets through intermediate nodes

and over alternative paths (depending on node locations) in order to preserve trans-

mission energy and reduce the interference effects throughout the network. However,

the additional distance traveled by packets in multi-hop operation may increase the

packet delay and reduce the throughput, especially if we do not allow simultaneous

packet transmission and reception by any node. In addition, packet forwarding in-

creases the energy consumption and decreases the throughput of relay nodes. The

throughput objectives of (transmitter and relay) nodes conflict further, if the packet

transmissions share a single collision channel based on random access.

To understand the tradeoffs that involve energy, interference and distance limi-

tations, we strip out all complexities introduced by multiple source-destination pairs

and focus on a simple relay channel topology, namely an ad hoc wireless network of

a transmitter and relay node both with individual packet traffic addressed to a com-

mon destination. The relaying operation is only possible over the relay node that is

chosen as the one closest to the destination. The relay channel has been extensively

analyzed in terms of throughput and (information-theoretic) capacity properties

[52] for the case of full cooperation of transmitter and relay nodes. Instead, we

formulate the communication incentives over the relay channel as a stochastic game

between transmitter and relay nodes with conflicting interests of throughput, energy

efficiency and delay.

For single-hop transmissions, the game theory has been applied to study the
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information-theoretic multi-access channels [47], practical collision channels based

on random access (in Chapter 3) and power-controlled MAC (in Chapter 4). How-

ever, some form of multi-hop routing operation is unavoidable in full-fledged net-

works with topology and energy limitations. The classical routing problem inher-

ently assumes full cooperation of nodes for relaying purposes in wireline networks,

whereas game formulations are needed to study the conflicting routing objectives

[53]. The extension to ad hoc wireless networks should incorporate the joint oper-

ations of MAC and routing with distributed implementation. There is a need to

develop cooperation stimulation mechanisms for packet forwarding [54, 55, 56].

In this chapter, we evaluate the fundamental tradeoffs between the two ex-

tremes of cooperation and selfishness in terms of two basic (joint MAC and routing)

strategies of direct communication and relaying. Our ultimate objective is to ap-

ply the basic game-theoretic tools to understand the efficient operational modes

of multi-hop wireless networks starting from the simplest building block of relay

channels. In our game formulation, the transmitter node selects one of the three

possible actions of transmitting packets directly to the final destination, delivering

them first to the closer relay node, or simply waiting. On the other hand, the re-

lay node chooses between direct transmission and waiting, if it has its own packet

to transmit. Otherwise, it decides on whether to accept or reject a packet of the

transmitter node. Instead of using external enforcement, we introduce a reward

mechanism to stimulate the cooperation of relay node to forward packets. The

proposed non-cooperative game formulation allows selfish nodes to select the proba-

bility distributions over their available actions with the objective of optimizing their
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individual performance measures of throughput, delay and energy consumption. On

the other hand, the full cooperation among nodes is formulated as a team problem

of optimizing the total system performance.

The chapter is organized as follows. Section 5.2 describes the relay channel

model, possible strategies, rewards and costs of transmitter and relay nodes. Af-

ter introducing the general framework for two-person stochastic games in section

5.3, we devote section 5.4 to formulate non-cooperative communication over the

relay channel as a stochastic game. Section 5.5 provides numerical results for co-

operative and non-cooperative equilibrium strategies. Then, section 5.6 describes a

distributed adaptive algorithm under the assumption of limited information on the

system parameters. In section 5.7, we improve the relaying mechanism by offering

higher transmission priority to the new and forwarded packets. We collect the final

remarks in section 5.8.

5.2 Network Model for the Simple Relay Channel

We consider a static relay channel topology of a transmitter node (node 1), a

relay node (node 2) and a common destination node (node 3), as shown in Figure 5.1.

Nodes 1 and 2 independently generate packets destined to a common destination at

each time slot with probability λ1 and λ2, respectively, provided that their individual

queues were empty at the end of the previous slot. To simplify the analysis, we

assume that the maximum buffer capacity is one.

As the routing strategy, node 1 chooses between sending packets directly to
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Relay Node (Node 2)

Tranmitter Node (Node 1) Destination Node (Node 3)

Figure 5.1: The simple relay channel model.

node 3 or relying on node 2 to forward them to the final destination, whereas node

2 has the only option of transmitting packets directly to node 3. We consider

the classical collision channel model for both transmissions to the relay node and

common destination node. Transmitter and relay nodes also have to choose between

transmitting and waiting as means of random access to collision channels.

At each receiver node (namely node 2 or 3), transmissions are subject to one

of the three possible channel outputs, namely idle, success or collision, whenever

0, 1 or more than one packet reach the particular receiver in the given time slot.

We assume that the simultaneous transmissions to different receivers destructively

interfere with each other. Also, we do not allow simultaneous transmission and

reception by any node at any time slot as an extension of the single-receiver MAC

model in Chapters 3 and 4. Another form of unsuccessful transmission (i.e. packet

collision) occurs, if node 1 transmits to node 2, which has already a packet in its

queue or does not accept the packet from node 1 to forward to the final destination.

In any case of packet collision, the backlogged nodes attempt to retransmit their

packets in the subsequent slots for reliable communication.
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5.2.1 Cooperation Stimulation Mechanism for Relaying

Node 2 cannot accept the packet of node 1, whenever it has a packet to transmit

in its queue. Otherwise, node 2 decides on whether to accept or reject a packet

(possibly) arriving from node 1. If node 2 accepts a packet of node 1, node 2 does

not generate any new packet during that particular time slot and undertakes all

future rewards and costs of the accepted packet by paying in return an immediate

reward c to node 1. The proposed strategy of charging the relay node an immediate

payoff for the forwarded packet and offering instead a future throughput reward of

value 1 (common for all delivered packets) will stimulate the cooperation of node 2

to deliver the forwarded packet to the final destination. We assume that node 1 is

immediately informed of whether the transmitted packet is accepted by node 2 or

not.

For each successful transmission to the common destination, the transmitting

node (1 or 2) receives a throughput reward of value 1. Node 1 receives a reward c

from node 2 for delivering a packet to node 2, which can obtain the full throughput

credit of value 1 only after successfully transmitting that particular packet to the

final destination in a subsequent time slot. Each packet transmission attempt from

node i to node j incurs an energy cost Ei,j ≥ 0. The transmission power is chosen

as the smallest value that would result in successful packet reception in the absence

of interfering transmissions. If the signal power decays with distance r as 1
rα , where

α ≥ 2 is the path loss exponent, the energy cost Ei,j can be expressed as E0 rα
i,j

for some positive constant E0, where ri,j denotes the distance between nodes i and
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j. Each slot of packet delay results in an additive cost D for the node that has

the particular packet in its queue (regardless of the source of that packet). The

immediate utility of any node is defined as the difference between the reward and

cost obtained during the preceding time slot.

5.3 A Framework for Two-User Stochastic Games

A two-user game is described by the tuple {K,A1,A2, T, u1, u2}, where K is

the state space, Ai is the action space of user i = 1, 2, T : K×A1 ×A2 ×K → [0, 1]

is a transition probability function, and ui : K × A1 × A2 → ℜ is an immediate

utility function of user i. We consider a slotted system with all users synchronously

selecting their actions at the beginning of each time slot. Suppose that the game

is in state kt ∈ K in time slot t and the users play actions At
1 ∈ A1 and At

2 ∈

A2. Then, each user i receives the immediate utility ui(k
t, At

1, A
t
2) and the game

moves in the next time slot t + 1 to state kt+1 ∈ K with the probability given by

the transition function T (kt+1|kt, At
1, A

t
2). We define a history ht at time t to be

the sequence of the current state, previous states and previous actions such that

ht = (k1, A1
1, A

1
2, ..., k

t−1, At−1
1 , At−1

2 , kt). Let H t be the set of all possible histories

until time t. A mixed strategy si for user i is a sequence of st : H t → P (Ai),

which is a function that assigns to H t a probability measure over the action set

of user i. Let s = (s1, s2) denote the joint mixed strategies of the two users. Any

initial state distribution β and strategy s jointly define the probability measure Ps,β,

which determines the distributions of the stochastic process {kt, At
1, A

t
2} of states
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and actions for all t ≥ 1. The (undiscounted) time-average utility (per time slot) of

user i is defined as

uβ
i (s) = lim

tf→∞

1

tf
Es,β [

tf∑

t=1

ui(k
t, at

1, a
t
2) ], (5.1)

where the expectation Es,β is taken over Ps,β. In the non-cooperative game, user i

independently selects si to maximize uβ
i (s). In the cooperative team problem, users

jointly select s to maximize the total utility
∑2

i=1 uβ
i (s).

The given formulation of the stochastic games is based on the assumption

that all states of the game are perfectly observable by all users (i.e. transmitter

and relay nodes). However, the particular problem of communication over the relay

channel topology does not fit in this framework, since nodes can only have partial

information on the state of the game, which should in some form represent the

evolution of the packet queues. As a simple but effective solution, we define the

content of (transmitter and relay) queues (e.g. whether each queue has a new, a

backlogged, a forwarded or no packet) as the state of the game (on which the node

strategies will be based) and restrict the information of each node to its own packet

queue (ignoring the partial information that nodes can have on the content of each

other’s queue). For tractable analysis, we need to modify the previous game model

and redefine the strategies and expected utilities as follows.

We consider only the stationary (mixed) strategies of the form si,k(Ai) =

{si,k(A), A ∈ Ai} such that si,k(A) assigns the (stationary) probability distribution

to action A ∈ Ai of each user i at state k ∈ K. We follow the Markov game as-

sumption such that the decisions of users are only based on the current state kt ∈ K
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(independent of time t) instead of the entire history H t. For user i, the random

strategy space is defined as the shortest probability vector si that can uniquely

describe the non-deterministic strategies {si,k(A), A ∈ Ai, k ∈ K}, which are not

(necessarily) limited to the probability 0 or 1. We denote by s = (s1, s2) the joint

space of the random stationary strategies of both users. For any stationary strat-

egy s, the state kj ∈ K has the stationary distribution πj(s) such that the vector

π(s) = {πj(s), kj ∈ K} satisfies the global balance equations π(s) = π(s)T(s), where

T(s) denotes the state transition matrix. The (k1, k2)th entry of T(s) gives the prob-

ability of transition from state k1 to k2 under the stationary strategy s (i.e. the prob-

ability is averaged over the possible actions of nodes and the channel outcomes) and

can be explicitly derived as
∑

A1∈A1,A2∈A2
T (k2|k1, A1, A2)s1,k1(A1)s2,k2(A2), where

T (k2|k1, A1, A2) is the stationary state transition probability from state k1 ∈ K to

state k2 ∈ K, if the actions of users are A1 ∈ A1 and A2 ∈ A2. For the case of par-

tially observable states, we use the expectation over the state distributions (rather

than the time-average form of Eq. (5.1)) to define ui(s) as the stationary utility per

time slot expected by user i:

ui(s) =
∑

kj∈K
πj(s) E[ui(kj, s)], (5.2)

where E[ui(kj, s)] denotes the immediate utility (over a single time slot) expected

by user i, if the joint strategy s is played at state kj. The objective of the non-

cooperative user i is to select the strategy si independently to maximize the expected

utility ui(s). In the cooperative case, both users jointly select s to maximize the

total utility
∑2

i=1 ui(s).
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5.4 Communication over Relay Channel as a Stochastic Game

5.4.1 State Definition

For communication over the simple relay channel, the state of the joint multiple

access and routing game between transmitter and relay nodes is defined as (Q1, Q2),

where Q1 and Q2 denote the queue contents of node 1 and 2, respectively. For

i = 1, 2, the quantity Qi takes the value 0 or 1, if no or one packet (independent

of whether it is a new, forwarded or backlogged packet) is present at the queue of

node i. We assume that new and forwarded packets are immediately backlogged,

before they are transmitted for the first time, i.e. nodes do not distinguish between

the transmission strategies of the packets in their queues.

The four states of the resulting game are ordered in the state space as given by

K = {(0, 0), (0, 1), (1, 0), (1, 1)}. Since nodes have reliable information only on their

own queues, we assume that the strategy of each node i is based on Qi rather than

on the partial information of the complete state (Q1, Q2). In section 5.7, we will

extend the state space to include forwarded and backlogged packets as additional

types of queue contents to exploit more efficiently the side information of nodes on

each other’s packet queues.

5.4.2 Action Space and Mixed Stationary Strategies

The actions available to node 1 are A1
1 (transmitting to node 3), A1

2 (transmit-

ting to node 2) and A1
3 (waiting), i.e. we have A1 = {A1

1, A
1
2, A

1
3}. The mixed station-

ary strategies are s1,k(A
1
1, A

1
2, A

1
3) = (p1

1, p
1
2, 1−p1

1 −p1
2) for states k ∈ {(1, 0), (1, 1)},
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where p1
1, p1

2 and 1− p1
1 − p1

2 denote the probabilities of selecting actions A1
1, A1

2 and

A1
3, respectively. Node 1 has the stationary strategy s1,k(A

1
1, A

1
2, A

1
3) = (0, 0, 1) for

states k ∈ {(0, 0), (0, 1)}. The random strategy space of node 1 is uniquely described

by s1 = (p1
1, p

1
2).

Node 2 has the available actions A2
1 (transmitting to node 3) and A2

2 (wait-

ing) for states (0, 1), (1, 1), and has the available actions A2
3 and A2

4 (accepting

and rejecting a packet transmitted from node 1) for states (0, 0), (1, 0). Thus,

we have A2 = {A2
1, A

2
2, A

2
3, A

2
4}. The mixed stationary strategies of node 2 are

s2,k(A
2
1, A

2
2, A

2
3, A

2
4) = (p2

1, 1 − p2
1, 0, 1) for states k ∈ {(0, 1), (1, 1)}, where p2

1 and

1− p2
1 denote the probabilities of selecting actions A2

1, A2
2 at states (0, 1) and (1, 1),

and s2,k = (0, 1, p2
3, 1 − p2

3) for states k ∈ {(0, 0), (1, 0)}, where p2
3 and 1 − p2

3 de-

note the probabilities of selecting actions A2
3, A2

4 at states (0, 0) and (1, 0). The

random strategy space of node 2 is uniquely described by the stationary distri-

bution s2 = (p2
1, p

2
3) and the joint set of random stationary strategies is given by

s = (p1
1, p

1
2, p

2
1, p

2
3).

5.4.3 State Transition Matrix and Utility Functions

For any stationary strategy s, the evolution of (Q1, Q2) follows a two-dimensional

ergodic Markov chain, which is irreducible and aperiodic with finite number of

states such that there exists a unique stationary distribution π(s). If the strat-

egy s = (p1
1, p1

2, p2
1, p2

3) is played, the ith row Ti(s) of the state transition matrix

T(s) is given by
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T1(s) = [(1 − λ1)(1 − λ2), (1 − λ1)λ2, λ1(1 − λ2), λ1λ2],

T2(s) = [(1 − λ1)p
2
1(1 − λ2), (1 − λ1)(1 − p2

1 + p2
1λ2), λ1p

2
1 (1 − λ2),

λ1(1 − p2
1 + p2

1 λ2)],

T3(s) = [p1
1(1 − λ1)(1 − λ2), (1 − λ1)(p

1
1λ2 + p1

2p
2
3),

(1 − λ2)(1 − p1
1 − p1

2 + p1
1λ1 + p1

2(1 − p2
3)),

(1 − p1
1 − p1

2) λ2 + p1
2p

2
3λ1 + p1

2(1 − p2
3)λ2 + p1

1λ1λ2],

T4(s) = [0, p1
1 (1 − λ1)(1 − p2

1), (1 − p1
1 − p1

2) p2
1(1 − λ2),

(1 − p1
1 − p1

2)(1 − p2
1 + p2

1λ2 + p1
1 p2

1 + p1
2 + p1

1 λ1(1 − p2
1)].

If nodes follow the strategy s = (p1
1, p1

2, p2
1, p2

3), the expected utilities u1(s)

and u2(s) are given by

u1(s) = π3(s)[ p
1
1(1 − E1,3) + p1

2(p
2
3c − (1 − p2

3)D − E1,2) − (1 − p1
1 − p1

2)D] (5.3)

+π4(s)[p
1
1(−E1,3 + 1 − p2

1 − p2
1D) + p1

2(−E1,2 − D) − (1 − p1
1 − p1

2)D],

u2(s) = π2(s)[p
2
1(1 − E2,3) − (1 − p2

1)D] + π3(s)[−p1
2p

2
3c] (5.4)

+π4(s)[p
2
1(−E2,3 + 1 − p1

1 − p1
2 − (p1

1 + p1
2)D) − (1 − p2

1)D].

The term u2(s) seems to decrease monotonically with increasing p2
3 such that

accepting packets is malicious to node 2. However, if p2
3 increases, then π2(s) and

π4(s) can increase, while π3(s) is decreasing (depending on λ1 and λ2). This will

compensate the decrease in u2(s) because of the term p1
2p2

3 c. Although node 1 seems

to benefit from an increase in p2
3, the increase in T32(s) can shift distribution from
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state (1, 0) to (0, 1) and consequently decrease u1(s). Thus, we cannot necessarily

expect the pure strategy p2
3 ∈ {0, 1} for all values of c.

The collision channel with two uplink nodes is equivalent to the case of direct

communication (p1
2 = 0 or p2

3 = 0) in the proposed game model (as was studied in

Chapter 3 for saturated queues with infinite buffer capacities). On the other hand,

the pure strategy of two-hop relaying (i.e. p1
1 = 0) can be used to model the special

case of very large values of E1,3 compared to E1,2.

For selfish users, we evaluate the strategies in Nash Equilibrium such that

no user can improve its own utility, if the strategies of the other users remain the

same. Thus, we are interested in the problem of finding the equilibrium strategies

s∗ = (s∗1, s
∗
2) such that u1(s

∗) ≥ u1(s1, s
∗
2) and u2(s

∗) ≥ u2(s
∗
1, s2) for any strategy s =

(s1, s2). The best response correspondence of node 1 (if node 2 plays the strategy s2)

is defined as B1(s2) = arg max{s1} u1(s1, s2), and the best response correspondence of

node 2 (if node 1 plays the strategy s1) is defined as B2(s1) = arg max{s2} u2(s1, s2).

As a result, the non-cooperative Nash equilibrium s∗ = (s∗1, s
∗
2) is simply given by

s∗1 ∈ B1(s
∗
2) and s∗2 ∈ B2(s

∗
1). The cooperation between transmitter and relay nodes

can be set up as a team problem of maximizing uΣ(s) =
∑2

i=1 ui(s) over s such that

π(s) = π(s)T(s), 0 ≤ πj(s) ≤ 1 for any kj ∈ K, and
∑

kj∈K πj(s) = 1.

5.5 Performance Evaluation of Relay Channel Communication

For numerical results, we consider the common system parameters: E1,3 = 0.2,

E1,2 = 0.1, E2,3 = 0.1, D = 0.1, c = 0.5, λ1 = 0.25 and λ2 = 0.25. For the non-
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cooperative case, we illustrate the equilibrium strategies (namely the probabilities

p1
1, p1

2, p2
1 and p2

3) as functions of E1,3, c, λ1 and λ2 in Figures 5.2, 5.3, 5.4 and 5.5,

respectively.
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Figure 5.2: Effects of energy cost E1,3 on non-cooperative equilibrium strategies.

We observe from Figure 5.2 that low values of E1,3 support the direct commu-

nication (with p1
2 = 0), whereas node 1 transfers the distributions from p1

1 to p1
2 with

increasing E1,3 and starts operating only in two-hop relaying mode (with p1
1 = 0) for

high values of E1,3. As shown in Figure 5.3, node 1 selects p1
2 = 0 for c < 0.37 and

node 2 selects p2
3 = 0 for c > 0.71, whereas node 1 counteracts by switching to direct

communication strategy with p1
2 = 0. The mixed strategies of direct communication

and relaying are only possible for intermediate values of c between 0.37 and 0.71.

Figures 5.4 and 5.5 show that both strategies p2
3 and p1

2 are inversely propor-

tional to the packet generation probabilities λ1 and λ2. The probabilities p1
1 + p1

2
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Figure 5.3: Effects of reward c for cooperation stimulation on non-cooperative equi-

librium strategies.

and p2
1 of multiple access strategies decrease first with increasing λ1 and λ2, until

both nodes respond to each other’s strategy by becoming more aggressive in their

transmission decisions (i.e. increasing p1
1 and p2

1) to keep pace with high arrival

rates. Further increases in λ1 or λ2 cause intensive packet accumulation at both

nodes that increases π4(s) close to 1 and restricts node 1 to the strategy p1
2 = 0 (i.e.

direct communication) and node 2 to the strategy p2
3 (i.e. no packet forwarding).

The strategies p1
1 and p2

1 continue to increase with λ1, since node 1 (exposed to

high level of packet accumulation) switches to the aggressive transmission policy by

increasing p1
1 and node 2 can easily respond to that by increasing p2

1 because of the

relatively low energy cost E2,3. However, if we further increase λ2, node 2 needs

to increase p2
1 as before, whereas node 1 cannot react similarly because of the high
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value of the energy cost E1,3 and instead starts decreasing p1
1.
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Figure 5.4: Effects of new packet generation probability λ1 at node 1 on non-

cooperative equilibrium strategies.

We evaluate the non-cooperative and social equilibrium utilities as functions

of E1,3, c, λ1 and λ2, and summarize the results in Table 5.1. We define u∗
i,nc and

u∗
i,c as the expected utilities of node i in non-cooperative and social equilibrium,

respectively. For both cases, the total expected utilities decrease with increasing

E1,3 (since more energy is wasted to keep the same throughput level) and increase

with increasing λ2 (since the contribution from the additional throughput by node

2 not only compensates the emerging packet collisions for node 1 but also extends

the total system utility).

The gap between the values of
∑2

i=1 u∗
i,c and

∑2
i=1 u∗

i,nc increases with increas-

ing λ2, as the selfish nodes prefer lower transmission probabilities, although relatively
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Figure 5.5: Effects of new packet generation probability λ2 at node 2 on non-

cooperative equilibrium strategies.

higher transmission probabilities can be chosen to increase the total utility under the

assumption of full cooperation. The quantities u∗
1,nc, u

∗
2,nc and

∑2
i=1 u∗

i,nc strongly

depend on c, although the total expected utility and the equilibrium strategies are

independent of c in the cooperative equilibrium case, as we can easily observe by

adding Eqs. (5.3) and (5.4). Compared to the case of c = 0.5, the selfish and coop-

erating nodes achieve larger utilities for c = 0.6 with a larger value of p1
2 p2

3 (namely

the probability of successful packet forwarding) such that the alternative route over

the relay node becomes more feasible and the routing possibilities are extended for

the transmitter node.

The comparison of the Nash equilibrium solutions with the cooperative team

solutions in Table 5.1 indicates that the Nash equilibrium of the given game formula-
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Table 5.1: Comparison of Non-cooperative and Cooperative Expected Utilities.

c = 0.5 λ2 = 0 λ2 = 0.25 λ2 = 0 λ2 = 0.25

E1,3 = 0.1 E1,3 = 0.1 E1,3 = 0.2 E1,3 = 0.2

u∗

1,nc 0.1500 0.0834 0.1048 0.0738

u∗

2,nc 0 0.1135 0.0227 0.1182

u∗

1,nc + u∗

2,nc 0.1500 0.1969 0.1276 0.1920

u∗

1,c 0.1500 0.0812 0.1119 0.0703

u∗

2,c 0 0.1580 0.0316 0.1606

u∗

1,c + u∗

2,c 0.1500 0.2392 0.1435 0.2309

c = 0.6 λ2 = 0 λ2 = 0.25 λ2 = 0 λ2 = 0.25

E1,3 = 0.1 E1,3 = 0.1 E1,3 = 0.2 E1,3 = 0.2

u∗

1,nc 0.1500 0.0867 0.1066 0.0755

u∗

2,nc 0 0.1170 0.0285 0.1201

u∗

1,nc + u∗

2,nc 0.1500 0.2036 0.1351 0.1956

u∗

1,c 0.1500 0.0859 0.1141 0.0714

u∗

2,c 0 0.1533 0.0294 0.1595

u∗

1,c + u∗

2,c 0.1500 0.2392 0.1435 0.2309

tion is not Pareto-optimal, i.e. nodes 1 and 2 can jointly improve their performance,

although any improvement by unilateral changes in strategies is not possible at the

stable operating points of Nash Equilibrium.

Ws assume that the strategies of nodes are based only on the present state

rather than the entire history of the game. It is possible to improve the overall

performance by allowing a larger state space with additional memory of a fixed

number of time slots, as discussed in detail in [40]. However, the number of states will
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increase substantially with increasing number of memory elements (in the history).

5.6 Distributed Adaptive Algorithm with Limited Information

In previous sections, we assumed that (both) nodes have the perfect informa-

tion on the system parameters so that they can use the feedback information to

compute (in advance) the expected values of the immediate utilities and the state

transition probabilities for playing any action. However, it is also of interest to

study the algorithms that do not depend on the system parameters, which cannot

be explicitly known in some distributed applications.

Stochastic games with imperfect information have been extensively studied in

the literature and traditional Q-Learning algorithms for one-person Markov Decision

Processes has been extended to the zero and general-sum stochastic games [57,

58]. The general assumption is that the model of rewards and state transition

probabilities are not known but must be observed through experience. There are

several algorithms (such as Nash-Q for pure strategies [58] and Policy Hill Climbing

for mixed strategies [59]) that converge the system to non-cooperative equilibrium

points. However, the previous analysis as well the proposed algorithms are based

on the assumption that the state of the game is fully observable, which is not the

case in the relay game model studied in this chapter.

In this section, we follow a different approach to take the effects of imperfect

state monitoring into account. We extend the stochastic adaptive algorithm of [19]

(originally developed for the slotted Aloha systems) to the relay channel model and
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allow nodes to vary their strategies as function of time t depending on the feedback

information, i.e. we have the strategy s1 = (p1
1(t), p

1
2(t)) and s2 = (p2

1(t), p
2
3(t))

at time t. We assume that any successful transmission yields higher immediate

utility than the channel outcomes of waiting or collision. We also assume that the

system parameters are unknown but fixed, and define the sequence ǫ(t) that satisfies

limt→∞ ǫ(t) = 0 and
∑∞

t=1 ǫ(t) = ∞, as suggested by the stochastic approximation

theory. If node 1 has a packet to transmit at time t, then the strategies p1
1(t) and

p1
2(t) are updated at time t depending on the feedback information as follows:

p1
1(t + 1) = min ( max ( p1

1(t) + ǫ(t) ξ1(t) , 0 ), 1 ), (5.5)

p1
2(t + 1) = min ( max ( p1

2(t) + ǫ(t) ξ2(t) , 0 ), 1 ). (5.6)

The control parameters ξ1 and ξ2 take values ξ1(t) = 1, ξ2(t) = −1
2

or ξ1(t) =

−1, ξ2(t) = 1
2
, if a transmission of node 1 to node 3 at time t is successful or fails.

Similarly, ξ1(t) = −1
2
, ξ2(t) = 1 or ξ1(t) = 1

2
, ξ2(t) = −1, if a transmission of node

1 to node 2 at time t is successful or fails. For each idle slot of waiting, we set

ξ1(t) = ξ2(t) = 1
2
. For the rare situation, in which Eqs. (5.5) and (5.6) yield invalid

distributions such that
∑2

i=1 p1
i (t + 1) > 1, we need a further mapping such that

ξ1(t) and ξ2(t) are both reduced with the same scale to the largest values that satisfy

∑2
i=1 p1

i (t + 1) = 1. If node 2 has a packet to transmit at time t, then the strategy

p2
1(t) is updated at time t + 1 depending on the feedback information as follows:

p2
1(t + 1) = min ( max ( p2

1(t) + ǫ(t) ξ3(t) , 0 ), 1 ), (5.7)

where ξ3(t) = −1, if a transmission of node 2 fails at time t, and ξ3(t) = 1, if a

transmission of node 2 is successful or node 2 waits. If the queue of node 2 is empty
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at time t, then the strategy p2
3(t) is updated at time t+1 depending on the feedback

information as follows:

p2
3(t + 1) = min ( max ( p2

3(t) + ǫ(t) ξ4(t) , 0 ), 1 ), (5.8)

where ξ4(t) = −1 or 1, if there is a forwarding request at time t or not. Update

(5.8) stimulates node 1 to send more (or less) packets to node 2 in the case of low

(or high) rates of forwarding requests.
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Figure 5.6: Temporal evolution of p1
1(t) and p1

2(t) for distributed adaptive algorithm.

The proposed algorithm represents the throughput and delay properties but

cannot distinguish between the different energy costs. Therefore, the algorithm can

easily deviate from the equilibrium strategies, since the expected utilities strongly

depend on the unknown values of the energy costs. If the node decisions are domi-

nated by the energy costs, the performance of the algorithm is expected to be poor,

unless the control parameters are properly selected.
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Figure 5.7: Temporal evolution of p2
1(t) and p2

3(t) for distributed adaptive algorithm.

We run the proposed algorithm for 105 time slots. We assume p1
1(1) = p1

2(1) =

1
3
, p2

1(1) = p2
3(1) = 1

2
as the initial conditions for the algorithm and let ǫ(t) = 1

10t
for

t ≥ 1. The system parameters are D = 0.1, c = 0.5, λ1 = 0.25 and λ2 = 0.25.

We consider two different sets of low and high energy costs: (I) E1,3 = 0.02,

E1,2 = E2,3 = 0.01, and (II) E1,3 = 0.2, E1,2 = E2,3 = 0.1. Figures 5.6 and 5.7

illustrate the temporal evolution of the simulated values of p1
1(t), p1

2(t), p2
1(t) and

p2
3(t) for low and high energy costs, and compared them to the exact numerical

solutions obtained for the equilibrium strategies. For low energy costs, the algo-

rithm converges close to the non-cooperative equilibrium with perfect information.

However, the algorithm should deviate from the equilibrium points with increasing

energy costs. For high energy costs, it is advisable to use control parameters lower

than −1 for strategy updates in the case of packet collisions such that nodes are more
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effectively stimulated to preserve energy. For instance, we can choose the control

parameter −2 (instead of −1 as before), if a packet collision occurs, whereas con-

trol parameters for p1
1(t), p1

2(t) and p2
1(t) can be doubled for success and idle slots.

Exhaustive search over the control parameters can make the proposed algorithm

converge close to the equilibrium strategies even for high energy costs, as shown

in Figure 5.6 and 5.7. However, the systematic way of finding the optimal control

parameters (depending on the energy or other costs) remains as an open problem.

5.7 Improvement of the Game Model: A New Relaying Rule

If a packet of node 1 is accepted by node 2, node 1 is informed of this decision

(i.e. the queue content of node 2) and has the opportunity to avoid transmitting in

the next time slot to node 2 that has the increased probability of transmitting be-

cause of the recent packet arrival. In complex network scenarios, node 1 may receive

only limited (or delayed) information on the acceptance decision of node 2 because of

the possible interference effects of concurrent transmissions. However, the successful

operation of wireless networks should be inherently based on the reliable exchange

of control packets among the neighboring nodes for distributed control and self or-

ganization. Therefore, we assume that the decision of the relay node on whether to

accept or reject a packet is immediately and correctly received by the correspond-

ing transmitter node. This can be realized by dedicating a separate channel based

on scheduled access to the feedback control packets that carry information on the

channel outcome and packet forwarding decision of the relay node in the preceding
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time slot. To eliminate the packet collisions that are more likely to happen after

packet forwarding, we impose the additional rule that node 2 immediately forwards

the packet received from node 1 to the destination, whereas node 1 waits for the

next time slot independent of a new packet generation.

5.7.1 Modified State Definition and Mixed Stationary Strategies

We assume that nodes 1 and 2 agree on the new relaying rule as a form of co-

operative packet scheduling (i.e. node 1 waits, while node 2 transmits the forwarded

packet) to stimulate the cooperation of node 2 as well as to avoid the possible packet

collisions. Then, the state of the game needs to specify further whether a packet

at the queue of node 2 is a new generated one or has been forwarded before from

node 2 in the previous time slot. We define the state of the game as (Q1, Q2), where

Q1 ∈ {0, 1} and Q2 ∈ {0, f, f}. Specifically, we have Q2 = f , if a packet of node 1

has been accepted to the queue of node 2 in the previous time slot, whereas Q2 = f

represents a new generated or already backlogged packet at queue of node 2. Thus,

the state space has been extended to K = {(0, 0), (0, f), (0, f), (1, 0), (1, f), (1, f)}.

The action spaces A1 and A2 remain the same as defined in section 5.4. The

stationary strategies of node 1 are s1,k(A
1
1, A

1
2, A

1
3) = (p1

1, p
1
2, 1 − p1

1 − p1
2) for k ∈

{(1, 0), (1, f)}, where p1
1, p1

2 and 1−p1
1−p1

2 denote the probabilities of selecting actions

A1
1, A1

2 and A1
3, and s1,k(A

1
1, A

1
2, A

1
3) = (0, 0, 1) for k ∈ {(0, 0), (0, f), (0, f), (1, f)}.

The random stationary strategy of node 1 is given by s1 = (p1
1, p

1
2).

Node 2 has the stationary strategies of s2,k(A
2
1, A

2
2, A

2
3, A

2
4) = (p2

1, 1 − p2
1, 0, 1)
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for k ∈ {(0, f), (1, f)}, where p2
1, and 1 − p2

1 denote the probabilities of selecting

actions A2
1, A2

2. We have s2,k(A
2
1, A

2
2, A

2
3, A

2
4) = (1, 0, 0, 1) for k ∈ {(0, f), (1, f)},

and s2,k = (0, 1, p2
3, 1 − p2

3) for k ∈ {(0, 0), (1, 0)}, where p2
3, and 1 − p2

3 denote the

probabilities of selecting actions A2
3 and A2

4. The random stationary strategy of

node 2 is given by s2 = (p2
1, p

2
3).

5.7.2 Modified State Transition Matrix and Utility Functions

The joint set of the random stationary strategies of nodes 1 and 2 is given by

s = (p1
1, p1

2, p2
1, p2

3). For i = 1, ..., 6, the ith row of the state transition matrix T(s),

i.e. the row vector Ti(s), can be expressed as

T1(s) = T2(s) = [(1 − λ1)(1 − λ2), 0, (1 − λ1)λ2, λ1(1 − λ2), 0, λ1λ2],

T3(s) = [(1 − λ1)p
2
1(1 − λ2), 0, (1 − λ1)(1 − p2

1 + p2
1λ2), λ1p

2
1(1 − λ2), 0,

λ1(1 − p2
1 + p2

1λ2)],

T4(s) = [p1
1(1 − λ1)(1 − λ2), (1 − λ1)p

1
2p

2
3, p

1
1(1 − λ1)λ2,

(1 − λ2)(1 − p1
1 − p1

2 + p1
1λ1 + p1

2(1 − p2
3)),

p1
2p

2
3λ1, λ2(1 − p1

1 − p1
2 + p1

1λ1 + p1
2(1 − p2

3))],

T5(s) = [0, 0, 0, 1 − λ2, 0, λ2],

T6(s) = [0, 0, p1
1(1 − λ1)(1 − p2

1), (1 − p1
1 − p1

2)p
2
1(1 − λ2), 0,

1 − p1
1(1 − λ1)(1 − p2

1) − (1 − p1
1 − p1

2)p
2
1 (1 − λ2)].

If nodes 1 and 2 follow the strategy s = (p1
1, p1

2, p2
1, p2

3), the expected utilities
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u1(s) and u2(s) are given by

u1(s) = π4(s)[p
1
1(1 − E1,3) + p1

2(p
2
3c − (1 − p2

3)D − E1,2) − (1 − p1
1 − p1

2)D] (5.9)

+π5(s)[−D] + π6(s)[p
1
1(−E1,3 + 1 − p2

1 − p2
1D)

+p1
2(−E1,2 − D) − (1 − p1

1 − p1
2)D],

u2(s) = π2(s)[1 − E2,3] + π3(s)[p
2
1(1 − E2,3) − (1 − p2

1)D] + π4(s)[−p1
2p

2
3c] (5.10)

+π5(s)[1 − E2,3] + π6(s)[p
2
1(−E2,3 + 1 − p1

1 − p1
2 − (p1

1 + p1
2)D) − (1 − p2

1)D].

We can also consider an alternative cooperation stimulation mechanism, in

which the transmitter node pays a reward of value c1 to relay node, if relay node

accepts the packet to forward to the destination node, and only the transmitter node

receives a throughput reward of value 1, whenever the relay node successfully delivers

the forwarded packet to the destination. Node 2 receives the reward c1 immediately

(i.e. node 1 incurs the cost c1) and node 1 receives (throughput) reward 1 in the

next slot such that the utilities obtained over two successive time slots are 1−c1 and

c1 for transmitter and relay nodes, respectively. In the original reward mechanism,

node 2 incurs the cost c after accepting a packet (i.e. node 1 receives the reward

c) and node 2 receives the full throughout reward 1 alone in the next time slot

such that the utilities obtained over two successive time slots are c and 1 − c for

transmitter and relay nodes, respectively. Thus, the original and reverse mechanisms

are equivalent with the same utility functions, if c = 1 − c1. The only difference

is that the reliable operation of the original and reverse mechanisms is based on

the separate assumptions that node 1 or node 2 follows the improved relaying rule

without any external stimulation.
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5.7.3 Numerical Analysis of the Performance Improvement

In this section, we evaluate the effects of the modified game model on the

expected utilities. We consider the system parameters E1,2 = 0.1, E2,3 = 0.1,

D = 0.1 and λ1 = 0.25. The results summarized in Table 5.2 verify the expected

performance improvement. Since the packet arrival rate λ1 = 0.25 is low, the

particular case of packet collisions to be prevented by the proposed improvement is

rare and the performance improvement is rather limited (especially for λ2 = 0).

5.7.4 An Analytical Look at the Equilibrium Strategies

In this section, we follow an analytical approach to reveal (at least partially)

the interactions among the equilibrium strategies and dependence on system pa-

rameters under the assumption of λ2 = 0 for tractable solutions. This will also

provide several insights on selecting the equilibrium strategies for the general case

with arbitrary values of 0 ≤ λ2 ≤ 1.

From Eqs. (5.9) and (5.10), we can express the expected utilities for λ2 = 0

as follows:

u1(s) = π4(s)[p
1
1(1 − E1,3) + p1

2(p
2
3c − (1 − p2

3)D − E1,2 − p2
3λ1D) (5.11)

−(1 − p1
1 − p1

2)D],

u2(s) = π4(s)p
1
2p

2
3(−c + 1 − E2,3), (5.12)

where π4 = λ1

p1
1 (1−λ1)+p1

2 p2
3 (1−λ1+λ2

1)+λ1
. The random strategy space does not include

p2
1, since there is neither backlogged nor new generated packet at the queue of

node 2, i.e. π3(s) = π6(s) = 0. The utility u2(s) is monotonically increasing with
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Table 5.2: Expected Equilibrium Utilities with the First Improvement.

c = 0.5 λ2 = 0 λ2 = 0.25 λ2 = 0 λ2 = 0.25

E1,3 = 0.1 E1,3 = 0.1 E1,3 = 0.2 E1,3 = 0.2

u∗

1,nc 0.1500 0.0946 0.1077 0.0851

u∗

2,nc 0 0.1260 0.0268 0.1310

u∗

1,nc + u∗

2,nc 0.1500 0.2206 0.1345 0.2161

u∗

1,c 0.1500 0.0924 0.1102 0.0819

u∗

2,c 0 0.1717 0.0351 0.1758

u∗

1,c + u∗

2,c 0.1500 0.2641 0.1453 0.2577

c = 0.6 λ2 = 0 λ2 = 0.25 λ2 = 0 λ2 = 0.25

E1,3 = 0.1 E1,3 = 0.1 E1,3 = 0.2 E1,3 = 0.2

u∗

1,nc 0.1500 0.1004 0.1088 0.0879

u∗

2,nc 0 0.1294 0.0289 0.1328

u∗

1,nc + u∗

2,nc 0.1500 0.2298 0.1377 0.2207

u∗

1,c 0.1500 0.0968 0.1113 0.0843

u∗

2,c 0 0.1673 0.0336 0.1734

u∗

1,c + u∗

2,c 0.1500 0.2641 0.1449 0.2577

p2
3, if 1 − E2,3 > c, and monotonically decreasing with p2

3, if 1 − E2,3 < c. To

maximize u2(s), node 2 selects strategy p2
3 = 1, if 1 − E2,3 > c, or strategy p2

3 = 0,

if 1 − E2,3 < c. An arbitrary value of p2
3 is chosen, if 1 − E2,3 = c, since we have

u2(s) = 0 independent of p2
3.

For p2
3 = 0, i.e. if 1 − E2,3 < c, the necessary condition for the pure strategy

of direct communication, i.e. p1
1 = 1 and p1

2 = 0, is given by λ1(1 − E1,3) > −D,

whereas the necessary condition for the strategy of waiting only, i.e. p1
1 = 0 and
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p1
2 = 0, is λ1(1 − E1,3) < −D. Note that the pure strategy of the two-hop relaying,

i.e. p1
1 = 0 and p1

2 = 1, is not feasible for any positive value of E1,2. For p2
3 = 1, i.e. if

1 −E2,3 > c, the necessary condition for the pure strategy of direct communication

is λ1(1 + λ2
1)(1 − E1,3) ≥ max(λ1(c − E1,2 − λ1D), −D(1 + λ2

1)). The pure strategy

of two-hop relaying is possible only if λ1(c − E1,2 − λ1D) ≥ (1 + λ2
1) max(λ1(1 −

E1,3), −D), whereas the necessary condition for the pure strategy solution of waiting

is D(1 + λ2
1) ≤ λ1 min(−c + E1,2 + λ1D, (1 + λ2

1)(−1 + E1,3)).

For the full cooperative case, the strategy p2
3 < 1 would only reduce the to-

tal system utility (by causing extra energy waste and packet delay that can be

prevented by selecting p2
3 = 1), since node 2 (with zero packet generation rate) can-

not otherwise contribute to the total system utility. Thus, we must have p2
3 = 1

under the assumption of full cooperation and the resulting total expected utility

uΣ(s) = u1(s) + u2(s) is given by

uΣ(s) =
λ1(p

1
1(1 − E1,3 + D) + p1

2(1 − E2,3 − E1,2 + D − λ1D) − D)

p1
1(1 − λ1) + p1

2(1 − λ1 + λ2
1) + λ1

. (5.13)

The condition for direct communication at the cooperative equilibrium is

λ1(1+λ2
1)(1−E1,3) ≥ max(λ1(1−E2,3 −E1,2 −λ1D), −D(1+λ2

1)). The pure strat-

egy of two-hop relaying has the necessary condition of λ1(1 − E2,3 − E1,2 − λ1D) ≥

(1 + λ2
1) max(λ1(1 − E1,3), −D), whereas we need D(1 + λ2

1) ≤ λ1 min(−1 + E2,3 +

E1,2 + λ1D, (1 + λ2
1)(−1 + E1,3)) for the pure strategy solution of waiting.

The mixed strategy solutions might be possible depending on the complex

interactions among the system parameters (e.g. there is no mixed strategy solution,

if p2
3 = 0). If the objective function to be maximized is expressed as (k1p

1
1 + k2p

1
2 +
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k3)/(k4p
1
1 + k5p

1
2 + k6), then a possible mixed strategy solution is s = {p1

1, p
1
2} =

{(k3k5 −k2k6)/(k2k4 −k1k5), (k1k6 −k3k4)/(k2k4 −k1k5)} for the values of p1
1 and p1

2

such that p1
1 ≥ 0, p1

2 ≥ 0, p1
1 + p1

2 ≤ 1. For the general case of λ2 ≥ 0, we need lower

values of c to stimulate the cooperation of node 2 and the results of this section can

be referred as useful bounds to select the appropriate values of c.

5.7.5 Improvement by Immediate Transmissions of New Packets

A common rule in the distributed random MAC protocols (as implemented in

[19] for slotted Aloha systems) is to transmit new packets immediately in the next

possible time slot such that different strategies are needed for the transmissions of

the new and backlogged packets. We can enforce the immediate transmissions of

new generated packets to avoid the unnecessary packet delays. This might other-

wise cause successive collisions in subsequent time slots, since nodes with new and

backlogged packets are subject to channel conditions that are statistically different.

Therefore, it is more efficient to allow them to select different distributions over

their actions. This formulation requires an extended state space, as discussed in

[40], and leads to performance gains, since delays in transmissions of new packets

possibly lead to high levels of packet accumulation in both queues and consequently

reduce the expected utilities. We consider the common parameters E1,2 = 0.1,

E2,3 = 0.1, D = 0.1 and λ1 = 0.25. The expected utilities given in Table 5.3 verify

the improvement in both cases of the non-cooperative and social equilibrium.
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Table 5.3: Expected Equilibrium Utilities with the First and Second Improvements

c = 0.5 λ2 = 0 λ2 = 0.25 λ2 = 0 λ2 = 0.25

E1,3 = 0.1 E1,3 = 0.1 E1,3 = 0.2 E1,3 = 0.2

u∗

1,nc 0.1500 0.0954 0.1101 0.0870

u∗

2,nc 0 0.1262 0.0275 0.1328

u∗

1,nc + u∗

2,nc 0.1500 0.2216 0.1376 0.2198

u∗

1,c 0.1500 0.0934 0.1102 0.0844

u∗

2,c 0 0.1723 0.0357 0.1794

u∗

1,c + u∗

2,c 0.1500 0.2647 0.1459 0.2638

c = 0.6 λ2 = 0 λ2 = 0.25 λ2 = 0 λ2 = 0.25

E1,3 = 0.1 E1,3 = 0.1 E1,3 = 0.2 E1,3 = 0.2

u∗

1,nc 0.1500 0.1017 0.1106 0.0890

u∗

2,nc 0 0.1378 0.0291 0.1376

u∗

1,nc + u∗

2,nc 0.1500 0.2395 0.1390 0.2266

u∗

1,c 0.1500 0.0973 0.1113 0.0863

u∗

2,c 0 0.1684 0.0346 0.1775

u∗

1,c + u∗

2,c 0.1500 0.2657 0.1459 0.2638

5.8 Summary and Conclusions

In this chapter, we extended the analysis of non-cooperative operation to multi-

hop communication and looked at the problem of joint MAC and routing from the

perspective of stochastic games in a simple ad hoc wireless network that consists of

a transmitter and relay node with conflicting interests of transmitting to a common

destination. As routing decisions, the transmitter node randomizes actions between
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directly transmitting to the destination and relying on a relay node to forward

packets, whereas the relay node decides on whether to accept packets from the

transmitter node or to transmit its own packets to the destination. The decision

whether to transmit or to wait represents the MAC strategies intertwined with the

routing decisions of direct transmission or relaying over the intermediate node. We

assumed the model of selfish nodes without any external enforcement for cooperation

and stimulated packet forwarding by offering a future reward to the relay node for

successfully delivering the forwarded packets in subsequent time slots. We presented

a detailed comparison of the non-cooperative and social equilibrium strategies. For

distributed operation with unknown system parameters, we developed an adaptive

algorithm and pointed at the possible deviations from the equilibrium solutions for

high energy costs. Finally, we improved the game model by possibly giving higher

priority to the transmissions of the forwarded and new generated packets.

We can extend the model to incorporate arbitrary buffer capacities and des-

ignate the relay node also as a potential destination for packets of the transmitter

node. This would extend the cooperation incentives beyond the reward mechanism

for cooperation stimulation. The simple relay channel topology can be further gen-

eralized to a layered network model with nodes in different layers competing for

the network resources to forward packets among different layers. The ultimate goal

aims at the joint analysis of MAC and network layer operation as non-cooperative

games under the assumptions of arbitrary network topology and packet traffic. This

goal will be partially realized in Chapter 7 by the joint design of MAC and network

coding (as extension of plain routing).
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Chapter 6

Cross-Layer Design of MAC and Network Coding in Wireless

Networks

We extend the plain routing operation at the network layer and consider wire-

less network coding in conjunction with MAC. It is known that coding over wired

networks enables connections with rates that cannot be achieved by routing. How-

ever, the properties of wireless networks (such as omnidirectional transmissions, de-

structive interference, single transceiver per node) and the additional performance

criteria (such as energy efficiency) modify the formulation of time-varying network

coding in a way that reflects strong interactions with the underlying MAC protocols

and deviates from the classical approach used in wired network coding. We propose

to separately activate predetermined (conflict-free) network realizations in a time-

division mechanism and derive the content of network flows through network coding

so as to optimize performance measures such as achievable throughput and energy

costs. We present a method to construct linear wireless network codes and discuss

their properties under wireless assumptions and interactions with MAC schedules.

We also outline how to operate network coding with arbitrary (e.g. contention-

based) MAC protocols. Then, we obtain conflict-free transmission schedules jointly

with network codes by decomposing the wireless network into subtrees and employ-

ing graph coloring on simplified subtree graphs. Finally, the performance of network
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coding is compared with plain routing (in terms of throughput, energy and delay

properties) in conjunction with underlying MAC solutions.

6.1 Introduction

As a network layer problem, classical routing involves simply replicating and

forwarding the received packets by the intermediate relay nodes in multi-hop com-

munication, whether in wired or wireless networks. Network coding extends routing

by allowing relay nodes to combine the information received from multiple links in

the subsequent transmissions. It is known that network coding in wired networks

enables connections with rates that are higher than those achieved by plain routing

only [60].

To extend network coding to a wireless network, we need to take into account

the additional properties of omnidirectional transmissions, no simultaneous packet

transmission and reception by any node, and possible destructive interference effects

among concurrent transmissions (such that MAC, e.g. scheduling, is necessary to

coordinate transmissions). These wireless communication properties introduce new

cross-layer interactions that have not been addressed in the context of wired network

coding. The interdependence of MAC and network coding (just like that of MAC

and plain routing) requires their joint specification for efficient wireless network

operation.

In this chapter, we extend network coding to operate in ad hoc wireless net-

works and study the cross-layer design possibilities of joint MAC and network coding
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(or plain routing as a special case). There have been efforts [61, 62, 63, 64] to ex-

tend network coding to randomized environments with distributed implementation

for wired networks. The problem of network coding in the presence of omnidirec-

tional transmissions has been studied in [65] through the use of linear programs

to optimize the network resources based on link costs. Decentralized solutions to

achieve the minimum cost have been introduced in [66]. Omnidirectional transmis-

sions have been modeled in [67] and [68] as hyperlinks (with additional constraint

sets that can prevent nodes from transmitting and receiving packets simultaneously).

Network coding for simple (tandem and grid) network topologies has been studied

in [69] for the case of energy-efficient broadcast communication with omnidirectional

transmissions.

The interference effects have been incorporated by [70] for joint optimization of

MAC and network flows while preventing simultaneous transmission and reception

by any node. The transmission-reception pairs are based on the SINR threshold

criterion. This implies that a node would not be able to receive and transmit at

the same time as the SINR at the receiver would very small, since the signal of

the transmitter would dominate the interference. As a special case, network coding

has been addressed in [71] for energy-efficient multicasting by considering only one

isolated link at a time without interference effects. For energy efficiency purposes

only, there is no need to consider interference effects and simultaneous transmissions

should not be activated. However, if we consider the additional objectives such as

throughput or delay efficiency, then network codes must be jointly designed with

MAC.
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We incorporate in the network coding analysis realistic wireless network prop-

erties such as omnidirectional transmissions, interference and delay effects, practical

constraints of single transceiver per node and multiple performance criteria (such

as throughput and energy). We eliminate explicitly from the sets of transmitter

nodes those nodes that receive packets. Therefore, we can reduce the number of

possible transmission sets considerably and thus, even though their number remains

exponential, it reduces the complexity of any heuristics that allow their considera-

tion in the pool of the possible transmission sets. In addition, we consider dynamic

operation of multi-hop packet communication in contrast to previous models of

connection-oriented traffic. This introduces an operational advantage for conflict-

free transmission scheduling. Also, we avoid the use of link costs, and, rather, model

the wireless performance measures such as throughput and energy consumption in

terms of node (rather than link) costs due to omnidirectional transmissions. Our

ultimate goal is to analyze and design wireless network codes in conjunction with

conflict-free transmission schedules. Random network codes have been suggested

before for wireless networks [68]. Instead, we construct deterministic wireless net-

work codes jointly optimized with MAC schedules as solutions to a time-dependent

flow optimization problem.

The first objective of the chapter is to evaluate the interplay between MAC

schedules and network codes. Particularly, we discuss the time-varying properties

of network codes under conflict-free scheduling and specify the interactions of MAC

schedules (specifically time allocation) and wireless network codes. We formulate

joint MAC and network coding as a flow optimization problem. For this purpose,
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we consider a two-step solution: 1. Predetermine feasible (conflict-free) wireless

network realizations, and assign minimum costs (e.g. transmission power) to each

node for any network realization, 2. Assign time fractions to network realizations

and choose the flows between transmitter-receiver pairs (addressed to different des-

tinations) to optimize the performance objectives such as maximizing the multicast

rate or minimizing the average cost (e.g. energy) achievable by network coding.

In this context, we introduce the notion of time-varying network codes (since

nodes either encode and transmit packets or receive and decode packets or remain

idle to avoid packet conflicts) and present a practical solution to derive linear net-

work codes that are compatible with the wireless communication properties. We

present an alternative formulation of wireless cuts to take into account the omni-

directional transmissions and specify the conditions on network codes imposed by

wireless network assumptions and conflict-free MAC schedules.

The second objective of the chapter is to use the results of network code

assignments (in a possibly distributed analysis for scalable network operation) to

jointly derive conflict-free transmission schedules. We follow the network coding

framework of [72] based on the subtree decomposition that can support omnidirec-

tional transmissions within each subtree network. Graph coloring is applied on a

simplified subtree graph to assign the network codes while imposing conflict-free

link scheduling within each subtree using three separate methods. Network coding

is also extended to operate with arbitrary (e.g. contention-based) MAC protocols

within each receiver’s area through the application of the Group TDMA algorithm

[73, 8]. Throughout this chapter, we consider the classical collision channel model.
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The results can be also extended to the physical channel model.

The chapter is organized as follows. In section 6.2, we present a two-step

basic method for joint network coding and conflict-free scheduling. We present

in section 6.3 the method to construct wireless network codes over a given set of

transmission schedules by taking the effects of omnidirectional transmissions into

account. We also specify the properties of wireless network codes in conjunction with

the underlying MAC protocol. Then, in section 6.4 we provide different methods to

derive network codes and conflict-free link schedules in a joint analysis by applying

graph coloring on simplified subtree representations of wireless networks. We present

numerical results in section 6.5 that evaluate the throughput, energy efficiency and

delay properties of network coding and plain routing methods in conjunction with

the proposed MAC solutions. We draw conclusions in section 6.6.

6.2 Cross-Layer Design of Network Coding and MAC

6.2.1 An Example of Wireless Network Coding

We start with the wireless version of the classic network coding example that

was used in [60], and illustrate the advantages of network coding over plain routing

solutions under wireless multicasting for the network topology shown in Figure 6.1.

We will extend the results to general wireless networks in subsequent sections. We

compare two different strategies for multi-hop communication: (1) classical plain

routing that limits nodes to act as forwarding switches, (2) network coding that

allows nodes to code over the received information.
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Figure 6.1: Wireless network example for network coding.

The objective of the wireless multicasting problem is to deliver packets orig-

inating at the source node s to both destination nodes y and z. We assume the

classical collision channel model, although the results can be also extended to the

SINR-based channel model. A packet transmission reaches all nodes connected

through a single link (as shown in Figure 6.1) to the transmitter node. If multi-

ple transmissions reach a node in the same time slot, a packet collision occurs. We

schedule conflict-free transmissions to avoid the performance loss (resulting from the

packet collisions) with respect to throughput, delay and energy efficiency. We as-

sume that each packet contains one bit, the source s has always a packet to transmit,

and each transmission consumes an amount of Et energy units. The performance

measures are: (1) λ: throughput per destination (average number of packets success-

fully delivered to each destination per unit time), (2) Eavg: average energy consumed

to deliver a packet to any destination, and (3) Davg: average delay per packet. We

denote by c
−→
b d the transmission of bit b from node c to node d. The throughput

and energy-optimal plain routing solution schedules transmissions s
−→
b t, s

−→
b u in odd

time slots and t
−→
b y, u

−→
b z in even time slots for any bit b. This plain routing solution
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achieves λ = 1
2

bits/slot, Davg = 2 time slots and Eavg = 3
2
Et energy units per bit.

The conflict-free transmissions for optimal network coding are shown in Table

6.1 and have the period of three slots (after the initial time slot). A simple form of

linear network coding consists of node w performing the bit additions b2k−1 + b2k at

time slots 3k+1, k = 1, 2, ..., and using the wireless multicast advantage to send the

bit sum to nodes y and z in a single transmission. Since bits b2k−1 and b2k have been

delivered to nodes y and z in the previous transmissions, nodes y and z can combine

b2k−1 with b2k−1 + b2k to decode b2k and can combine b2k with b2k−1 + b2k to decode

b2k−1. As time evolves, λ approaches 2
3

bits/slot, Davg approaches 13
4

time slots and

Eavg approaches 5
4
Et energy units per bit. Since multiple input and output links (for

Table 6.1: Network Coding Solution for the Network in Figure 6.1.

Time Slot 1 2 3 4 5 6 7 8

Transmission s
−→
b1 t t

−→
b1 w u

−→
b2 w w

−−−−→
b1 + b2 y t

−→
b3 w u

−→
b4 w w

−−−−→
b3 + b4 y t

−→
b5 w

Schedule t
−→
b1 y u

−→
b2 z w

−−−−→
b1 + b2 z t

−→
b3 y u

−→
b4 z w

−−−−→
b3 + b4 z t

−→
b5 y

s
−→
b2 u s

−→
b3 t s

−→
b4 u s

−→
b5 t s

−→
b6 u

Table 6.2: Performance Comparison of Plain Routing and Network Coding for the

Network in Figure 6.1.

Performance Measure λ Eavg Davg

Best Plain Routing Solution 1

2
bit/slot 3

2
Et/bit 2 slots

Network Coding Solution in Table 6.1 2

3
bits/slot 5

4
Et/bit

13

4
slots

node w) are not simultaneously possible in wireless communication, packets need to
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be stored (by node w) over successive time slots to perform network coding. This is

the root cause of the increase in average packet delay. The throughput, energy cost

and delay measures are compared in Table 6.2 for the best plain routing strategy

and the network coding strategy presented in Table 6.1.

Network coding involves the extra processing cost for coding and decoding.

To quantify this, we introduce Ec as the energy cost for each of the network coding

and decoding operations, i.e. the energy cost of binary addition. The cost Ec is

separately incurred at node w and destinations (y and z) at time slots 3k + 1 for

positive integer values of k. The extra coding/decoding energy cost of the network

coding solution is Ec per time slot and 3Ec

4
per successfully decoded bit. If we scale

this cost with respect to the transmission energy cost Et, we obtain 5Et+3Ec

4
as the

energy cost per bit of the network coding solution compared to the total transmission

energy cost of 3Et

2
of the plain routing solution. Hence, network coding is preferable,

if Ec < Et

3
.

6.2.2 Joint Design of Network Coding and Conflict-free Scheduling

We assume that a single source s wishes to send packet traffic with common

rate λ to each node in the destination set D. We use the fact that network coding

achieves maximum flows [60] and convert the network coding problem to a flow opti-

mization problem, as done before for wired networks in [65] and extended to wireless

operation in [67, 68, 70] according to a continuous flow model. The constraint of

no simultaneous transmission and reception by any node and the application of
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scheduling to eliminate packet conflicts impose time-dependent network flows on

links. The total flow on link (i, j) at time slot t is defined as zi,j(t). The fraction of

zi,j(t) destined to destination node d ∈ D is defined as xi,j(d, t).

We can formulate the problem of selecting flows zi,j(t) and xi,j(d, t) to max-

imize the achievable throughput per destination (averaged over all time slots) or

minimize an average cost criterion (e.g. energy). The resulting formulation involves

optimization at each time slot and is rater complex. Instead, we periodically acti-

vate distinct network realizations (i.e. conflict-free link sets) over non-overlapping

time intervals. Then, we consider flow optimization problem individually for each

network realization rather than for each time slot.

6.2.2.1 Network Flow Optimization

Let Pi,j denote the transmission power required by node i to reach node j over

a single hop (Note that Pi,j = ∞ means that there is no direct link possible from

node i to node j.). We define N f = {N f
m}M

m=1 as the set of M feasible network

realizations, where the network realization N f
m = (V f

m, Ef
m) with node set V f

m and

conflict-free link set Ef
m is allocated for τm fraction of the total time over time interval

Tm such that the flows on link (i, j) are zi,j(t) = z
(m)
i,j and xi,j(d, t) = x

(m)
i,j (d) and

the transmission power of node i is Pi(t) = P
(m)
i for all t ∈ Tm. The network

realizations ensure conflict-free transmissions on all activated links and partition

the network into the disjoint sets of transmitters and receivers at any time slot. The

construction of network realizations also ensures omnidirectional transmissions (The
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effects of omnidirectional transmissions on wireless flows will be taken into account

in section 6.2.2.3.). In section 6.2.2.2, we will discuss how to construct an adequate

set of network realizations.

For any d ∈ D, i ∈ V , j ∈ V and m = 1, ...,M , we have the following network

flow conditions for wireless network realizations {N f
m}M

m=1:

x
(m)
i,j (d) ∈ {0, 1}, z(m)

i,j ∈ {0, 1}, x(m)
i,j (d) ≤ z

(m)
i,j , z

(m)
i,j =





1, (i, j) ∈ Ef
m

0, else

, (6.1)

(i, j) ∈ Ef
m if and only if P

(m)
i ≥ Pi,j and P

(m)
k < Pk,j, k 6= i and P

(m)
j = 0, (6.2)

M∑

m=1

τm




∑

j:(i,j)∈Ef
m

x
(m)
i,j (d) −

∑

j:(j,i)∈Ef
m

x
(m)
j,i (d)


 =





λ, i = s

−λ, i ∈ D

0, else

, i ∈ V, d ∈ D. (6.3)

We propose a two-step solution to this time-dependent flow optimization prob-

lem of joint MAC and network coding:

Step 1: Predetermine the conflict-free network realizations N f = {N f
m}M

m=1

with the minimum transmission power assignments {P (m)
i }i∈V that ensure conflict-

free transmissions for each network realization N f
m. The flow z

(m)
i,j for any node

pair i and j is uniquely determined by the choice of N f
m and {P (m)

i }i∈V subject to

condition given by (6.2).

Step 2: Assign the time fractions {τm}M
m=1 to network realizations {N f

m}M
m=1

and choose the flows x
(m)
i,j (d) (subject to conditions given by (6.1) and (6.3)) through

network coding (or plain routing as a special case) in order to either

(I) maximize the achievable throughput per destination λ, or

(II) minimize the average cost a =
∑M

m=1 τma(m) for fixed λ, where a(m) is
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the total node cost incurred during network realization N f
m (Particularly, we have

a(m) =
∑

i∈V P
(m)
i , if we consider transmission energy cost P

(m)
i for node i in network

realization N f
m.), or

(III) minimize the average cost per successfully decoded packet, namely the

quantity a
λ |D| .

We will show in section 6.3 how to derive wireless network codes in order

to achieve the maximum flows resulting from the solution to the presented flow

optimization problem.

The optimal solution requires extensive search over all network realizations

that result in conflict-free transmissions through partitioning of the nodes into the

disjoint sets of transmitters and receivers. When we consider all possible sets of

network partitioning and choose the best schedule (along with network codes), then

the result will be globally optimal but will not scale well with increasing number of

nodes in the network. Therefore, we use the following greedy heuristic to determine

a distinct set of network realizations.

6.2.2.2 Step 1 (Construction of Conflict-Free Network Realizations)

We start by constructing the first network realization; we choose a node arbi-

trarily as receiver, and designate as the corresponding transmitter the node with the

smallest power to reach the chosen receiver node. We then choose arbitrarily as the

second receiver node one that has not been chosen so far as either transmitter or re-

ceiver. Similarly, we designate as its transmitter a node that has not been previously
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chosen as receiver and has the smallest power to reach the second receiver. We admit

this new transmitter-receiver pair provided that the activation of this link does not

destructively interfere with the previously admitted transmitter-receiver pairs. For

that purpose, we only need to check whether the transmission range of the chosen

transmitter includes a non-intended receiver that has been previously activated. If

so, then we choose another transmitter node and run the same admissibility check

algorithm. We proceed in this fashion and determine the transmitter-receiver pairs

until no link can be admitted without distorting the already admitted conflict-free

link assignments.

Subsequently, we repeat the same procedure by choosing as receiver a node

previously designated as transmitter and running the same algorithm to determine

the complete set of network realizations N f = {N f
m}M

m=1, until each node is desig-

nated as transmitter and receiver at least once (with the exception of the source

node that should be only activated as transmitter). Each network realization N f
m

partitions the nodes into the disjoint transmitter and receiver sets T (m) and R(m),

respectively. The link set Ef
m is conflict-free, if the condition (6.2) holds for all flows

on links (i, j) ∈ Ef
m such that i ∈ T (m) and j ∈ R(m). For the network realization

N f
m, the power cost of node i is given by P

(m)
i = maxj:(i,j)∈Ef

m
Pi,j.

6.2.2.3 Step 2 (Time Allocation for MAC Schedules)

The next problem is to find the time fraction τm allocated to each network

realization τm. We define C(s, y) as the set of cuts between nodes s and y and
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Figure 6.2: Example of cuts between nodes s and y for the network in Figure 6.1.

Ci(s, y) as the ith cut in C(s, y). Figure 6.2 depicts some of the possible cuts

between the source s and the destination y of the network in Figure 6.1. For wired

networks, the value of a cut is the sum of the capacities of the links that cross

the given cut. For wireless networks, we introduce the average cut value cNf

i (s, y),

which is the maximum number of successful transmissions (time-averaged over all

network realizations in N f ) across the cut Ci(s, y) per unit time. To incorporate

omnidirectional transmissions, the contribution of a node to any cut is limited to

at most one per unit time, since a single node can transmit at most one distinct

information packet over any cut at any time slot. Allowing higher values of cuts to

reflect broadcast advantages creates complications or necessitates the introduction

of artificial nodes as done by [70].

The maximum flow from the source s to destination nodes is given by the

Max-flow Min-cut Theorem as

λ = max
{τm, m=1,...,M}

(
min
d∈D

(
min

k:Ck(s,d)∈C(s,d)
cNf

k (s, d)

))
. (6.4)
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Figure 6.3: Wireless network realizations N f = {N f
1 , N f

2 , N f
3 } for the network in

Figure 6.1.

We define a(m) as the total (e.g. transmission energy) cost for network realiza-

tion N f
m. The average cost over all network realizations is given by a =

∑M
m=1 τma(m).

We consider alternative optimization problems of selecting {τm}M
m=1 in order

to either maximize the achievable throughput per destination λ, or minimize the

average cost a for fixed throughput per destination λ, or minimize the average cost

per successfully decoded packet a
λ |D| .

6.2.2.4 Example for Cross-Layer Design

One adequate set of conflict-free network realizations for the network in Figure

6.1 is shown in Figure 6.3. Figure 6.2 depicts some of the cuts between nodes s and

y with the following cut values: cNf

1 (s, y) = τ1 + τ2, cNf

2 (s, y) = 2τ2, cNf

3 (s, y) =

τ1 + τ2, cNf

4 (s, y) = 2τ1, cNf

5 (s, y) = τ1 + τ3, cNf

6 (s, y) = τ2 + τ3, cNf

7 (s, y) = 2τ2,

cNf

8 (s, y) = τ1 + τ2 + τ3 and cNf

9 (s, y) = τ1 + τ2. The maximum flow from the source

s to any destination y or z is given by min(2τ1, 1 − τ1) for the case of τ1 = τ2, and

maximized by the time allocation τm = 1
3
, m = 1, 2, 3. This is equivalent to the
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network coding solution in Table 6.1. For plain routing, we can remove coding node

w, as shown in section 6.2.1, such that the activated links in two network realizations

are Ef
1 = {(s, t), (s, u)} and Ef

2 = {(t, y), (u, z)}. Then, the two cuts that separate

source s from destination y or z have the values τ1 and τ2, where
∑2

i=1 τi = 1. The

throughput-optimal plain routing solution activates two network realizations over

disjoint time fractions with equal lengths τi = 1
2
, i = 1, 2.

Assume unit energy cost for each transmission. The energy-optimal network

coding solution employs the network realizations in Figure 6.3 with the transmission

energy costs a(1) = 2, a(2) = 2 and a(3) = 1. This network coding solution achieves

the average transmission energy cost a = 1 + 2τ1 for the achievable throughput per

destination λ = min(2τ1, 1 − τ1). The average energy cost per successfully decoded

packet Eavg = a
2λ

is minimized to 5
4

energy units per packet and the throughput

per destination r is maximized to 2
3

packets per time slot, if we choose τm = 1
3
,

m = 1, 2, 3. On the other hand, the best plain routing solution is equivalent for the

throughput and energy-optimal operations and can only achieve the minimum value

of Eavg = 3
2

energy units per packet and the maximum value of λ = 1
2

packets per

time slot.

6.3 Construction of Wireless Network Codes

Next, we present a systematic method to derive network codes depending

on the MAC schedules that result as solutions to the flow optimization problem

considered in section 6.3.
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Figure 6.4: Example to illustrate the difference between the wired and wireless

information flows.

6.3.1 Wireless Network Flows with Omnidirectional Transmissions

Consider the simple network topology of Figure 6.4. Source node s wishes to

deliver packets to destination node d using the relay nodes u and v. If this was a

wired network, the cut that separates s from the rest of the network (namely the

broadcast cut) could carry the maximum flow of 2 packets per unit time slot (if

each link has the capacity of 1 packet per unit time). According to the Max-flow

Min-cut Theorem, the maximum flow is upper-bounded by the minimum cut value,

which would be 2 in this case. If source transmits two disjoint packet streams error-

free over two alternative paths {e1, e2} and {e3, e4}, then the network can carry the

maximum flow of 2 packets per unit time.

If we use the given topology in a network with broadcast transmissions as in

a wireless network (still with error-free links), then the source node can transmit

simultaneously to the two relay nodes u and v at the same time. Thus, the minimum

cut is 2, although at most one distinct packet can be delivered to the destination

resulting in the throughput value of 1 packet per unit time, since the original Max-
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flow Min-cut Theorem inherently assumes that nodes can carry distinct information

over the outgoing links from any node. The value of a cut was defined as the sum of

the capacities of the links that cross the given cut. However, the wireless cut value

needs to be formulated such that contribution of a node to any cut is at most one

(that is equal to the value of the distinct information that can be transmitted by any

node over each cut) due to the broadcast nature of transmissions (that have been

also addressed in [74] for erasure networks). This is a standard application of the

information-theoretic cut-set bounds [75] and introduces conceptual simplicity to

joint design of network codes and conflict-free transmission schedules. In addition,

wireless formulation of broadcast cuts enables node-based characterization of flows

rather than a link-based one and node-based costs associated with each transmission

(e.g. energy cost) instead of using link-based costs (as proposed in [65, 66]).

6.3.2 Basic Method for Constructing Wireless Network Codes

In wireless networks, nodes encode and transmit packets or receive and decode

packets at different time instants. Hence, we need time-varying network coding that

distinguishes when information is generated or received and when information is

encoded or decoded at any node. We consider linear network codes [76, 77] and

extend them to wireless network operation.

If we impose omnidirectional transmissions on the network flows such that all

links out of a single node carry the same information at any time slot, we need

to consider node-based (rather than link-based) network encoding. For a link e =
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Figure 6.5: The hypothetical wired network graph N g.

(i, j), we define head(e) as j and tail(e) as i. The flow out of node v in network

realization N f
m is denoted by Y (m)(v). For transmissions in network realization

N f
n , the coefficient β

(m,n)
e weights the flow Y (m)(tail(e)) that has arrived on link

e in network realization N f
m onto each of the links out of node head(e) and the

coefficient α
(m,n)
j (v) weights the jth flow X

(m)
j (v), j = 1, ..., µ(v), that has been

generated by node v in network realization N f
m onto each of the links out of node

v. The coefficient ǫ
(m,n)
k (e) weights the flow Y (m)(tail(e)) that has arrived on link

e in network realization N f
m to reconstruct the kth flow Z

(n)
k (head(e)) in network

realization N f
n . The flow Y (n)(v) is encoded as

Y (n)(v) =
∑

m




∑

u:(u,v)∈Ef
m

β(m,n)((u, v))Y (m)(u) +

µ(v)∑

j=1

α
(m,n)
j (v)X

(m)
j (v)


 .

The kth output flow is decoded by node v ∈ V in network realization N f
n as

Z
(n)
k (v) =

∑

m

∑

u:(u,v)∈Ef
m

ǫ
(m,n)
k ((u, v))Y (m)(u) . (6.5)

We will discuss the general constraints imposed by wireless properties on cod-

ing coefficients in section 6.3.4. Assume that the wireless network realizations

N f = {N f
m}M

m=1 are predetermined (as in section 6.2.2.2) and the time alloca-
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tions {τm}M
m=1 are specified (as in section 6.2.2.3). We define a hypothetical con-

nected (wired) network N g = (V g, Eg), as shown in Figure 6.5, with the node set

V g =
⋃M

m=1 V f
m and link set Eg =

⋃M
m=1 Ef

m. The capacity of any link out of node

i ∈ V g is equal to c
(m)
i = τm, if that link is activated during network realization N f

m.

Figure 6.5 depicts N g for the network realizations in Figure 6.3. The value of

a cut in the network N g is the sum of the capacities of the links that cross the given

cut. For a wireless network, the value of a cut is the maximum number of successful

transmissions across the given cut time-averaged over all (predetermined) network

realizations. To model omnidirectional transmissions, the contribution of a node to

any cut is limited to the value of at most one (per unit time) for both N f and N g.

Lemma 6.3.1 The wireless network realizations N f and the hypothetical wired net-

work graph N g have the same cut values and the same maximum flows.

Proof: The proof follows directly from the construction of the graph N g and the

definition of the cut values. We denote by C(s, d) the set of cuts between nodes

s and d. We define cNg

k (s, d) and cNf

k (s, d) as the values of cut Ck(s, d) ∈ C(s, d)

(between nodes s and d) for the wired network graph N g and for the wireless network

realizations N f = {N f
m}M

m=1 (with time allocations {τm}M
m=1), respectively. Since we

assign the value of 1 to a cut that has multiple concurrent links out of a single node,

we define the cut values as follows:

cNg

k (s, d) =
∑

i∈V g

M∑

m=1

1 (i →(m) Ck(s, d)) c
(m)
i , (6.6)

cNf

k (s, d) =
M∑

m=1

τm

∑

i∈T (m)

1 (i →(m) Ck(s, d)), (6.7)
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where i →(m) Ck(s, d) is the event that at least one link out of node i crosses the

cut Ck(s, d) during network realization N f
m and 1(·) is the indicator function that

assigns the value 1 to a true statement and the value 0 to a false statement. Eq.

(6.6) can be rewritten as Eq. (6.8) by using the definition of c
(m)
i = τm 1 (i ∈ T (m)),

where T (m) is the set of transmitters activated during network realization N f
m:

cNg

k (s, d) =
∑

i∈V g

M∑

m=1

1(i →(m) Ck(s, d))τm1(i ∈ T (m)) (6.8)

=
M∑

m=1

τm

∑

i∈V g

1(i →(m) Ck(s, d))1(i ∈ T (m)) (6.9)

=
M∑

m=1

τm

∑

i∈T (m)

1(i →(m) Ck(s, d)). (6.10)

Eq. (6.9) follows from exchanging the sum of cut capacities over transmitting

nodes and network realizations. Eq. (6.10) follows from T (m) ⊆ V g =
⋃M

m=1 V f
m.

Note that Eq. (6.10) is equivalent to cNf

k (s, d) in Eq. (6.7). Thus, the wireless net-

work realizations N f and the corresponding hypothetical wired network graph N g

have the same cut values. According to the Max-flow Min-cut Theorem, the maxi-

mum flow between node s and destination set D is mind∈D mink:Ck(s,d)∈C(s,d) cNf

k (s, d)

for wireless network realizations N f and is mind∈D mink:Ck(s,d)∈C(s,d) cNg

k (s, d) for net-

work graph N g. Since networks N f and N g have the same cut values, they have the

same properties of the maximum flows between any source-destination node pair s

and d. 2

Assume that we would like to solve the problem of omnidirectional transmis-

sions while keeping the ”link-based” notion of the connectivity graphs with the

original definition of flows and cuts. A possible solution to incorporate omnidirec-
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Figure 6.6: Illustrative example of introducing an artificial node ṽ for each trans-

mitting node v.

tional transmissions [70] is to introduce an artificial node for each transmitting node

and connect the original node to that artificial node with an error-free link of ca-

pacity 1 (information flow per unit time) such that this artificial node has the same

outgoing links as the original node, as shown in Figure 6.6. The idea is to separate

the coder from transmitter so that we have the maximum flow of 1 over any cut

crossed by the outgoing links of any transmitting node.

Suppose that we introduce the artificial node ṽ for transmitter node v with

outgoing links Ev on the original graph N g. On the modified graph Ñ g, the only link

out of node v is (v, ṽ), whereas the links out of the artificial node ṽ are equivalent

to links Ev. For each cut on the graph N g that is crossed by links Ev, we obtain

a new cut on the modified graph Ñ g that is crossed by link (v, ṽ) but not by links

Ev. This is illustrated by Figure 6.6. Thus, the contribution of node v to the new

cut on Ñ g is 1. Since we are interested in achieving the maximum flow through

the cut with the minimum value, the artificial nodes have the same effect on Ñ g
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as assigning the value of 1 to a cut on N g that has multiple links out of a single

node. As far as the flows are concerned, we can either use (a) the original graph

N g with the cut value definitions based on omnidirectional transmissions or use (b)

the modified graph Ñ g with artificially introduced nodes. Both formulations lead to

the same (correct) generalization of the minimum cut capacity notion for wireless

networks. However, the formulation (b) cannot handle MAC scheduling, whereas

the formulation (a) has the advantage of offering an operational difference in that

it facilitates the definition of schedules and can also incorporate the node-based

metrics (such as energy expenditures) in wireless networks.

Next, we construct the wireless network codes using the linear network codes

that have been determined for the hypothetical wired network graph N g.

Theorem 6.3.1 There exist wireless linear network codes that achieve the maxi-

mum flows for a given set N f of wireless network realizations.

Proof: There are low complexity polynomial-time algorithms [78] available to pro-

vide linear network codes on the corresponding hypothetical wired network graph

N g. Suppose that we find linear network codes on network graph N g that achieve

the maximum flow mind∈D mink:Ck(s,d)∈C(s,d) cNg

k (s, d) between the source node s and

destination nodes d ∈ D. Note that the cut value achievable on network graph N g

(with respect to the definition of cuts based on omnidirectional transmissions) can

be smaller than what would be achievable on the same topology with respect to

the traditional definition of cuts. However, the minimum cut value on N g is actu-

ally equal to the value of the maximum flow achievable over the wireless network
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realizations N f , as Lemma 6.3.1 indicates.

For the simplicity of illustration, we assume the finite field F2 for the network

coding operations. The notation for wired network codes is the same as the notation

for wireless network codes with the exceptions that coding and decoding coefficients

of wired network codes do not involve time indices and wired network codes have

link-based properties. The flow Y (e′) that arrives on link e′ is weighted by β(e′, e)

onto link e. For j = 1, ..., µ(tail(e)), the input flow Xj(tail(e)) generated by node

tail(e) is weighted by αj(e) onto link e. The incoming flow Y (e) on link e is weighted

by ǫk(e) to reconstruct the kth flow Zk(v) for destination node v = head(e).

To minimize the packet delay, we can assume that a packet to be transmit-

ted during the network realization N f
n is generated during the previous network

realization N f
m, where n = m + 1 (mod M), i.e. we have α

(m,n)
j (v) = 0 for all

n 6= m + 1 (mod M). Nodes store the arriving packets and decode any flow only af-

ter receiving all the necessary information. Therefore, we can impose the constraint

ǫ
(m,n)
k (e) = 0 unless n = max(p ∈ {1, ...,M} : ǫk(e) = 1, e ∈ Ef

p ), i.e. any flow k

should be decoded only after activating once each of the network realizations that

can deliver all of the information packets necessary to decode the flow k. This en-

sures that nodes accumulate all the necessary information for decoding purposes at

the expense of possibly increasing the packet delay compared to the classical plain

routing approach. Since no node can transmit and receive packets in the same net-

work realization, we also need to impose the constraint β(m,n)(e) = 0 for any link e,

if m 6= n. We construct the non-zero wireless network codes from the linear network
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codes predetermined for the hypothetical wired network graph N g as follows

α
(m,n)
j (tail(e)) = 1, if αj(e) = 1, e ∈ Ef

n and n = m + 1 (mod M), (6.11)

β(m,n)(e′) = 1, if β(e′, e) = 1, e′ ∈ Ef
m, e ∈ Ef

n and m 6= n, (6.12)

ǫ
(m,n)
k (e) = 1, if ǫk(e) = 1, e ∈ Ef

m and n = max{p : ǫk(e) = 1, e ∈ Ef
p }. (6.13)

Averaged over the entire set of network realizations N f , the wireless network

codes perform exactly the same encoding and decoding operations as wired network

codes for the hypothetical wired network graph N g, and achieve the maximum flows

for wireless network realizations N f . 2

The wireless network codes are constructed such that:

(a) Nodes accumulate generated or incoming packets over at most one schedule

period,

(b) Nodes perform the same encoding and decoding operations as those for the

hypothetical wired network (Particularly, each source or relay node sends the same

linear combination to the same neighbor node as determined by wired network codes

but only during the network realization for which the node is activated as transmitter

and the neighbor node is activated as receiver.), and

(c) Nodes either encode and transmit or receive and decode packets during the

network realization for which they are activated as transmitters or receivers.

6.3.3 Example for Constructing Wireless Network Codes

To illustrate how to construct wireless network codes, we consider the network

example in Figure 6.1 with the network realizations shown in Figure 6.3. First, we
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construct the wired network graph N g and find the non-zero linear network codes

on N g. The non-zero coefficients of linear network coding solution for the finite field

F2 are given by α1(e1) = 1, α2(e2) = 1 and β(e1, e7) = 1, β(e1, e3) = 1, β(e2, e4) = 1,

β(e2, e8) = 1, β(e3, e5) = 1, β(e3, e6) = 1, β(e4, e5) = 1, β(e4, e6) = 1 and ǫ1(e6) = 1,

ǫ1(e7) = 1, ǫ1(e8) = 1, ǫ2(e5) = 1, ǫ2(e7) = 1, ǫ2(e8) = 1. Using the method given

in the proof of Theorem 6.3.1, we derive the wireless linear network codes for the

specific network realizations N f = {N f
m}3

m=1 in Figure 6.3 as follows: For N f
1 , we

have β(2,1)(e1) = 1, α
(3,1)
2 (s) = 1 and ǫ

(1,1)
1 (e7) = 1. For N f

2 , we have β(1,2)(e2) = 1,

α
(1,2)
1 (s) = 1 and ǫ

(2,2)
2 (e8) = 1. For N f

3 , we have β(1,3)(e3) = 1, β(2,3)(e4) = 1,

ǫ
(3,3)
2 (e5) = 1, ǫ

(1,3)
2 (e7) = 1, ǫ

(3,3)
1 (e6) = 1 and ǫ

(2,3)
1 (e8) = 1.

6.3.4 Properties of Linear Wireless Network Codes and Interactions

with MAC Schedules

We assume that the wireless network realizations {N f
m}M

m=1 are predetermined

with conflict-free link sets {Ef
m}M

m=1 for a network graph with node set V and link

set E. We assume binary network coding operations in finite field F2.

First, we consider the effects of the constraint that nodes cannot simultane-

ously transmit and receive packets. Suppose that node v ∈ V transmits a packet in

network realization N f
m, i.e. β(n,m)(e1) = 1 or α

(n,m)
j (v) = 1 for any incoming link

e1 ∈ Ef
n : head(e1) = v and flow j generated in network realization N f

n . Then, node

v cannot receive any information flow (on any incoming link e ∈ E) to be encoded

for possible transmissions in another network realization N f
p , i.e. β(m,p)(e) = 0 for
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any link e : head(e) = v. Thus, the linear encoding operations must satisfy

β(m,p)(e) = 0, if β(n,m)(e1) = 1, head(e) = head(e1), (6.14)

β(m,p)(e) = 0, if α
(n,m)
j (v) = 1, head(e) = v (6.15)

for m, n, p ∈ {1, ...,M}. Also, node v does not receive any information that can

be used to decode any flow in network realization N r
f , i.e. ǫ

(m,r)
k (e) = 0 for any link

e : head(e) = v, network realization N r
f and flow k. Thus, we obtain the conditions

ǫ
(m,r)
k (e) = 0, if β(n,m)(e1) = 1, head(e) = head(e1), (6.16)

ǫ
(m,r)
k (e) = 0, if α

(n,m)
j (v) = 1, head(e) = v (6.17)

for m, n, r ∈ {1, ...,M}. Next, we consider the effects of conflict-free scheduling

to eliminate simultaneous transmission and reception by any node such that T (m)

and R(m) denote the disjoint sets of transmitters and receivers activated in network

realization N f
m. Suppose that node v is activated as receiver in network realization

N f
m, i.e. v ∈ R(m). Node v should not encode and transmit any information that

has arrived in any network realization N f
n on incoming link e : head(e) = v, i.e.

β(n,m)(e) = 0. Otherwise, node v cannot successfully receive packets in N f
m. Sim-

ilarly, node v should not transmit in network realization N f
m any information flow

j generated in any network realization N f
n , i.e. α

(n,m)
j (v) = 0. Thus, we obtain the

conditions

β(n,m)(e) = 0, if head(e) ∈ R(m), (6.18)

α
(n,m)
j (v) = 0, if v ∈ R(m) (6.19)

for m, n ∈ {1, ...,M}. If node v is activated as transmitter in N f
m (i.e. if v ∈ T (m)),
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then it must encode at least one information flow with at least one non-zero encoding

coefficient, i.e. there exist e ∈ E and p ∈ {1, ...,M} such that β(p,m)(e) = 1 for

head(e) = v or there exist j ∈ {1, ..., µ(v)} and p ∈ {1, ...,M} such that α
(p,m)
j (v) =

1, if v ∈ T (m) for m ∈ {1, ...,M}. Otherwise, node v would stay idle or act as

receiver. Also, the transmitting node v receives in N f
m no new information that

can be encoded for subsequent transmissions in N f
r , i.e. β(m,r)(e) = 0 for any link

e : head(e) = v. Therefore, we obtain the condition

β(m,r)(e) = 0, if head(e) ∈ T (m) (6.20)

for m, r ∈ {1, ...,M}. In addition, there is no new information that can be decoded

to any flow k in N f
r , i.e. ǫ

(m,r)
k (e) = 0 for any link e : head(e) = v. Thus, we obtain

the condition

ǫ
(m,r)
k (e) = 0, if head(e) ∈ T (m) (6.21)

for m, r ∈ {1, ...,M}. Also, there is no need to change the decoding coefficients of

node v ∈ T (m).

Next, we consider the effects of interference on network codes. The flows on

links e1 and e2 arriving at node v in the same network realization N f
m cannot be

successfully received and therefore cannot be encoded by node v for subsequent

transmissions and cannot be decoded to any flow in subsequent network realiza-

tions N f
n and N f

p , respectively. Therefore, the encoding coefficients β(m,n)(e1) and

β(m,p)(e2) as well as the decoding coefficients ǫ
(m,n)
k (e1) and ǫ

(m,p)
k (e2) cannot be both

non-zero for e1 6= e2 and head(e1) = head(e2), i.e.

β(m,n)(e1)β
(m,p)(e2) = 0, ǫ

(m,n)
k (e1)ǫ

(m,p)
k (e2) = 0, if e1 6= e2, head(e1) = head(e2)(6.22)
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for m, n, p ∈ {1, ...,M}. Also, if v = head(e1) transmits a packet to node head(e2)

in N f
m (i.e. (head(e1), head(e2)) ∈ E and β(n,m)(e1) = 1 or α

(n,m)
j (v) = 1), then

node head(e2) cannot successfully receive packets on any link e2 for head(e1) 6=

tail(e2). Therefore, node head(e2) cannot use Y (m)(tail(e2)) for the encoding and

decoding purposes in any subsequent network realization N f
p , i.e. β(m,p)(e2) = 0 and

ǫ
(m,p)
k (e2) = 0. For m, n, p ∈ {1, ...,M}, we obtain the conditions

β(m,p)(e2) = ǫ
(m,p)
k (e2) = 0, if β(n,m)(e1) = 1, (6.23)

head(e1) 6= tail(e2), (head(e1), head(e2)) ∈ E,

β(m,p)(e2) = ǫ
(m,p)
k (e2) = 0, if α

(n,m)
j (v) = 1, v 6= tail(e2), (v, head(e2)) ∈ E. (6.24)

Consider conflict-free scheduling to eliminate interference. Assume that node

v = head(e2) is scheduled to transmit in Nm
f such that β(r,m)(e2) = 1 or α

(s,m)
j (v) =

1, i.e. v = head(e2) ∈ T (m), and can reach the non-intended receiver node d,

i.e. (v, d) ∈ E and (v, d) /∈ Ef
m. Then, node u should not transmit a packet to

node d in network realization Nm
f , since this transmission cannot be successful, i.e.

(u, d) /∈ Ef
m. Node d cannot receive in network realization N f

m any packet flow from

node u that can be encoded for subsequent transmissions or decoded to output flows

in subsequent network realizations. For m, n ∈ {1, ...,M}, we obtain the conditions

β(m,n)((u, d)) = 0, ǫ
(m,n)
k ((u, d)) = 0, if ∃ v ∈ T (m) s.t. v 6= u and (v, d) ∈ E.(6.25)

6.3.5 Network Coding with Arbitrary MAC through Group TDMA

The next problem is to operate network coding with arbitrary MAC protocols

within each receiver’s area. The network is partitioned into separately activated
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transmitter and receiver sets. Then, for each receiver set, Group TDMA scheme

of Chapter 2 separately activates interfering node groups (with packets addressed

to different receivers) to decouple feedback from multiple receivers and prevent the

instability of MAC operations. We use an arbitrary single-receiver protocol (e.g.

FCFS algorithm) for multiple access within each receiver’s area. The time fractions

allocated to different node groups are chosen to optimize the stable throughput or

energy costs. We construct the network coding (or routing) solution over the one-

hop transmission schedules of Group TDMA, as we did for the conflict-free network

realizations in section 6.2.

6.4 Improved Joint MAC and Network Coding Methods

In this section, we introduce alternative solutions for joint MAC (scheduling)

and network coding under the assumption of classical collision channel model. We

assume single common network method based on subtree decomposition that has

been proposed in [72] for wired networks and consider three separate methods for

the MAC part. The objective is to use the results of network coding to construct

conflict-free transmission schedules in a joint analysis (with possibly distributed

implementation) while incorporating omnidirectional transmissions.

6.4.1 Subtree Decomposition Method

We outline three steps of the subtree decomposition method [72].

Step 1: We construct from the original network graph G a dual line graph (as shown
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Figure 6.7: (a) Dual line graph for the original network graph in Figure 6.1 and

subtree decomposition of the dual line graph, (b) Subtree graph Γ, (c) Special graph

Ω.

in Figure 6.7 for the network topology in Figure 6.1), where links become vertices

and these vertices are connected, if the corresponding links in the original graph G

are adjacent (i.e. share a common vertex). We define three special types of nodes in

dual line graph: Source nodes in dual line graph are links in original graph that are

outgoing from a source. Destination nodes in dual line graph are links in original

graph that are incoming to a destination. Coding nodes in dual line graph are links

in original graph that are downstream and adjacent to more than one incoming link.

For the dual line graph in Figure 6.7, the source nodes are st and su, and the coding

and destination nodes are both wy and wz.

Step 2: We partition the dual line graph to a disjoint union of connected subtrees

{Ti} (as shown in Figure 6.7 for the network topology in Figure 6.1) such that

(a) each subtree contains exactly one source or exactly one coding node, and

(b) any other node in dual line graph belongs to the subtree that contains its first

ancestral (i.e. closest upstream) source or coding node. Network coding operation
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depends on how subtrees are connected and which destination nodes are included

in each subtree.

Step 3: We construct the subtree graph Γ from the dual line graph (as shown in

Figure 6.7-(b) for the network topology in Figure 6.1) by

(a) contacting each subtree in the dual line graph to a node, and

(b) retaining only the edges that connect the subtrees.

For minimal subtree decomposition, we check if we can further remove any

link in the subtree graph and merge the subtrees without reducing the minimum

cut capacity of the original graph.

6.4.2 Common Network Coding Method by Subtree Decomposition

We assume that there are h source nodes in dual line graph and there are

h edge-disjoint paths from source to any destination in the original graph G. The

source node in G generates h-dimensional information vector x that should be jointly

decoded by each destination. Each component of vector x carries a symbol from a

finite field Fq. Any node in the original graph G can transmit at most one symbol

per time slot. Each transmission on link e in graph G (or node e in dual line graph)

carries a single symbol y(e). This symbol is constructed as y(e) = f(e) xT , where

f(e) is the h-dimensional code vector for node e in dual line graph.

We assign the same code vector to all nodes in each subtree Ti, i.e. f(e) is

constant for e ∈ Ti. As a result, the same symbol is transmitted in each subtree,

i.e. y(e) is constant for all e ∈ Ti. This is also consistent with the assumption of
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omnidirectional transmissions and equivalent to assigning f(Ti) as the code vector

for each subtree Ti. The symbol y(e) = f(e) xT is transmitted on e ∈ Ti only when

e is activated by the underlying MAC method (that we will specify in sections 6.4.3,

6.4.4, and 6.4.5 in three different ways). We construct linear network codes such

that each destination receives all necessary and sufficient information as independent

vectors to recover the information vector x. Successful decoding by destination nodes

is assured if

(a) the code vector of any subtree is in the linear span of code vectors of parent

subtrees, and

(b) the code vectors of subtrees are linearly independent provided that

(i) the subtrees are connected to a common child subtree, or

(ii) the subtrees contain nodes (links in original graph) such that these links

lead to the same destination node of the original graph (i.e. they share a

destination node).

The problem of assigning codes f(Ti) to the subtree nodes Ti ∈ Γ has been

formulated in [79] as vertex coloring of a special graph Ω. We construct Ω from the

subtree graph Γ (as shown in Figure 6.7-(c) for the network topology in Figure 6.1)

by keeping the original links and introducing new links between (subtree) nodes, if

(i) these nodes are connected to a common child (subtree) node, or (ii) the corre-

sponding subtrees contain nodes (links in the original graph) such that these links

lead to the same destination node in the original graph.

We color the special graph Ω (by one of the well-known graph coloring heuris-

tics [80] such that no adjacent subtree has the same color) and assign linearly inde-
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pendent network codes to the subtrees that have been colored with different colors.

As an example, linear network codes for the network in Figure 6.1 with h = 2 are

given by f(T1) = [0, 1], f(T2) = [1, 0], f(T3) = f(T4) = [1, 1].

It is an NP-complete problem to find the smallest coding alphabet size, i.e.

the smallest number of colors needed so that no two adjacent vertices share the same

color. We need at most |Ω| colors and the alphabet size has the upper bound of

|Ω| − 1. As shown in [79], the upper bound on |Ω| is nd + 1, where nd is the number

of destination nodes in the dual line graph. For h = 2, we can employ a greedy

coloring algorithm that sequentially colors each vertex of graph Ω with a color that

has not been used before for any of its neighbors. If ∆(Ω) denotes the maximum

degree of the vertices on graph Ω, we need at least ∆(Ω)+1 colors and the alphabet

size is at least ∆(Ω). The distributed implementation issues have been discussed in

[81] for (wired) network coding solutions based on subtree decomposition.

6.4.3 Scheduling by Subtree Decomposition: Method A

We use the results of subtree decomposition to construct conflict-free transmis-

sion schedules. We divide the time frame into subframes and match each subframe

with exactly one subtree (as shown in Figure 6.8). Nodes in a given subtree are

activated only in the matched subframe and remain idle for the rest of the time. We

divide each subframe into three time slots and assign each node in the corresponding

subtree into one of the three disjoint node groups according to its depth level, which

is defined as the hop-distance from the source or coding node of the subtree.
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Subframe 1 Subframe 2

Subtree 1 Subtree 2

slot 2 slot 3slot 1

Nodes at
depth levels
0, 3, 6, ...
in Subtree 1 in Subtree 1

Nodes at
depth levels
1, 4, 7, ...

Nodes at
depth levels
2, 5, 8, ...
in Subtree 1

Frame

Figure 6.8: Subframe and slot assignment by scheduling Method A.

For each subtree Ti ∈ Γ and j = 0, 1, 2, nodes at depth levels 3 l + j, l =

0, 1, 2, ..., form a different node group Ni,j (as shown in Figure 6.9 for an isolated

subtree i). Then, each node in group Ni,j for Ti ∈ Γ and j = 0, 1, 2 is activated in

slot j + 1 of the subframe matched to the subtree Ti. This spatial reuse approach

enables conflict-free transmission schedules between subtrees (since transmissions

in different subtrees are separately activated) and also within each subtree (since

nodes at every third depth level can be simultaneously activated without interfering

with each other). Scheduling method A is summarized as follows:

(a) Divide time frame into subframes and combine each subtree with exactly one

distinct subframe.

(b) Use additional spatial reuse to combine nodes at every third depth level of any

subtree in the same time slot of the corresponding subframe.

The resulting time frame is activated in a time-division fashion and has the

length of 3|Ω| time slots. If a subtree contains less than three nodes, some time slots
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NNode Group

Node Group

Node Group

Node Group

Figure 6.9: Conflict-free scheduling within a given subtree.

become idle and need to be shared by the nodes present in that subtree. In general,

the fixed subframe length of three time slots is not optimal. Instead, the subframe

lengths can be chosen to optimize the performance objectives such as maximizing

throughput or minimizing cost (e.g. energy). For that purpose, we construct a

hypothetical wired graph with the same node set as the original graph G and define

the link capacity as the proportion of time during which the link is activated (as we

did before in section 6.3). Then, we express the cut capacities as functions of the

subframe lengths that are further chosen to optimize the performance objectives.

6.4.4 Scheduling by Subtree Graph Coloring: Method B

Method A is not optimal and needs to be refined, since different subtrees (i.e.

subframes) may include nodes that can be simultaneously activated without any

conflict, e.g. Method A separately activates links wy and wz of the network in

Figure 6.1, although these links do not conflict with each other.

An improved scheduling method follows directly from the network coding so-
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lution based on subtree decomposition and subtree graph coloring:

(a) Determine network codes by assigning colors to subtree nodes in Ω.

(b) Divide time frame into subframes and combine all subtrees of the same color

(i.e. code) into the same subframe.

(c) Use additional spatial reuse to combine nodes at every third depth level of any

subtree in the same time slot of the corresponding subframe.

Transmissions in subtrees of the same color (i.e. code) cannot interfere with

each other and therefore can be simultaneously activated. We also apply spatial

reuse by separating transmissions of nodes within hop-distance of two or less and

simultaneously activating nodes at every third depth level within each subtree to

construct conflict-free transmission schedules.

If a subtree with a single node connects a pair of parent and child subtrees that

are not directly connected on graph Ω, then these parent and child subtrees are pos-

sibly assigned the same network code and the same time schedule that will result

in packet collisions because of the secondary interference effects at non-intended

receivers. We need to identify such single-node subtrees during the initial color-

ing process (via communication over the feedback channel) and reassign the time

schedules to their child subtrees while keeping the network code assignments.

As the coloring heuristic [80], we order the colors and use the smallest color

to color the subtree that has the largest number of colored adjacent subtrees. We

need ∆(Ω) + 1 colors (i.e. subframes) and the length of the resulting time frame is

at least 3(∆(Ω)+1) slots. In addition, the subframe lengths can be further specified

for optimality, as described for Method A. Scheduling Method B is based on apply-
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ing coloring on simple subtree decompositions, whereas the traditional scheduling

problem is related to high-complexity coloring of the entire network graph [14].

6.4.5 Scheduling by Exhaustive Search: Method C

Scheduling Method B reduces the number of subframes and improves time

reuse; however, it is not optimal and does not simultaneously activate all possible

conflict-free transmissions, e.g. links st and uw of the network in Figure 6.1 are

separately activated by Method B, although these links do not conflict with each

other.

For better spatial reuse, scheduling Method C performs exhaustive search for

nodes that can be also activated in other subframes without any conflict as follows:

(a) Perform scheduling Method B.

(b) Visit subframes sequentially.

(i) For each subframe, check each node if it is a destination or a coding node.

(ii) If not, assign the node also to slots in other subframes, unless the subframe

contains a coding node connected to the particular node.

Thus, we keep the schedules assigned by Method B to destination nodes or

coding nodes while separately activating coding nodes and their one-hop neighbor

nodes. This cancels the interference effects between different subtrees by separately

activating the incoming links of different destination nodes (in different subtrees)

and separately activating the incoming and outgoing links of any source or coding

node. Since the rest of the nodes in the dual line graph cannot conflict with nodes

183



in other subtrees, they are assigned additional time schedules in other subframes.

6.4.6 Properties of Scheduling Methods A, B and C

For the network in Figure 6.1, the scheduling solutions are given in Table 6.3.

For the scheduling methods A and B, we define ti as the fraction of time allocated

to subframe i and ti,k as the fraction of time allocated to nodes at depth levels

k (mod 3) of the corresponding subtree. The only difference of scheduling Method B

from scheduling Method A is that links wy and wz are allocated within the common

time fraction t3,0. Scheduling Method C provides the most efficient reuse of the time

schedules by separately activating the three network realizations in Figure 6.2.

Table 6.3: Transmission Schedule Assignments by Methods A, B, C.

Links: s t t y t w s u u w u z w y w z

Scheduling Method A t1,0 t1,1 t1,1 t2,0 t2,1 t2,1 t3,0 t4,0

Scheduling Method B t1,0 t1,1 t1,1 t2,0 t2,1 t2,1 t3,0 t3,0

Scheduling Method C t1 t2 t2 t2 t1 t1 t3 t3

The problem of finding the optimal subframe lengths is equivalent to finding

the optimal time fractions allocated to subframes. For the subtree decomposition

in Figure 6.7, we have from symmetry t1 = t2, t3 = t4, ti,k = ti
2

for i = 1, 2, k = 0, 1,

and ti,0 = ti for i = 3, 4 under scheduling Method A or ti,0 = t3 for i = 3, 4 under

scheduling Method B.

The packets arrive at each destination y and z with rate t1
2

in subtrees T1

and T2 and with rate t3 in subtrees T3 and T4. The minimum cut carries packets
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with rate t1
2

+ min
(

t1
2
, t3
)
, where 2(t1 + t3) = 1 under scheduling method A and

2t1 + t3 = 1 under scheduling method B. The maximum throughput per destination

achievable by the scheduling methods A and B is, respectively, 1
3

and 2
5

packets

per time slot (with t1 = t2 = 1
3
, t3 = t4 = 1

6
under scheduling method A and

t1 = t2 = 2
5
, t3 = 1

5
under scheduling method B). The scheduling method C activates

three network realizations (equivalent to those given in Figure 6.3) in three distinct

subframes with the optimal time allocation of ti = 1
3
, i = 1, 2, 3, and maximizes the

throughput rate λ to 2
3

packets per time slot. The energy-optimal solutions can be

obtained similarly and omitted for brevity.

6.4.7 Distributed Implementation Issues

Wireless ad hoc network operation requires distributed methods that should

only use local exchange of information among neighbor nodes. Graph coloring and

conflict-free scheduling (among ordered nodes) are equivalent and both have well-

known distributed solutions [14, 5]. We need to find distributed methods to identify

the subtrees and construct the subtree graph. The existing methods are centralized

and either require global network information such as the number of sources and

destinations or exchange subtree assignments throughout the network [81]. If the

subtrees are already identified, the remaining problem is to color the subtrees for

the network code assignments. For that purpose, source and coding nodes of dif-

ferent subtrees must communicate with each other through arbitrary number relay

nodes (depending on the depths of the subtrees). However, this may increase the
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communication burden and needs to be carefully organized.
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Figure 6.10: Throughput of network coding and plain routing.

6.5 Performance Comparison of Network Coding and Plain Routing

We compare the performance of network coding with plain routing under the

proposed MAC solutions. We consider a network of 9 nodes uniformly distributed on

a regular square grid with at least one and at most four-neighbor connectivity. We

consider the classical collision channel model and assume that each packet contains

one bit and source node has always a packet to be delivered to randomly chosen

destination nodes in the multicast group of size m.

Figure 6.10 evaluates the total throughput achievable (for all destination nodes)

by network coding and plain routing as function of m under the proposed MAC so-

lutions (namely Methods A, B and C of section 6.4, Basic Method of section 6.3 and
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Figure 6.11: Transmission energy cost of network coding and plain routing.

Group TDMA algorithm that uses FCFS as single-receiver MAC protocol within

each receiver’s area).

Table 6.4: Maximum Improvement of Network Coding over Plain Routing.

Perfomance Measure Total Throughput Transmission Energy Cost

Basic Method 25 % 24 %

Group TDMA 18 % 15 %

Method C 31 % 28 %

Method B 28 % 26 %

Method A 21 % 19 %

Next, we assume unit energy cost for each packet transmission and evaluate

the transmission energy efficiency of network coding and plain routing solutions that

have the common objective to minimize the average transmission energy consump-
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tion per successfully decoded packet. Figure 6.11 depicts the transmission energy

cost per unit throughput for different values of m, respectively. The maximum im-

provement of network coding over plain routing is presented in Table 6.4 in terms

of throughput and transmission energy cost.
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Figure 6.12: Packet delay of throughput-optimal network coding and plain routing.

Numerical results show that network coding outperforms plain routing and

that the scheduling Method C described in section 6.4 performs better than both

the solution of section 6.3 that is based on predetermined network realizations and

also the Group TDMA algorithm. Network coding increases the average packet

delay compared to plain routing, as shown in Figure 6.12 for the case of throughput-

optimal solutions, since nodes need to accumulate packets (from different neighbor

nodes) over successive time slots to perform network coding. Finally, we assume

unit cost for each coding (or decoding) operation and evaluate in Figure 6.13 the
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Figure 6.13: Coding energy cost of throughput-optimal network coding.

total network coding cost per unit throughput for the case of throughput-optimal

solutions. We expect similar results for more general network topologies and packet

traffic levels.

6.6 Summary and Conclusions

In this chapter, we considered joint design of network coding (or plain routing

as a special case) and MAC in wireless ad hoc networks. We introduced time-

varying linear network codes and evaluated their properties under wireless network

assumptions. After that we presented a basic method to derive the conflict-free

network realizations and separately activate them in order to maximize the achiev-

able throughput or minimize the node costs (such as energy consumption) through

network coding. We also outlined an extension of network coding to operate with
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arbitrary MAC protocols through the application of the Group TDMA algorithm.

Then, we introduced practical solutions that rely on graph coloring to derive net-

work codes and conflict-free transmission schedules on simplified subtree network

representations. Finally, we evaluated the performance of network coding over plain

routing in conjunction with the proposed MAC solutions.

Our analysis is based on allowing nodes to accumulate relay packets in periodic

network coding operation with saturated packet queues at source and relay nodes.

However, this approach can increase packet delay compared to plain routing. The

network coding results should be extended to wireless queueing networks with pos-

sibly emptying packet queues and resultant underflow. In this context, the notions

of delay and buffer overflow should be revisited to design network codes based on

the instantaneous queue contents. We will address the stability issues in Chapter 7.
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Chapter 7

Joint Optimization of MAC and Network Coding in Wireless

Queueing Networks with Multiple Sources

Throughput optimization is an essential performance objective that cannot be

adequately characterized by a single criterion (such as the minimum transmitted or

sum-delivered throughput) and should be specified over all source-destination pairs

as a region of throughput rates. For a simple and yet fundamental model of tandem

networks, we formulate a cross-layer optimization framework across the medium

access control (MAC) and the network layers to derive the maximum throughput

region achievable by saturated multicast traffic. The results illuminate multidimen-

sional throughput gains of network coding over plain routing. If the network model

also incorporates bursty sources and allows packet queues to empty, the objective

is changed to specify the stability region as the set of maximum throughput rates

that can be sustained with finite packet delay for all source-destination pairs. Dy-

namic queue management strategies are used to distinguish source and relay packet

transmissions based on instantaneous queue contents and expand the stability re-

gion towards the maximum throughput region by jointly specifying network coding

(or plain routing) and MAC operations. The throughput optimization results im-

pose fundamental trade-offs with the energy efficiency objectives. We evaluate both

transmission and processing energy costs to show that the throughput-optimal op-
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eration of network coding is not necessarily energy-efficient. Finally, the analysis

is extended to non-cooperative network operation with selfish nodes competing for

limited network resources. We point at the inefficiency of competitive MAC and

network coding (or plain routing) decisions, and introduce cooperation stimulation

mechanisms to improve the throughput and energy efficiency performance.

7.1 Introduction

A single scalar criterion is not sufficient to reflect all communication demands

of multiple source-destination pairs and it is necessary to construct a region of

attainable transmission rates at which reliable communication can occur. The per-

formance limits of reliable data transmission can be formulated as an information-

theoretic capacity problem that is based on the assumption of uninterrupted avail-

ability of information symbols to be coded (and transmitted) without regard to

delay. This problem has not been fully extended yet from the point-to-point trans-

mission paradigm to general network operation [82]. Alternatively, we can consider

packets as information units to be transmitted and evaluate the maximum region

of throughput rates achievable under the assumption of saturated queues with con-

tinuously generated packet traffic. We can also assume bursty packet arrivals and

allow packet queues to empty. The resulting performance measure of interest is

the stability region, which is defined as the largest collection of packet traffic rates

(originating at multiple sources) for which the queue sizes remain finite. In general,

the capacity, maximum throughput and stability regions can be different from each
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other in wireless networks [22, 83].

For point-to-point or unicast communication, the back-pressure algorithms

achieve the maximum stable throughput region at the expense of poor delay perfor-

mance [84]. The capacity analysis of wireless networks has been limited to saturated

queues with infinite delay [10]. The extension of the network capacity problem to

general multicast communication is facilitated through network coding that we dis-

cussed in Chapter 6 for wireless domain [85]. The classical objective of network cod-

ing studies is to maximize the Max-flow Min-cut capacity for all source-destination

pairs and therefore it is sufficient to assume saturated queues that guarantee con-

tinual availability of packets for transmission without risk of underflow or concern

about delay build-up. For stable operation, the potential use of the back-pressure

algorithms in conjunction with network coding has been presented in [86] for the

case of separating the multicast traffic of different source nodes.

The network coding objective of maximizing a single common multicast rate

cannot fully represent the aggregate throughput performance, since the throughput

demands of different source-destination pairs may differ and conflict with each other.

As an extension, the throughput rates achievable at different destinations have been

separately considered in [87] to study the average throughput properties of wired

networks.

In this chapter, we distinguish the throughput rates achievable by multiple

source nodes in a wireless network. For general communication demands (that

include multicast, broadcast and multiple unicast scenarios), the main objective is

to specify the achievable and stable throughput regions (with common rate for each
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destination in the same multicast group) for the separate cases of (a) saturated

queues and (b) not overloaded systems with finite packet delay. We formulate a

general cross-layer design framework for optimizing the achievable throughput or

stability regions through the joint selection of MAC and network layer strategies.

We evaluate the multidimensional performance gains of network coding over plain

routing in terms of the maximum throughput and stability regions.

Because of the complexity introduced by the presence of multiple sources and

the requirement of stable operation, we restrict our attention to a simple tandem

network topology with at most two-node connectivity such that any packet trans-

mission reaches only its left and right neighbors, respectively. The linear tandem

network model with node set N = {1, ..., n} is shown in Figure 7.1.

Node 2Node 1 Node 3 nNode    −1 Node nNode    −2 n

Figure 7.1: Tandem network model with node set N = {1, ..., n}.

For stable operation of the queues, the possible underflow of relay packets

opens up new questions regarding the optimal queue management and the opti-

mal use of network coding based on the instantaneous queue contents. Practical

network coding heuristics have been presented in [88, 89]. Instead, we derive the

achievable throughput and stability regions in a theoretical cross-layer optimization

framework for joint MAC and network coding, and discuss how the question of MAC

protocol affects and is affected by the use of network coding (or plain routing as

a special case). For stable operation, we present network coding and plain routing

strategies based on different priorities assigned to source and (either network-coded
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or uncoded) relay packets. Specifically, we show that the stable operation in tan-

dem networks can approach the maximum throughput rates achievable by saturated

packet traffic.

We also consider the single aggregate throughput performance measure, in

addition to the entire region of throughput rates. In this context, we formulate

the cross-layer optimization problems of maximizing the sum-delivered throughput

or the minimum transmitted throughput. We also evaluate the transmission and

processing energy costs for network coding and plain routing operations to sustain

a given set of (achievable or stable) throughput rates. We highlight the cross-

layer optimization trade-offs between different measures of throughput and energy

efficiency.

The previous (wired or wireless) network coding studies rely on cooperation of

nodes to jointly optimize the network performance objectives. However, it is difficult

to coordinate a large number of nodes under cooperation-based MAC and network

coding (or plain routing). If selfish nodes with individual performance objectives

compete for MAC and network layer tasks, they are subject to performance loss

compared to centralized cooperation [53, 90, 54, 55, 56, 3, 19, 40]. The cooperation

can be realized externally by a central authority, or we can impose distributed co-

operation reinforcement mechanisms and let nodes operate selfishly in a distributed

manner to optimize the individual performance measures involving the throughput

rewards and (transmission and processing) energy costs.

In this chapter, we also extend the analysis to the non-cooperative opera-

tion with nodes competing for limited network resources of bandwidth and energy.
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We formulate a joint MAC and network coding game with the node utilities that

reflect the individual throughput and energy efficiency objectives. We introduce

distributed cooperation stimulation mechanisms and evaluate the improvement in

non-cooperative equilibrium strategies of MAC and network coding (or plain rout-

ing). We introduce a rewarding mechanism to charge credits for packet relaying.

We show that it is possible to let nodes make selfish MAC and network coding (or

plain routing) decisions in a distributed fashion while approaching the same perfor-

mance results as in the centralized cooperation. We also specify the dependence of

the non-cooperative equilibrium strategies of joint MAC and network coding on the

throughput credits, energy costs and rewards for packet relaying.

The chapter is organized as follows. We present the wireless network model in

section 7.2 and formulate the cross-layer optimization problem in section 7.3. For

scheduled access, we specify the achievable throughput region in section 7.4 and the

stability region in section 7.5. We discuss the throughput optimization trade-offs

in section 7.6 and incorporate the energy efficiency measures of transmission and

processing energy costs in section 7.7. Then, the results are extended to contention-

based random access in section 7.8 and to the non-cooperative network operation

in section 7.9. Finally, we draw conclusions in section 7.10.

7.2 MAC and Network Layer Model

We assume the classical collision channel model and separately consider (a)

conflict-free transmission schedules and (b) contention-based random access at the
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MAC layer.

(a) Scheduled Access: We order n nodes in a tandem network from left to

right and divide them into three groups such that node i is included in group m =

(i − 1)(mod 3) + 1, where m = 1, 2, 3. Nodes in group m are activated for a time

fraction tm, where 0 ≤ tm ≤ 1 and
∑3

m=1 tm = 1. The activation times of the three

groups are disjoint.

(b) Random Access: Each node i transmits a packet in any time slot with a

constant and fixed probability pi. The collided packets remain backlogged until they

are successfully received. Any transmission randomly chooses either a source packet

or a relay packet that arrived from a neighboring node.

We also distinguish between the case of saturated queues (with uninterrupted

availability of source and relay packets) and stable operation (with possibly emptying

packet queues). Each relay packet coming from one of a node’s neighbors must be

transmitted only to the neighbor node on the opposite side, whereas a source packet

may need to be delivered to one or both neighbor nodes, depending on whether its

destinations are located on one or both sides of the node in question.

Each node i has three separate packet queues of infinite capacities: Queue Q1
i

stores the source packets that node i generates, while queues Q2
i and Q3

i store the

relay packets that are incoming from its right and left neighbors, respectively. At

the network layer, we separately consider (a) plain routing and (b) network coding

operation:

(a) Plain Routing: Each node i either transmits a packet from its source queue

Q1
i or a packet from one of its relay queues Q2

i and Q3
i ; these two queues may be
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combined into a single queue (in a first-come-first-served fashion).

(b) Network Coding: Each node i either transmits a source packet from queue

Q1
i , or a relay packet from one of the other two queues, or the coded combination of

two relay packets one from each of the relay queues Q2
i and Q3

i . We consider each

packet as a vector of bits and assume F2 to be the field for linear network coding

operations such that the bit-sum x + y of two packets x and y is a modulo-2 vector

addition of the corresponding vectors of each packet.

Lemma 7.2.1 In a tandem network, nodes can separately transmit source and relay

packets (instead of combining them by network coding) without loss of optimality in

terms of throughput, energy efficiency or packet delay.

Proof: Consider the case in which a node i has at least one source packet si to

transmit and at least one relay packet ri,i−1 in queue Q2
i and at least one relay packet

ri,i+1 in queue Q3
i to deliver to neighbor nodes i − 1 and i + 1, respectively. Node

i− 1 has already packet ri,i+1 but not yet packets si and ri,i−1. Similarly, node i+1

has already packet ri,i−1 but not yet packets si and ri,i+1.

First, we assume that node i does not separate but, rather, combines the

transmissions of source and relay packets. If node i transmits coded packet si+ri,i−1

(or packet si + ri,i+1), node i + 1 can decode packet si by computing (si + ri,i−1) +

ri,i−1 (or node i − 1 can decode packet si by computing (si + ri,i+1) + ri,i+1). In a

subsequent time slot, node i needs to transmit coded packet ri,i−1 + ri,i+1 so that

node i + 1 can decode packet ri,i+1 by computing (ri,i−1 + ri,i+1) + ri,i−1 and node

i − 1 can decode packets ri,i−1 and si by computing (ri,i−1 + ri,i+1) + ri,i+1 and
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(si + ri,i−1) + ri,i−1, respectively (or so that node i − 1 can decode packet ri,i−1 by

computing (ri,i−1 + ri,i+1) + ri,i+1 and node i + 1 can decode packets ri,i+1 and si by

computing (ri,i−1 + ri,i−1) + ri,i−1 and (si + ri,i−1) + ri,i+1, respectively).

This operation delivers packets si, ri,i−1 and ri,i+1 to nodes i−1 and i+1 using

two packet transmissions in two time slots and performing two coding operations

with a total of two bit additions at node i and two decoding operations with a total

of two bit additions at each of the nodes i − 1 and i + 1. The packet delay is two

time slots for both relay packets ri,i−1 and ri,i+1, whereas the delay of source packet

si is one time slot for one neighbor node and two time slots for the other one, i.e.

the average packet delay is 7
4

time slots. Alternatively, node i can first transmit

packet si + ri,i−1 (or packet si + ri,i+1), and then transmit packet si + ri,i+1 (or

packet si + ri,i−1). This results in the same performance as the previous operation.

Instead, node i can separate the transmissions of source and relay packets.

Node i transmits source packet si and coded packet ri,i−1 + ri,i+1 separately such

that both neighbor nodes can decode packets si, ri,i−1 and ri,i+1. Nodes i − 1 and

i + 1 directly receive uncoded packet si and can decode packets ri,i−1 and ri,i+1

by computing (ri,i−1 + ri,i+1) + ri,i+1 and (ri,i−1 + ri,i+1) + ri,i−1, respectively. This

operation requires two transmissions, two time slots, only one coding operation with

one bit addition at node i and only one decoding operation with one bit addition at

each of nodes i−1 and i+1. The packet delay is either one or two time slots for any

packet depending on the order of transmissions of the source and relay packets si

and ri,i−1 + ri,i+1, i.e. the average packet delay is 3
2

time slots. The same argument

can be made, if node i has packets to relay only in one direction rather than in
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both directions, as we considered so far. As a result, we can conclude that the

separation of source and relay packet transmissions is as good as combining them

for network coding purposes in terms of throughput and transmission energy cost

and even better in terms of processing energy cost and packet delay. 2

According to Lemma 7.2.1, nodes do not need to combine source and relay

packets through a network coding operation. The separation of the source and relay

packet transmissions offers the operational advantage of facilitating simple strategies

for optimal queue management that we will introduce in sections 7.4 and 7.5.

7.3 Cross-Layer Throughput Optimization Problem

For saturated queues, we define λi,j to be the achievable throughput rate

from source node i to destination node j in the multicast group Mi. Under stable

operation, each source node i independently generates packets to be delivered to

destination j in multicast group Mi with rate λi,j according to Bernoulli process.

For the separate operations of network coding and plain routing at the net-

work layer, we need to specify the constraints on the achievable or stable throughput

rates λ = {λi,j, i ∈ N, j ∈ Mi} depending on whether we consider saturated packet

queues or stable operation. These constraints determine the achievable through-

put region A and stability region S as functions of either the transmission schedules

t = {tm}3
m=1 under scheduled access, or of the transmission probabilities p = {pi}i∈N

under random access. The dependence of the achievable throughput and stability

regions, A and S, respectively, on t or p results in the following cross-layer opti-
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mization problem:

Select t or p to find the largest set λ ∈ A or λ ∈ S (7.1)

for network coding or plain routing. Alternatively, we can assess the aggregate

throughput performance through a single criterion such as the total sum-delivered

throughput

λΣ =
∑

i∈N

∑

j∈Mi

λi,j (7.2)

or the minimum transmitted throughput

λmin = min
i∈N,j∈Mi

λi,j. (7.3)

We consider multicast communication such that each source node i has a

destination group Mi to each member of which it wants to transmit at the same

rate; i.e. λi,j = λi, j ∈ Mi, for any node i ∈ N , such that λΣ =
∑

i∈N λi|Mi|,

where |Mi| denotes the size of the multicast group Mi, and λmin = mini∈N λi. The

resulting optimization problem can be formulated as:

Select λ , and t or p to maximize λΣ or λmin subject to λ ∈ A or λ ∈ S (7.4)

for network coding or plain routing. The regions A and S will serve as the opti-

mization constraints for the aggregate throughput measures λΣ and λmin.

7.4 Achievable Throughput Region for Saturated Queues

First, we assume saturated packet queues and consider scheduled access. We

define N r
i to be the set of nodes whose packets arrive at node i from the right
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direction and need to be forwarded to the left neighbor of node i, and we define

N l
i to be the set of nodes whose packets arrive at node i from the left direction

and need to be forwarded to the right neighbor of node i. Let Λr
i =

∑
j∈Nr

i
λj

and Λl
i =

∑
j∈N l

i
λj denote the rate of relay traffic incoming from the right and left

neighbor nodes of node i, respectively.

Theorem 7.4.1 The achievable throughput region A with rates λi ≥ 0, i ∈ N , is

given by

3∑

m=1

max
i∈N :m(i)=m

(
λi + max(Λr

i , Λ
l
i)
)
≤ 1, (7.5)

3∑

m=1

max
i∈N :m(i)=m

(
λi + Λr

i + Λl
i

)
≤ 1 (7.6)

for network coding and plain routing, respectively, where m(i) = (i− 1) (mod 3)+1,

i ∈ N .

Proof: Each node i separately transmits packets it generates and (plain or coded)

relay packets for τi and 1−τi fractions of time (whenever it is scheduled to transmit).

The achievable throughput rates λ = {λi, i ∈ N} satisfy

0 ≤ λi ≤ tm(i)τi, Λr
i ≤ tm(i)(1 − τi), Λl

i ≤ tm(i)(1 − τi), (7.7)

0 ≤ λi ≤ tm(i)τi, Λr
i + Λl

i ≤ tm(i)(1 − τi) (7.8)

for network coding and plain routing, respectively, where m(i) is the time schedule

assigned to node i. For any time fraction τi, the achievable throughput rates λi ≥

0, i ∈ N , satisfy

λi + Λr
i ≤ tm(i), λi + Λl

i ≤ tm(i), (7.9)

λi + Λr
i + Λl

i ≤ tm(i) (7.10)
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for network coding and plain routing, respectively. We sum up the traffic loads over

all disjoint time fractions t1, t2 and t3 to obtain the achievable multicast throughput

region A with λi > 0, i ∈ N , described by Eqs. (7.5) and (7.6) for network coding

and plain routing, respectively. 2

The achievable throughput region A described by conditions (7.5) and (7.6)

involves only linear constraints for the tandem network model independent of the

transmission schedules t. Thus, the problem (7.4) of maximizing performance mea-

sures λΣ and λmin can be formulated as a linear optimization problem with linear

constraints.

Example: Assume n = 3 and consider broadcast communication with multicast

groups Mi = N − {i}, i = 1, 2, 3. For network coding, the conditions on the

achievable throughput rates λi ≥ 0, i = 1, 2, 3, are given by λi ≤ ti, i = 1, 3, and

λ2 + λi ≤ t2, i = 1, 3. If λ1 = 0 or λ3 = 0, we have λ2 + 2λ3 ≤ 1 or λ2 + 2λ1 ≤ 1

as the boundary conditions. If λ2 = 0, we need to consider two cases: 2λ1 + λ3 ≤ 1

for λ1 > λ3 and λ1 + 2λ3 ≤ 1 for λ3 > λ1. The achievable throughput region A is

illustrated in Figure 7.2-(a). Consider the problem of optimizing λΣ = 2(λ1+λ2+λ3)

subject to the condition 3λ1 +2λ2 +3λ3 ≤ 2 on achievable throughput rates λi ≥ 0,

i = 1, 2, 3. The maximum value of λΣ is equal to 2 and is achieved by throughput

rates λ1 = λ3 = 0 and λ2 = 1 (i.e. by time allocation of t1 = t3 = 0 and t2 = 1).

The resulting value of λmin is 0. On the other hand, the minimum transmitted

throughput rate λmin is maximized for values of λi, i = 1, 2, 3, such that λmin ≤ t1,

2λmin ≤ t2 and λmin ≤ t3. The maximum value of λmin is equal to 1
4

and is achieved

through time allocation given by t1 = 1
4
, t2 = 1

2
and t3 = 1

4
. The resulting value of
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λΣ is 6λmin, which is equal to 3
2
.

For plain routing, the conditions on the achievable throughput rates λi ≥ 0,

i = 1, 2, 3, are λi ≤ ti, i = 1, 3, and λ1 + λ2 + λ3 ≤ t2. If λ1 = 0, λ2 = 0 or

λ3 = 0, we have λ2 + 2λ3 ≤ 1, λ1 + λ2 ≤ 1
2

or λ2 + 2λ1 ≤ 1 as the boundary

conditions. The achievable throughput region A is illustrated in Figure 7.2-(b).

Consider the problem of optimizing λΣ = 2(λ1 + λ2 + λ3) subject to the condition

2λ1 + λ2 + 2λ3 ≤ 1 on achievable throughput rates λi ≥ 0, i = 1, 2, 3. The value

of λΣ is maximized again to 2, as in the case of network coding, by the achievable

throughput rates λ1 = λ3 = 0 and λ2 = 1 (i.e. by time allocation of t1 = t3 = 0

and t2 = 1). The resulting value of λmin is 0. On the other hand, the minimum

transmitted throughput rate λmin is optimized for values of λi, i = 1, 2, 3, such that

λmin ≤ t1, 3λmin ≤ t2 and λmin ≤ t3. The value of λmin is maximized to 1
5

by time

allocation of t1 = 1
5
, t2 = 3

5
and t3 = 1

5
. The resulting value of λΣ is 6λmin, which is

equal to 6
5
.

This example illustrates the trade-off involving the throughput measures λΣ

and λmin that cannot be simultaneously optimized. Thus, the throughput gains of

network coding over plain routing vary. However, these gains can be completely

represented in the 3-dimensional throughput region space, as shown in Figure 7.2.

7.5 Stability Region for Possibly Emptying (Non-Saturated) Queues

If we allow packet queues to empty, which is to say that we consider stable

operation (i.e. finite queue size operation with external arrivals), it is possible to

204



1
2

1
2 λ 3

λ 1

λ 2 λ 2

1
2

1
2

λ 1

λ 3

1

(b) Broadcasting with
Plain Routing

(a) Broadcasting with

1

Network Coding

Figure 7.2: Achievable throughput regions for network coding and plain routing

solutions under broadcast communication and scheduled access with n = 3.

have packet underflow. Thus, any relay node may have to wait for incoming packets

over subsequent time slots (and therefore possibly increase the packet delay and

reduce the achievable throughput), if it must perform network coding, or proceeds

with plain routing of relay packets (and loses the throughput and energy efficiency

of the possible network coding solutions). Therefore, conditions (7.5)-(7.6) provide

the upper bounds on the stability region S under scheduled access, if we allow

packet queues to empty. We consider only stationary network operation, in which

the queue distributions reach steady state. By assuming stationary input processes,

a queue is stable, if the arrival and service processes of the queue are all stationary,

and the average arrival rate is less than the average service rate [34]. We introduce

dynamic network coding (and plain routing) strategies based on the instantaneous

queue sizes and allow different priorities (in terms of order of transmission) to relay

and source packets (rather than assuming fixed decisions of time-divisioned network
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coding as in the case of saturated queues):

Strategy 1: Any node first transmits relay packet(s) by simple forwarding as

in plain routing operation, if only one relay queue contains packets, or by network

coding, if both relay queues contain packets. Otherwise, that is if both left and right

queues are empty, the node transmits a packet from the source queue.

Strategy 2: Any node first transmits a source packet. Only if the source queue

is empty, the relay packets are transmitted by either simply forwarding as in plain

routing operation, if only one relay queue contains packets, or by network coding,

if both relay queues contain packets.

Both strategies 1 and 2 perform the network coding decisions over the first

available packets in the relay queues (rather than over all previously received relay

packets as done in [68]) to avoid network stability problems and related issues of

coding complexity. The stability properties of strategies 1 and 2 are as follows:

Theorem 7.5.1 (a) For network coding, the stability conditions of strategies 1 and

2 (on the stable throughput rates λi ≥ 0, i ∈ N) are given by

λi < tm(i)

(
1 − Λr

i

tm(i)

)(
1 − Λl

i

tm(i)

)
, max(Λr

i , Λ
l
i) < tm(i) , i ∈ N, (7.11)

λi + max(Λr
i , Λ

l
i) < tm(i) , i ∈ N. (7.12)

(b) For plain routing, the stability conditions of strategies 1 and 2 (on the

stable throughput rates λi ≥ 0, i ∈ N) are both given by

λi + Λr
i + Λl

i < tm(i) , i ∈ N. (7.13)

(c) The stability region S for strategy 1 is strictly suboptimal for network cod-

ing, whereas strategy 2 expands the stability region S to the boundary of the achiev-
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able throughput region A:

3∑

m=1

max
i∈N :m(i)=m

(
λi + max(Λr

i , Λ
l
i)
)

< 1. (7.14)

(d) The stability region S for strategies 1 and 2 is the same under plain routing:

3∑

m=1

max
i∈N :m(i)=m

(
λi + Λr

i + Λl
i

)
< 1. (7.15)

Proof: Under strategy 1, relay queues Q2
i and Q3

i have arrival rates Λr
i and Λl

i,

respectively. Under network coding, the service rate for both relay queues is tm(i),

since node i can successfully transmit one packet from each relay queue (for tm(i)

fraction of time). Therefore, relay queues Q2
i and Q3

i are empty with probabilities

1− Λr
i

tm(i)
and 1− Λl

i

tm(i)
, respectively. Since a source packet is transmitted only if both

relay queues are empty, the multicast stability conditions under network coding are

given by Eq. (7.11).

Under strategy 2, the source queue is empty with probability 1− λi

tm(i)
. Hence,

each of the relay queues Q2
i and Q3

i has the service rate tm(i)

(
1 − λi

tm(i)

)
. The

resulting stability condition is the same as the achievable throughput conditions

without equalities and given by Eq. (7.12). For plain routing, both queues can be

merged such that the total arrival rate is Λr
i + Λl

i and the service rate is tm(i) such

that the stability condition of Eq. (7.13) holds for both strategies 1 and 2. Next,

we evaluate the traffic loads over all disjoint time fractions ti, i = 1, 2, 3, such that

∑3
i=1 ti = 1. Then, we obtain Eqs. (7.14) and (7.15) by summing up both sides of

Eqs. (7.12) and (7.13), respectively, over t. Also, note that the region described by

Eq. (7.11) is strictly smaller than the region described by Eq. (7.12) for any given

t. Therefore, strategy 1 is strictly suboptimal for network coding. 2
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An alternative strategy would give higher priority in transmission order to

network-coded packets instead of source packets. This may result in the same

throughput performance of strategy 2 but cannot improve it further. On an intu-

itive basis the optimal rule should give the least priority to forwarding uncoded relay

packets. One throughput-optimal way of queue management is realized through the

use of strategy 2.

Example: Assume n = 3 and consider broadcast communication with multicast

groups Mi = N − {i}, i = 1, 2, 3. For network coding, the stability conditions are

given by λ1 < t1, λ2 < t2

(
1 − λ1

t2

)(
1 − λ3

t3

)
and λ3 < t3 under strategy 1 and

λ1 < t1, λ2 + max(λ1, λ3) < t2 and λ3 < t3 under strategy 2. Strategies 1 and

2 achieve the throughput rates with the common performance bound of λΣ < 2

and individual performance bounds of λmin < 3−
√

5
2(4−

√
5)

and λmin < 1
4
, respectively.

For plain routing, the common stability conditions for strategies 1 and 2 are given

by λ1 < t1, λ1 + λ2 + λ3 < t2 and λ3 < t3. We see that strategies 1 and 2

achieve throughput rates with the common performance bounds of λΣ < 2 and

individual performance bounds of λmin < 1
5
. This example highlights the trade-off

between strategies 1 and 2 in terms of throughput measures λΣ and λmin under

stable operation.

7.6 Throughput Optimization Trade-offs

The achievable and stable throughput regions A and S have been derived

in sections 7.4 and 7.5, respectively, to specify the multidimensional throughput
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properties of a wireless tandem network. From a practical point of view, it is still

of interest to summarize the throughput properties in a single variable such as the

sum-delivered throughput λΣ or the minimum transmitted throughput λmin. In this

section, we consider the saturated packet queues case and derive the resulting linear

optimization problem with linear constraints, which leads to a trade-off between the

throughput measures λΣ and λmin. We consider separately three different traffic

profiles, namely multicast, broadcast, and unicast.

7.6.1 Upper Bounds on Multicast Communication

For multicast communication, the most favorable traffic demand (in terms of

λΣ) is one-hop (closest-neighbor) communication, i.e. multicast communication with

multicast groups Mi = {i − 1, i + 1}, i ∈ N − {1, n}, M1 = 2 and Mn = n − 1. For

both the network coding and the plain routing cases, the value of λΣ is maximized to

2n
3

(by time allocation of t1 = 0, t2 = 1 and t3 = 0), if n(mod 3) = 0, or maximized

to 2n−2
3

(by time allocation of t1 = 0 and t2 + t3 = 1), if n(mod 3) = 1, or maximized

to 2n−1
3

(by time allocation of t1 + t2 = 1 and t3 = 0), if n(mod 3) = 2.

The value of λmin is maximized to 1
3

(by time allocation of tm = 1
3
, m = 1, 2, 3),

if n ≥ 3 (and maximized to 1
2

if n = 2) such that λΣ = 2(n−1)
3

, if n ≥ 3 (and λΣ = 1,

if n = 2) . These results provide upper bounds on any multicast communication

problem including the special cases of broadcast and unicast communication, which

we separately consider next in detail.
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7.6.2 Broadcast Communication

We consider broadcast communication with λi,j = λi, j ∈ Mi = N − {i} and

i ∈ N . For network coding, the value of λΣ is maximized to 2(n−1)
3

by the achievable

throughput rates λ1 = λn = 1
3
, λi = 0, i = N − {1, n} (and time allocation of

tm = 1
3
,m = 1, 2, 3) for n > 4. For plain routing, the value of λΣ is maximized

to (n−1)
3

by the achievable throughput rates λ1 = λn = 1
6
, λi = 0, i = N − {1, n}

(and time allocation of tm = 1
3
,m = 1, 2, 3) for n > 4. The optimal value of λΣ is

equal to n − 1 for n ≤ 4, under both network coding and plain routing. Note that

as n increases, the value of λΣ increases first for 2 ≤ n ≤ 4. Then, the increasing

interference effects decrease the value of λΣ for n = 5 and subsequently slow down

the increase in λΣ for n > 5.

Note that λmin = 0, if we optimize λΣ. On the other hand, the value of λmin is

maximized to 1
3n−5

, if n(mod 3) = 0 or 1, and to 1
3n−4

, if n(mod 3) = 2. The resulting

value of λΣ is then n(n−1)
3n−5

, if n(mod 3) = 0 or 1, and n(n−1)
3n−4

, if n(mod 3) = 2. Note

that in this case λΣ can only approach 50% of its optimal value, as n increases. For

plain routing, the value of λmin is maximized to 1
3n

, if n > 4, 1
2
, if n = 2, 1

5
, if n = 3,

or 1
9
, if n = 4. The optimal values of λmin under network coding and plain routing

regimes approach each other, as n increases. Network coding doubles the value of

λΣ compared to plain routing without any improvement in λmin, as n increases. As a

result, the objectives of maximizing λmin and λΣ cannot be achieved simultaneously.

Figure 7.3 depicts the throughput rate per source-destination pair (namely the

value of λi averaged over all source nodes i = 1, ..., n) that is obtained by separately
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optimizing λΣ and λmin under broadcast communication.
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Figure 7.3: Achievable throughput rates per source-destination pair under broadcast

communication and scheduled access.

7.6.3 Unicast Communication

We consider unicast communication with |Mi| = 1, i ∈ N . The least favorable

unicast demand is that the destination of each packet is chosen as the node that

has the largest distance (in number of “hops”) from the source node. For network

coding, we have λΣ = nλmin, where the value of λmin is 1
2
, 1

4
, 1

7
for n = 2, 3, 4, 1

2n

for n = 5, 6, 7, and 1
3⌈n

2
⌉+1

for n ≥ 8. For plain routing, the value of λmin is 1
2
, 1

5
, 1

9

for n = 2, 3, 4, and 1
3n−1

for n > 4. The most favorable unicast demand consists of

each destination being the one-hop neighbor of the source node. For both network

coding and plain routing, the optimal value of λmin is 1
3
, if n ≥ 3 (and 1

2
, if n = 2),
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and the optimal value of λΣ is ⌊n
3
⌋, for n ≥ 3 (and 1, if n = 2).
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Figure 7.4: Achievable throughput rates per source-destination pair under unicast

communication and scheduled access with the optimal throughput rate of λΣ.

We consider also the uniform demand case, in which the destination of each

source node is randomly chosen from the rest of the nodes. We compare in Figure

7.4 the throughput rates per source-destination pair that are obtained by separately

optimizing λΣ for different unicast traffic demands. We evaluate in Figure 7.5 the

throughput rates per source-destination pair for the cases of optimal temporal alloca-

tion (in terms of λΣ) and the suboptimal uniform allocation with tm = 1
3
,m = 1, 2, 3.

Any deviation from optimal MAC operation (that needs to be separately chosen for

network coding or plain routing) can result in significant throughput losses. These

results highlight the interdependence of the MAC and network layer operations and

the need for joint cross-layer design. The throughput gains of network coding over
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Figure 7.5: Achievable throughput rates per source-destination pair under unicast

communication and scheduled access with uniform demand for the optimal temporal

allocation (in terms of λΣ) and for tm = 1
3
,m = 1, 2, 3.

plain routing achieve the largest values for intermediate values of the number of

nodes in the network and may diminish, as the network size grows. Since broad-

cast communication generates more packet traffic to relay at each node and fills

relay queues faster than unicast communication, there are more opportunities in

the broadcast case to combine relay packets; therefore network coding is expected

to yield higher throughput benefits in that case.

7.6.4 Joint Optimization of Throughput Rates λΣ and λmin

The objectives of maximizing λΣ and λmin cannot be achieved simultaneously.

As we saw, the value of λmin can be equal to 0 under broadcast communication,
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whenever λΣ is optimized. For broadcast communication, network coding doubles

the value of λΣ under plain routing, as n goes to infinity, whereas the improvement

in λmin diminishes to zero. For unicast communication, network coding can double

both λΣ and λmin, as n goes to infinity. These results illustrate that the throughput

trade-offs depend on the traffic profile.

Another approach is to maximize the weighted sum of λΣ and λmin. This is

equivalent to maximizing λΣ subject to λmin ≥ α for some positive constant α, i.e.

subject to λi,j ≥ α for all i ∈ N and j ∈ Mi. We can solve the resulting optimization

problem by the Lagrange multipliers method. For n > 4, the optimal value of λΣ is

n−1
3

(2− α(3n− 2c)), where c = 5, if n(mod 3) = 0 or 1, and c = 4, if n(mod 3) = 2

for network coding, and λΣ(α) = n−1
3

, 0 ≤ α ≤ 1
3n

, for plain routing. We depict in

Figure 7.6 the optimal value of λΣ as a function of the parameter α.

n(n−1)
3n−c 

2(n−1)
3

α1
3n 3n−c 

1

Plain Routing

Network Coding

λ
c = 5, if n (mod3) = 0 or 1
c = 4, if n (mod3) = 2

3
n−1

Σ (α)

Figure 7.6: The optimal value of λΣ for λmin ≥ α under broadcast communication

and scheduled access for n > 4.

If we require stable operation, and hence, allow packet queues to empty, then,

under network coding, strategy 2 approaches the same throughput rates as in the
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case of saturated queues, whereas strategy 1 has a strictly worse throughput perfor-

mance. On the other hand, if we consider only plain routing, both strategies 1 and 2

can approach the same throughput performance as in the case of saturated queues.

We evaluate in Figure 7.7 the effects of saturated queues and stable operation on

the throughput objectives of λΣ and λmin.
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min

Plain routing with strategy 1 or 2 for optimal λΣ

Network coding with strategy 1 for optimal λΣ

Network coding with strategy 2 for optimal λΣ

Figure 7.7: Stable throughput rates per source-destination pair under broadcast

communication and scheduled access.

7.7 Energy Properties and Trade-offs with Throughput Objectives

Energy consumption in wireless systems is of course of great concern. Thus, it

is useful to consider the energy efficiency of the alternative strategies and objectives

that we have considered so far. Let Et be the transmission energy cost of each

packet transmission and let Ec be the processing energy cost of a coding or decoding
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operation (namely the energy cost of binary vector addition) and let Ef be the

processing energy cost of plain forwarding.

7.7.1 Transmission and Processing Energy Costs for Saturated Queues

First, we consider the case of saturated queues with uninterrupted availability

of source and relay packets at each node.

Theorem 7.7.1 (a) The total transmission energy cost Et(λ) per time slot to achieve

throughput rates λ ∈ A is given by

Et(λ) =
n∑

i=1

Et

(
λi + max(Λr

i , Λ
l
i)
)
, (7.16)

Et(λ) =
n∑

i=1

Et

(
λi + Λr

i + Λl
i

)
(7.17)

for network coding and plain routing, respectively.

(b) The total processing energy cost Ep(λ) per time slot to achieve throughput

rates λ ∈ A is given by

Ep(λ) =
n∑

i=1

(3Ec − Ef ) min(Λr
i , Λ

l
i) + Ef max(Λr

i , Λ
l
i), (7.18)

Ep(λ) =
n∑

i=1

Ef (Λ
r
i + Λl

i) (7.19)

for network coding and plain routing, respectively.

Proof: First, we consider the total transmission energy cost Et(λ) per time slot

to achieve throughput rates λ. Node i transmits source packets with rate λi ∈ A

incurring transmission energy cost Etλi per time slot. Node i receives relay packets

with rates Λr
i and Λl

i from the right and left neighbors. For network coding, node i
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consumes Et amount of energy to transmit one coded packet from both relay queues

Q2
i and Q3

i . Since the relay packets arrive at queues Q2
i and Q3

i with rates Λr
i and

Λl
i, respectively, the total amount of energy per time slot consumed by node i to

relay packets is Et max(Λr
i , Λ

l
i). For plain routing, each relay packet from any of the

relay queues is separately transmitted with cost Et such that the total amount of

energy per time slot consumed by node i to relay packets is Et(Λ
r
i +Λl

i). As a result,

we obtain the energy cost given by Eq. (7.16) for network coding operation and by

Eq. (7.17) for plain routing operation.

Next, we consider the processing energy cost Ep(λ) per time slot to achieve

the throughput rates λ. For network coding, the total amount of energy consumed

to achieve λ is given by
∑n

i=1 3Ec min(Λr
i , Λ

l
i) + Ef (max(Λr

i , Λ
l
i)−min(Λr

i , Λ
l
i)), since

relay node i performs a coding operation with rate min(Λr
i , Λ

l
i) and each coding op-

eration is accompanied by two decoding operations at neighboring nodes, whereas

the other packets are simply forwarded with rate max(Λr
i , Λ

l
i)−min(Λr

i , Λ
l
i) and pro-

cessing cost Ef . For plain routing, the total amount of energy consumed to achieve λ

is
∑n

i=1 Ef (Λ
r
i +Λl

i), since any node i forwards relay packets with rate Λr
i +Λl

i, respec-

tively. As a result, we obtain Eq. (7.18) for network coding and Eq. (7.19) for plain

routing operation. 2

As shown in section 7.4, network coding strictly improves the achievable

throughput region A over plain routing. However, whether network coding is more

energy-efficient than plain routing, strongly depends on the particular method of

managing (source and relay) queues and hardware constraints that are reflected in

the cost parameters Et, Ec and Ef . Network coding reduces the total (transmission
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and processing) energy cost per packet (namely Et(λ) + Ep(λ) for any given λ ∈ A)

compared to plain routing, if and only if

3Ec < Et + 2Ef . (7.20)

As a result, the throughput and energy costs may not be simultaneously op-

timized depending on the energy cost parameters. For Et = 1, Ec = 1
3

and Ef = 0,

we evaluate in Figure 7.8 the transmission and processing energy costs per source-

destination pair to achieve the optimal throughput rates (in terms of λmin) under

unicast and broadcast communication. We may need higher energy costs in order

for the throughput of network coding to exceed that of plain routing.
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Figure 7.8: Transmission and processing energy costs per source-destination pair to

achieve the optimal throughput rate of λmin under unicast and broadcast communi-

cation with scheduled access.
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7.7.2 Transmission and Processing Energy Costs in Stable Operation

The energy costs under stability are given by the next theorem.

Theorem 7.7.2 (a) For network coding, the total transmission energy cost Et(λ)

per time slot to achieve throughput rates λ ∈ S is given by

Et(λ) =
n∑

i=1

Et

(
λi + Λr

i + Λl
i −

Λr
i Λ

l
i

tm(i)

)
, (7.21)

Et(λ) =
n∑

i=1

Et

(
λi + Λr

i + Λl
i −

Λr
i Λ

l
i

tm(i) − λi

)
(7.22)

under strategy 1 and 2, respectively.

(b) For network coding, the total processing energy cost Ep(λ) per time slot to

achieve throughput rates λ ∈ S is given by

Ep(λ) =
n∑

i=1

3EcΛ
r
i Λ

l
i

tm(i)

+ Ef

((
1 − Λr

i

tm(i)

)
Λl

i +

(
1 − Λl

i

tm(i)

)
Λr

i

)
, (7.23)

Ep(λ) =
n∑

i=1

3EcΛ
r
i Λ

l
i

tm(i) − λi

+ Ef

((
1 − Λr

i

tm(i) − λi

)
Λl

i +

(
1 − Λl

i

tm(i) − λi

)
Λr

i

)
(7.24)

under strategy 1 and 2, respectively.

(c) For plain routing, both strategies achieve the values given by Eqs. (7.22)

and (7.24) for the transmission and processing energy costs Et(λ) and Ep(λ).

Proof: Node i transmits a source packet with rate λi and incurs transmission

energy cost Et. Under strategy 1, node i transmits a relay packet, if there exists

at least one packet in relay queue Q2
i or Q3

i . This occurs with probability 1 −
(
1 − Λl

i

tm(i)

)(
1 − Λr

i

tm(i)

)
, since relay queues Q2

i and Q3
i have arrival rates Λr

i and Λl
i

and common service rate tm(i) and they are empty with probabilities 1 − Λr
i

tm(i)
and

1 − Λl
i

tm(i)
, respectively. Hence, the relay packet transmissions incur the energy cost
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Et

(
Λl

i+Λr
i

tm(i)
− Λl

iΛ
r
i

t2
m(i)

)
. Since node i is activated for tm(i) fraction of the time, the total

transmission energy cost per time slot under network coding is given by Eq. (7.21)

for strategy 1.

Under strategy 2, node i transmits a relay packet, if there exists no source

packet at queue Q1
i and there exists at least one packet in Q2

i or Q3
i . The service

rate is tm(i) for queue Q1
i and tm(i)

(
1 − λi

tm(i)

)
for both queues Q1

i and Q3
i , since node

i is scheduled to transmit for tm(i) fraction of the time and queue Q1
i is idle with

probability 1 − λi

tm(i)
, and the relay packets from Q2

i and Q3
i are transmitted only

with probability 1− λi

tm(i)
during tm(i) fraction of time. Since queues Q1

i , Q2
i and Q3

i

are empty with respective probabilities 1− λi

tm(i)
, 1−

Λr
i

tm(i)

1− λi
tm(i)

and 1−
Λl

i
tm(i)

1− λi
tm(i)

, the total

transmission energy cost per time slot under network coding is given by Eq. (7.22)

for strategy 2.

For plain routing, both strategies 1 and 2 approach the same throughput rates

and therefore the same transmission and processing energy costs as in the case of

saturated queues. Next, we consider the case of network coding. Under strategy

1, the coding operation is performed at node i for tm(i) fraction of the time, if

both relay queues have at least one packet, which occurs with probabilities
Λr

i

tm(i)

and
Λl

i

tm(i)
, i.e. the processing cost for network coding is

3EcΛr
i Λl

i

tm(i)
. Otherwise, the

relay packets packets are forwarded for tm(i) fraction of the time with probability

(
1 − Λr

i

tm(i)

)
Λl

i+
(
1 − Λl

i

tm(i)

)
Λr

i (namely with the probability that only one relay queue

has packet(s)). On the other hand, node i forwards the source packets with rate λi

and incurs the processing energy cost Ef . As a result, the total processing energy
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cost per time slot under network coding is given by Eq. (7.23) for strategy 1.

Under strategy 2, the coding operation is performed at node i for tm(i)

(
1 − λi

tm(i)

)

fraction of the time (since source queue Q1
i is empty with probability 1 − λi

tm(i)

and node i is scheduled to transmit for tm(i) fraction of the time), if both relay

queues have packets (which occurs with probabilities

Λr
i

tm(i)

1− λi
tm(i)

and

Λl
i

tm(i)

1− λi
tm(i)

); that

is, the processing cost for network coding operation is
3Ec

Λr
i Λl

i
tm(i)

1− λi
tm(i)

. Otherwise, relay

packets are forwarded for tm(i)

(
1 − λi

tm(i)

)
fraction of the time with probability

(
1 −

Λr
i

tm(i)

1− λi
tm(i)

)
Λl

i +

(
1 −

Λl
i

tm(i)

1− λi
tm(i)

)
Λr

i (namely with the probability that only one

relay queue has packet(s)). Node i forwards source packets with rate λi and incurs

the processing energy cost Ef . As a result, the total processing energy cost per time

slot under network coding is given by Eq. (7.24) for strategy 2. 2

As was shown in section 7.5, strategy 2 strictly improves the stable throughput

region S compared to strategy 1 for the case of network coding. However, whether

strategy 1 or 2 is more energy-efficient, strongly depends on the values of energy costs

Et, Ec and Ef . Under network coding, for any set of stable throughput rates λ ∈ S,

the transmission energy cost Et(λ) is lower for strategy 2 when Et > 0, whereas the

processing energy cost Ep(λ) is lower for strategy 1, if and only if Ec >
2Ef

3
. The

total (transmission and processing) energy cost per packet (namely Et(λ) + Ep(λ))

is lower for strategy 2, if and only if 3Ec < Et + 2Ef .

The energy costs are non-linear functions of the time allocation (i.e. of the

MAC rules) for the case of stable operation (compared to the case of saturated

queues) and lead to a non-linear objective function for energy cost optimization.
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However, the optimization constraints are non-linear for strategy 1, but linear for

strategy 2. If nodes wait to accumulate relay packets to perform network coding

(rather than proceeding with plain routing) in the case of packet underflow, the

transmission energy costs can be reduced at the expense of additional packet delay

and poor stable throughput properties compared to strategies 1 and 2.

7.8 Extension to Random Access

Although scheduled access has distinct advantages (especially at heavy traffic

conditions), some form of random access is unavoidable in wireless systems. At

a minimum, it is necessary on the reservation sub-channel in dynamic allocation

protocols. Therefore, the cross-layer design framework for throughput region opti-

mization should also incorporate contention-based random access. We will restrict

our attention to the case of saturated queues, because, otherwise, the node queues

interact (see [12, 11, 13]) and lead to formidable difficulties of analysis.

We assume that each node randomly chooses between transmitting a source

or a relay packet. Specifically, any transmission of node i consists of a relay packet

(coded or uncoded) with probability βi and a source packet with probability 1− βi.

Each relay packet (in coded or plain form) needs to be delivered to the neighbor

receiver at one side only (since the receiver at the other side already has that packet).

However, any source packet may need to be delivered to the two neighbor receivers

at both sides (as in broadcast communication). Clearly, under random access, a

source packet that is successfully received by one neighbor node may fail at the
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other neighbor node. Therefore, we need to carefully track the methods for the

transmissions of source and relay packets under random access (whereas under the

conflict-free scheduling that was considered so far, there was no possibility of such

partially successful transmission).

7.8.1 Methods for Source Packet Transmissions in Random Access

We consider three separate methods for transmitting source packets.

Method A: Each node retransmits a source packet, until it is successfully re-

ceived by all intended neighbor nodes in the same time slot (i.e. partially successful

transmissions are ignored).

Method B: Nodes transmit a new source packet only if the previous source

packet has been received by all intended neighbor nodes. This method is based on

the repetition of transmissions until all intended receivers have successfully received

the transmitted source packet over successive time slots (but not necessarily in the

same time slot).

Method C: Each node computes a linear combination of the source packets

that have not been decoded yet by the intended neighbor nodes, and transmits the

corresponding coded packet. Based on receiver feedback, each source packet of node

i is put to a virtual queue depending on which receiver has successfully received

that packet. We assume three virtual queues within the source queue Q1
i for node i.

All source packets arrive at queue Q
1(a)
i . If the packet has been successfully received

by both receivers, the packet leaves the system. If the packet has not been received
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by either one of the two receiver nodes, the packet remains in queue Q
1(a)
i . Packets

that have been received by the left neighbor receiver but not by the right neighbor

receiver enter queue Q
1(b)
i . Similarly, packets that have been received by the right

neighbor receiver but not by the left neighbor receiver enter queue Q
1(c)
i . Then,

a packet leaves queue Q
1(b)
i and Q

1(c)
i , if it is received by the right or left receiver,

respectively. We assume that all queues are saturated and packets from queues Q
1(b)
i

and Q
1(c)
i are combined by linear coding before transmission.

The coding benefits can be illustrated for the case in which source packets x

and y of node i must be delivered to both neighbor nodes i − 1 and i + 1. If the

transmission of packet x by node i is only received by node i + 1, node i transmits

packet x + y (instead of packet x as in method B). If packet x + y is successfully

received, node i needs to deliver packet y only to node i − 1 (rather than to both

nodes i − 1 and i + 1 as in method B). This is the generalization of the concept of

network coding for rateless communication [91] to the case of packet overflow with

infinite delay by taking into account the mutual interference effects.

7.8.2 Achievable Throughput Region in Random Access

Let sr
i and sl

i be the probability that a transmission of node i is successfully

received by the right and left neighbor node, respectively, i.e. we have sr
i = (1 −

pi+1)(1− pi+2) for 1 ≤ i ≤ n− 2, sr
n−1 = 1− pn, sr

n = 1, sl
i = (1− pi−2)(1− pi−1) for

3 ≤ i ≤ n, sl
1 = 1 and sl

2 = 1 − p1.

Theorem 7.8.1 Under random access, the achievable throughput region A with
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throughput rates λi ≥ 0, i ∈ N , satisfy

sl
iλi + γi(s

r
i , s

l
i)Λ

r
i ≤ pis

l
iγi(s

r
i , s

l
i), sr

i λi + γi(s
r
i , s

l
i)Λ

l
i ≤ pis

r
i γi(s

r
i , s

l
i),(7.25)

sr
i s

l
iλi + sr

i γi(s
r
i , s

l
i)Λ

r
i + sl

iγi(s
r
i , s

l
i)Λ

l
i ≤ pis

l
is

r
i γi(s

r
i , s

l
i) (7.26)

for network coding and plain routing, respectively, where

γi(s
r
i , s

l
i) =





sr
i s

l
i , for method A

sl
i
2
sr
i
2+sl

i
2
sr
i (1−sr

i )+sr
i
2sl

i(1−sl
i)

sl
is

r
i +sl

i
2
(1−sr

i )+sr
i
2(1−sl

i)
, for method B

min(sr
i , s

l
i) , for method C

. (7.27)

Proof: Let αl
i and αr

i be the probability that the packet relayed by node i is

intended for the left neighbor node i − 1 or right neighbor node i + 1, respectively.

We have αr
i = αl

i = 1 and αr
i + αl

i = 1, i ∈ N , for network coding and plain routing,

respectively.

For network coding, the relay queues Q2
i and Q3

i have arrival rates Λr
i and Λl

i

according to the Max-flow Min-cut Theorem. The service rates of the queues Q2
i

and Q3
i are given by piβis

l
i and piβis

r
i . If the coded relay packet is not successfully

received by both neighbor nodes, the collided packet needs to be retransmitted.

However, if only one neighbor receives the coded relay packet successfully, then the

packet intended for the unsuccessful receiver is combined with a new packet from the

queue of the successfully transmitted packet for the next network coding operation.

The achievable throughput rates satisfy
∑

j∈Nr
i
λj ≤ piβis

l
i and

∑
j∈N l

i
λj ≤ piβis

r
i

for the transmissions from relay queues Q2
i and Q3

i , respectively.

Since node i transmits with probability pi and any transmission of node i

carries a source packet with probability 1 − βi, the source packet transmissions
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impose the constraint λi ≤ pi(1 − βi)γi(s
r
i , s

l
i), where γi(s

r
i , s

l
i) is the rate at which

a source packet transmission is successfully delivered to both neighbor nodes.

If the transmission of a source packet from node i is not successfully received by

all intended neighbor nodes, a retransmission is required, although that particular

packet may have been already received by one of the neighbor nodes. In method A,

the probability of successful transmission of a source packet is given by sr
i s

l
i provided

that node i transmits a source packet, which happens with probability pi(1 − βi).

Thus, the achievable throughput satisfies the condition λi ≤ pi(1 − βi)γi(s
r
i , s

l
i),

where γi(s
r
i , s

l
i) = sr

i s
l
i. In method B, the transmission of source packets of node

i follows a Markov Chain shown in Figure 7.9, where µr
i = pi(1 − βi)s

r
i and µl

i =

pi(1 − βi)s
l
i. In state (0,1) or (1,0), only node i − 1 or i + 1 has received the packet

of node i. In state (0,0), the packet has been received by both nodes i− 1 and i + 1

or equivalently node i is ready to transmit a new source packet. Let Πj denote the

stationary distribution of state j ∈ {(0, 0), (0, 1), (1, 0)}.
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0 0
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µ r
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µ

s    )

Figure 7.9: Markov chain model for the transmission of packets from source queue

Q1
i at node i.
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The achievable throughput rate for source packets of node i satisfies

λi ≤ Π(0,0)µ
l
is

r
i + Π(0,1)µ

r
i + Π(1,0)µ

l
i, (7.28)

which is given by λi ≤ pi(1−βi)γi(s
r
i , s

l
i), where γi(s

r
i , s

l
i) =

sl
i
2
sr
i
2+sl

i
2
sr
i (1−sr

i )+sr
i
2sl

i(1−sl
i)

sl
is

r
i +sl

i
2
(1−sr

i )+sr
i
2(1−sl

i)
.

The rate at which a source packet is successfully transmitted to both neighbor

nodes has the upper bound min(sr
i , s

l
i), which is equal to the maximum flow rate

over the minimum broadcast cut. In method C, saturated queues Q
1(b)
i and Q

1(c)
i are

served with rates sr
i and sl

i, such that λi ≤ sr
i and λi ≤ sl

i. Method C can achieve

the rate min(sr
i , s

l
i) for source packet transmissions provided that node i transmits

some source packet. The throughput rate λi achievable by Method C satisfies the

condition λi ≤ pi(1 − βi)γi(s
r
i , s

l
i), where γi(s

r
i , s

l
i) = min(sr

i , s
l
i).

As a result, the achievable throughput rates satisfy

Λr
i ≤ piβis

l
iα

l
i, Λl

i ≤ piβis
r
i α

r
i and λi ≤ pi(1 − βi)γi(s

r
i , s

l
i), (7.29)

where γi(s
r
i , s

l
i) = sr

i s
l
i for method A, γi(s

r
i , s

l
i) =

sl
i
2
sr
i
2+sl

i
2
sr
i (1−sr

i )+sr
i
2sl

i(1−sl
i)

sl
is

r
i +sl

i
2
(1−sr

i )+sr
i
2(1−sl

i)
for

method B and γi(s
r
i , s

l
i) = min(sr

i , s
l
i) for method C. Then, conditions (7.25)-(7.26)

directly follow from Eq. (7.29) by eliminating βi. 2

The achievable throughput region A under random access involves linear con-

straints on throughput rates for any given set of fixed transmission probabilities

p. It can be verified that the achievable throughput region A under random ac-

cess is optimized by Method C and has the upper bounds given by the achievable

throughput conditions under scheduled access.
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7.8.3 Throughput Optimization in Random Access

First, we consider the maximization of λΣ. Although the constraints on A

are independent of the transmission schedules t under scheduled access, they are

non-linear functions of the transmission probabilities p under random access. The

Logarithmic Barrier Method [92] can be used to solve the resulting problem of

linear optimization with non-linear constraints. The achievable throughput rates

per source-destination pair are depicted in Figure 7.10 for broadcast communication.

Method C optimizes the throughput performance in terms of maximizing λΣ for

both network coding and plain routing operations, whereas method A has the worst

throughput performance, which, however, approaches that of methods B and C, as

the number of nodes n increases.
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Figure 7.10: Achievable throughput rates per source-destination pair under broad-

cast communication and random access with the optimal throughput rate of λΣ.

228



Next, we consider the problem of maximizing λmin for broadcast communica-

tion under method C. For network coding, the resulting conditions on the minimum

throughput rate are given by λmin < p(1−β)(1−p)2 and (n−2)λmin ≤ pβ(1−p)2 for

source and relay packets, respectively, with common values of pi = p and βi = β for

i ∈ N . The combined condition is λmin < p(1−p)2

n−1
. The conditions for source and re-

lay packets approach each other for sufficiently large n and the right hand side of the

resulting inequality is maximized by p = 1
3

to the value of 4
27(n−1)

. For plain routing,

the conditions on the minimum throughput rate are given by λmin < p(1−β)(1−p)2

and (n−1)λmin < pβ(1−p)2 for source and relay packets, respectively. The combined

condition is λmin < p(1−p)2

n
and the right hand side of this inequality is maximized

by p = 1
3

to the value of 4
27n

. As n increases, the maximum value of λmin approaches

4
9

of the throughput value of λmin that is achievable under scheduled access under

network coding or plain routing.

7.9 Non-Cooperative Network Coding Operation

Non-cooperative operation has been studied before in the context of plain rout-

ing for general network topologies [53, 90] and cooperation mechanisms have been

presented to simulate packet forwarding by intermediate relay nodes [93, 94, 95].

We looked at the single-receiver MAC operation for non-cooperative transmitters

in Chapters 3 and 4, and extended the analysis to the cross-layer design of plain

routing and MAC in Chapter 5. In this section, we extend non-cooperative oper-

ation to network coding strategies (or plain routing strategies as a special case) in
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conjunction with MAC.

We assume that each node i is rational and has the selfish objective of maxi-

mizing its own utility function ui. The strategy space of node i is the set λj
i , j ∈ N ,

where λj
i is defined as the rate at which node i transmits packets of node j such that

Λr
i =

∑
j∈Nr

i
λj

i and Λl
i =

∑
j∈N l

i
λj

i . The utility of node i ∈ N is defined as function

of λi
j, j ∈ N , to represent the total multicast throughput |Mi|λi, transmission energy

cost Et,i and processing energy cost Ep,i as

ui(λi, λ−i) = |Mi|λi − Et,i(λ) − Ep,i(λ), (7.30)

where λi = {λj
i}j∈N and λ−i = {λj, j ∈ N − {i}}. The components of ui are

λi = min(λi
i, {λi

j}j∈Ri
), where Ri is the set of relay nodes for i, Et,i(λ) = Et(λ

i
i +

max(Λr
i , Λ

l
i)) for network coding, Et,i(λ) = Et(λ

i
i + Λr

i + Λl
i) for plain routing,

Ep,i(λ) =
∑

k∈{−1,0,1} Ec min(Λr
i+k, Λ

l
i+k)+Ef (max(Λr

i , Λ
l
i)−min(Λr

i , Λ
l
i)) for network

coding, and Ep,i(λ) = Ef (Λ
r
i + Λl

i) for plain routing. We define the best response

function of node i as bi(λ−i) = argmaxλi
ui(λi, λ−i). Then, λ∗

i , i ∈ N , is a Nash

equilibrium strategy (such that no node can unilaterally improve its utility, if the

strategies of other nodes remain the same), if and only if λ∗
i ∈ bi(λ

∗
−i) for all i ∈ N .

Theorem 7.9.1 (a) For zero energy costs Et, Ec and Ef , any achievable set of rates

λi, i ∈ N, results in a non-cooperative Nash equilibrium strategy.

(b) For Et > 0, Ec > 0 or Ef > 0, the unique non-cooperative Nash equilibrium

strategies are λj
i = 0 for any i ∈ N , j ∈ N −{i}, and λi

i = 0, if |Ri| > 0 or |Ri| = 0

and Et > |Mi|. Otherwise, λi
i = 1

2
for n = 2 and 1

3
for n ≥ 3.

Proof: (a) For zero energy costs Et, Ec and Ef , the best response of node i given
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any λ−i is to set λi
i ≥ λi

j for j ∈ Ri. However, λi is upper bounded by λi
j for j ∈ Ri

and therefore the throughput rates λj ∈ A directly impose the throughput rate λi

that cannot be improved individually by node i. Therefore, any achievable set of

rates λi, i ∈ N, results in a non-cooperative Nash equilibrium strategy.

(b) For non-zero energy costs Et, Ec or Ef , the best response of node i ∈ N given any

λ−i is λj
i = 0 for j ∈ N −{i} to minimize the energy costs Et,i(λ) and Ep,i(λ). If the

destination group Mi of node i only includes one-hop neighbor nodes (i.e. |Ri| = 0)

and if the throughput reward is greater than total energy cost (i.e |Mi| > Et), the

optimal strategy λi
i of node i is 1

2
for n = 2 and 1

3
for n ≥ 3 to maximize the

throughput λi and the utility ui. Otherwise, the best strategy of node i is λj
i = 0

for any node j to minimize the energy costs and maximize ui such that λi = 0. 2

Since λΣ and λmin are zero in non-cooperative equilibrium with multihop com-

munication, we need to stimulate the cooperation of nodes. For non-zero costs, we

can define a dependency graph of nodes with edges from i to j, if there exist a

route where i is a relay node and j is a source [96]. The Tit-for-Tat cooperation

mechanism that relies on nodes to mimic each other’s strategies imposes λk
i = 0, if

there exists no cycle in dependency graph including i and k. However, this results

in λmin = 0 and can only achieve suboptimal values of λΣ.

7.9.1 Reward-Based Cooperation Stimulation

We introduce a reward-based cooperation mechanism [97] to improve the non-

cooperative equilibrium. Each node i pays reward r to each relay node for the
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throughput unit carried to motivate packet relaying. When a node i computes its

equilibrium strategies, it must consider that the other nodes will respond by paying

or requesting rewards for packet forwarding purposes. Thus, the problem faced by

node i is not that of optimizing ui with respect to λi considering fixed λ−i. Node i

should know a priori that any relay node j is ready to pay rλj
i to node i ∈ Rj and

node i must pay rλi
j to node j ∈ Ri. The utility ui has two additional components

of r
∑

j∈Nr
i ∪N l

i
λj

i (the reward for relaying packets of other nodes) and r
∑

j∈Ri
λi

j

(the cost charged by nodes for relaying packets of node i). For network coding,

we assume for simplicity that each coding node pays Ec to neighbors for any coded

packet such that the coding nodes undertake all decoding costs and no effective

cost is incurred for packet decoding at their neighbor nodes. Next, we evaluate the

dependence of the non-cooperative strategies on the value of r.

Lemma 7.9.1 The unique non-cooperative Nash equilibrium strategy of node i with

rewarding is λj
i = 0 for all j, if r > |Mi|−Et

|Ri| for all i ∈ N , or if r < min(Et+3Ec

2
, Et+Ef )

for network coding, or if r < Et + Ef for plain routing.

Proof: Node i achieves the total throughput |Mi|λi at the expense of energy cost

Etλi and relaying cost r|Ri|λi. If r > |Mi|−Et

|Ri| , ui is a decreasing function of λi and

node i does not have any incentive to transmit source packets, i.e. λi = 0. Node i

cannot unilaterally improve the utility ui for fixed λ−i and sets λj
i = 0 for any other

node j to minimize the energy costs. For plain routing, any node i receives reward

rλ for relaying packets with rate λ at the expense of energy cost (Et+Ef )λ. For fixed

λ−i, relaying packets will decrease the utility ui and therefore λj
i = 0, if r < Et + Ef .

232



For network coding, any node i receives reward 2rλ or rλ for relaying packets of two

nodes or one node with rate λ at the expense of energy cost (Et +3Ec)λ or (Et +Ef )λ.

For fixed λ−i, relaying packets will decrease the utility ui and the best strategy is

λj
i = 0, if r < min(Et+3Ec

2
, Et+Ef ). 2

Next, we show that the non-cooperative operation with rewarding can reach

the cooperative equilibrium performance under the assumption of scheduled access

and saturated queues.

Theorem 7.9.2 For broadcast communication with network coding, the unique non-

cooperative equilibrium strategies with rewarding coincide with the cooperative equi-

librium strategies with the optimal value of λΣ, if n−1−Et

n−2
> r > max(n−1+3Ec

n−1
, Et+3Ec

2
).

Proof: For network coding, the cooperative equilibrium strategies with optimal λΣ

are achievable, if (a) node i ∈ {1, n} with |Mi| = n − 1 and |Ri| = n − 2 prefers

transmitting source packets, i.e. the utility of transmitting source packets, namely

|Mi| − r|Ri| − Et, should be greater than the utility of staying idle, namely 0, such

that r < n−1−Et

n−2
, (b) node i ∈ N − {1, n} with |Ri| = n − 3 prefers relaying packets

over transmitting source packets and staying idle, i.e. the utilities of transmitting

source packets and staying idle, namely |Mi| − r|Ri| − Et and 0, should be smaller

than the utility of relaying packets by network coding or plain routing, namely

2r − Et − 3Ec or r − Et − Ef , such that r > max(n−1+3Ec

n−1
, Et+3Ec

2
). 2

For network coding, we can achieve the Pareto optimal network operation in

terms of λΣ, which is not possible for plain routing with Et > 0 or Ef > 0. However,

the cooperative and non-cooperative equilibrium values of λmin are equal for both
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network coding and plain routing.

Theorem 7.9.3 For broadcast communication, the unique non-cooperative Nash

equilibrium strategies with rewarding coincide with the cooperative equilibrium strate-

gies with the optimal value of λmin, if r < min(n−1−Et

n−2
, n−1+3Ec

n−1
) under network coding,

and if r < n−1−Et

n−2
under plain routing.

Proof: For network coding or plain routing, the cooperative equilibrium strategies

with optimal λmin are achievable, if (a) every node i has incentive to transmit source

packets, i.e. λi
i(|Mi| − r|Ri| − Et) > 0, where |Mi| = n − 1 and |Ri| = n − 2 for

i ∈ {1, 2} and |Ri| = n − 3 for i ∈ N − {1, n}, such that r < |Mi|−Et

|Ri| , (b) node

i ∈ N − {1, n} with |Ri| = n − 3 prefers transmitting source packets over relaying

packets, i.e. λi
i(|Mi| − r|Ri| − Et) > λi

i(2r − Et − 3Ec) or λi
i(r − Et − Ef ) for network

coding or plain routing. Thus, each node can individually improve the throughput to

the maximum common throughput λmin. 2

The next question is whether nodes should prefer network coding or plain

routing.

Corollary 7.9.1 For r < min(n−1−Et

n−2
, n−1+3Ec

n−1
), the non-cooperative strategies with

rewarding use network coding for broadcast communication, if 3Ec < Et + 2Ef .

Proof: If we assume r < min(n−1−Et

n−2
, n−1+3Ec

n−1
), the non-cooperative equilibrium

strategies with rewarding can maximize the value of λmin for network coding, as

shown in Theorem 7.9.3. The utility of node i is λi(n − 1 − Et max(|N r
i |, |N l

i |) −

3Ec min(|N r
i |, |N l

i |) − Ef (max(|N r
i |, |N l

i | − min(|N r
i |, |N l

i |))). For plain routing, the

utility of node i is λi(n−1−Et(|N r
i |+|N l

i |)−Ef (|N r
i |+|N l

i |)). If 3Ec < Et+2Ef , selfish
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nodes prefer network coding operations that reduce the energy costs and also im-

prove the individual throughput rates. 2

Next, we allow the packet queues to empty, and evaluate the dependence of

the non-cooperative equilibrium strategies 1 and 2 on the value of r.

Theorem 7.9.4 For possibly emptying queues, node i follows strategy 1, if r >

|Mi|+3Ec

|Ri|+2
under network coding or if r >

|Mi|+Ef

|Ri|+1
under plain routing, and follows

strategy 2 otherwise.

Proof: Node i prefers strategy 1, if the utility of relaying packets by network coding

and plain routing, namely 2r − Et − 3Ec or r − Et − Ef , is greater than the utility

of transmitting source packets, namely |Mi| − r|Ri| − Et, i.e. if r > |Mi|+3Ec

|Ri|+2
under

network coding or if r >
|Mi|+Ef

|Ri|+1
under plain routing. On the other hand, each node

prefers strategy 2, if transmitting source packets increases the utility compared to re-

laying packets. 2

7.9.2 Non-Cooperative Random Access

For random access, we assume saturated queues. The possible actions of a

node i are waiting (W ) or transmitting (T j
i ) a packet of node j, i.e. the action

space of node i is Ai = {W, {T j
i }j∈Nr

i ∪N l
i
}. Let βj

i denote the probability that the

transmission of node i carries a packet of node j, where 0 ≤ βj
i ≤ 1,

∑
j∈i∪Nr

i ∪N l
i
βj

i =

1 for plain routing, or βi
i + max(

∑
j∈Nr

i
βj

i ,
∑

j∈N l
i
βj

i ) = 1 for network coding. The

mixed strategies of nodes are the probability distributions over the actions such

that mixed strategy of node i is σi = {pi, β
j
i , j ∈ N}. We define σ = {σi, i ∈ N},
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σ−i = {σj, j ∈ N − {i}} and ui(A|σ−i) as the utility of node i provided that node i

plays action A ∈ Ai given σ−i. The mixed Nash equilibrium strategies are σ∗, if for

each node i the expected utility ui(A|σ∗
−i) to every action A ∈ Ai (in support of σ∗

i )

is the same for any given σ∗
−i. For reward-based cooperation stimulation, the unique

non-cooperative Nash equilibrium strategy of each node i is pi = 0, if r > |Mi|−Et

|Ri|

for all i ∈ N , or if r < min(Et+3Ec

2
, Et + Ef ) under network coding, or if r < Et + Ef

under plain routing. The choice of the source packet transmission methods A, B or

C is reflected in γi(s
r
i , s

l
i) for any node i.

Theorem 7.9.5 Define vi,j = sr
i for i < j, vi,j = sl

i for i > j and vi,j = γi(s
r
i , s

l
i) for

i = j. For j ∈ N r
i ∪ N l

i , the non-cooperative Nash equilibrium strategies in random

access satisfy

(|Mi| − r|Ri|)vi,i = Et, β
j
i =

pjβ
j
jvj,j

pivi,j

, i ∈ Rj, for network coding or plain routing,

max(2r − 3Ec, r − Ef )vi,j = Et, β
i
i = 1 − max(

∑

j∈Nr
i

βj
i ,
∑

j∈N l
i

βj
i ) for network coding,

(r − Ef )vi,j = Et, β
i
i = 1 −

∑

j∈Nr
i ∪N l

i

βj
i for plain routing.

Proof: The non-cooperative Nash equilibrium strategies of any node i follow from

the equalities of the conditional utilities such that ui(W |σ−i) = ui(T
j
i |σ−i) for all

j ∈ N r
i ∪N l

i , where ui(W |σ−i) = 0, ui(T
i
i |σ−i) = −Et + (|Mi| − r|Ri|)vi,i (under the

constraint that condition piβ
j
i vi,j ≤ pjβ

j
jvj,j for i ∈ Rj is satisfied with equality such

that the rate at which packets are relayed is optimized to the rate at which packets

are generated) and ui(T
j
i |σ−i) = −Et + max(2r − 3Ec, r − Ef )vi,j for network coding

or ui(T
j
i |σ−i) = −Et + (r − Ef )vi,j for plain routing. 2
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7.10 Summary and Conclusions

We illustrated the complex interactions between MAC and network layer vari-

ables in a simple wireless network topology. We focused on throughput regions, as

well as simple (scalar) throughput measures under both stable and unstable buffer

conditions. We evaluated the advantages of network coding over plain routing un-

der either scheduled or random access and we also considered the energy efficiency

aspect. The main result of our analysis is that even for the simple tandem topology,

there are serious and complex trade-offs involved regarding the choices of MAC,

queue management, and routing/coding.

The analysis needs to be extended to more general topologies, e.g. two-

dimensional grid networks. A dynamic programming argument has been used in

[98] to decompose a triangular lattice network into star and tandem subnetworks,

and general network codes have been derived by combining network codes for simpler

subnetworks. Thus the ingredients for such an extension are available. A similar

idea can be applied to the stability analysis of network coding, where the local

stability conditions for smaller subnetworks (as derived in this chapter for tandem

subnetworks) can be combined to derive the global stability conditions for more

general network topologies.

Furthermore, packet transmissions need not be completely reliable and may

also reach beyond the one-hop neighbor nodes. In addition, the multicast traffic

scenarios can be modified to allow anycast communication, under which packets from

each source node can be transmitted to different destination nodes at different rates.
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This requires an extension of the concept of the stability and throughput regions

by allowing not only different source nodes but also distinguishing the throughput

rates for different destination nodes in the same multicast group. The ultimate

goal is to analyze network coding for arbitrary packet traffic models and general

network topologies. The model could be further extended to incorporate the case

of finite energy supplies that result in finite node and network lifetime. Finally,

the performance objectives should incorporate the packet delay properties under

stable operation. In this context, we also need to consider the practical case of

limited queue capacities and evaluate the buffer overflow probabilities (in lieu of

the stability conditions for the case of infinite buffer capacities). We continue in

Chapter 8 with a closer look at the additional stability benefits of network coding

for single-hop multicast communication.
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Chapter 8

Effects of Network Coding on Queueing Stability in Wireless Access

The stability benefits of network coding are not limited to multi-hop commu-

nication problem that we discussed in Chapter 7. Network coding can also improve

the stable throughput rates for single-hop multicast communication. In this chap-

ter, we specify the stable throughput region for broadcast systems with one or two

source nodes transmitting packets to multiple receiver nodes over independent chan-

nels with probabilistic reception. We show that the plain retransmission policy is

suboptimal and that the stable operation is optimized by coded retransmissions with

finite packet delay and limited complexity. First, we consider a linear random cod-

ing scheme and point at the benefits of coding in terms of stable throughput at the

expense of additional processing costs. Then, we introduce a simple dynamic coding

scheme to prove the equivalence of the queueing stability region and the maximum

throughput region for random access systems with multi-packet reception channels.

We also discuss the relationship between the maximum achievable throughput and

stability regions and the general capacity region. Finally, we explore the maximum

stable throughput region for unicast traffic of packets addressed to different receivers

and combine the results with broadcast packet traffic.
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8.1 Introduction

The maximum throughput and stability properties have been extensively stud-

ied for random access systems with multiple transmitters and a single receiver [12].

The maximum stable throughput and capacity regions are equivalent for the case of

two source nodes randomly transmitting packets to a common receiver over collision

channels [99]. The stability problem in random access has been extended in [21] to

probabilistic multi-packet reception. The conjecture has been made in [22] that

both regions coincide for general multi-packet reception channels. The extension to

multicast communication with multiple receivers has been introduced in Chapter

7 through the application of network coding for the case of saturated queues. It

has been proved in [100] that the queueing stability region differs from the capacity

region for compound random access systems in which two source nodes randomly

send packets to two receivers. The stability analysis has been based on the simple

policy of plain packet retransmissions with feedback from receivers to transmitters

on the channel outcome [101].

In this chapter, we show that the plain retransmission policy is suboptimal in

terms of the maximum stable throughput rates and it is possible to optimize the

stability region to the maximum achievable throughput region by employing a simple

(network) coding scheme (with packet retransmissions) that differs from the forward

error correction by (channel) coding and can operate with finite packet delay and

possibly emptying queues. The proposed scheme is different from the rateless codes

(such as LT codes [102] or Raptor codes [103]) that are used to transmit blocks of
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packets without concern of delay buildup.

The maximum throughput region of tandem networks has been derived in

Chapter 7 using the idea of network coding and the plain retransmission policies have

been shown to be suboptimal for random access under the assumption of saturated

queues. If we consider only one-hop transmissions of source packets (rather than

combining them with relay packet traffic), then this result also applies to the case

of non-saturated, i.e. possibly emptying, packet queues.

In this chapter, we derive the stability region for random access of two source

nodes transmitting packets to two receiver nodes. We prove that the stability and

maximum achievable throughput regions coincide through the use of coded packet

retransmissions based on feedback from receivers to transmitters. This result devi-

ates from the previous approaches based on plain retransmission policies that are

strictly suboptimal and cannot achieve the maximum stable throughput rates in

broadcast systems with one or two transmitter nodes (namely over the equivalent

broadcast erasure channels between one or two transmitter nodes and two receivers).

First, we allow the transmissions of random linear packet combinations and

evaluate the performance gains compared to repetition-based transmission policies.

Network coding improves the stable throughput and transmission energy costs at

the expense of additional processing costs for coding and decoding purposes and ad-

ditional delay of packets in queues. We evaluate the stable throughput performance

depending on the field size for linear network coding operations and the length of

blocks over which the queue content is combined.

Then, we formulate a simple dynamic network coding scheme that is based
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on the instantaneous queue content and can operate with finite delay and possibly

emptying queues. The feedback information needs to be exchanged between trans-

mitter and receiver nodes for retransmission policies. On the other hand, channel

coding can achieve the broadcast capacity without feedback [104] but only with in-

finite packet delay. Thus, simple network coding on packet level with feedback can

optimize the throughput region in stable operation (with finite packet delay and

computational complexity) and can approach the capacity region derived in [100].

The chapter is organized as follows. In section 8.2, we introduce the single-

source broadcast system model. In section 8.3, we look at the retransmission poli-

cies. We extend the analysis to random network coding policies in section 8.4. We

generalize the ideas of coded retransmissions in section 8.5 and derive the optimal

network coding policy to achieve the maximum stable throughput rate. We discuss

the feedback, overhead and complexity properties of retransmission policies with and

without coding. Then, we extend the results to random access of two transmitters in

section 8.6 and prove that the stability region and the maximum achievable through-

put region coincide. Then, we derive the stable throughput region for unicast traffic

in section 8.7. We draw conclusions in section 8.8.

8.2 Single-Source Broadcast System Model

One transmitter node randomly generates messages to be encoded into pack-

ets. We assume that packets arrive with rate λ to be transmitted to both receivers

1 and 2 over two independent channels with probabilistic reception q1 and q2, as
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shown in Figure 8.1. Only a packet received by both receivers contributes to the

achievable throughput. The system is considered stable, if the length of packet

queue Q at transmitter node is asymptotically finite, i.e. the packet delay is finite.

We allow immediate and correct feedback on the channel outcome from the receivers

to the transmitter node. The system is equivalent to a broadcast erasure channel.

q1

q
2

   Receiver 2

   Receiver 1

λ

Source  

Figure 8.1: System model with one transmitter and two receivers.

The outcome of each independent broadcast channel is a success or failure, namely

erasure. The erased (i.e. not successfully received) packets need to be retransmit-

ted. Consider two broadcast cuts that separate the source node from each of the

receivers. The packets can be successfully received by receiver i = 1, 2 with maxi-

mum throughput rate qi. Then, the maximum throughput rate for common packet

traffic is given by min(q1, q2).

If we assume that packets correspond to codeword symbols, the information-

theoretic capacity C of the resulting broadcast erasure channel is min(q1, q2). This

follows from the upper bound on the mutual information over two broadcast cuts

that separate the transmitter node from each of the two receivers [75] and can be

regarded as a special case of the capacity results for two source nodes in [100]. Chan-

nel coding results in reliable packet communication with rate R up to min(q1, q2)

in the absence of feedback but only under the assumptions of saturated queues (i.e.
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always availability of information symbols to be transmitted) and infinite packet

delay.

8.3 Suboptimal Retransmission Policies

In simple transmission policy (STP), a packet transmission is considered to

be successful, if the packet is successfully received by both receivers 1 and 2 at the

same time slot. Otherwise, the packet is retransmitted. Transmitter node receives

immediate feedback from receivers on the status on whether the transmitted packet

is successfully received by both receivers or not. The feedback is transmitted on

error-free feedback channels based on scheduled access. Only reception of a packet

by all intended receivers contributes to the throughput. The service rate of the

packet queue at transmitter node is µ = q1q2. The resulting stability condition is

given by λ < q1q2.

In plain retransmission policy (PRP), any packet failed at any of the two

receivers is retransmitted until it is successfully received by both receivers. This

plain retransmission policy (PRP) has been considered before in [100, 101] and [105,

36, 106] for broadcast communication. Immediate and accurate channel feedback is

necessary from receivers to transmitter node to inform whether a packet has been

successfully received or not. Section 8.4 shows that PRP is suboptimal (unless q1 or

q2 is equal to 0 or 1) for random access in tandem networks with saturated queues.

In section 8.5, we show that a coded retransmission policy is necessary for the case

of possibly emptying queues to reach the information-theoretic capacity.
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The service rate of PRP has been derived in [100] for broadcast systems with

two source nodes using a Markov chain model for packet retransmissions. If we

specialize it to the single-source case, the resulting service rate of the packet queue

Q at transmitter node is given by

µ =
q1q2(q1 + q2 − q1q2)

(q1 + q2)(q1 + q2 − q1q2) − q1q2

. (8.1)

Alternatively, we can derive the service rate, as proposed in [91] for rateless

communication with arbitrary number of receiver nodes. We define µ = 1
E[T ]

, where

T is the service time. Let Ti define the number of time slots until the packet under

transmission is successfully received by receiver i = 1, 2. The random variable Ti has

distribution of geometric nature with parameter qi. Since we have T = max(T1, T2),

the expected value of T is computed as

E[T ] = 1 +
∞∑

t=1

(
1 −

2∏

i=1

t∑

τ=1

(1 − qi)
τ−1qi

)
. (8.2)

The value of µ = 1
E[T ]

is equivalent to Eq. (8.1). As a result, the stability

condition is given by

λ <
q1q2(q1 + q2 − q1q2)

(q1 + q2)(q1 + q2 − q1q2) − q1q2

. (8.3)

The rate of packets that can be delivered to both receivers satisfies λ <

min(q1, q2). In section 8.4, we will show that this upper bound can be asymp-

totically approached by random network coding. For q1 = q2 = q = 0.5, Figure 8.2

depicts the service rates, namely boundaries of the stable throughput rates under

STP and PRP, and the upper bound on the stable throughput rate. The service

rate µ of PRP is strictly smaller than min(q1, q2) unless qi = 0 or 1, i = 1, 2. We
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will show in section 8.5 how to achieve the stable throughput rate arbitrarily close

to min(q1, q2) for any given pair of fixed packet reception probabilities q1 and q2.
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Figure 8.2: Service rates under STP and PRP and upper bound on the service rate.

8.4 Random Network Coding Policy

In PRP, source node transmits one packet at a time, until the packet is success-

fully received by all receivers. We can generalize this idea by accumulating packets

into groups of fixed size K and transmitting a randomly generated linear combina-

tion of K packets at a time, until all these K packets are successfully decoded by

all receivers.

To understand the throughput benefits of coding, consider the case in which

packets A1 and A2 must be delivered to both receivers 1 and 2. We assume F2 as the

field for (network) coding operations such that the bit-sum A1 + A1 of two packets
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A1 and A2 is a modulo-2 vector addition of the corresponding vectors of each packet.

If the transmission of packet A1 is only received by receiver 1 and the transmission of

packet A2 is only received by receiver 2, source can transmit packet A1 +A2 (instead

of separately transmitting packets A1 and A2 as in PRP). Thus, receiver 1 and 2 can

decode A2 and A1 by computing A1 + (A1 + A2) and A2 + (A1 + A2), respectively,

i.e. it is possible to deliver both packets in a single time slot, if the transmission is

successful at both receivers. For K > 1, transmitter node randomly combines the

first available K packets in queue by linear mapping with coefficients from a finite

field Fr. Consider the mth group of K packets. The jth packet transmitted from

packet group m is given by Am(j) =
∑K

i=1 A(m−1)K+i αm,i(j), where the coefficients

αm,i(j), i = 1, ..., K, are randomly and independently chosen from the finite field Fr

and form a coding vector for any transmitted packet j in packet group m. Whenever

transmitter node is informed over feedback channels that all receivers have decoded

K packets, it removes them simultaneously from the queue.

8.4.1 Stable Throughput Properties

Let L denote the sufficient number of successful packet transmissions to decode

K packets at each receiver. After successfully receiving the lth packet, each receiver

forms the l × K matrix M(l,K) with each row representing the coding vector of

each packet received so far. The group of K packets is successfully decoded, if

the matrix M(l,K) has rank of at least K. We denote this event by El,K . The

probability distribution of El,K is computed as follows. The first column of M(l,K)
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must contain at least one non-zero entry, which occurs with probability 1− 1
rl . The

second column must contain at least one non-zero element and should be linearly

independent of the first column, i.e. should not be one of the r − 1 possibilities of

the first column multiplied by any non-zero symbol α = 1, ..., r−1. This occurs with

probability 1 − 1
rl−1 . Proceeding this way for the first K columns, we can ensure

the linear independence of each column j = 1, ..., K of matrix M(l,K) from the

previous j − 1 columns such that the probability distribution of El,K is given by

P (El,K) =
l∏

k=l+1−K

(
1 − 1

rk

)
. (8.4)

It is sufficient to receive L packets for decoding K packets, if matrix M(L −

1, K) has rank K − 1 and matrix M(L,K) has rank K, since each transmission

can increase the rank of matrix M(l,K) at most one for any l. For coding field

size r and block length K, let PK,r(l) denote the probability of L = l, namely the

probability that at least l successful packet transmissions are sufficient to decode K

packets, and let Ek
l,K denote the event that M(l,K) has rank k such that we have

PK,r(l) = P (EK−1
l−1,K) · P (EK

l,K |EK−1
l−1,K) (8.5)

for l ≥ K. By counting arguments, we obtain

P (EK
l,K |EK−1

l−1,K) = 1 − 1

r
, (8.6)

since a successfully received packet is innovative with probability 1 − 1
r
. We can

iteratively compute P (EK−1
l−1,K) as pl−1,K(K) from combinatorial arguments, where
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pl−1,K(k), k = 1, ..., K, evolves as

pl−1,K(1) =
1

rl−K
, (8.7)

pl−1,K(k) =
1

rl−1−K+k

k−2∏

m=0

(
1 − 1

rl−1−K+k−m

)
+

(
1 − 1

rl−1−K+k

)
pl−1,K(k − 1)

for k = 2, ..., K. By combining Eqs. (8.5)-(8.7), we can obtain the distribution of

L, namely PK,r(l), as

PK,r(l) =

(
1 − 1

r

) K∑

i=1

(
1

rl−1−K+i

i−2∏

m=0

(
1 − 1

rl−1−K+i−m

) K∏

j=i+1

(
1 − 1

rl−1−K+j

))
(8.8)

for l ≥ K. The distribution PK,r(l) also follows from the definition of

PK,r(l) = P (EK
l,K) − P (EK

l−1,K) (8.9)

such that PK,r(l) is simply given by

PK,r(l) =
1

rl−K

(
1 − 1

rK

) l−1∏

k=l+1−K

(
1 − 1

rk

)
. (8.10)

We define Ti(K, r) as the number time slots required by receiver i = 1, ..., n to

decode K packets and we define

T (K, r) = max
i=1,...,n

Ti(K, r) (8.11)

as the total number of time slots required by all receivers to decode K packets.

Provided that receivers need at least l successful packet transmissions to decode K

packets, the conditional expected value of T (K, r) can be written as

E[T (K, r)|L = l] = l +
∞∑

t=l

(
1 −

n∏

i=1

t∑

τ=l

(
τ − 1

l − 1

)
(1 − qi)

τ−lql
i

)
. (8.12)
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As a result, the expected service time to deliver K packets to all receivers is

computed as

E[T (K, r)] =
∞∑

l=K

PK,r(l) E[T (K, r)|L = l] (8.13)

by combining Eqs. (8.10) and (8.12). The service rate µ as function of K and r is

given by K
E[T (K,r)]

, since K packets are decoded by all receivers (and cleared from

the transmitter queue) over E[T (K, r)] time slots on the average. As a result, the

stable service rate is given by

µ =
K

E[T (K, r)]
. (8.14)

For n = 2 and qi = q, i = 1, 2, we depict in Figure 8.3 the service rate µ for

different values of K and r, and we depict in Figure 8.4 the minimum code length K

such that RCP can improve the stable throughput rate of PRP for different values

of r. Network coding offers more throughput benefits for smaller successful packet

reception probabilities.

The stable throughput of RCP increases with the coding field size r. PRP

and RCP become equivalent for K = 1, as r goes to infinity, i.e. we have µ =

limr→∞
1

E[T (1,r)]
for PRP. The value of L approaches to K in probability, as r in-

creases. As computed in [91] for rateless communication, the expected service time,

as r goes to infinity, is given by

E[T (K)] = K +
∞∑

t=K

(
1 −

n∏

i=1

t∑

τ=K

(
τ − 1

K − 1

)
(1 − qi)

τ−KqK
i

)
. (8.15)

For n = 2, in Figure 8.5 shows µ, as r goes to infinity, and we have

lim
K→∞, r→∞

K

E[T (K, r)]
= min

i=1,..,n
qi (8.16)
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Figure 8.3: Service rate of RCP as function of common successful packet reception

probability qi = q, i = 1, 2, for different values of K and r.

such that RCP asymptotically approaches the stable throughput upper bound, as

both r and K go to infinity. For qi = 0.5, i = 1, ..., n, we evaluate the service rates

in Figure 8.6 as function of n. Note that µ becomes less sensitive to any increase in

n, as K and r increase.

8.4.2 Transmission and Processing Energy Costs

Each packet is transmitted with energy cost ǫt. The transmission energy cost

per packet successfully decoded by all receivers is E = ǫt

µ
for stable throughput rate

µ. For n = 2 and ǫt = 1, we evaluate in Figure 8.7 the transmission energy cost

as function of the common successful reception probability q for different values

of K, as r goes to infinity. For RCP, the processing cost at transmitter node is
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Figure 8.4: The minimum code length K as function of r such that RCP improves the

stable throughput rate of PRP for common successful packet reception probability

qi = q, i = 1, 2.

(K − 1)E[L(K, r)]ǫc, where E[L(K, r)] is the expected number of coding operations

and ǫc is the coding cost for each symbol addition. Each receiver node performs

Gaussian elimination to decode K packets such that the processing cost at each

receiver is in the order of K3ǫd. As a result, the total energy cost for K packets is

in the order of E[T (K, r)]ǫt + KE[L(K, r)]ǫc + nK3ǫd. Since both E(T (K, r)) and

E(L(K, r)) scale linearly with K, the quantity E increases quadratically with K.

8.4.3 Extensions to Compound Random Access of Two Source Nodes

Assume that two sources randomly transmit packets addressed to all of n

receivers, as shown in Figure 8.8. Let pi denote the transmission probability of
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Figure 8.5: Service rate limr→∞ µ of RCP as function of common successful packet

reception probability qi = q, i = 1, 2, for different values of K.

source i = 1, 2. Let µi,b or µi,e denote the service rate of source i depending on

whether the other node has a packet to transmit or not, i.e. µ1,e = [µ1,b]p2=0 and

µ2,e = [µ2,b]p1=0. We assume multi-packet reception channels and denote q
(j)
i|T as the

probability of successful reception of packet of source i by receiver j, if set T of

nodes transmit packets in the same time slot. We follow the dominating systems

argument [12] to derive the stability region S as the set of arrival rates λ1 and λ2

at sources 1 and 2:

λ1 <
λ2

µ2,b

µ1,b +

(
1 − λ2

µ2,b

)
µ1,e, λ2 ≤ µ2,b , (8.17)

λ2 <
λ1

µ1,b

µ2,b +

(
1 − λ1

µ1,b

)
µ2,e, λ1 ≤ µ1,b , (8.18)

as given in [101]. We evaluate the stable throughput rates λ1 and λ2 on the boundary

of µ1,b and µ2,b. For RCP, each node attempts to deliver blocks of K randomly
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Figure 8.6: Service rates as function of the number of receivers n for qi = 0.5,

i = 1, ..., n.

combined packets. We denote by T i
j (K, r) the number of time slots required by

receiver j = 1, ..., n to decode K packets from source i = 1, 2. Let T i(K, r) =

maxj=1,...,n T i
j (K, r) denote the total number of time slots required by all receivers

to decode K packets from source i. If l successful packet transmissions are required

by all receivers to decode K packets from source i, the conditional expected value

of T i(K, r) is

E[T i(K, r)|L = l] = l +
∞∑

t=l

(
1 −

n∏

j=1

t∑

τ=l

(
τ − 1

l − 1

)
(1 − P(j)

i )τ−l(P(j)
i )l

)
, (8.19)

where P(j)
1 = p1(p2q

(j)
1|1,2 + (1 − p2)q

(j)
1|1) and P(j)

2 = p2(p1q
(j)
2|1,2 + (1 − p1)q

(j)
2|2) are

obtained, if we condition the success probabilities depending on whether the other

node transmits or not. This holds only if the packets of different transmitters are

not cross-coded with each other. The expected service time to deliver K packets
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Figure 8.7: The transmission energy cost as function of common successful packet

reception probability qi = q, i = 1, 2, for different values of K.

from source i = 1, 2 to all receivers is given by

E[T i(K, r)] =
∞∑

l=K

PK,r(l) E[T i(K, r)|Li = l], (8.20)

where Li is the minimum number of randomly combined packets sufficient for all

receivers to decode K packets of source node i. The events Li = l, i = 1, 2, are

independent for both sources (since packets of different sources are not coded with

Transmitter  1

   Receivern

   Receiver  1

Transmitter  2

λ

λ

1

2

Figure 8.8: System model with two transmitters and n receivers.
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each other) and have the distribution PK,r(l) given by Eq. (8.10). Finally, the

service rate µi,b can be computed as K
E[T i(K,r)]

by combining Eqs. (8.10), (8.19)

and (8.20). If we take the envelope over all 0 ≤ pi ≤ 1, i = 1, 2, we obtain the

stability region for random access of two sources and n receivers. For different

transmission policies STP, PRP and RCP, Figure 8.9 depicts the stability region

for strong multi-packet reception channels with q
(1)
1|1 = q

(2)
1|1 = q

(1)
2|2 = q

(2)
2|2 = 0.9,

q
(1)
1|12 = q

(2)
1|12 = q

(1)
2|12 = q

(2)
2|12 = 0.6.

The extension to arbitrary number of sources can be realized by following

the conjecture [22] that the maximum throughput and stability regions coincide in

random access for saturated and possibly emptying packet queues (under additional

assumptions that multi-packet reception channels are standard and stationary queue

distributions follow a sensitivity monotonicity property). Let S denote the set of

source nodes and Ri denote the receiver set of source node i ∈ S. For PRP and RCP,

the service rate µi of source node i is given by
∏

j∈Ri
P(j)

i and K
E[T i(K,r)]

, respectively,

where P(j)
i = pi

∑
T :i∈T⊆S q

(j)
i|T
∏

t∈T−{i} pt

∏
s/∈T (1 − ps) for i ∈ S and j ∈ Ri under

the assumption of saturated queues. The expected service time E[T i(K, r)] follows

from Eqs. (8.10), (8.19) and (8.20). As K and r go to infinity, K
E[T i(K,r)]

approaches

minj∈Ri
P(j)

i , whereas the service rate of PRP is given by (limr→∞ E[T i(1, r)])−1.

8.5 Optimal Coded Retransmission Policy for the Single Source Case

We consider coded retransmission policy (CRP) that retransmits linearly com-

bined packets depending on the instantaneous queue content and operates with finite
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Figure 8.9: Stability region for different retransmission policies with and without

coding.

delay and complexity.

The idea is based on network coding to combine the packet transmissions

addressed to different receivers and has been used in Chapter 7 for scheduled access

with possibly emptying queues and for random access with saturated queues in

tandem networks with multiple source nodes. Random network coding has been

proposed before in [91] for broadcasting blocks of packets in rateless communication.

Random network coding for reliable communication [68, 107] is desirable because

of simplicity but requires infinite block length and alphabet size to optimize the

throughput rates. Instead, we consider random packet generation process with

possibly emptying packet queue and consider dynamic but deterministic coding

policies based on the instantaneous queue content.
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Based on feedback, transmitter node puts each packet to a virtual queue de-

pending on which receiver has successfully received that packet. We assume three

virtual queues. All packets arrive at virtual queue Q1,2 and are transmitted in a

first-come-first-served fashion. If the packet has been successfully received by both

receivers, the packet leaves the system. If the packet has not been received by any

of two receiver nodes, the packet remains in queue Q1,2. Packets that have been re-

ceived by receiver 1 but not by receiver 2 enter virtual queue Q1. Similarly, packets

that have been received by receiver 2 but not by receiver 1 enter virtual queue Q2.

Then, packets leave queue Q1 or Q2 and consequently leave the system, if they have

been received by receiver 2 or 1, respectively. We consider only stationary network

operation, in which the queue distributions reach steady state. The queue Q at

transmitter node is stable, if and only if the virtual queues Q1,2, Q1 and Q2 are all

stable. The virtual queue structure is illustrated in Figure 8.10.

Q2

(a) Success at receiver 1 and failure at receiver 2
(b) Success at receiver 1 and 2
(c) Success at receiver 2 and failure at receiver 1
(d) Success at receiver 2
(e) Success at receiver 1

Q1

µ

(a)

(b)

(d)

(e)

λ
(c)Q1,2

2

A

A

A

1

1,2

Figure 8.10: Virtual packet queues Q1,2, Q1 and Q2 at transmitter node.

A packet is transmitted from queue Q1,2, if it contains at least one packet.

Otherwise, if queues Q1 and Q2 contain at least one packet, they are combined by

linear coding before transmission. If A1 and A2 are the first available packets in
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queues Q1 and Q2 and queue Q1,2 is empty, the packet A1 + A2 is transmitted. If

it is successfully received by receiver 1 (with probability q1) or by receiver 2 (with

probability q2), it leaves queue Q2 or Q1. In other words, it is possible to deliver one

packet to each receiver in a single transmission. However, this cannot be realized

by PRP that needs two successful transmissions to deliver packets A1 and A2 to

receiver 1 and 2, respectively. If only one of queues Q1 and Q2 contains packets,

the packet is transmitted without coding (provided that queue Q1,2 is empty). The

arrival rate of queue Q1,2 is λ. Since the packet leaves Q1,2, unless the packet is

received by both receivers, the service rate is 1 − (1 − q1)(1 − q2). According to

Loynes Theorem [34], the stability condition for queue Q1,2 is given by

λ < 1 − (1 − q1)(1 − q2). (8.21)

If queue Q1,2 is stable, the departure rate is λ. As a result, packets arrive at

queues Q1 and Q2 with rates q1(1−q2)
1−(1−q1)(1−q2)

and q2(1−q1)
1−(1−q1)(1−q2)

, respectively. Packets

are transmitted from queues Q1 and Q2, if queue Q1,2 is idle. According to Little’s

result [9], this occurs with probability 1 − λ
1−(1−q1)(1−q2)

, since queue Q1,2 has the

arrival rate λ and service rate 1 − (1 − q1)(1 − q2).

The service rates of queues Q1 and Q2 are (1 − λ
1−(1−q1)(1−q2)

)q2 and (1 −

λ
1−(1−q1)(1−q2)

)q1, respectively, since queues Q1 and Q2 receive service simultaneously

(due to the proposed coding operation) provided that queue Q1,2 is empty and

packets that are transmitted from queues Q1 and Q2 are successfully received by

receiver 2 and 1 with probability q2 and q1, respectively. The resulting stability
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conditions for queues Q1 and Q2 are

λq1(1 − q2)

1 − (1 − q1)(1 − q2)
<

(
1 − λ

1 − (1 − q1)(1 − q2)

)
q2, (8.22)

λq2(1 − q1)

1 − (1 − q1)(1 − q2)
<

(
1 − λ

1 − (1 − q1)(1 − q2)

)
q1. (8.23)

If we combine conditions (8.21)-(8.23), queues Q1,2, Q1 and Q2 (and therefore

queue Q) are stable, if

λ < min(q1, q2). (8.24)

As a result, the maximum throughput rate bound (for the case of saturated

queues) and the stability condition (for the case of possibly emptying packet queues)

coincide through the application of CRP. On the other hand, PRP is strictly sub-

optimal for broadcast systems, as the comparison of conditions (8.3) and (8.24)

reveals. For q1 = q2 = q, Figure 8.11 depicts the service rates under coded and plain

retransmission policies.

8.5.1 Feedback, Packet Overhead and Complexity Issues

All policies with or without coding need feedback information to be exchanged

between transmitter and receiver nodes. STP needs only ⌈logr2⌉ control symbols to

inform receivers whether the transmitted packet is new or it is a retransmission. On

the other hand, PRP needs ⌈logr(2
n−1)⌉ control symbols to inform receivers which of

the 2n−1 non-empty subsets of n receivers the transmitted packet is intended for. In

RCP, transmitter needs to encode ⌈logrK⌉ control symbols into the overhead of each

packet to inform receivers how K packets are encoded into the transmitted packet.
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Figure 8.11: Service rates under coded and plain retransmission policies.

In CRP, transmitter nodes need to inform receivers the intended destination(s) of

each packet and whether the packet is coded or not. However, packets can contain

arbitrarily large number of information symbols so that we can assume that the

overhead information is negligible.

Both PRP and CRP require the transmitter node to keep virtual queues de-

pending on which receiver has successfully received the transmitted packets. This

is equivalent to the memory requirement of PRP to track which receiver has suc-

cessfully received each packet. As a result, all policies with and without coding

are similar in terms of overhead and computational complexity (and the difference

diminishes as the number of information symbols encoded into packets increases).

The main disadvantage of RCP and CRP is that packets can be received in the

mixed order of transmission. However, this can be easily handled through the use
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of packet ID’s. The resulting service rates are scaled down by the feedback infor-

mation (provided that the information and control packet transmissions share the

same channel).

8.6 Optimal Coded Retransmission Policy for Two Source Nodes

Assume that two transmitter nodes randomly transmit packets addressed to

both receiver nodes, as shown in Figure 8.8. Let pi denote the transmission prob-

ability of transmitter node i = 1, 2. Let µi,b or µi,e denote the service rate of

node i depending on whether the other transmitter node has a packet or not, i.e.

µ1,e = [µ1,b]p2=0 and µ2,e = [µ2,b]p1=0. We assume multi-packet reception (MPR)

channels and denote q
(j)
i|K as the probability of successful reception of packet of trans-

mitter node i by receiver node j, if the set K of nodes transmit packets.

Under the assumption that packets correspond to either an information symbol

or an idle symbol, the capacity region C has been derived in [100] as the closure of

rates (R1, R2) such that

R1 ≤ p1 min(p2q
(1)
1|1,2 + (1 − p2)q

(1)
1|1, p2q

(2)
1|1,2 + (1 − p2)q

(2)
1|1), (8.25)

R2 ≤ p2 min(p1q
(1)
2|1,2 + (1 − p1)q

(1)
2|2, p1q

(2)
2|1,2 + (1 − p1)q

(2)
2|2). (8.26)

These capacity results coincide with the maximum achievable throughput

bounds for the case in which we consider arbitrary information packets to be trans-

mitted and saturated packet queues, i.e. the maximum achievable throughput rates

achieve the bounds of conditions (8.25)-(8.26). First, consider source node 1. The

maximum throughput rate λi
1 over the cut that separates source node 1 from re-
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ceiver i = 1, 2 is given by p1(p2q
(i)
1|1,2 + (1 − p2)q

(i)
1|1), since receiver i receives packet

of source node 1, if source node 1 transmits packets (with probability p1) and the

transmission is successfully received by receiver i with probability q
(i)
1|1,2, if source

node 2 also transmits (with probability p2) or with probability q
(i)
1|1, if source node

2 does not transmit (with probability 1 − p2). The maximum throughput rate for

source node 1 is mini=1,2 λi
1. The same argument also holds for source node 2.

For fixed transmission and reception probabilities, we follow the dominating

systems argument to derive the stability region S as the set of arrival rates λ1 and

λ2 satisfying conditions (8.17)-(8.18).

The stability region is illustrated in Figure 8.12. We consider the stable

throughput rates λ1 and λ2 on the boundary of µ1,b and µ2,b and show that the

optimal values of µ1,b and µ2,b coincide with the upper bounds on the achievable

rates R1 and R2, respectively.

λ 1

λ 2

µ     1,b µ     1,e

µ     2,b

µ     2,e

Figure 8.12: Broadcast stability region in random access.

First, we assume that transmitter node 2 has packets and derive the stability

conditions for virtual queues Q1, Q2 and Q1,2 at transmitter node 1. For queue

Q1,2, the arrival rate is λ1 and the service rate is 1 − p1(p2(1 − q
(1)
1|1,2)(1 − q

(2)
1|1,2) −
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(1 − p2)(1 − q
(1)
1|1)(1 − q

(2)
1|1)), since a packet of transmitter node 1 leaves queue Q1,2,

unless it is not successfully received by both receivers, which occurs with probability

(1− q
(1)
1|1,2)(1− q

(2)
1|1,2), if transmitter node 2 transmits a packet (with probability p2),

or occurs with probability (1−q
(1)
1|1)(1−q

(2)
1|1), if transmitter node 2 does not transmit

a packet (with probability 1 − p2). If queue Q1,2 at transmitter node 1 is stable,

queues Q1 and Q2 at transmitter node 1 have the arrival rates

λ1p1(p2q
(1)
1|1,2(1 − q

(2)
1|1,2) + (1 − p2)q

(1)
1|1(1 − q

(2)
1|1))

p1(1 − p2(1 − q
(1)
1|1,2)(1 − q

(2)
1|1,2) − (1 − p2)(1 − q

(1)
1|1)(1 − q

(2)
1|1))

, (8.27)

λ1p1(p2q
(2)
1|1,2(1 − q

(1)
1|1,2) + (1 − p2)q

(2)
1|1(1 − q

(1)
1|1))

p1(1 − p2(1 − q
(1)
1|1,2)(1 − q

(2)
1|1,2) − (1 − p2)(1 − q

(1)
1|1)(1 − q

(2)
1|1))

, (8.28)

respectively. Queues Q1 and Q2 receive service with rates p1(p2q
(2)
1|1,2 + (1 − p2)q

(2)
1|1)

and p1(p2q
(1)
1|1,2 + (1 − p2)q

(1)
1|1), respectively, if queue Q1,2 at transmitter node 1 is

idle (with probability 1− λ1

1−p2(1−q
(1)
1|1,2

)(1−q
(2)
1|1,2

)−(1−p2)(1−q
(1)
1|1

)(1−q
(2)
1|1

)
according to Little’s

result [9]). The resulting stability conditions for transmitter node 1 are given by

λ1 < 1 − p1(p2(1 − q
(1)
1|1,2)(1 − q

(2)
1|1,2) − (1 − p2)(1 − q

(1)
1|1)(1 − q

(2)
1|1)) (8.29)

for queue Q1,2 at transmitter node 1,

λ1p1(p2q
(1)
1|1,2(1 − q

(2)
1|1,2) + (1 − p2)q

(1)
1|1(1 − q

(2)
1|1))

p1(1 − p2(1 − q
(1)
1|1,2)(1 − q

(2)
1|1,2) − (1 − p2)(1 − q

(1)
1|1)(1 − q

(2)
1|1))

< p1(p2q
(2)
1|1,2 + (1 − p2)q

(2)
1|1) (8.30)

·
(

1 − λ1

p1(1 − p2(1 − q
(1)
1|1,2)(1 − q

(2)
1|1,2) − (1 − p2)(1 − q

(1)
1|1)(1 − q

(2)
1|1))

)

for queue Q1 at transmitter node 1, and
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λ1p1(p2q
(2)
1|1,2(1 − q

(1)
1|1,2) + (1 − p2)q

(2)
1|1(1 − q

(1)
1|1))

p1(1 − p2(1 − q
(1)
1|1,2)(1 − q

(2)
1|1,2) − (1 − p2)(1 − q

(1)
1|1)(1 − q

(2)
1|1))

< p1(p2q
(1)
1|1,2 + (1 − p2)q

(1)
1|1) (8.31)

·
(

1 − λ1

p1(1 − p2(1 − q
(1)
1|1,2)(1 − q

(2)
1|1,2) − (1 − p2)(1 − q

(1)
1|1)(1 − q

(2)
1|1))

)

for queue Q2 at transmitter node 1, respectively. We obtain the stability condition

λ1 < µ1,b, where the service rate is µ1,b = p1 min(p2q
(1)
1|1,2 + (1− p2)q

(1)
1|1, p2q

(2)
1|1,2 + (1−

p2)q
(2)
1|1). From the symmetry, we obtain the service rate µ2,b = p2 min(p1q

(1)
2|1,2 + (1−

p1)q
(1)
2|2, p1q

(2)
2|1,2 + (1 − p1)q

(2)
2|2). Hence, the stability region S is the region of arrival

rates λ1 and λ2 such that

λ1 < p1 min(p2q
(1)
1|1,2 + (1 − p2)q

(1)
1|1, p2q

(2)
1|1,2 + (1 − p2)q

(2)
1|1), (8.32)

λ2 < p2 min(p1q
(1)
2|1,2 + (1 − p1)q

(1)
2|2, p1q

(2)
2|1,2 + (1 − p1)q

(2)
2|2). (8.33)

As a result, the comparison of conditions (8.25)-(8.26) and (8.32)-(8.33) re-

veals that the queueing stability and maximum throughput (and capacity) regions

coincide for compound random access systems (except for boundary).

Next, we present numerical results for q
(1)
1|1 = q

(2)
1|1 = q

(1)
2|2 = q

(2)
2|2 = 0.9. Figure

8.13 depicts the stability region for strong MPR channels with q
(1)
1|12 = q

(2)
1|12 = q

(1)
2|12 =

q
(2)
2|12 = 0.6 and weak MPR channels with q

(1)
1|12 = q

(2)
1|12 = q

(1)
2|12 = q

(2)
2|12 = 0.3.

8.7 Extensions to Unicast Communication

We consider the single source case with packets addressed to only one of the

receiver nodes. Packets addressed to receiver 1 and 2 only arrive with rates λ(1) and
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Figure 8.13: Stability region for strong and weak MPR channels.

λ(2), respectively. We assume the same structure of virtual queues as in section 8.5.

All packets arrive at queue Q1,2. Packets that are addressed to receiver node 2 but

have been received only by receiver node 1 enter queue Q1. Similarly, packets that

are addressed to receiver node 1 but have been received only by receiver node 2 enter

queue Q2. Transmitter node first attempts to transmit a packet from queue Q1,2. If

queue Q1,2 is empty, transmitter node attempts to transmit coded packets one from

each of the queues Q1 and Q2. The resulting stability conditions for queues Q1,2,

Q1 and Q2 are given by

λ(1) + λ(2) < 1 − (1 − q1)(1 − q2), (8.34)

λ(1)q2(1 − q1)

1 − (1 − q1)(1 − q2)
<

(
1 − λ(1) + λ(2)

1 − (1 − q1)(1 − q2)

)
q1, (8.35)

λ(2)q1(1 − q2)

1 − (1 − q1)(1 − q2)
<

(
1 − λ(1) + λ(2)

1 − (1 − q1)(1 − q2)

)
q2. (8.36)
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As a result, the achievable stable throughput rates λ(1) and λ(2) satisfy

λ(1)

q1

+
λ(2)

1 − (1 − q1)(1 − q2)
< 1, (8.37)

λ(1)

1 − (1 − q1)(1 − q2)
+

λ(2)

q2

< 1. (8.38)

Next, we explore the capacity region for unicast packet traffic. Let R(i) be

the rates of packets addressed to receiver i = 1, 2. Time sharing has been shown

in [108] to be optimal for broadcast erasure channel with independent messages

to be transmitted to receiver nodes. The capacity region for sending independent

information to two receivers is described by the closure of rates R(1) and R(2) such

that

R(1)

q1

+
R(2)

q2

≤ 1. (8.39)

However, this region is contained in the region of the achievable stable rates

given by conditions (8.37)-(8.38). The reason is that the capacity region is derived

without use of feedback from the receivers to the transmitter node. If we allow

feedback, the capacity region should be expanded to include the stability region.

An outer bound on the capacity region is given by

R(i) ≤ qi, i = 1, 2, (8.40)

R(1) + R(2) ≤ 1 − (1 − q1)(1 − q2). (8.41)

Condition (8.40) follows from the upper bound on the mutual information over

the cut that separates the transmitter node from the receiver i = 1, 2 only. On the

other hand, the probability of successful transmission to at least one receiver is given
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by 1 − (1 − q1)(1 − q2) such that the sum of rates R(1) and R(2) for both receivers

cannot exceed 1 − (1 − q1)(1 − q2), as stated in condition (8.41). This outer bound

holds independent of whether we allow feedback from receivers to transmitter or not.

For fixed reception probabilities q1 and q2, Figure 8.14 depicts the stability region

and inner and outer bounds on the capacity region. Future work should study the

capacity region for multiple unicast communication with feedback.

1 − (1 −        ) (1 −        )q
1

q
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q
1

1 − (1 −        ) (1 −        )q
1

q
2

q
2

Rλ (2) (2)
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Capacity region without feedback
Outer bound on capacity region

Stability region

Figure 8.14: Outer bound on capacity region, capacity region without feedback and

stability region for multiple unicast communication.

We can also combine broadcast and unicast communication. For that purpose,

we assume that the transmitter node generates packets that are addressed to both

receivers with rate λ(1,2) and generates packets that are addressed to only receiver

1 or 2 with rate λ(1) or λ(2). The resulting stability conditions for queues Q1,2, Q1

and Q2 are given by

λ(1) + λ(2) + λ(1,2) < 1 − (1 − q1)(1 − q2), (8.42)

(λ(1) + λ(1,2))q2(1 − q1)

1 − (1 − q1)(1 − q2)
<

(
1 − λ(1) + λ(2) + λ(1,2)

1 − (1 − q1)(1 − q2)

)
q1, (8.43)
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(λ(2) + λ(1,2))q1(1 − q2)

1 − (1 − q1)(1 − q2)
<

(
1 − λ(1) + λ(2) + λ(1,2)

1 − (1 − q1)(1 − q2)

)
q2. (8.44)
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Figure 8.15: Stability region for combined traffic of multiple unicast and broadcast

communication.

For fixed reception probabilities q1 and q2, the resulting region of stable through-

put rates is depicted in Figure 8.15 separately for the cases of q1 < q2 and q2 < q1.

8.8 Summary and Conclusions

We addressed the effects of network coding on single-hop multicast communi-

cation over erasure channels with probabilistic reception. We derived the maximum

stable throughput rates for one or two transmitter nodes broadcasting packets to

two receivers. We proposed a coded retransmission policy to optimize the stable

operation in random access and proved the equivalence of the stability and maxi-

mum throughput regions. We also discussed the implications on the capacity region.
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Finally, we extended the results to multi-packet reception channels and multiple uni-

cast communication demands. Future work should extend the results to arbitrary

number of transmitter and receiver nodes with correlated channels and correlated

packet generation processes at source nodes. In this context, the results in this

chapter can be used in the random access model for the multi-hop network coding

analysis in Chapter 7. We can evaluate the cut capacities and find the bounds on

network capacity (under the model of probabilistic packet reception). Once the

model is extended to arbitrary number of transmitters, the network capacity re-

sults would also follow for models with general interference effects in addition to the

probabilistic errors.
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Chapter 9

Conclusions

This dissertation addressed the cross-layer design at the medium access con-

trol and network layers in ad hoc wireless networks with and without user coop-

eration. We synthesized different approaches from the diverse fields of information

theory, coding, queueing theory, game theory and optimization to answer the funda-

mental design questions of distributed control, stability, non-cooperative operation,

throughput and energy efficiency. The results improve our understanding of the fun-

damental communication limits and clarify complex trade-offs in wireless network

design.

• Medium Access Control (MAC) in Ad Hoc Wireless Networks

We introduced a two-step time division mechanism for throughput and energy-

efficient resource allocation in stable operation. As the first step, we separately acti-

vated nodes as transmitters and receivers. For each activated receiver group, Group

TDMA operation in the second step creates time orthogonality between transmis-

sions to different receiver nodes. We formulated a linear optimization problem of

maximizing the stable throughput rates and minimizing the transmission energy

consumption in energy-limited systems. We also presented distributed implemen-

tation based on graph coloring. This approach prevents the unreliable feedback

problem and offers a stable MAC operation. Group TDMA can rely on any arbi-
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trary single-receiver MAC protocol to coordinate transmissions addressed to each

receiver node.

• Non-cooperative MAC and Joint Design with Routing

As the network size grows, it is more difficult to coordinate nodes in full

cooperation. Alternatively, we can allow a non-cooperative network operation with

the individual performance objectives of throughput, energy and delay efficiency.

First, we formulated stochastic games for single-receiver random access systems. We

looked at the throughput and stability properties in non-cooperative random access

of selfish transmitters with the individual packet queues. In addition, we updated the

game model by incorporating malicious transmitters with the additional objectives

of jamming the transmissions of the other selfish transmitters. Alternatively, we also

considered a repeated game model of choosing transmissions probabilities for random

access of backlogged packets. We further allowed nodes to distribute probabilities

among different transmission powers and rates with extended strategy space. In

addition, we evaluated the interactions between selfish and malicious transmitters for

power-controlled MAC with SINR-based channel model. We also proposed adaptive

best-response update mechanisms for distributed operation and compared the results

with the cooperative strategies.

For mult-hop communication, we extended the game model to the joint design

of MAC and routing over a simple relay network. In particular, we let nodes choose

between transmitting packets directly to the destination and using the relay node to

forward packets. In this context, we evaluated the cooperative and non-cooperative

strategies, and introduced a reward-based cooperation stimulation mechanism to
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improve the selfish network operation. The results underlined the importance of the

cross-layer design for the non-cooperative network operation.

• Cross-Layer Design of MAC and Network Coding

Plain routing limits nodes to act as forwarding switches. Network coding is

a new networking paradigm that allows nodes to code over the received packets

along the path from sources to multiple destinations. We presented a cross-layer

optimization framework for wireless network coding and MAC. We specified the

improvement of throughput and energy efficiency at the expense of additional pro-

cessing energy costs, packet overhead and delay. In addition, we showed how to

design wireless network codes and discussed their properties in conjunction with the

underlying MAC protocols. We also outlined distributed implementation methods

based on subtree decomposition for joint MAC and network coding. The approach

uses a single throughput criterion and it is based on the assumption of saturated

queues without risk of packet underflow or concern about delay build-up. We also

considered the problem of optimizing the region of throughput rates of multiple

source nodes. We used the example of linear network topology with multiple source

nodes to derive the maximum achievable throughput region for the case of saturated

queues.

• Effects of Wireless Network Coding on Queueing Stability

We followed a queueing-theoretic approach to specify the maximum stable

throughput region for the case of packet underflow. We also evaluated the trans-

mission and energy costs as functions of the achievable or stable throughput rates

for the separate cases of scheduled access and random access at the MAC layer.
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Finally, we specified the effects of non-cooperative node behavior on the joint oper-

ation of wireless network coding and MAC. In this context, we introduced reward-

based cooperation stimulation mechanisms to improve the non-cooperative network

performance. We also considered the stability problem in a single-hop multicast

communication system with independent probabilistic channels. We used queueing-

theoretic arguments to show that a simple network coding scheme can improve the

stable throughput rate to the Max-flow Min-cut bound. We further extended the

model to include two source nodes randomly transmitting packets to multiple re-

ceiver nodes and specified the stability region of random-access systems with and

without coding. We introduced random and deterministic network coding schemes

to improve the stability properties of plain retransmission schemes.

• Future Research Directions

It is a fundamental problem to characterize the communication limits and

trade-offs in wireless networks. There are numerous areas of investigation that

naturally spring from the results of this dissertation.

The non-cooperative framework for autonomous network operation allows self-

ish and malicious users with objectives and incentives reflected in the utility func-

tions. Multiple performance concerns such as energy expenditures require a general

non-zero sum game formulation to represent the interactions between selfish and ma-

licious users. A more general theory for hybrid (cooperative and non-cooperative)

game formulations is needed to reflect the random nature in wireless networks. The

current game formulations are based on complete information. Partial informa-

tion and uncertainty can be incorporated in the context of Bayesian games. This
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line of work has strong connections to the formulation of reputation or trust among

users. In autonomous operation, users may form their beliefs on each other’s actions,

strategies and utilities. The control information exchange and the related packet

overhead would have significant effects on how to establish reputation among each

other, and open up new research questions. The formulation of malicious users

combines two diverse research areas of network utility optimization and network

security. The level of security needs to be further calibrated with respect to the

achievable throughput rates (subject to the energy and delay constraints) provided

that we formulate the security concerns as penalty.

Another fundamental extension arises from the network coding results. Wire-

less signals arrive at nodes as a weighted sum embedded in background noise and the

corresponding incoming packets have a random nature. The network coding prob-

lem needs to be defined as a joint coding and detection problem. Two approaches

are possible: (1) For any given network coding solutions, we can let nodes detect the

linear combinations of packets (rather than detecting them individually and then

combining them to code or decode). In this case, coding and decoding operations

would be formulated as the noisy detection problem. (2) We can let nodes filter the

incoming signals to produce output signals without detecting or decoding packets

at the intermediate nodes. In this case, only destination nodes perform the detec-

tion operation. The performance objective of this modified network coding problem

can be defined as minimizing the probability of error rather than maximizing the

achievable capacity. A general anycast communication paradigm (with arbitrary

communication demands with arbitrary source-destination pairs) is needed to fully
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characterize the theoretical foundations of network coding.

Our general network model is based on omnidirectional transmissions. As an

extension, it is important to evaluate the effects of directional antennas on the max-

imum stable throughput rates and to derive the scaling throughput laws depending

on the directional antenna properties, as the network size grows [109]. The current

network capacity studies [10] do not fully take into account the additional constraints

such as energy consumption and packet delay. The ultimate goal is to study the

relationship between information-theoretic capacity and stable throughput results

achievable for limited energy resources and finite delay. This requires optimization

of a region of throughput rates subject to energy and stability constraints. In this

context, the necessary packet overhead and complexity can be considered as costs

in the resulting optimization problem.
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