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Control-theoretic Optimization of Utility over
Mission Lifetimes in Multi-hop Wireless Networks

Sharanya Eswaran∗, Archan Misra†, Thomas La Porta∗
∗Department of Computer Science and Engineering, Pennsylvania State University

†Advanced Technology Solutions, Telcordia Technologies
E-mail: eswaran@cse.psu.edu, archan@research.telcordia.com, tlp@cse.psu.edu

Abstract—Both bandwidth and energy become important re-
source constraints when multi-hop wireless networks are used to
transport relatively high data rate sensor flows. A particularly
challenging problem involves the selection of flow data rates that
maximize application (or mission) utilities over a time horizon,
especially when different missions are active over different time
intervals. Prior works on utility driven adaptation of flow data
rates typically focus only on instantaneous utility maximization
and are unable to address this temporal variation in mission
durations. In this work, we derive an optimal control-based
Network Utility Maximization (NUM) framework that is able to
maximize the system utility over a lifetime that is known either
deterministically or statistically. We first consider a static setup in
which all the missions are continuously active for a deterministic
duration, and show how the rates can be optimally adapted,
via a distributed protocol, to maximize the total utility. Next,
we develop adaptive protocols for the dynamic cases when we
have (i) complete knowledge about the mission utilities and their
arrivals and departures, and (ii) a varying amount of statistical
information about the missions. Our simulation results indicate
that our protocols are robust, efficient and close to the optimal.

I. INTRODUCTION

Tactical and streaming applications, such as vehicle tracking,
building surveillance and gunfire localization, often employ an
adhoc wireless network as a transport substrate to receive data
streams from a set of field-deployed, sophisticated, relatively
high-data rate sources (e.g. video sensors and short-aperture
radars). In many instances, these applications, which we refer
to as missions, are operational for relatively well-defined,
but potentially dissimilar, durations, such that it is possible
to declare in advance, either deterministically or statistically,
the time periods over which an individual mission is active.
In these scenarios, the wireless transport network is often
both bandwidth and energy constrained, and the data rates of
the sensor streams must be controlled so as to balance the
dual objectives of providing high instantaneous data rates and
ensuring an adequately long network lifetime. Efficient resource
management for such applications is a challenging task: besides
considering the limited transmission capacity on the wireless
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links and the finite energy reserves on the battery-powered
forwarding nodes, algorithms must consider when and how long
missions are likely to consume the sensor data streams.

Utility maximization techniques, which focus on rate-
dependent application utility as the principal metric, have
been widely investigated for congestion control and bandwidth
sharing across multiple traffic flows in both wired and wireless
environments. In particular, the Network Utility

Maximization (NUM) approach, pioneered in [1], [2], casts
resource sharing as a problem of constrained utility optimiza-
tion; the principles of decomposable optimization [3] are then
used to develop distributed, iterative solutions for maximizing
the system utility. In its basic form, NUM focuses on the
problem of instantaneous utility maximization, as opposed to
our desire to ensure that the system utility remains “appropri-
ately” high over a time horizon with fluctuating instantaneous
demands. Limited work on lifetime-aware utility maximization
has simplified the problem by either morphing lifetime objec-
tives into instantaneous, time-independent power constraints [5]
or by creating a single, linearized objective function through
the use of arbitrary ‘weights’ [4]. These approaches implicitly
assume a fixed set of ‘always-active’ missions, and are unable to
capture the typical temporal mission dynamics that are central
to our work.

In this paper, we consider the problem of ‘utility maximiza-
tion over a time horizon’ from a more fundamental perspective
and show how optimal control theory can help derive the
appropriate system adaptation behavior for a rich set of mission
dynamics. As a mathematical framework for determining the
optimal behavior of dynamical systems over time, optimal
control has been widely used in a wide variety of engineering
and economics problems [8], [9]. Optimal control-theoretic
approaches for transport-layer protocol adaptation are, however,
conspicuously absent. To our knowledge, we are the first to
explicitly exploit knowledge of mission durations to perform
time-varying congestion control and optimization of source
rates.

More specifically, this paper demonstrates how optimal
control-based solutions can be embedded into NUM-based
adaptation strategies for two different application scenarios:

1) In the first scenario, all the missions are assumed to
be static and continuously active over the operational
lifetime of the network, T , which is pre-defined.

2) In the second scenario, we consider a dynamic network
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where missions arrive intermittently and remain active for
variable, discrete time periods. In particular, we consider
three different cases: (a) We have deterministic knowl-
edge about individual mission arrival/departure times; (b)
We have stochastic information about the missions, with
the likelihood of new missions decreasing over time,
and (c) Missions can arrive with constant or variable
probability at any time during the life of the network,
and we only have stochastic knowledge about the arrival
and departure rates.

Figure 1 illustrates the motivation behind our mission-
oriented optimization problem. There are three applications:
a surveillance application consumes data from a video sensor
and a short range radar, an ‘asset verification’ mission utilizes
data from two video sensors, while a ‘personnel identification’
mission utilizes data from one video and one audio sensor. We
assume that each mission maps to a specific ‘sink’ node in
the wireless network, with the sink responsible for receiving
the relevant data streams and then forwarding (over a wired
network) to a backend server where the application actually
runs. Thus, a sink receives data from a set of data sources only
when the corresponding mission utilizing those data sources is
‘active’. Each of these missions is active for different durations
of time. We shall demonstrate how optimal control results
can be used to model and solve progressively-sophisticated
scenarios, via appropriate modifications to the basic NUM
protocols developed in [6].

Fig. 1: An illustration of data sharing by multiple, intermittently-active
missions

The rest of the paper is organized as follows. Section II
surveys related prior work in NUM-based resource management
and lifetime optimization, and provides a brief overview of the
basic principles of optimal control. Section III develops and
evaluates the optimal control-based adaptations for the static
scenario. Subsequently, Section IV extends the approach to
dynamic missions. We show how the protocol can be modified
for such cases and provide a simulation-based evaluation of the
protocols. Finally, Section V concludes the paper along with
some discussion of future work.

II. RELATED WORK AND INTRODUCTION TO OPTIMAL
CONTROL

A. Prior NUM-based Work

The related work in this area can be categorized according to
its focus either on the unique characteristics of mission-oriented
wireless networks or on the problem of joint utility and lifetime

optimization. Recent work (e.g., [6]) has extended the basic
Network Utility Maximization (NUM) framework (originally
proposed for unicast-oriented wireline [2], [3] and wireless
[7] environments) to consider two unique aspects of mission-
oriented WSNs: a) shared consumption of a single sensor data
stream by multiple sinks (each corresponding to a mission
with a different utility function), and b) the specification of
a mission’s utility as a joint function of multiple source rates.
Let M be the set of all missions (data sinks) and S the set
of source (sensor) nodes. Furthermore, for any mission m, let
set(m) be the set of sensors to which mission m subscribes;
conversely, let Miss(s) be the set of missions subscribing to
the data stream from sensor s. Also, let K denote the set of
all (source, sink and forwarding) nodes in the network. For
this mission-centric model, where data is forwarded using link-
layer multicast transmissions, the problem of maximizing the
instantaneous data rates can be formulated as: SENSOR(U) :

maximize
∑
m∈M

Um(Xs:s∈set(m))

subject to
∑

∀(k,s)∈q

xs
cks
≤ 1,∀q ∈ Q,

where Um(Xs:s∈set(m)) represents the utility function of mis-
sion m, cks is the transmission rate used by node k during
the link-layer broadcast of data from sensor s, and Q is the
set of all maximal cliques in the transmission-based conflict
graph (CG) defined over the wireless network. Based on this
objective, it is shown (see [6]) that if a sensor (source) s now
adapts its rate according to:

d

dt
xs(t) = κ(

∑
m∈Miss(s)

wms(t)− xs(t)∗

∑
∀q∈flow(s)

µq(t)
∑

∀(k,s)∈q

1
cks

) (1)

where µq is the ‘cost’ charged per bit by each forwarding
clique, and is given by:

µq(t) = (
∑

∀(k,s)∈q

xs(t)

cks
− 1 + ε)+/ε2 (2)

and each mission (sink) adapts its ‘willingness to pay’ terms
wms for sensor s based on the source rates and its own utility
function Um(.), according to the equation:

wms(t) = xs(t)
∂Um
∂xs

then the system will converge to an optimal solution of a relax-
ation of the problem SENSOR(U). We shall extend this basic
mission-oriented NUM model, that maximizes instantaneous
utility, to consider the optimal behavior over a time horizon,
for a dynamically varying set of missions.

The limited prior work on joint optimization of both mission
utility and network lifetime includes [4], which maximizes a
jointly linearized objective function, γU(.) − (1 − γ)

∑
F (.),

where U(.) is the utility function and F (.) is the lifetime
penalty function. The value of γ is a design choice and



determines the relative weightage given to utility and lifetime.
A more simplified form of joint optimization was solved
in [5], where lifetime constraints were assumed to be implicitly
modeled by a constant upper bound on the instantaneous power
consumption at any node k. Both of these approaches assume
a pre-specified set of missions that are active throughout the
entire operational duration; in contrast, we shall explicitly factor
in the time-dependent evolution of an individual mission’s
activity state.

B. Overview of Optimal Control

We now present a brief review of the optimal control
framework, which focuses on the problem of determining the
best adaptive behavior of a system over time. The general
form of the objective function of an inter-temporal optimization
problem can be written as:

maximize

∫ T

t0

f(s(t), c(t), t)dt

subject to
ds

dt
= g(s(t), c(t), t) (3)

with s(t0) = s0 and s(T ) = sT

Here s(t) is a state variable and c(t) is a control variable. The
constraint in Eq.(3) denotes the rate of change of the state of
the system as a function of the current state, control value and
time. By taking Lagrangian and simplifying using integration
by parts, we get

L =
∫ T

t0

[f(s, c, t) + λ(t)g(s, c, t) + s
dλ

dt
]dt

−λ(T )s(T ) + λ(t0)s(t0)
(4)

Here, λ(t) is a Lagrangian multiplier that represents the
marginal valuation, i.e., the shadow cost, of the state variable.
This means that if there is a unit increment in the state variable,
then the increment in the objective value of the optimal solution
will be at rate λ(t) [9]. Differentiating Eq. (4) results in the
following first-order necessary condition:

dL =
∫ T

t0

[
∂f

∂c
+ λ

∂g

∂c
dc+ (

∂f

∂s
+ λ

∂g

∂s
+
dλ

dt
)ds]dt

−λ(T )ds(T ) + λ(t0)ds(t0) = 0
(5)

Because of the additive nature of Eq. (5), we get the following
conditions that the optimal solution satisfies:

∂f

∂c
+ λ

∂g

∂c
= 0 (6)

(
∂f

∂s
+ λ

∂g

∂s
+
dλ

dt
) = 0 (7)

Transversality Conditions: The initial values of the state vari-
ables are usually fixed in such problems, making ds(t0) = 0.
If the terminal values are fixed too, then ds(T ) = 0. However,
if the terminal value of the state variable is left free, i.e.,
if it can take any value, then the condition that λ(T ) = 0
must be satisfied at optimum. In some problems, there may
be an endpoint condition of the form s(T ) ≥ sT , instead

of the terminal value being fixed or free. In such cases, the
transversality condition: λ(T )[s(T )−sT ] = 0 must be satisfied
[8].

Pontryagin’s Maximum Principle: The term f(s, c, t) +
λ(t)g(s, c, t) in Eq. (4) is referred to as the Hamiltonian H .
According to Pontryagin’s Maximum Principle, the necessary
and sufficient conditions for optimization over time are given
as (rewriting Eq. (6), (7)):

(i)Hc =
∂f

∂c
+ λ

∂g

∂c
= 0, and (8)

(ii)
dλ

dt
= −Hs = −(

∂f

∂s
+ λ

∂g

∂s
) (9)

where Hc = ∂H
∂c and Hs = ∂H

∂s .

III. OPTIMAL CONTROL-BASED ADAPTATION FOR STATIC
MISSIONS

We first apply the principles of optimal control to determine
the best allocation of sensor data rates, and the resultant
depletion of energy reserves on forwarding nodes, for the
case where all missions are active continuously, throughout the
lifetime of the network, i.e., all missions start at time 0 and
end at time T , where T is the target lifetime of the network.

Before proceeding further, let us define a few mathematical
symbols in addition to the ones specified in Section II-A. In
our problem, the “state variables” correspond to the residual
battery level at each node in the network. Let pk(t), ∀k ∈
K denote the residual battery level of node k at time t. The
“control variables” are the source rates of sensors, denoted as
xs, ∀s ∈ S. We use an energy model similar to that in [7],
where the reception of data at a rate x depletes the receiver k’s
battery by αkr x, and the transmission of data at a rate x drains
the transmitter k’s battery by αkt x. Table (I) details the other
commonly used symbols in the rest of this paper.

A. Utility Optimization Model
The goal of this problem is to maximize the cumulative

utility of the network over its lifetime T . Note that we do not
impose any additional constraints on individual node behavior–
i.e., we permit individual nodes to ‘die’ at arbitrary time instants
(although, we shall prove that premature node death before T
never leads to an optimal solution.) The global network utility
is the sum of the utilities of all active missions. The utility is
a concave, non-decreasing function of the source rate, such as
a logarithmic function. Accordingly, the objective function, J ,
for this optimization problem is as shown below:
SENSOR− LIFE1(U ;L) :

maximize J =
∫ T

0

∑
∀m∈M

Um(xs:s∈set(m)(t))dt (10)

subject to

i) Energy Constraint:
dpk
dt

= −(
∑

∀i∈InFlows(k)

αkr xi(t)+∑
∀i∈OutF lows(k)

αkt xi(t)) = −
∑

∀i∈Flows(k)

αki xi(t), ∀ k ∈ K,

(11)



TABLE I: Most Common Mathematical Symbols
M Set of all missions in the network S Total number of sources (sensors)
set(m) Set of sources that are used by mission m Miss(s) Set of missions subscribing to flow s, i.e.,data from sensor s
Um(.) Joint utility function of mission m cks Transmission rate used by node k during the link-layer
Q Set of all maximal cliques in conflict graph [6] xs(t) The data rate of a flow from source s at time t
αkr Power consumed per bit of received data at node k αkt Power consumed per bit of transmitted data at node k
pk(t) Residual battery at node k at time t (k, s) Transmission of the flow that originated from s by a node k
Inflows(k) Set of all flows received at node k Outflows(k) Set of all transmitted flows at node k
F lows(k) Since Inflows(k) = Outflows(k) ∀k, K Set of all nodes in the network

this is simply written as Flows(k) αki Power consumed per bit of communication at node k for flow i.
µq Shadow cost associated with congestion in clique q If k is a source for flow i, αki = αkt ; if
λk Shadow cost associated with state pk k is a forwarding node for flow i, αki = (αkr + αkt )
ηk Energy cost associated with node k κ step-size in the gradient ascent algorithm used in NUM
Path(s) Set of all nodes in the forwarding tree of source s Path(s,m) Set of all nodes in the route from source s to mission m

ii) Capacity Constraint:
∑

∀(k,s)∈q

xs(t)
cks

≤ 1 ∀t, ∀ q ∈ Q (12)

iii) Terminal Constraint: pk(T ) ≥ 0 ∀k ∈ K (13)

The energy constraint in Eq. (11) defines the rate of depletion
of residual battery power at each node k. The amount of
energy consumed at each time instance at node k is equal
to the total energy expended in receiving and transmitting
all the flows that the node forwards. In other words, pk(t +
1) = pk(t)−

∑
∀i∈Flows(k) α

k
i xi(t). The capacity constraint in

Eq. (12) which is the same as in [6], states that the total air-time
fractions of all interfering transmissions (i.e., all transmissions
in a maximal clique of the conflict graph) must not exceed unity.
Eq. (13) defines the terminal condition that the residual energy
at each node at the end of network lifetime must be at least
0 (residual energy cannot ever become negative). In practice,
because of the multicast distribution of flows and the potential
for multiple bottlenecks, it is likely that the non-bottleneck
nodes nodes will not be fully drained at T .

The Hamiltonian for the system of equations (10)-(13) is
shown below:

H =
∑
∀m∈M

Um(xs:s∈set(m))−
∑
∀q∈Q

µq
∑

∀(k,s)∈q

(
xs
cks
− 1)−

∑
∀k∈K

λk
∑

∀i∈Flows(k)

αki xi(t) (14)

where µq(t) and λk(t) are the Lagrangian multipliers asso-
ciated with the capacity and energy constraints, respectively.

The necessary and sufficient conditions according to
Eq. (8),(9) are given as:

(i)Hxs =
∑
∀m∈M

∂Um
∂xs

−
∑

∀q∈Path(s)

µq
∑

(k,s)∈q

1
cks

−
∑

∀k∈Path(s)

λkαk = 0 and (15)

(ii)
dλk
dt

= −Hpk
= 0 (16)

Since we have inequality constraints for terminal values, the
condition λk(T )pk(T ) = 0 must be satisfied as discussed in
Section II-B. λk(0) is the marginal valuation of pk at t = 0, i.e.,
∂J∗(0)
∂pk

and is equal to 0, where J∗(t) is the optimal value of J
at time t. This, along with Eq. (16) implies that λk(t) = 0, ∀k.

Differentiating Eq. (15) with respect to time, we get:

dHxs

dt
=

∑
∀m∈M

∂2Um
∂x2

s

∗ dxs
dt
−

∑
∀kinPath(s)

dλk
dt

αks = 0

⇒ dxs
dt

= 0 (17)

The terminal contraint in Eq.( 13) and the recursive equations
in Eq.( 11) and (17) can be simplified to obtain:

∑
∀i∈Flows(k)

αki xi(t) ≤
pk(t)

(T − t)
(18)

Taken together, these relationships indicate that the optimal
strategy consists of the following:

1) From an energy perspective, the sensors transmit data at a
constant rate (over the entire duration T ) that maximizes
Eq. (14) while satisfying Eq. (18) at each time instance.

2) The maximum amount of energy that is allowed to be
consumed at time t at node k is pk(t)

T−t , i.e, the residual
battery at any time is shared evenly over the remaining
time, as expected intuitively.

3) As the sensor rates must also satisfy the capacity con-
straints, the sensor data rates are constrained by both the
power and capacity constraints, i.e., at any instant, the
more restrictive of the two constraints will apply.

B. Protocol Details

It can be observed that Eq. (15) is similar to the gradient
that is used in the WSN-NUM protocol [6]. Thus, from the
protocol perspective, this problem can be solved by running
the WSN-NUM protocol according to the following source rate
adaptation algorithm:

dxs
dt

= κ(
∑
∀m∈M

wms − xs(
∑

∀q∈Path(s)

µq
∑

(k,s)∈q

1
cks

+

∑
∀k∈Path(s)

ηkα
k
s ))

(19)

where, wms is the willingness-to-pay of mission m for flow
s and is given as xs ∂Um

∂xs
. µq is as given in Eq. (2); ηk is the

Lagrangian multiplier corresponding to constraint in Eq. (18),
and is defined as:

ηk = (
(T − t)

∑
∀i∈Flows(k) α

k
i xi(t)

pk(t)
− 1 + ε)+/ε2 (20)



where ε plays the same role as ε in Eq. (2).
In summary, the STATIC protocol follows the steps shown

below iteratively throughout the lifetime of the network:
1) Each source s transmits data at current rate xs(t)
2) Each forwarding node computes the clique cost according

to Eq. (2) and the energy cost according to Eq. (20) and
transmits this along with the data. Please note that the
split shadow cost technique introduced in [6] is used here
too. Each node cumulatively adds its costs to the received
value before forwarding the data, until the mission is
reached. Since T may not be known globally, and is
typically known only to the missions and sources, this
value may be piggy-backed along with data initially so
that the forwarding nodes learn the value of T as well.

3) Each mission computes its willingness to pay and for-
wards this along with the received costs to the corre-
sponding source as feedback.

4) Each source, on receiving this feedback, computes its rate
for the next iteration according to Eq. (19).

Given that the optimal data rates are constant over time, our
iterative technique can ensure that the overall total utility is
infinitesmally close to the optimal value, as long as the initial
adaptation transient is much smaller, compared to the overall
lifetime T .

C. Evaluation

In this section, we quantitatively analyze the performance
of the STATIC protocol. An 802.11-based ad hoc network
with 30 nodes is simulated using a discrete-event simulator,
Qualnet. The topology of the network is taken to be uniformly
distributed. There are 10 sources and 5 missions, with each
mission subscribing data from one or more sources. The utility
of a mission subscribing to flows s1, s2, ...sn is given as∑n
i=1 ln(si). The target lifetime the network is 2 hours.
In Fig. (2), we compare the global network utilities when the

rates are adapted according to (i) STATIC protocol described
in Section III-B, (ii) the linearly weighted LIN-OPT protocol
developed in [4], (iii) the WSN-NUM protocol developed in
[6] and (iv) the numerical optimal value computed using the
centralized solver, GAMS. For the LIN-OPT protocol, the value
of γ (the weightage given to utility vs. network lifetime) is
determined by trial-and-error such that the network lasts for
exactly two hours.

We observe that our protocol performs close to the optimal.
Although the instantaneous utilities of WSN-NUM protocol are
initially high, the network dies well before the target lifetime
(lasts only for 25% of the target duration T ) due to greedy
utilization of battery resources. The cumulative utility over
the network lifetime (i.e.,

∫ T
0

∑
m Um(τ)dτ ) for each of these

techniques is listed in Figure (3).
While the LIN-OPT protocol achieves an overall utility value

reasonably close to ours, it does not provide a way to directly
express a desired lifetime objective T . For LIN-OPT, γ had to
be set using trial and error; our optimal control based approach
is able to embed T directly inside the NUM control loop.

Fig. 2: Evolution of network utility for static
missions.

Method Utility
Optimal 3444.12
STATIC 3443.65
WSN-NUM 1014.55
LIN-OPT 3406.93

Fig. 3: Cumulative
Utility

Fig. 4: Depletion of residual energy in a bottle-neck node.

Fig. (4) shows how the battery drains over time at a bottle-
neck node in the network. We see that our optimal-control based
approach results in a linear depletion of the residual battery
energy, which is optimal, while the other methods are either
too aggressive or tardy; furthermore, the residual battery in the
bottleneck node becomes 0 at time T , implying that there is no
under-utilization of the resource.

IV. OPTIMAL CONTROL-BASED ADAPTATION FOR
DYNAMIC MISSIONS

In many sensor network applications, missions are transient
in nature. When missions arrive and leave at different times
and last for variable durations, the optimal strategy would be
to expend less energy when fewer or low utility missions are
active, conserving energy for use in future time instants when
more or higher utility missions are active. Hence, the uniform-
rate approach in Section III is not sufficient to handle the
dynamic case. In this section, we develop optimal control-based
adaptation framework for dynamic missions. In particular, we
consider the following three, progressively-complex scenarios:
• Case A. Deterministic knowledge of variable duration

missions: In this case we assume that we have perfect
a-priori knowledge about the dynamics of the mission,
i.e., when each mission starts and terminates. Examples
of such a scenario include military applications such as
vehicle tracking and battlefield monitoring that operate
based on a specific war plan; or a surveillance network
that monitors various parts of a building at specific times.



• Case B. Statistical knowledge of missions, which arrive
early: In this case, we model a scenario where the sensors
are deployed with the expectation that a large number of
missions will be active in the near-term. As time passes,
the likelihood of missions arriving decreases, but we do
not know the target lifetime of the network. A typical
example of this might be an emergency chemical hazard
monitoring scenario, where an individual mission uses
specific sensors to detect the continued presence of specific
contaminants is activated at t = 0. Once the contaminant
disappears, the mission may be deactivated.

• Case C. Statistical knowledge of missions, which arrive at
any time: In this case, we model a scenario in which we
have a target lifetime for a sensor network, but missions
may arrive or leave at anytime during the life of the
network, with some probability. We know the statistics
of the event, i.e., the distribution of their arrivals and
departures, and their expected lifetime, but unlike case
A, do not know the exact arrival and departure times in
advance.

As a preview, we shall see that these more complex scenarios
require an important departure from the base NUM protocol
(where forwarding nodes adjust link shadow prices without any
knowledge of missions): we shall now require the intermedi-
ate nodes to possess some (albeit limited) knowledge of the
characteristics of the missions.

A. Case A. Deterministic knowledge of variable duration mis-
sions - Model and Protocol

In this case, the network has a target lifetime of T and each
mission m is associated with a set of non-overlapping TI(m)
time intervals (tsi

m, t
ei
m), i = 1, 2, . . . , T I(m) within which it is

active. Formally, a mission’s active duration is represented by
Act(m), where

Act(m) = {(tsi
m, t

ei
m)}; i = 1, 2, . . . , T I(m);

such that tei
m < tsi+1

m ∀i = 0, . . . , T I(m)− 1

.
1) Utility Optimization Model: To model this scenario, we

set the objective function to be:
SENSOR− LIFE2(U ;L) :

maximize

∫ T

0

∑
∀m∈M

fm(t)Um(xs:s∈set(m)(t))dt

subject to Eq. (11, 12, 13)

Here, fm(t) has value 1 if tsim ≤ t ≤ tlim, for any activation
cycle i and 0 otherwise.

If we assume the utility of a mission m to be of the form∑
s∈Set(m) amsln(xs), where ams is a scalar1, the necessary

1This particular form of utility function is assumed here only for expositional
convenience, see [10] for the case of more generic utilities and detailed
derivation.

and sufficient condition (derived from the Hamiltonian as
before) simplifies to:

dxs
dt

=
xs

∑
∀m∈Miss(xs)

dfm

dt ∗ ams∑
∀m∈Miss(xs) amsfm(t)

= xsAs(t) (21)

where As(t) =
∑
∀m∈Miss(xs)

dfm
dt ams∑

∀m∈Miss(xs) amsfm(t) . While fm(t) is
itself a non-continuous, ‘step’ function, our analysis assumes
a continuous function. We achieve this goal by approximating
the ‘staggered heaviside step function’ using a smooth differ-
entiable function as:

fm(t) ≈
∑

i=1,2,...

1
1 + e−2k(t−tsi

m)
− 1

1 + e−2k(t−tlim)
k →∞

Using Eq. (11), (13) and (21), we obtain the following
energy-consumtpion constraint that must hold at each node k:∑

∀i∈Flows(k)

αki xi(t)[1 + (1 +Ai(t)) + ...+

+(1 +Ai(t))...(1 +Ai(T − 1))] ≤ pk(t) (22)

It can be noted that since the schedules are known in advance
and fm(t) is continuous, the value of Ai(t) can be computed
for all values of t. We observe from Eq. (22) that the energy
constraint each node takes into account not only the current
rates, but also future dynamics of missions that affect that node.

2) Protocol Details: The protocol corresponding to this
model, DYN-DET, is similar to STATIC and the rate is adapted
according to Eq. (19). However, the willingness-to-pay is
computed as wms = fm(t)xs(t)∂Um

∂xs
and ηk is given from

Eq. (22) as ηk =:

(

∑
∀i∈Flows(k) α

k
i xi(t)[1 +

∑T−1
j=t

∏j
l=t(1 +Ai(l))]

pk(t)
−1+ε)+/ε2 (23)

For the forwarding nodes to compute Ai(t) in a distributed
and independent way, we allow each source s to compute the
values of et

si
m and et

li
m for all its missions m and transmit this

along with the data to the forwarding nodes. This needs to
be done only initially and this information is sufficient for the
forwarding nodes to computed ηk(t). The actions taken by the
source, sink and forwarding nodes in this protocol are listed in
Table (II).

B. Case B. Statistical knowledge of missions, which arrive
early - Model and Protocol

In this case, we jettison the need for deterministic knowledge
and perform adaptation based on statistical information about
missions, for the scenario where the number of active missions
is likely to diminish over time. For such scenarios, we want the
network to last as long as possible, but also have the likelihood
of utility demanded by a mission degrade over time. Alternately,
the utility itself could degrade over time–e.g., an application
using a camera to monitor the identities of vehicles arriving at
a meeting might have less utility for the camera feed as the
meeting proceeds, as new vehicle arrivals are less likely.



1) Utility Optimization Model: For modeling such scenar-
ios, we assume that the probability of a mission being active
decreases exponentially over time (alternative models of decay
can also be accommodated in identical fashion). Hence, the
network is most valuable initially, and the utility of a mission
m degrades exponentially over time at a rate ρm. Since we do
not know the lifetime of the network and want the network to
last as long as possible, we use an infinite time horizon. The
objective function for this scenario is modeled as:
SENSOR− LIFE3(U ;L) :

maximize

∫ ∞
0

∑
∀m∈M

e−ρmtUm(xs:s∈set(m)(t))dt

subject to Eq. (11), Eq. (12) andpk(∞) ≥ 0 ∀k, (24)

Differentiating the marginal Hamiltonian, ∂H
∂xs

over time
and using the necessary and sufficient conditions given by
the Maximum Principle, we get the following, if we assume
logarithmic utility of the form

∑
s∈Set(m) amsln(xs) (please

see [10] for generic utilities):

dxs

dt
=
−xs

∑
∀m∈Miss(xs) ρmams∑
∀m∈Miss(xs) ams

(25)

Eq. (25) implies that, as expected intuitively, the optimal rate
control strategy is to reduce the rate over time proportional to
the discount rate. If all missions have the same discount rate
ρ, then dxs

dt = −xsρ.
Using Eq. (25), (11) and the terminal constraint in Eq. (24),

we get ∑
∀i∈Flows(k)

αki xi(t) ≤ pk(t)r(i)

where, r(i) =

∑
∀m∈Miss(xi)

ρmams∑
∀m∈Miss(xi)

ams
(26)

2) Protocol Details: The DYN-DECAY protocol can also be
obtained by an extension of the base WSN-NUM protocol, with
the source rate adjusted according to Eq. (19), where

wms = e−ρmtxs(t)
∂Um
∂xs

, and from Eq. (26),

ηk = [

∑
∀i∈Flows(k) α

k
i xi(t)

r(i)pk(t)
− 1 + ε]+/ε2 (27)

Th steps involved in this protocol are listed in Table (II). For
smooth distribution, the sources propagate the values of ρm to
the forwarding nodes during the initial data transmissions.

C. Case C. Statistical knowledge of missions, which arrive at
anytime - Model and Protocol

In this case, we consider a more sophisticated and interesting
scenario in which we have a target lifetime for a sensor net-
work, but events may occur at at anytime, with any probability
during the life of the network. We know the statistics of the
event, i.e., the distribution of their arrivals and their expected
lifetime, but do not know the specific arrival and departure
times in advance.

1) Utility Optimization Model: In this model, missions can
enter or leave the network at any time and we refer to this
change in mission configuration as an ‘event’. This event may
result in an increase or a decrease in the number of missions.
Let τ be the probability that this event occurs over an unit
interval of time. τ is assumed to be conditionally independent
of past events, so that the fact that the event has not occurred
in the past does not affect the likelihood of its occurring in the
present[8]. Let us assume that we know the set of all possible
missions, and let |M | be the cardinality of this universal set;
at any time, the group of active missions, g, will be one of the
2|M | possible subsets. Let φ(g) be the probability that group g
is active; this can be of any probability distribution and typically
depends on the probability of each mission in the group being
active.

The objective of this problem is to maximize the expected
utility over time:
SENSOR− LIFE4(U ;L) :

maximize E[
∫ T

0

∑
∀m∈M

Um(xs:s∈set(m)(t))dt]

subject to Eq.(11,12,13)

The necessary and sufficient conditions are given as:

(i)Hxs
=

∑
∀m∈M

E[
∂Um
∂xs

]−
∑

∀q∈Path(s)

µq
∑

(k,s)∈q

1
cks

−
∑

∀k∈Path(s)

λkα
k
s = 0, and (28)

(ii)
dλk
dt

= −Hpk
= 0 (29)

Differentiating Eq. (28) w.r.t time must obey the Generalized
Ito’s Lemma for stochastic calculus [9], [8]. Accordingly, we
get:

Et[dHxs ]
dt

=
dHxs

dt
+ τ

2|M|∑
g=0

φ(g) ∗ [
∑
∀m∈g

∂Um
∂xs

−
∑

∀m∈gc(t)

∂Um
∂xs

]

where gc(t) is the group of missions currently active. If we
assume logarithmic utility and simplify the above equation, we
get:

dxs

dt
= xsτ(

Et[
∑
ams]∑

∀m∈gc(t) ams
− 1) (30)

where Et[
∑
ams] =

∑2|M|

g=0 φ(g)
∑
∀m∈g ams, conditional on

the information available at t. Equations (30),(13),(11) give rise
to the following condition at each node k:∑
∀i∈Flows(k)

αki xi(t)[1 +Ai(t) + ...+Ai(t)...Ai(T − 1)] ≤ pk(t)

(31)

where Ai(t) = 1+τ(t+1)( Et[
∑
ami]∑

∀m∈gc(t) ami
−1). At any instance

of time, Ai(t) has to be computed for all values of t from
the current time to T − 1. This is possible since τ and the



(possibly time-varying) probability of each mission being active
are known a priori, and the unknown quantity,

∑
∀m∈gc(t)

ami
(weight of missions active at time t) can be substituted with
the expected value (i.e., Et−1[

∑
ami]).

2) Protocol Details: For this protocol DYN-RANDOM, the
basic rate adaptation algorithm remains the same as in Eq. (19).
However the willingness to pay and energy cost (based on
Eq. (31) are computed differently, as shown as below:

wms = xs(t)
∂Um
∂xs

, and,

ηk = [

∑
∀i∈Flows(k) α

k
i xi(t)[1 +At + ...+At...AT−1]

pk(t)
−

1 + ε]+/ε2 (32)

The actions taken by the source nodes, missions and the
forwarding nodes for this protocol are shown in Table (II).

D. Evaluation

We use the same simulation set-up as in Section III-C.
(i) DYN-DET protocol for Case A:
For Case A, we simulate the scenario where initially only

four missions are active, and at time t = 50 min, six more
missions enter the network, and at t = 110 min, two of the
missions leave. The network lifetime is 2 hours and there are
10 sources. The resulting network utility is shown in Fig. (5)
for (i) DYN-DET protocol, (ii) STATIC protocol and (iii) the
numerical optimal obtained from GAMS. We see that the
protocol developed exclusively for handling dynamics is more
conservative initially, in anticipation of higher utility at later
time (which is also the optimal strategy).

(ii) DYN-DECAY protocol for Case B:
For testing Case B, we simulated the following scenario:

Missions arrive according to Poisson distribution, and the
arrival rate of the missions decreases exponentially over time,
with a decay factor of ρm = 0.05. All missions have the same
average active lifetime of 15 minutes. This scenario depicts our
case where the network is most busy initially. The resulting
utility is shown in Fig. (6). The optimal utility becomes zero
around t = 70 min, by which time all missions leave the
network. We see that our protocol also regulates the network
such that the maximum utility is achieved before t = 70 min.
The utility of the network approaches zero by this time, since
all the battery in the bottleneck nodes is used by then.

To evaluate how well the DYN-DECAYprotocol performs
with respect to Case A in which perfect knowledge is available,
we recorded the mission dynamics from the simulation and
used this information as input to the DYN-DET protocol. The
results show us the utility we could receive if we had perfect
knowledge of the mission dynamics for Case B. The results
are shown in Figure 6. We see that with perfect knowledge,
we achieve only slightly higher utility than using theDYN-
DECAYprotocol without a priori knowledge. We simulated this
scenario 50 times with different mission lifetimes and arrival
rates and found that DYN-DECAY achieves within 4.5% of the
optimal utility on average, and within 3.1% of the DYN-DET

which operates with perfect knowledge. Thus, the cost in terms
of utility for not having perfect knowledge is small.

(iii) DYN-RANDOM protocol for Case C:
We simulated the following scenario for evaluating this

protocol: The number of missions in the network is a Poisson
process with mean 2 and the network lifetime is 2 hours. The
maximum number of possible missions is 10, and a subset of
this is active at any given time. Of these, 5 missions have utility
weight am = 1 (for all its sources), and the probability of
these missions being active is 0.9 in the first hour and 0.1 in
the second. The other five missions are more valuable with
am = 20. The probability of these missions being active is 0.1
in the first hour and 0.9 in the second. To evaluate how well
the DYN-RANDOM protocol operates compared to the case of
perfect knowledge, we recorded the mission dynamics of Case
C and used them as input to the DYN-DET protocol. We also ran
the scenario with the STATIC protocol. The results are shown
in Figure 7.

Fig. (7) shows the evolution of network utility over time
for this scenario for STATIC, DYN-DET and DYN-RANDOM
protocols, along with the optimal strategy. We see that the
utility is closest to the optimal when we have deterministic
information. With stochastic information, we still perform close
to the optimal. The STATIC protocol performs the worst due
to lack of any information about the missions. Fig. (8) shows
the natural logarithm of the rate (i.e., ln(rate)) of one source
that is common to all the missions, along with the number of
high utility missions in the network. This further illustrates the
difference in the rate adaptation strategies of the protocols. The
energy-consumption for these protocols are shown in Fig. (9).
We observe that DYN-RANDOM conserves the energy until
the higher utility missions are more probable, which is the
optimal strategy, while STATIC consumes energy linearly. We
simulated this scenario for different random seeds. The average
% deviation from optimal, and the 95% confidence intervals are
shown in Fig. (10).

V. CONCLUSION AND FUTURE WORK

In this work, we developed a novel and flexible framework
for optimally adapting the resource usage in a wireless network
according to the lifetimes associated with the applications
(missions) that receive data over the network. We developed
different optimal control-based NUM protocols for both static
missions and also more-realistic, dynamic mission scenarios;
the resulting protocols require different amounts of mission-
related information to be available at the intermediate for-
warding nodes. We show via quantitative evaluation that our
protocols perform close to the optimal values. Most impor-
tantly, the framework is generic enough to capture many other
interesting scenarios (e.g., when batteries at different nodes are
renewed with different periodicity.) In future, we will extend our
stochastic models to accommodate alternative mission arrival
and departure patterns, and renewable energy scenarios.



Node STATIC DYN-DET DYN-DECAY) DYN-RANDOM
Source (i) Performs rate adaptation as: (i) Performs rate adaptation (i) Performs rate adaptation (i) Performs rate adaptation
Node, s xs(t+ 1) = xs(t)+ as in STATIC. as in STATIC. as in STATIC.

κ(TotalWillToPay(t)− (ii) Transmits {e2kt
si
m , e2kt

si
m }, (ii) Transmits ρm (once) (ii) Transmits T , E[n] (once)

xs(t)(TotalCliqueCost(t)+ ∀i and T (once), and data and data at current rate. and data at current rate.
TotalEnergyCost(t))) at current rate.

(ii) Transmits T (once) and data
at current rate.

Forwarding (i) Computes CliqueCostk for Same as in STATIC Same as in STATIC Same as in STATIC
Node, k cliques whose costs have except that EnergyCostk except that EnergyCostk except that EnergyCostk

not yet been computed. is computed according to is computed according to is computed according to
(ii) Computes EnergyCostk Eq. (23) Eq. (27) Eq. (32)

according to Eq.(20).
(iii) Forwards data, total split cost

and list of cliques whose
costs have been computed.

Sink (i) Computes WillToPay = (i) Computes WillToPay = (i) Computes WillToPay = (i) Computes WillToPay =

Node xs(t)
∂Um
∂xs

xs(t)fm(t) ∂Um
∂xs

xs(t)e−ρmt ∂Um
∂xs

xs(t)
∂Um
∂xs

(ii) Echoes back total cost, (ii) Echoes back total cost, (ii) Echoes back total cost, (ii) Echoes back total cost,
WillToPay to each source WillToPay to each source WillToPay to each source WillToPay to each source

TABLE II: Distributed Rate Adaptation Procedure for all four protocols.

Fig. 5: Global utility for Case A. Fig. 6: Global utility for Case B. Fig. 7: Global Utility for Case C.

Fig. 8: Rate adaptation for Case C. Fig. 9: Energy adaptation for Case C. Fig. 10: % deviation from optimal for Case C.
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