115 research outputs found

    Robot Control based on Motor Primitives -- A Comparison of Two Approaches

    Full text link
    Motor primitives are fundamental building blocks of a controller which enable dynamic robot behavior with minimal high-level intervention. By treating motor primitives as basic "modules," different modules can be sequenced or superimposed to generate a rich repertoire of motor behavior. In robotics, two distinct approaches have been proposed: Dynamic Movement Primitives (DMPs) and Elementary Dynamic Actions (EDAs). While both approaches instantiate similar ideas, significant differences also exist. This paper attempts to clarify the distinction and provide a unifying view by delineating the similarities and differences between DMPs and EDAs. We provide eight robot control examples, including sequencing or superimposing movements, managing kinematic redundancy and singularity, obstacle avoidance, and managing physical interaction. We show that the two approaches clearly diverge in their implementation. We also discuss how DMPs and EDAs might be combined to get the best of both approaches. With this detailed comparison, we enable researchers to make informed decisions to select the most suitable approach for specific robot tasks and applications.Comment: 22 pages, 11 figure

    Nonlinear Modeling and Control of Driving Interfaces and Continuum Robots for System Performance Gains

    Get PDF
    With the rise of (semi)autonomous vehicles and continuum robotics technology and applications, there has been an increasing interest in controller and haptic interface designs. The presence of nonlinearities in the vehicle dynamics is the main challenge in the selection of control algorithms for real-time regulation and tracking of (semi)autonomous vehicles. Moreover, control of continuum structures with infinite dimensions proves to be difficult due to their complex dynamics plus the soft and flexible nature of the manipulator body. The trajectory tracking and control of automobile and robotic systems requires control algorithms that can effectively deal with the nonlinearities of the system without the need for approximation, modeling uncertainties, and input disturbances. Control strategies based on a linearized model are often inadequate in meeting precise performance requirements. To cope with these challenges, one must consider nonlinear techniques. Nonlinear control systems provide tools and methodologies for enabling the design and realization of (semi)autonomous vehicle and continuum robots with extended specifications based on the operational mission profiles. This dissertation provides an insight into various nonlinear controllers developed for (semi)autonomous vehicles and continuum robots as a guideline for future applications in the automobile and soft robotics field. A comprehensive assessment of the approaches and control strategies, as well as insight into the future areas of research in this field, are presented.First, two vehicle haptic interfaces, including a robotic grip and a joystick, both of which are accompanied by nonlinear sliding mode control, have been developed and studied on a steer-by-wire platform integrated with a virtual reality driving environment. An operator-in-the-loop evaluation that included 30 human test subjects was used to investigate these haptic steering interfaces over a prescribed series of driving maneuvers through real time data logging and post-test questionnaires. A conventional steering wheel with a robust sliding mode controller was used for all the driving events for comparison. Test subjects operated these interfaces for a given track comprised of a double lane-change maneuver and a country road driving event. Subjective and objective results demonstrate that the driver’s experience can be enhanced up to 75.3% with a robotic steering input when compared to the traditional steering wheel during extreme maneuvers such as high-speed driving and sharp turn (e.g., hairpin turn) passing. Second, a cellphone-inspired portable human-machine-interface (HMI) that incorporated the directional control of the vehicle as well as the brake and throttle functionality into a single holistic device will be presented. A nonlinear adaptive control technique and an optimal control approach based on driver intent were also proposed to accompany the mechatronic system for combined longitudinal and lateral vehicle guidance. Assisting the disabled drivers by excluding extensive arm and leg movements ergonomically, the device has been tested in a driving simulator platform. Human test subjects evaluated the mechatronic system with various control configurations through obstacle avoidance and city road driving test, and a conventional set of steering wheel and pedals were also utilized for comparison. Subjective and objective results from the tests demonstrate that the mobile driving interface with the proposed control scheme can enhance the driver’s performance by up to 55.8% when compared to the traditional driving system during aggressive maneuvers. The system’s superior performance during certain vehicle maneuvers and approval received from the participants demonstrated its potential as an alternative driving adaptation for disabled drivers. Third, a novel strategy is designed for trajectory control of a multi-section continuum robot in three-dimensional space to achieve accurate orientation, curvature, and section length tracking. The formulation connects the continuum manipulator dynamic behavior to a virtual discrete-jointed robot whose degrees of freedom are directly mapped to those of a continuum robot section under the hypothesis of constant curvature. Based on this connection, a computed torque control architecture is developed for the virtual robot, for which inverse kinematics and dynamic equations are constructed and exploited, with appropriate transformations developed for implementation on the continuum robot. The control algorithm is validated in a realistic simulation and implemented on a six degree-of-freedom two-section OctArm continuum manipulator. Both simulation and experimental results show that the proposed method could manage simultaneous extension/contraction, bending, and torsion actions on multi-section continuum robots with decent tracking performance (e.g. steady state arc length and curvature tracking error of 3.3mm and 130mm-1, respectively). Last, semi-autonomous vehicles equipped with assistive control systems may experience degraded lateral behaviors when aggressive driver steering commands compete with high levels of autonomy. This challenge can be mitigated with effective operator intent recognition, which can configure automated systems in context-specific situations where the driver intends to perform a steering maneuver. In this article, an ensemble learning-based driver intent recognition strategy has been developed. A nonlinear model predictive control algorithm has been designed and implemented to generate haptic feedback for lateral vehicle guidance, assisting the drivers in accomplishing their intended action. To validate the framework, operator-in-the-loop testing with 30 human subjects was conducted on a steer-by-wire platform with a virtual reality driving environment. The roadway scenarios included lane change, obstacle avoidance, intersection turns, and highway exit. The automated system with learning-based driver intent recognition was compared to both the automated system with a finite state machine-based driver intent estimator and the automated system without any driver intent prediction for all driving events. Test results demonstrate that semi-autonomous vehicle performance can be enhanced by up to 74.1% with a learning-based intent predictor. The proposed holistic framework that integrates human intelligence, machine learning algorithms, and vehicle control can help solve the driver-system conflict problem leading to safer vehicle operations

    Closed Loop Static Control of Multi-Magnet Soft Continuum Robots

    Get PDF
    This letter discusses a novel static control approach applied to magnetic soft continuum robot (MSCR). Our aim is to demonstrate the control of a multi-magnet soft continuum robot (SCR) in 3D. The proposed controller, based on a simplified yet accurate model of the robot, has a high update rate and is capable of real-time shape control. For the actuation of the MSCR, we employ the dual external permanent magnet (dEPM) platform and we sense the shape via fiber Bragg grating (FBG). The employed actuation system and sensing technique makes the proposed approach directly applicable to the medical context. We demonstrate that the proposed controller, running at approximately 300 Hz, is capable of shape tracking with a mean error of 8.5% and maximum error of 35.2%. We experimentally show that the static controller is 25.9% more accurate than a standard PID controller in shape tracking and is able to reduce the maximum error by 59.2%

    Design, Control, and Motion Strategy of TRADY: Tilted-Rotor-Equipped Aerial Robot With Autonomous In-Flight Assembly and Disassembly Ability

    Full text link
    In previous research, various types of aerial robots were developed to improve maneuverability or manipulation abilities. However, there was a challenge in achieving both mobility and manipulation capabilities simultaneously. This is because aerial robots with high mobility lack the necessary rotors to perform manipulation tasks, while those with manipulation ability are too large to achieve high mobility. To address this issue, a new aerial robot called TRADY was introduced in this article. TRADY is a tilted-rotor-equipped aerial robot that can autonomously assemble and disassemble in-flight, allowing for a switch in control model between under-actuated and fully-actuated models. The system features a novel docking mechanism and optimized rotor configuration, as well as a control system that can transition between under-actuated and fully-actuated modes and compensate for discrete changes. Additionally, a new motion strategy for assembly/disassembly motion that includes recovery behavior from hazardous conditions was introduced. Experimental results showed that TRADY can successfully execute aerial assembly/disassembly motions with a 90% success rate and generate more than nine times the torque of a single unit in the assembly state. This is the first robot system capable of performing both assembly and disassembly while seamlessly transitioning between fully-actuated and under-actuated models

    Robot Manipulators

    Get PDF
    Robot manipulators are developing more in the direction of industrial robots than of human workers. Recently, the applications of robot manipulators are spreading their focus, for example Da Vinci as a medical robot, ASIMO as a humanoid robot and so on. There are many research topics within the field of robot manipulators, e.g. motion planning, cooperation with a human, and fusion with external sensors like vision, haptic and force, etc. Moreover, these include both technical problems in the industry and theoretical problems in the academic fields. This book is a collection of papers presenting the latest research issues from around the world

    Shared control of an aerial cooperative transportation system with a cable-suspended payload

    Get PDF
    This paper presents a novel bilateral shared framework for a cooperative aerial transportation and manipulation system composed by a team of micro aerial vehicles with a cable-suspended payload. The human operator is in charge of steering the payload and he/she can also change online the desired shape of the formation of robots. At the same time, an obstacle avoidance algorithm is in charge of avoiding collisions with the static environment. The signals from the user and from the obstacle avoidance are blended together in the trajectory generation module, by means of a tracking controller and a filter called dynamic input boundary (DIB). The DIB filters out the directions of motions that would bring the system too close to singularities, according to a suitable metric. The loop with the user is finally closed with a force feedback that is informative of the mismatch between the operator’s commands and the trajectory of the payload. This feedback intuitively increases the user’s awareness of obstacles or configurations of the system that are close to singularities. The proposed framework is validated by means of realistic hardware-in-the-loop simulations with a person operating the system via a force-feedback haptic interface

    Robust Spline Path Following for Redundant Mechanical Systems

    Get PDF
    Path following controllers make the output of a control system approach and traverse a pre-specified path with no a priori time-parametrization. The first part of the thesis implements a path following controller for a simple class of paths, based on transverse feedback linearization (TFL), which guarantees invariance of the path to be followed. The coordinate and feedback transformation employed allows one to easily design control laws to generate arbitrary desired motions on the path for the closed-loop system. The approach is applied to an uncertain and simplified model of a fully actuated robot manipulator for which none of the dynamic parameters are measured. The controller is made robust to modelling uncertainties using Lyapunov redesign. The experimental results show a substantial improvement when using the robust controller for path following versus standard state feedback. In the second part of the thesis, the class of paths and systems considered are extended. We present a method for path following control design applicable to framed curves generated by spline interpolating waypoints in the workspace of kinematically redundant mechanical systems. The class of admissible paths include self-intersecting curves. Kinematic redundancies of the system are resolved by designing controllers that solve a suitably defined constrained quadratic optimization problem that can be easily tuned by the designer to achieve various desired poses. The class of redundant systems considered include mobile manipulators for a large class of wheeled ground vehicles. The result is a path following controller that simultaneously controls the manipulator and mobile base, without any trajectory planning performed on the mobile base. The approach is experimentally verified using the robust controller developed in the first part of the thesis on a 4-degree-of-freedom (4DOF) redundant manipulator and a mobile manipulator system with a differential drive base

    An adaptive framework for changing-contact robot manipulation

    Get PDF
    Many robot manipulation tasks require the robot to make and break contact with other objects in the environment. The interaction dynamics of such tasks vary markedly before and after contact. They are also strongly influenced by the nature and physical properties of the objects involved, i.e., by factors such as type of contact, surface friction, and applied force. Many industrial assembly tasks and human manipulation tasks, e.g., peg insertion, stacking, and screwing, are instances of such `changing-contact' manipulation tasks. In such tasks, the interaction dynamics is discontinuous when the robot makes or breaks contact but smooth at other times, making it a piecewise continuous dynamical system. The discontinuities experienced by a robot during such tasks can be harmful to the robot and/or object. Designing a framework for smooth online control of changing-contact manipulation tasks is a challenging open problem. To complete any manipulation task without data-intensive pre-training, the robot has to plan a motion trajectory, and execute this trajectory accurately and smoothly. Many methods have been developed for the former part of the problem in the form of planners that compute a suitable trajectory while considering relevant motion constraints and environmental obstacles. This thesis focuses on the relatively less-explored latter (i.e., plan execution) part of the problem in the context of changing-contact manipulation tasks. It does so by developing an adaptive, task-space, hybrid control framework that enables efficient, smooth, and accurate following of any given motion trajectory in the presence of piecewise continuous interaction dynamics. The framework makes three key contributions. The first contribution of this thesis addresses the problem of controlling a robot performing continuous-contact tasks in the presence of smoothly-changing environment dynamics. Specifically, we provide a task-space control framework that incrementally models and predicts the end-effector wrenches, and uses the discrepancies between the predicted and measured values to revise the predictive (forward) model and to achieve smooth trajectory tracking by adapting the impedance parameters of a force-motion controller. The second contribution of the thesis expands our framework to handle interaction dynamics that can be discontinuous due to making and breaking of contacts or due to discrete changes in the environment. We formulate the piecewise continuous interaction dynamics of the robot as a hybrid dynamical system with previously unknown discrete dynamic modes. We propose a corresponding hybrid framework that incrementally identifies new or existing modes, and adapts the parameters of the dynamics models within each such mode to provide smooth and accurate tracking of the target motion trajectory. The third contribution of the thesis focuses on handling contact changes and reducing discontinuities in the interaction dynamics during mode transitions. Specifically, we develop a framework with a contact anticipation model that incrementally and probabilistically updates its estimates of when contact changes occur due to making or breaking contact, or changes in the properties of objects. The estimated contact positions are used to guide a transition to (and from) special `transition phase' controllers whose parameters are adapted online to minimise discontinuities (i.e., to minimise spikes in force, jerk etc) in the regions of anticipated contacts. The stated contributions and each part of the framework are grounded and evaluated in simulation and on a physical robot performing illustrative changing-contact manipulation tasks on a tabletop. We experimentally compare our framework with some baselines to demonstrate the importance of building an incremental, adaptive framework for such tasks. In particular, we compare our controller for continuous-contact tasks with representative baselines in the adaptive control literature, and demonstrate the benefits of an incrementally-updated predictive (forward) model. We also experimentally evaluate the ability of our hybrid framework to accurately identify and model the dynamics of discrete dynamic (contact) modes, and justify the need for online updates by comparing the performance of a state of the art offline methods for hybrid dynamical systems. Finally, we evaluate the ability of our framework to accurately estimate contact positions and minimise discontinuities in the interaction dynamics in motion trajectories involving multiple contact changes
    • …
    corecore