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Abstract

Path following controllers make the output of a control system approach and traverse a
pre-specified path with no a priori time-parametrization. The first part of the thesis imple-
ments a path following controller for a simple class of paths, based on transverse feedback
linearization (TFL), which guarantees invariance of the path to be followed. The coor-
dinate and feedback transformation employed allows one to easily design control laws to
generate arbitrary desired motions on the path for the closed-loop system. The approach
is applied to an uncertain and simplified model of a fully actuated robot manipulator for
which none of the dynamic parameters are measured. The controller is made robust to
modelling uncertainties using Lyapunov redesign. The experimental results show a sub-
stantial improvement when using the robust controller for path following versus standard
state feedback.

In the second part of the thesis, the class of paths and systems considered are extended.
We present a method for path following control design applicable to framed curves gener-
ated by spline interpolating waypoints in the workspace of kinematically redundant me-
chanical systems. The class of admissible paths include self-intersecting curves. Kinematic
redundancies of the system are resolved by designing controllers that solve a suitably de-
fined constrained quadratic optimization problem that can be easily tuned by the designer
to achieve various desired poses. The class of redundant systems considered include mobile
manipulators for a large class of wheeled ground vehicles. The result is a path following
controller that simultaneously controls the manipulator and mobile base, without any tra-
jectory planning performed on the mobile base. The approach is experimentally verified
using the robust controller developed in the first part of the thesis on a 4-degree-of-freedom
(4DOF) redundant manipulator and a mobile manipulator system with a differential drive
base.
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Chapter 1

Introduction

The problem of requiring a system to follow a desired motion can be broadly classified as
either a trajectory tracking or path following. As previously suggested in [46], trajectory
tracking consists of tracking a curve with an assigned time parametrization.

Hauser and Hindman provided an intuitive example on the notion of path following
(also known as manoeuvre regulation) in [46]. Consider an automobile travelling on varying
altitude terrain. Now suppose that as the car travels uphill, it cannot sustain a pre-defined
desired speed due to its low torque engine. Once it starts going downhill, the driver could
force the vehicle to travel faster than the pre-defined speed in order to catch up to where
it otherwise would have been had it not been for the slow climb. If the road bends to the
left on the descent, the driver, in an effort to make up for lost time, can cut the road and
go off-road. However this approach may not be appropriate, since leaving the road and
travelling fast in a vehicle can be dangerous, or it may even be infeasible for the vehicle’s
engine. A safer approach would ask the driver to maintain the pre-defined speed on the
descent while staying on the road.

This example illustrates the difference between the concept of trajectory tracking and
path following. In trajectory tracking, the objective is for the system to track a reference
point that is changing based on some pre-defined time schedule. In path following, the
objective is for the system to stay on the path.

Trajectory Tracking

More precisely, trajectory tracking is concerned with asymptotically driving the output
trajectory of a system y(t) to a desired reference signal yref(t), i.e., y(t)→ yref(t) as t→∞.
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Trajectory tracking has been extensively researched, with a wide variety of tools at the
disposal of a control engineer [13,34,39,45,46,49,53,56,62,69,70,84,86,96,97,100,101,105].
Because of this, many path following problems are converted to a trajectory tracking
problem [45, 84]. Suppose a robot is to follow a path. Arguably the simplest approach
is to parametrize the motion of approaching the path and traversing the path with a
particular trajectory, and then have the robot’s output match this trajectory at each time
step. However this approach may not be suitable for certain applications as it can be
unnecessarily demanding or infeasible, as illustrated in the automobile example.

Path Following

Path following or manoeuvre regulation controllers, as previously defined in [46], drive a
system’s output to a desired path and make the output traverse the path without a pre-
specified time parametrization. More precisely, suppose there is a desired path P in the
output space of a system. The goal is to make y → P as t→∞ and if y(t) ∈ P for some
time t, and is moving tangential to the path, then y(t) ∈ P for all future time. These
two properties are known as attractiveness and output invariance, respectively. This is a
useful property in robotics since, if a disturbance or obstacle is preventing the output of a
robot to proceed along the path, the robot will stay on the path until the disturbance is
removed [48]. Furthermore, if the robot’s output is perturbed so that it leaves the path,
the path following controller will drive the output back to the desired path. Notice that
there is no specific time-schedule in which the approach to the path should occur. That is,
path following controllers are not restricted to a particular trajectory on the desired path.

In general, path following results in smoother convergence to the desired path compared
to trajectory tracking, and the control signals are less likely to saturate [65]. It is also shown
in [72] for the linear case, and [1] for the nonlinear case, that for non-minimum phase
systems, path following controllers remove performance limitations compared to trajectory
tracking controllers, which have a lower bound on the achievable L2-norm of the tracking
error.

1.1 Problem Formulation

In this thesis, we design robust path following controllers for redundant mechanical systems
with modelling uncertainty to follow splined paths. A nonlinear mechanical system can be
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modelled as

ẋc = Fc(x)

ẋv = Fv(x) +Gv(x)u
(1.1)

where x = (xc, xv) ∈ Rn is the state of the system, u ∈ Rm is the vector of control inputs,
Fc(x), Fv(x), and Gv(x) are smooth functions. The output of (1.1) takes the form

y = h(x) (1.2)

where h : Rn → Rp is smooth. The particular redundant systems that this thesis uses
in experimental verifications that have the form (1.1) are manipulators with more degrees
of freedom than the dimension of the workspace p, and mobile manipulator systems after
applying dynamic extension [3, 38, 52], which implies n/2 > p. The systems used can be
found in Chapter 2.

Suppose a path is given in the output space of the system (1.1) as a regular parametrized
curve

σ : R→ Rp (1.3)

where the map σ can be a piece-wise continuous function, such as a spline [34]. In Chapter
3, geometric restrictions are imposed on the class of curves considered, as the focus in
this chapter is robustifying path following controllers. These restrictions are alleviated in
Chapter 4 in order to generalize the class of paths to splines, a powerful class of paths.
In Chapter 5, the path following framework developed in the Chapters 3 and 4 is applied
to yield a novel mobile manipulator path following controller. In this thesis, the ultimate
goal is to design a path following controller to:

PF1 Make the output (1.2) of system (1.1) asymptotically approach the desired spline
path, i.e., y(t) → σ(R) as t → ∞, in the presence of modelling uncertainties of the
system.

PF2 Make the path output invariant, i.e., if the system is initialized on the path with the
velocity vector tangent to the curve, the system will remain on the spline path σ(R)
∀t ≥ 0, in the presence of modelling uncertainties of the system.

PF3 On the path, the system tracks a desired velocity profile.

PF4 Any redundant degrees of freedom are controlled to ensure boundedness of their
dynamics, avoid actuator and joint limits and ensure closed-loop stability.
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1.2 Literature Review

Numerous approaches have been proposed for approaching and traversing a spline. The
most common are based on some type of trajectory tracking approach, although these
approaches do not actually satisfy PF1 to PF3. Set stabilization has also been used to
directly stabilize a desired path. Application tasks include machine tools, mobile robots,
and redundant systems such as mobile manipulators, as in this thesis.

1.2.1 Contour Tracking in CNC Machines

In the machining community, typically the path following requirement is converted to
a trajectory tracking problem [34, 69, 91]. The desired path σ is typically generated by
linear, circular, or spline interpolation of a set of reference points. The reference points
are typically generated by a CAD description of the surface [105]. Spline interpolated
curves have the advantage of being continuous to an arbitrary degree, resulting in better
machining quality, reduced vibration, and longer tool life [105].

A desired tangential velocity profile ηref is also designed (typically jerk-limited) in order
to stay compliant with machining limitations and to smoothly machine the desired contour
[34]: ηref : R → R. In the case that the argument λ is not the arclength of the curve, as
is the case for splines, an interpolator is used to approximate the corresponding trajectory
for the argument λ(t) to the contour σ, to yield a desired trajectory σ(λ(t)) [34, 69].

In the machining community, one important performance metric is the contour error
between the actual and the desired path. To mitigate the contour error, researchers initially
focused on perfecting the trajectory tracking capabilities with the use of feed-forward
control [36, 62,86]. Feed-forward controllers are used to increase the bandwidth of control
systems, with the effect of having better tracking performance for tracking trajectories.
The idea is that perfect trajectory tracking capabilities would imply zero contour error.
A significant contribution was made by Tomizuka who developed the Zero-Phase-Error-
Tracking-Controller (ZPETC), a feed-forward controller that provides zero phase error
from the reference to the output at all frequencies for linear systems, even when the plant
is non-minimum phase [101].

Even if the control system can ideally provide perfect tracking for each individual axis
of the machine tool, there are additional sources of contour error. These come from me-
chanical deficiencies such as backlash, cutting effects such as tool deflection and wear, drive
dynamics mismatch and other disturbances [62]. In [61], Koren quantifies the steady state
contour error in the case of machining linear contours in the presence of friction disturbance

4



and controller parameter mismatch when using a proportional feedback controller. In [83],
the steady state contour error is quantified when machining circular trajectories, show-
ing that this error intuitively depends on the ratio of the radial frequency of the circular
trajectory to the bandwidth of the control system.

Contour error mitigation controllers have also been proposed in the machining com-
munity. These controllers focus on reducing the contour error instead of only reducing
tracking error [21,23,24]. They are based on the cross-coupled controller (CCC) proposed
by Koren [61], which requires some tuning depending on the system dynamics and the
desired contour. However, all CCCs are time-varying for the case of curved contours [99].
They also depend on some approximation of the contour error [62, 91], and thus do not
guarantee that the desired path will be invariant.

1.2.2 Path Planning and Spline Tracking in Robotics

Splined paths have also found use in the robotics community as the output of a path
planning problem, confirming that path following control of splines, one of the goals of
this thesis, is useful. For nonholonmoic mobile robots, the goal of reaching some desired
end-point with some given initial point and initial heading, has been formulated as a time-
optimal path-planning problem whose result is a spline path for the robot to follow [66].
Other works have used splines as the output of a optimal path-planning problem considering
dynamic constraints of ground vehicles [67], robot manipulators [7], and unmanned-aerial-
vehicles [54], due to the linearity of the parameters of spline curves and fast mathematical
manipulations [7].

In [26, 27, 41], the authors design an approach for generating cubic spline paths for
ground vehicles for point-to-point navigation while avoiding obstacles. The approach en-
tails generating the spline from some desired start to end position. If this path collides
with obstacles on the map (determined by using Bresenham’s pixel algorithm [15]), the
intersections of the path and the obstacles are determined, yielding entry and exit colli-
sion points. Then a new intermediate waypoint is generated that is on the perpendicular
bisector to the line joining the two collision points. The process is repeated for remaining
collisions, and a spline is used to define piecewise polynomial curves that pass through the
generated Cartesian points. The use of cublic splines also guarantees continuous vehicle
heading and steering angle, which is desired for ground vehicles.

Another approach for obstacle avoidance path planning is by performing a particle
swarm optimisation, as is done in [89]. Here the output of the optimization is also a cubic
spline. They compare their results to other path planning approaches, such as potential
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fields and visibility graphs. It was found that the spline based particle swarm approach
yields short and smooth plan towards the end goal while avoiding obstacles, whereas the
virtual graph approach found the shortest approach but with sharp turns, forcing robots
to slow down. The potential fields method found the longest route [89].

Once the spline path has been generated, the robot is to track a trajectory such that it is
on the path. In most works, the spline path is also treated as the desired trajectory. In other
words, the argument to the generated curve σ(t), t, is used as the time parametrization for
the spline trajectory [45, 84]. However, the problem with this approach is that the spline
is not unit-speed parametrized (since when generating the spline, the argument t cannot
represent the arc length along the path since the spline itself hasn’t been constructed).
This means that a constant tangential velocity profile cannot be achieved along the path,
let alone any arbitrary tangential velocity profile along the path. The trajectory is fixed
by the a-priori path/trajectory generation.

One way to address this is to use the approach in the machining community, where an
interpolation is used to design a trajectory for the argument of the spline based on some
desired tangential velocity profile (see Section 1.2.1).

Another approach is to generate a trajectory that is path-constrained. This has been
done in an optimal fashion, minimizing the total trajectory time, subject to the constraints
of the dynamics system, and subject to the output of the dynamic system be on the
desired spline [11, 29]. However these approaches rely on dynamic programming and can
be computationally expensive [29]. The approach in our thesis requires just that the path
be available to the real time controller.

1.2.3 Integrating Motion Planning with Trajectory Tracking

Early work considered how to plan a trajectory to follow a path under the constraints
of the dynamic system, such that a realizable trajectory can be generated [13, 49, 70].
However in [97, 100], it was argued that this classical two layered hierarchical approach
of path planning and trajectory tracking has disadvantages. Namely, the motion plan
cannot be modified in response to a dynamic environment where disturbances can cause
a deviation from the path. The authors of [97, 100] then designed a combined controller
involving a change of variable from time to the arclength along the path. A time-optimal
trajectory is then designed for an equivalent dynamic system that is parametrized by the
arclength distance along the path. The resulting motion plan is then decomposed back
to the original coordinates, but parametrized by the path variable as opposed to time.
However this approach does not guarantee that the desired path will be attractive in the
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neighbourhood of the path. The approach is also limited to paths that are parametrized by
their arclengths, and also faces a singularity when the tangential velocity command is zero.
The approach used in this thesis overcomes these problems, making curves including splines
attractive and invariant, without singularities from the tangential velocity command.

Trajectory tracking controllers have also been combined with path following. The
papers [46,56,96] project the current system state onto the desired path in real time. Then
a tracking controller is used to stabilize this generated reference point. Here they assume
some reference trajectory is created in the state space, xref(t) ∈ Rn, and that a trajectory
tracking controller has already been designed such that x→ xref(t) as t→∞. They design
a controller based on the Lyapunov-like function

min
τ∈R

(1− λ)2
∥∥x− xref(τ)

∥∥2
+ λ2(t− τ)2

where λ ∈ R is a design parameter that governs the priority of tracking the original trajec-
tory and getting to the path. The parameter τ that minimizes the above optimization is
treated as the reference signal. Similar work is done in [47] for aircraft manoeuvres. How-
ever, these approaches do not guarantee that the desired path will be rendered invariant,
as the desired parameter of the path will ultimately change over time. They also have been
used for simpler class of curves, notably circles and ellipses.

1.2.4 Set stabilization and Virtual Holonomic Constraints

The classical notion of point stabilization is a special case of set stabilization. Similarly,
orbital stability of limit cycles is a special case of the stability of sets. Limit cycle stability
can be traced back to the work of Poincaré [82], who studied the stability of orbits of
celestial objects in the solar system. Later, Van der Pol discovered and analysed limit
cycles in nonlinear electrical circuits, calling them “relaxed oscillations” [104].

Moving towards more general sets, Barbashin [10] and Zubov [109] studied the stability
of invariant sets for dynamic systems. Their work, along with others that built upon it (see
[68,87,88]), characterizes the relationship between set stability and Lyapunov functions.

In terms of stabilizing sets, the authors in [8, 9] looked at periodic orbits of unforced
nonlinear systems. They then provide conditions on which these orbits can be made stable
using control, namely via feedback linearization techniques. Isidori, Nijmeijer and Van der
Schaft [52,78] provide complementary results that find the largest controlled invariant sub
manifold on which the system output is zero. These results were extended in [77], where
the sets were extended to embedded submanifolds of the state space of a dynamic system.
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Other approaches for set stabilization have been investigated, such as passivity [33], and
sliding mode control [103].

Virtual holonomic constraints can be used to guarantee invariance of a path via set
stabilization. A virtual holonomic constraint is a constraint imposed by control on the
configuration variables of the dynamic system. In [93], generating and orbital stabilization
of periodic solutions is done for nonlinear systems, with application to any mechanical sys-
tem. The approach guarantees invariance of the chosen virtual holonomic constraint. This
methodology is used for orbital stabilization for a Furuta pendulum [94], helicopters [106],
and, in the sense of hybrid systems, for the walking/running of bipedal robots [22]. How-
ever in our work, the path to be followed is not limited to closed curves in the output space
of the system and the dynamics on the curve are not fixed.

In [76] the authors proposed an approach in which an arbitrary non-periodic path in the
output space can be made attractive and invariant using transverse feedback linzearization
(TFL). This idea was further extended in [48] by providing conditions for which desired
motions can be achieved on the path; as opposed to orbital stabilization where the dy-
namics along the closed curve in the state space are fixed. The approach in [48] simplifies
controller design and decomposes the path following design problem into two independent
sub-problems: staying on the path and moving along the path. However, in [48], per-
fect knowledge of the dynamic parameters of the system was assumed, performance was
demonstrated only for a linear, decoupled system, and the path is restricted to a special
case of simple curves such as circles.

1.2.5 Redundancy Resolution and Mobile Manipulators

Resolving redundancies of a system in the context of following a desired path also shares
close affinity with this thesis (PF4). In robotics, a kinematically redundant system is
one that possesses more degrees of freedom than that required to execute a given task. A
manipulator mounted on a moving vehicle is a system that is kinematically redundant, due
to the extra degrees of freedom added by the vehicle, either the orientation and position of
the manipulator or the vehicle itself can be changed to achieve some desired end-effector
position and orientation [6].

There has been extensive research for redundancy resolution for manipulators in the
context of output point stabilization and trajectory tracking. Given some desired end-
effector velocity trajectory, the corresponding joint-space trajectory can be generated by
using the pseudoinverse of the Jacobian of the robot manipulator. The null space of the
Jacobian can be used to satisfy optimality in some static cost function over the joint
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positions and velocities [50]. However, this approach only indirectly effects the applied
torques, and there is no direct way of incorporating joint torque limits into the kinematic
redundancy resolution [50]. Khatib was one of the first researchers to extend the kinematic
redundancy resolution approach to the acceleration level, thereby being able to incorporate
the joint torques [58] directly into the resolution scheme. He showed that by analysing the
dynamics of a manipulator in the task-space of the system, a certain choice of end-effector
force can be made to stabilize the output of the system. To maintain asymptotic stability
in the joint-space of the redundant system, an additional choice of joint torques needs to be
applied, that corresponds to a null operational force vector, which act as dissipative joint
forces. The redundancy resolution mechanism is shown to work only for a specific class of
mechanical systems in [58], namely the torque-input model of robot manipulators. This
approach is also used in the context of trajectory tracking or output point stabilization of
robot manipulators. The redundancy resolution approach we develop in this thesis is used
in the context of set stabilization and path following. Furthermore, our approach resolves
the redundancies at the motor voltage level, while not having to assume that the dynamics
of an inner torque controller can be ignored.

The primary objective of a mobile manipulator tracing a contour in its output space
in household-service tasks [12, 81], maintenance/inspection of high-voltage transmission
lines [18], material handling in construction [31], large-scale manufacturing [44] and space
exploration [92] is to accurately traverse a path. The majority of applications and ex-
periments of mobile manipulators do not simultaneously control the manipulator and the
mobile base. That is, they control the manipulator and the mobile base in a sequential,
not parallel (as is done in this thesis), manner [17,73,81,107]. Mobile manipulator systems
can also be modelled as a single redundant system [108]. Previous works on trajectory
tracking have tackled the trajectory tracking problem by resolving the redundancies at the
kinematic level, but, unlike in this thesis, a trajectory for the end-effector as well as the
mobile base is specified [51,92]. Khatib extended the dynamic-level redundancy resolution
developed for torque-input model of robot manipulators [58] to holonomic mobile plat-
forms [59], whereas the approach in this paper can also be applied directly to combined
motor-input manipulator mounted on nonholonomic ground vehicles. In [108], the authors
look at the coordinated mobile manipulator problem, where, unlike in this paper, the ma-
nipulator dynamics are neglected, to track a reference trajectory in the workspace of the
mobile platform while maximizing the manipulability measure.
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1.3 Contributions and Organization

As outlined in the problem formulation (Section 1.1), the overall goal of this thesis is
to design and implement spline path following controllers for redundant systems with
modelling uncertainties. Each chapter of this thesis progressively builds up methodology
to achieve this objective, by addressing various aspects needed for path following control.

First, the work of [48] is extended in Chapter 3 by making the controller robust to
modelling inaccuracies. The approach is demonstrated experimentally on a nonlinear,
coupled manipulator system (Chapter 2). The work in this chapter will partly address
PF1 to PF3.

In Chapter 4, we extend the class of allowable paths of [48], allowing self-intersecting
paths and curves that are generated through spline interpolation of given waypoints. Spline
interpolated paths are a useful class of paths in the robotics communities (see Section 1.2.2).
This is accomplished by designing a numerical algorithm and by using a systematic ap-
proach to generate zero level set representations of the curves. Another contribution of
this work is extending the class of systems of [48] to mechanical systems with kinematic
redundancies, by employing a novel redundancy resolution technique at the dynamic level,
yielding bounded internal dynamics. The approach in this chapter is to resolve the redun-
dancies directly in the context of path following via feedback linearization, unlike in [58],
and is thus applicable to general mechanical systems, which may include a dynamic map
between the system input and the output forces. To the best of the author’s knowledge,
redundancy resolution in the context of feedback linearization is an unsolved problem. We
show that, under the assumption that the redundant system has viscous friction on each
degree of freedom, the control law obtained by solving a static, constrained, quadratic
optimization problem yields bounded closed-loop internal dynamics. The control strategy
is then validated on a non-trivial redundant platform with significant modelling uncertain-
ties using the robust controller developed in Chapter 3. This controller then fully achieves
PF1 to PF3, and PF4 for a specific class of redundant systems, namely redundant Euler-
Lagrange systems.

In Chapter 5, we apply the path following control approach from Chapter 4 to general
mobile manipulator systems. The approach in this chapter also uses dynamic extension
[3, 38, 52] to convert the dynamics of the mobile manipulator system that are tangent
and transversal to the path to be linear. The remaining dynamics, that are redundant
to following the path, will show up as internal dynamics of the entire closed-loop system.
The redundancy resolution technique developed in Chapter 4 are used at the dynamic level,
and it is experimentally shown to yield bounded internal dynamics, while maintaining a
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preferred manipulator posture. This scheme can easily be tuned by the designer to achieve
various desired poses. The result is an automatic unified path following controller that
compensates for the dynamics of the mobile manipulator system, controlling the mobile
base and manipulator simultaneously, rendering a desired path in the output space of the
system to be attractive and invariant. There is no trajectory that needs to be planned and
tracked by the manipulator or the mobile base, and the coordination between the two is
done automatically by our proposed path following controller. The non-trivial experimental
verification on a mobile platform (Chapter 2) including robustification (from Chapter 3)
is also included. This approach also achieves PF1 to PF3, as well as PF4 for a broader
class of redundant mechanical systems than in Chapter 4.

1.4 Notation

Let 〈x, y〉 denote the inner product of vectors x and y in Rn. The Euclidean norm of a
vector and induced matrix norm are both denoted by ‖ · ‖. The notation s ◦ h : A → C
represents the composition of maps s : B → C and h : A→ B. If f : A→ B is a function,
the image of f is written f(A) ⊆ B. The ith element of a vector x is denoted xi, and the
row i to j and column k to l submatrix of A is denoted as Ai:j,k:l. The symbol := means
equal by definition. Given a C1 mapping φ : Rn → Rm let dφx be its Jacobian evaluated
at x ∈ Rn. If f , g : Rn → Rn are smooth vector fields we use the following standard
notation for iterated Lie derivatives L0

fφ := φ, Lkfφ := Lf (L
k−1
f φ) = 〈dLk−1

f φx, f(x)〉,
LgLfφ := Lg(Lfφ) = 〈dLfφx, g(x)〉. Finally, 0n×m is the n by m zero matrix and In×m is
a n by m matrix of zeros with ones on its principal diagonal.
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Chapter 2

Mechanical System Modelling

This chapter gives a brief overview of the modelling procedure for a broad class of nonlinear
systems. We further model the specific experimental platforms used for the experimental
validation in Chapers 3 to 5, namely, a 4-Degree-of-Freedom (DOF) manipulator actuated
by linear and revolute actuators in Section 2.1.1, and a differential drive mobile manipulator
system in Section 2.2.3

2.1 Euler-Lagrange Systems

In Chapters 3 and 4, we study Euler-Lagrange systems with an N -dimensional configu-
ration space contained in RN and N configuration forces τ ∈ RN . The model is given
by

d

dt

∂L

∂q̇
− ∂L

∂q
= τ

where L (q, q̇) is the Lagrangian function. We assume that L is smooth and has the form
L(q, q̇) = K (q, q̇) −P(q) where K (q, q̇) = (1/2)q̇>D(q)q̇ is the system’s kinetic energy
and P : RN → R is the system’s potential energy. The functions K and P depend on
the robot’s mechanical parameters such as the link mass, center of mass, and inertia for
each link. The inertia matrix D(q) is positive definite for all q.

The system can be rewritten in the standard vector form

D(q)q̈ + C̄(q, q̇)q̇ +G(q) = τ (2.1)
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where C̄(q, q̇) ∈ RN×N represents the centripetal and Coriolis terms, andG(q) := (dPq)
> =

∇P(q) ∈ RN represents the gravitation effects [98].

When the dynamics of the motor model are included, the Euler-Lagrange system (2.1)
can be augmented to the form

M(q)q̈ + C(q, q̇)q̇ +G(q) = A(q)um (2.2)

where um ∈ RN is the system control input (usually motor voltages [98]). The term
M : RN → RN×N is the positive-definite inertia matrix that includes motor inertias,
C : R2N → RN represents centripetal, Coriolis, and motor damping terms, and A : RN →
RN×N is the input matrix and is assumed to be nonsingular for all q [98].

Defining xc := q, xv := q̇, n := 2N , and x := col (xc, xv) ∈ RN × RN , and u := um, we
can express (2.2) in state model form

ẋ = f(x) + g(x)u :=

[
xv
fv(x)

]
+

[
0

gv(xc)

]
u, (2.3)

where f : Rn → Rn and g : Rn → Rn×n are assumed to be smooth, gv(xc) := D−1(xc)A(xc)
and fv(x) := −D−1(xc) (C(x)xv +G(xc)).

Motivated by the task space of a robotic manipulator, we take the output of system (2.3)
to be

y = h(q),
∂h(q)

∂q̇
= 0 (2.4)

where h : RN → RP is smooth, and P is the dimension of the output space of system
(2.2). In addition, let J : RN → RP×N , q 7→ ∂h(q)

∂q
represent the output Jacobian [98]. The

systems considered in this thesis are redundant in the following sense

Definition 2.1.1. System (2.3),(2.4) is kinematically redundant if N > P .

2.1.1 Modelling of the CPM

The test platform is a Clearpath Robotic Manipulator (CPM) (see Figure 2.1) which is a
four degree of freedom, fully actuated system. The shoulder, elbow, and wrist links are
actuated by DC linear actuators.

The link center of mass and inertias are constant in the Denavit-Hartenberg (DH)
coordinate frame attached to each link [98]. However, the linear actuator center of mass and
inertias are not constant in the corresponding DH frame, as the linear actuator extension
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Figure 2.1: The Clearpath Manipulator (CPM) with the joint coordinates and output
space labelled.

di and orientation vary with the joint angles. This varying center of mass and inertia of the
linear actuators significantly complicates the dynamic model. To simplify the model an
average is taken over the CPM workspace to yield constant parameters in each DH frame.
In particular, let di ∈ R, i ∈ {2, 3, 4} be the linear actuator extension for the ith joint,
and ILAi

: R → R3×3,mcLAi
: R → R3 be the inertia tensor and center of mass location

for the ith actuator, respectively, with respect to the DH frame of the link the actuator is
attached to. Then the average is taken as

ILAi
:=

1

dmaxi

dmax
i∫
0

ILAi
(di)ddi

mcLAi
:=

1

dmaxi

dmax
i∫
0

mcLAi
(di)ddi

where dmaxi is the maximum extension of linear actuator i. These values are used as
constant approximations of the center of mass and inertia tensors of the actuators in their
respective DH frame. All of the CPM mechanical parameters are expected to be inaccurate
because they are generated by SolidWorks c© and no system identifications were performed.

The waist actuator is a standard DC motor passing through a worm gearbox. Let the
angle of this motor be qm1 . The linear actuators consists of a rotational brushed DC motor
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and a leadscrew. Based on a standard DC motor model, the motor dynamics become

Jm1 q̈m1 +B1q̇m1 = K1u1 −
τ1

r1

Jmi
d̈i +Biḋi = Kiui −

Fi
riρi

, i ∈ {2, 3, 4}
(2.5)

where Jmi
, Bi, Ki are the motor parameters, ri are the gearbox ratios, Fi are the linear

actuator load forces, ρi comprises the lead screw parameters [79], and ui are the motor
voltages. The parameters were obtained from the actuator data sheets and were not
physically measured. To convert the waist angle q1 to the motor angle qm1 , note that
qm1 = r1q1. An invertible map li : R→ R, i ∈ {2, 3, 4}, is used to convert the joint angles
qi to the linear actuator extension di:

di = li(qi) =
√
a2
i + h2

i − 2aihi cos(qi + βi)− Li. (2.6)

Here, for i ∈ {2, 3, 4}, ai are the link lengths, hi, βi are parameters that depend on the motor
mounting scheme, and Li are the lengths of the linear actuator housing. The joint torques
τi, i ∈ {2, 3, 4} in (2.1) are related to the linear actuator force Fi by a map ζi : R→ R,

ζ(qi) :=
sin(qi + βi)

Li + di
hi,

such that τi = Fiζi(qi), i ∈ {2, 3, 4}. Using these maps and the chain rule, (2.1) and (2.5)
become [

D(q)q̈ + C̄(q, q̇)q̇ +G(q)
]

1
= τ1

r2
1Jm1 q̈1 + r2

1B1q̇1 = r1K1u1 − τ1[
D(q)q̈ + C̄(q, q̇)q̇ +G(q)

]
i

= Fiζi(qi)

riρiJmi

∂2li
∂q2

i

(qi)q̈i + riρi

(
Bi
∂li
∂qi

(qi)Jmi

∂2li
∂q2

i

(qi)

)
q̇i = riρiKiui − Fi

i ∈ {2, 3, 4}
which can be written compactly in form (2.2)

M(q)q̈ + C(q, q̇)q̇ +G(q) = A(q)u. (2.7)

The dynamic model of the robot neglects friction and uses crude estimates of the pa-
rameters. This model uncertainty is addressed by the controller design in the subsequent
chapter.
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2.2 Mobile Manipulator Systems

We consider a fully actuated manipulator mounted on a mobile ground vehicle. For sim-
plicity, the combined systems are assumed to be decoupled. This crude model also helps
demonstrate that the proposed technique is somewhat tolerant to modelling errors. Es-
sentially, the combined dynamic model is the manipulator dynamics (2.2) concatenated
with the vehicle dynamics. This is a valid system model assumption for general mobile
manipulator systems [25] and for our experimental platform (Section 5.3), and in general,
manipulator dynamics are relatively fast compared to that of the vehicle [59].

The output of system (2.2), the task space of the manipulator (2.4), is given in local
frame B attached to the vehicle base (see Figure 2.3). We assume, without loss of generality,
that P ≥ 3 and the first 3 components of h correspond to the Euclidean position of the
end-effector in the local frame B (Figure 2.3). Any additional rows (P > 3) of h represent
orientations of the end-effector in the world frame. For example, if P = 4, the fourth row
of h could represent the end-effector angle with respect to the horizontal ground plane [80].

2.2.1 Vehicle subsystem

The position xb ∈ R2 and orientation θ ∈ R of frame B in the inertial frame O (see Figure
2.3) are governed by the vehicle’s dynamics. A general vehicle kinematic model was derived
in [30] for a large class of wheel configurations, including castor wheels, steering wheels,
fixed wheels, and/or Swedish wheels, and is given as[

ẋb

θ̇

]
= R(θ)Σ(σ)γb (2.8)

σ̇ = γs (2.9)

where R(θ) is the rotation matrix

R(θ) :=

cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

 , (2.10)

Σ : Rδs → R3×δb is a full rank matrix [30, pg. 283] that depends on the steering angle
σ ∈ Rδs of the steering wheels, δs ∈ {0, 1, 2} is the degree of steerability [30, pg. 273],
δb ∈ {1, 2, 3} is the degree of mobility of the mobile base [30, pg. 272], and γb ∈ Rδb , γs ∈ Rδs

are the inputs to the vehicle. The degrees of mobility and steerability δb, δs depend on the
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design of the vehicle and satisfy the constraint δb + δs ∈ {2, 3}. The kinematic model (2.8)
encompasses wheeled-ground vehicle designs including car-like vehicles, unicycles (see Sec.
5.3), and omnidirectional vehicles [30, Chapter 7.2]. If the vehicle has no steering wheels,
such as those found on differential drive robots (see Sec. 5.3), then δs = 0 and Σ is a
constant matrix.

Example 1. (Car-like base) Consider a car-like vehicle with 2 front steering wheels and
2 rear fixed wheels (see Figure 2.2). For such a system, δs = 1 and δb = 1, and the general
kinematic model (2.8) reduces to [3]

ẋb1 = γb cos(θ) (2.11)

ẋb1 = γb sin(θ) (2.12)

θ̇ =
γb
l

tan(σ) (2.13)

σ̇ = γs (2.14)

where l is the length of the vehicle.

O xb1

xb2

θ

σ
l

Figure 2.2: Car-like robot.

4

2.2.2 Output Model

The output is chosen to be manipulator position h(q) in the inertial frame as follows

y := H(q, xb, θ) =

[
R(θ)1:2,1:2 02×(P−2)

0(p−2)×2 I(p−2)×(P−2)

]
h(q) +

 xb1
xb2

0(p−2)×1

 . (2.15)
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qN

q3

q2

q1h(q)1:3

B

O

B

xb1

xb2

θq4

Figure 2.3: Schematic of the mobile manipulator. The end-effector output h(q) is ex-
pressed in the local-frameM attached to the bottom of the mobile base. The position and
orientation of the local-frame in the inertial frame O are determined by xb, θ.

where P ≥ p ≥ 2 is the dimension of the output space. Recall that P ≥ 3, with the
first three coordinates of h(q) representing the Euclidean position in the local frame B,
and any additional coordinates representing the orientation in the body frame. If p = 2,
then only the planar position of the end-effector in the inertial frame is of concern. If both
P > 3 and p > 3, then a component of the end-effector orientation is also to be specified.

Assumption 2.2.1 (Dexterity). The mobile manipulator satisfies N+δb ≥ p (see Remark
5.2.1), i.e., the system has enough degrees of freedom to follow arbitrary paths in the
reachable workspace in Rp.

The combined manipulator and mobile base dynamics, including the state space for-
mulation, are discussed in greater detail in Chapter 5.

2.2.3 Modelling of the Clearpath Husky

The mobile manipulator system is a platform designed by Clearpath Robotics (see Figure
2.4). The mobile platform runs a low level control loop that controls the vehicle’s heading
rate and tangential velocity. The vehicle has no steering wheels. Thus, for this system
δs = 0 and δb = 2 and the general kinematic model (2.8) reduces to the standard unicycle
equations [30]

ẋb1 = γb1 cos(θ) (2.16)

ẋb2 = γb1 sin(θ) (2.17)

θ̇ = γb2 . (2.18)

The output space is taken to be the 3-dimensional Euclidian space, that is p = 3.
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Figure 2.4: Clearpath manipulator mounted on a Clearpath A200 mobile platform.
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Chapter 3

Robust Path Following

This chapter implements a robust path following controller, based on transverse feedback
linearization (TFL), which guarantees invariance of the path to be followed. Portions of
this chapter are presented in our paper [42]. A review of TFL [48] is provided in Section
3.1. The class of paths are limited and are extended in the next chapter. The coordinate
and feedback transformation employed allows one to easily design control laws to generate
arbitrary desired motions on the path for the closed-loop system. Redundancy resolution
is ignored by adding additional constraints to the system, and a more general redundancy
resolution is developed in the next chapter. The approach is applied to the CPM, and the
controller is made robust to modelling uncertainties using Lyapunov redesign in Section
3.2. The experimental results (Section 3.3) show a substantial improvement when using
the robust controller for path following versus standard state feedback.

3.1 Path following for mechanical systems

In this section we review the path following control design methodology from [48] which
applies to Euler-Lagrange systems. In [48] geometric restrictions on the allowable class of
curves are imposed:

Assumption 3.1.1. The path σ(R) is a 1-dimensional embedded submanifold of RP .

Assumption 3.1.2. There exists a smooth map s : RP → RP−1 such that rank( ∂s
∂y

) = P−1

on s−1(0) and σ(R) = s−1(0). Let P := s−1(0). Moreover, the lift of P to Rn

Γ := (s ◦ h)−1(0) = {x ∈ Rn : s(h(x)) = 0} (3.1)
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is a submanifold of Rn.

Assumption 3.1.1 ensures that the path has no self-intersections or corners. Assump-
tion 3.1.2 requires that the entire path be represented as the zero level set of a smooth
function s : RP → RP−1 in the output space of the system (2.4), and that its Jacobian is
full rank at each point of the curve P . Locally this is always possible if Assumption 3.1.1
holds [48].

Making the state x of (2.3) approach the set (3.1) is equivalent to making the system
output (2.4) approach its desired path P = s−1(0). Unfortunately, the set Γ is generally
not invariant under the dynamics of (2.3) and as a result cannot be stabilized. Therefore,
rather than stabilizing Γ, we instead stabilize the largest controlled invariant set contained
in Γ. This set, denoted Γ?, is called the path following manifold of (2.3) with respect to
the path P . The path following manifold consists of all the motions of the system (2.3) for
which the output (2.4) remains on the curve P by suitable choice of control input u. Let
the dimension of Γ? be n? > 0. Equivalently Γ? can be thought of as the zero dynamics
manifold [52] of (2.3) with output γ(x) := s ◦ h(x). The existence of Γ? is assured as long
as the path P is feasible for the system (2.3) [48].

If the virtual output γ(x) yields a well-defined relative degree at some point x? on Γ?

then, locally, input-output feedback linearization for non-square systems can be performed
at x?. In particular, this guarantees the existence of a coordinate transformation T : U →
T (U), x 7→ (η, ξ) where U is a neighbourhood of x?, and a regular feedback transformation1

u = α(x) + β(x)v such that T (Γ? ∩ U) = {(η, ξ) : ξ = 0}. Defining v := col(vξ, v
η), in the

new coordinates, system (2.3) becomes

η̇ = f 0(η, ξ) + gξ(η, ξ)vξ + gη(η, ξ)vη

ξ̇ = Aξξ +Bξvξ
(3.2)

where (η, ξ) ∈ Rn? × Rn−n?
, the pair (Aξ, Bξ) is controllable and the various functions

are all smooth [48]. The ξ-subsystem describes the motion off the set Γ? and for this
reason is called the transversal dynamics. The outer transversal control input vξ can be
used to stabilize the origin of this subsystem using linear control techniques. This ensures
attractiveness of Γ? and invariance of the path.

The zero dynamics of the system, η̇ = f 0(η, 0) + gη(η, 0)vη, are called the tangential
dynamics and govern the motion of the system restricted to the desired path. The outer
tangential control input vη can, in principle, be designed to achieve the desired motion
on the path following manifold. However, since the tangential dynamics are in general
nonlinear, designing the control law vη can be difficult [28] or impossible.

1The feedback transformation u = α(x) + β(x)v is regular in U if for all x ∈ U , β(x) has rank N .
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3.1.1 Tangential Control

In [48], the structure of Euler-Lagrange systems (2.3) is leveraged to refine the normal
form (3.2), so that the η-subsystem is partially linear, time-invariant and controllable. By
Assumption 3.1.1, there exists a map

σ : R→ RP (3.3)

where, in the case of closed paths, there exists a number L > 0 such that for all λ ∈ R,
σ(λ + L) = σ(λ). If we assume, without loss of generality, that σ is regular, then the
smallest such L > 0 is the arc-length of the closed curve.

A projection operator is introduced that maps a point y, sufficiently close to the desired
path, to a unique λ ∈ R (λ ∈ [0, L) for closed-paths) such that σ(λ) is closest to y. In
particular,

$ : Pε → R
y 7→ arg inf

λ∈R
‖y − σ(λ)‖ (3.4)

where Pε is a tubular neighbourhood of the path P . Using the map (3.4) and s◦h(x) from
Assumption 2, a “virtual” output is defined as:

ŷ :=

[
π(x)
γ(x)

]
:=

[
$ ◦ h(x)
s ◦ h(x)

]
. (3.5)

In [48, Theorem 3.2], it is shown that if for some x? ∈ Rn, h(x?) ∈ P ,

Im

(
∂h

∂x
gv(xc)

∣∣∣∣
x=x?

)
' Rp (3.6)

holds for the system (2.3)-(2.4), and for a path P satisfying Assumptions 3.1.1 and 3.1.2,
then via input-output feedback linearization on the virtual output (3.5), the system can
be transformed [75] to a refined version of the the normal form (3.2) given by

ζ̇ = f 0(ζ, η, ξ) + gξ(ζ, η, ξ)vξ + gη1(ζ, η, ξ)vη + gη2(ζ, η, ξ)vζ

η̇ = Aηη +Bηvη2

ξ̇ = Aξξ +Bξvξ.

(3.7)

Here dim(ζ) = n? − 2, dim(η) = 2, the pairs (Aη, Bη), (Aξ, Bξ) are controllable, and
v = col(vη, vξ) = col(vζ , vη, vξ) ∈ RN−P × R × RP−1. Notice that a basic feasibility
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requirement for condition (3.6) is N ≥ P . If this is true, then for a standard robotic
manipulator, (3.6) will hold on its entire state space except at its singular configurations.

As before, stabilizing the path following manifold is equivalent to stabilizing the origin
of the ξ-subsystem. On the path following manifold, the dynamics reduce to

ζ̇ = f 0(ζ, η, 0) + gη1(ζ, η, 0)vζ + gη2(ζ, η, 0)vη

η̇ = Aηη +Bηvη.
(3.8)

At any two points on the path following manifold (ζ̂ , η̂) and (ζ̃ , η̃), the output (2.4) of (2.3)
lies on the desired path P . However, if the output lies on different points on the desired
path then, by the definition of the projection operator (3.4), η̃ 6= η̂. Hence, the η-subsystem
determines the motion of the output along the desired path. Thus, vη can be used to control
the motion along the path. The ζ-subsystem represents the dynamics on the path following
manifold that do not produce motion along the path in the output space. Note that the
ζ-subsystem does not exist if N = P , thus, this subsystem captures the redundancy of the
system (2.3).

In the next section, we force N = P of the CPM by increasing the dimension of the
output space to include the end-effector orientation. In Chapter 4, we will see how to
resolve redundancies when N > P . Although this is a model based technique, we will see
in Section 3.2 and 3.3 that a robust controller may be used as the control law for v to
account for modelling uncertainty.

3.2 Control Design

3.2.1 Transverse Feedback Linearization

In accordance with the discussion in Section 3.1, consider the CPM (2.7) and let xc :=
q, xv := q̇ where q and q̇ are the variables in the CPM model. The model falls into the class
of systems (2.2)-(2.4) with fv(x) = −M−1(xc) (C(x)xv +G(xc)), gv(xc) = M−1(xc)A(xc),
and let the output be

y = h(q) :=


cos(q1) (a2 cos(q2) + a3 cos(q2 + q3))
sin(q1) (a2 cos(q2) + a3 cos(q2 + q3))
a2 sin(q2) + a3 sin(q2 + x3) + d1

q2 + q3 + q4
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where y1:3 denotes the position of the wrist with respect to the base frame B (see Figure
2.3) using manipulator forward kinematics (see Figure 2.1) and y4 is the angle the end-
effector makes with the ground. Our main focus in this chapter is to deal with robustness
to modelling errors, thus we avoid dealing with the redundancy of the robot by augmenting
the output y4. Thus N = P and we expect no ζ dynamics in (3.7). Furthermore, since
P = 4, the path σ is not only restricting the wrist position of the CPM to a given path,
but also the wrist orientation.

The objective is to make the output y approach and traverse a path P that satisfies
Assumptions 3.1.1 and 3.1.2. One such path is a circle in a plane, which will be used for
illustration, but more complicated paths such as splines can be used with the proposed
approach (see Chapter 4). Without loss of generality, let the circle be centred at the
coordinate oc ∈ R3 with respect to the basis B, have radius r, and be contained in the
plane defined by the unit normal vector Yc3 ∈ R3 passing through oc. Furthermore, let
Yc3 = Yc1×Yc2 , where ‖Yci‖ = 1, i ∈ {1, 2}. The coordinate transformation T YYc : R3 → R3,

y = T YYc(yc) =
[
Yc1 Yc2 Yc3

]
yc + oc (3.9)

transforms coordinates yc in the frame {Yc1 , Yc2 , Yc3} attached to the center of the circle
to the output coordinate frame {Y1, Y2, Y3}. Thus, for some desired end-effector angle
ψ ∈ [0, 2π) in the output space, the parametrized curve can be written as

σ(λ) =

T YYc
r cos(λ)
r sin(λ)

0


ψ

 . (3.10)

The corresponding lift of the path (see Assumption 3.1.2) is given by (3.1), where

s ◦ h(x) :=


(
y2
c1

+ y2
c2
− r2

yc3

)
yc=(TY

Yc)
−1
◦h(x)

x2 + x3 + x4 − ψ

 (3.11)

where the elements of s correspond to being on the desired cylinder, plane, and end-effector
angle, respectively.

To get to the normal form (3.7), condition (3.6) needs to be satisfied. It is necessary
that N ≥ P for this to hold, which is true for this example. Furthermore, the matrix
∂h
∂x
gv(xc) is full rank everywhere except at the singularities of the manipulator (shoulder

link lines up with the elbow link) and when A(xc) is singular. Therefore, the path can be
positioned to avoid these singularities and thus will satisfy (3.6).
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Next the projection operator (3.4) is required in the construction of the virtual output
(3.5). In the case of a circle,

$(y) = r arg

(
(yc1 + iyc2)yc=(TY

Yc)
−1

(y)

)
(3.12)

is the arc length of the output on the circle, and thus will uniquely project points off
the circle to (−rπ, rπ] ⊂ R provided that (yc1 , yc2) 6= (0, 0). The functions γ(x) = s ◦
h(x), π(x) = $ ◦ h(x) are obtained from (3.11) and (3.12), and the virtual output (3.5)
has a well defined relative degree at each point on the circle. Thus the desired normal form
can be obtained by applying the coordinate transformation,

T : U ⊆ R8 → T (U) ⊆ (−rπ, rπ]× R7

x 7→ (η, ξ) =


η1

η2

ξi1
ξi2

 =


π(x)
Lfπ(x)
γi(x)
Lfγi(x)

 , (3.13)

for i ∈ {1, 2, 3}. The states ξ1
1 , ξ

2
1 , ξ

3
1 correspond to the error to the cylinder, plane, and

end-effector angle, respectively. Although the above coordinate transformation is only
guaranteed to be well-defined in a neighbourhood of a point x? on the set Γ?, it can be
shown that in the case of the circular paths, U contains the entire set Γ?. The dynamics
in (η, ξ)−coordinates become

η̇1 = η2

η̇2 = L2
fπ(x)|x=T−1(η,ξ) + LgLfπ(x)|x=T−1(η,ξ)u

ξ̇i1 = ξi2

ξ̇i2 = L2
fγi(x)|x=T−1(η,ξ) + LgLfγi(x)|x=T−1(η,ξ)u

}
i ∈ {1, 2, 3}.

(3.14)

The feedback transformation, which is well defined in U ,

u =

[
LgLfπ(x)
LgLfγ(x)

]−1

x=T−1(η,ξ)

(
−
[
L2
fπ(x)

L2
fγ(x)

]
x=T−1(η,ξ)

+ v

)
=: β−1(η, ξ)(−α(η, ξ) + v)

(3.15)

yields the feedback linearized system

η̇1 = η2 ξ̇1
1 = ξ1

2 ξ̇2
1 = ξ2

2 ξ̇3
1 = ξ3

2

η̇2 = vη ξ̇1
2 = vξ1 ξ̇2

2 = vξ2 ξ̇3
2 = vξ3

(3.16)
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where v = col(vη, vξ) ∈ R × R3. This is precisely the desired normal form (3.7) with
Aη = [ 0 1

0 0 ] , Bη = [ 0
1 ] , Aξ = diag(A1, A2, A3), Ai = [ 0 1

0 0 ] , Bξ = diag(B1, B2, B3), Bi = [ 0
1 ].

The outer control law for v can be designed by linear control techniques to stabilize the
origin of the ξ-subsystem in order to stabilize the manifold Γ? (can be done via state-
feedback or robust linear control methods [32]), and to track desired motions along the
path governed by the η2-subsystem. Note that the decoupling matrix β( · ) ∈ R4×4 in (3.15)
is full rank since (3.6) holds and the path satisfies Assumptions 3.1.1 and 3.1.2, except at
the center of the circle and at the singular configurations of the manipulator. In Chapter
4, a numerical algorithm is employed which removes the singularity when the output is
equidistant to multiple points on the path P .

3.2.2 Robust Controller

To track a desired constant velocity ηref
2 along the path, the following outer control law

may be used

vη(η, t) = Kp1

(
ηref

2 − η2(t)
)

+KI1

t∫
0

(
ηref

2 − η2(τ)
)

dτ. (3.17)

If a time-varying tangential velocity profile is to be tracked, one can add a feed-forward
term. The above PI control law works well in practice for a majority of systems in the
presence of disturbance [64]. It turns out that this controller works well for our tracking
purposes for the tangential speed along the path. The ξ-subsystem in (3.14) with (3.15)
can be rewritten as

ξ̇ = Aξ +Bξ [α(η, ξ) + β(η, ξ)u]2:4 (3.18)

Indeed the feedback transformation (3.15) results in perfect cancellation of the nonlinear
terms α( · ), β( · ) resulting in the linearized system ξ̇ = Aξξ + Bξvξ. However, with the
unmodelled dynamics and parameter uncertainties described in Section 2.1.1, the resulting
system takes the form [37]

ξ̇ = Aξξ +Bξ [α(η, ξ) + ∆α(η, ξ)+ (β(η, ξ) + ∆β(η, ξ))u]2:4

=: Aξξ +Bξ [α(η, ξ) + β(η, ξ)u]2:4 + δ(η, ξ, u)

where ∆α( · ) ∈ R4,∆β( · ) ∈ R4×4 represent the modelling uncertainties. Note that this
model of uncertainty assumes that the inputs do not appear in earlier derivatives of the
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output than expected. Thus we do not expect perfect cancellation of the nonlinear terms
using the control input (3.15). The outer control input vξ can be designed to overcome the
perturbation term δ(η, ξ, u). It is shown in [37] that if the uncertainty satisfies

‖ (∆β(η, ξ) + β(η, ξ))−1 β(η, ξ)− I4×4‖ ≤ k1 < 1

‖ (∆β(η, ξ) + β(η, ξ))−1 ∆α(η, ξ)‖ ≤ k2‖ col(η, ξ)‖
(3.19)

then the inner control loop (3.15) and the outer controller of the form

vξ = (K +K0) ξ +

{
K1

ξ
‖ξ‖ : ‖ξ‖ ≥ µ > 0

K2‖ξ‖ξ : ‖ξ‖ < µ.
(3.20)

where (Aξ + BξK) is Hurwitz, K0, K1, K2,∈ R3×3, µ ∈ R are constants that depend on
k1, k2, then the origin of ξ will be asymptotically stable. In practice, finding k1, k2 is
difficult, which implies difficulty in selecting µ and the gains Ki. However we treat µ and
Ki as tuning parameters in the following section.

3.3 Experimental Results

We implement the path following controller on the CPM via Labview Real-Time Module c©

to control the motor PWM amplifiers and to read the optical encoders. The encoders
read the di of equation (2.5) (the linear actuator extension). Hence the inverse mapping of
(2.6), l−1

i , is used to retrieve the states xc of the system. The derivative of xc is numerically
computed to retrieve the xv states. The block diagram of the control system can be seen
in Figure 3.1.

To check the validity of the robust controller (3.20), we examine how uncertain the
nominal model is. Figure 3.2 compares two transversal controllers, one with simple state
feedback vξ = Kξ and the other with the robust controller (3.20). The feedback gain K is
the same for both controllers, and thus, only the robustifying terms were tuned in the latter
controller. Clearly the simple state feedback on ξ was not able to stabilize the transversal
subsystem (ξ-subsystem) and hence the wrist position is far from the desired path, showing
the need and usefulness of the robust controller to overcome model uncertainty. There is
still slight error due to the bounds of the perturbation terms ∆α,∆β not satisfying (3.19).
Nevertheless the error is significantly reduced.
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Figure 3.1: Block diagram of the robust path following control system.

Figure 3.2: Experiment: Comparison of our path following controller with and without
the robust component (3.20) on the transversal states. The path parameters in (3.9) and
(3.10) are Yc1 = [100]>, Yc2 = [001]>, Yc3 = [010]>, ψ = 0, r = 100mm, and oc = [50000]>.

The robust control law is also compared with the simple trajectory tracking controller
of independent-joint PID [98]:

ui = KPi

(
xref
ci

(t)− xci(t)
)

+KDi

(
xref
vi

(t)− xvi(t)
)

+

KIi

∫ t

0

(
xref
ci

(τ)− xci(τ)
)

dτ, i ∈ {1, 2, 3, 4},
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where the reference signal xref
c is generated by solving the inverse kinematics for the desired

path (3.10) with the desired speed parametrization. Namely, the path parameter λ(t) is

such that λ̇(t) =
ηref2

r
. The joint velocities xref

v are generated by xref
v = J−1(xref

c )σ′(t), where

J = ∂h(xc)
∂xc

is the manipulator Jacobian [98].

We test the path of a circle in the horizontal plane shown in Figure 3.3 with a constant
reference velocity of η2ref

2 = 100mm
s

tangent to the circle. The transformed state positions
are shown in Figure 3.4. From (3.11) and (3.13), the states ξ1

1 , ξ
1
2 , ξ

1
3 correspond to the

error to the cylinder, plane, and end-effector angle, respectively.

Figure 3.3: Experiment: Comparison of the robust path following controller with a trajec-
tory tracking controller in the output space. The path parameters in (3.9) and (3.10) are
Yc1 = [1 0 0]>, Yc2 = [0 1 0]>, Yc3 = [0 0 1]>, ψ = 0, r = 100 mm, and oc = [0 500 100]>.

These results demonstrate one of the main disadvantages of classical trajectory tracking
control. The large initial error causes a poor transient response, and since the controller
is trying to catch up to the trajectory, forces the manipulator to actually cut across the
cylinder. On the other hand, the path following controller naturally converges to the closest
point on the path due to the explicit stabilization of the path following manifold Γ?. The
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Figure 3.4: Experiment: Transformed state positions with the transformation T applied
from (3.13).

dynamics are being accounted for in a robust manner, thus gain-tuning for the outer loop
controller on v becomes easier as the dynamics appear linear in this space.

The inputs are shown in Figure 3.3. The two controllers are operating in a similar
range of control effort.

3.4 Summary

This chapter proposes a robust path following controller design approach for articulated
manipulators. The path following controller uses transverse feedback linearization to sta-
bilize the path following manifold. Then, by Lyapunov redesign, a robust controller is used
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Figure 3.5: Experiment: Comparison of the control signal for the path following controller
and the trajectory tracking controller.

to enforce asymptotic stability of the transverse dynamics in the presence of modelling
uncertainty. In addition, the controller uses a refinement of the normal form to facilitate
desired motion on the path via a linear controller. The approach was validated on a 4-DOF
robot manipulator using circles as the paths, and performed well despite the modelling in-
accuracies. This achieves the robustness aspects of PF1 to PF3. The generalization of
the paths in PF1 to PF3 will be addressed in the next chapter.

We also fully linearized the system by defining a four dimensional output space. Had we
removed the constraint ψ on the end-effector angle, the resulting system would have been
redundant. Dealing with redundancy in the context of path following will be addressed in
the next chapter, in order to achieve PF4 for Euler-Lagrange systems.
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Chapter 4

Spline Path Following and
Redunancy Resolution

In this chapter, we extend the class of paths of the previous chapter to framed curves
generated by splines in the workspace of redundant Euler-Lagrange systems (2.3) with
output (2.4). The class of admissible paths includes self-intersecting curves (Section 4.1).
Kinematic redundancies are resolved by designing controllers that solve a suitably defined
constrained quadratic optimization problem (Section 4.2.3). By employing partial feedback
linearization, the proposed path following controllers have a clear physical meaning. The
approach is experimentally verified on the CPM using the robust controller developed
in Chapter 3 (Section 4.3). Portions of this chapter have been submitted to the IEEE
Transactions on Robotics journal and is currently under review [43].

4.1 Admissible paths

We assume that we are given a finite number, nspline ∈ N, of (P + 1)-times continuously
differentiable, parametrized curves in the output space of (2.3), (2.4)

σk : R→ RP , k ∈ {1, 2, . . . , nspline} . (4.1)

The curves need not be polynomials, but we nevertheless use the term spline in accordance
with common practice. We are also given nspline non-empty, closed, intervals of the real
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line Ik := [λ(k,min), λ(k,max)] ⊂ R. The desired path is the set

P :=

nspline⋃
k=1

σk (Ik) . (4.2)

If P > 3, then the path also specifies a desired orientation of the end-effector. We assume
that the overall path is (P + 1)-times continuously differentiable in the following sense:

Assumption 4.1.1 (smoothness of path). The curves (4.1) satisfy

(∀k ∈ {1, 2, . . . , nspline − 1}) (∀i ∈ {0, 1, . . . , P + 1}) diσk
dλi

∣∣∣∣
λ=λ(k,max)

=
diσk+1

dλi

∣∣∣∣
λ=λ(k+1,min)

.

In the case of closed paths, the same equality must hold between spline index 1 and nspline.

This assumption is required to ensure continuous control effort over the entire path. In
the case of spline interpolation (fitting polynomials between desired waypoints), Assump-
tion 4.1.1 can be enforced by setting it as a constraint in the spline fitting formulation
and using polynomials of sufficiently high degree. Typically the parameter λ of each curve
σk represents the chord length between waypoints; namely, λ(k,min) = 0 and λ(k,max) = lk
where lk is the Euclidean distance between the k’th and (k + 1) waypoints [35].

Remark 4.1.1. Assumption 4.1.1 can be relaxed if continuity of the control signal over
the entire path isn’t required. Furthermore, if Assumption 4.1.1 is only true for i = 0, i.e.,
the path is not continuously differentiable, the control input can still be kept continuous
by designing the desired tangential velocity profile in such a way that the output slows
down and stops at σk(λ(k,max)) = σk+1(λ(k+1,min)), and then resumes motion along curve
k + 1 in finite time. See Remark 4.2.4 •

We further assume that the curves (4.1) are framed.

Assumption 4.1.2 (framed curves). For each spline k, the first P derivatives of σk are
linearly independent, i.e.,

(∀k ∈ {1, 2, . . . , nspline}) (∀λ ∈ Ik) spanR

{
σ′k(λ), σ′′k(λ), . . . , σ

(P )
k (λ)

}
= RP .

Assumption 4.1.2 allows the use of Gramm-Schmidt orthogonalization to construct
Frenet-Serret frames (FSFs) in the output space RP . The use of FSFs for control of
mobile robots is a well-known technique [20]. In this paper we use Assumption 4.1.2 to
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generate a zero-level set representation of P in the state space of (2.3). Previous works
[48] (see Chapter 3), relied on the zero-level set representation to already be available by
restricting the class of paths to one-dimensional embedded submanifolds, which precludes
self-intersecting curves.

Remark 4.1.2. Assumption 4.1.2 can be relaxed to only requiring that the curve be
regular by not using the FSF at each point along the curve. Consider a straight line

σ(λ) =
[
λ 0

]> ∈ R2. This curve violates Assumption 4.1.2 at all points λ. The first

basis vector is taken to be the unit tangent vector
[
1 0

]>
(as is the case in the FSF). The

normal vector cannot be constructed via FSF, since the curvature is zero. However, one

can choose the normal vector to be
[
0 1

]>
.

Furthermore, consider a regular torsion free curve in the xy-plane of a 3-dimensional
workspace. This curve also violates Assumption 4.1.2, since σ(3)(λ) will be a linear com-
bination of σ′ and σ′′. However, one can choose the first basis vector to again be the unit
tangent vector σ′(λ)

‖σ′(λ)‖ . The unit normal vector can be chosen to be the 90 degree rotation

of the first basis vector, and the final basis vector can be chosen to be
[
0 0 1

]>
. Once

the appropriate frame is chosen, the proposed approach for coordinate transformation and
control design (Section 4.2) can be applied without any additional modifications. •

Unlike in the previous chapter, we do not require that the path P be an embedded,
nor immersed, submanifold of the output space. In other words the curve may be self-
intersecting. Removing this restriction is particularly useful because it allows the curve to
go through an arbitrary set of waypoints in the output space of system (2.3) and can be
constructed using classical spline fitting.

The problem studied in this chapter is to find a continuous feedback controller for
system (2.3), with nspline curves that satisfy Assumptions 4.1.1 and 4.1.2, that renders the
path P in (4.2) invariant and attractive (see Section 1.1). The motion along the path should
also be controllable, so that a tangential position or velocity profile (ηref(t)) can be tracked.
The robust control approach of Chapter 3 should also be applied to handle modelling
uncertainty in the system. These points collectively satisfy PF1 to PF3. Furthermore,
any remaining redundant dynamics (will show up as internal dynamics for the closed-loop
system) must be bounded, thus achieving PF4 for Euler-Lagrange systems. In Chapter 5,
PF4 will be extended to mobile manipulator systems.
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4.2 Multiple Spline Path Following Design

We begin by defining a coordinate transformation in Section 4.2.1 that depends on a
given path segment (4.1) and the system dynamics (2.3). These coordinates partition the
system dynamics into (3.7), that is a sub-system that governs the motion transversal to
the desired path and a tangential sub-system that governs the motion of the system along
the path (Section 4.2.2). One of the keys to this construction in this chapter is the ability
to unambiguously determine the spline that is currently closest to the system output (2.4).
By doing so, we are able to deal with self-intersecting curves and curves (4.2) that aren’t
embedded submanifolds. A novel redundancy resolution approach is then proposed to
ensure the redundant dynamics remain bounded (Section 4.2.3). The overall block diagram
can be found below in Figure 4.1.

σk(λ), k ∈ {1, ..., nspline}

Tangential
Controller

Transversal
Controller

Diffeomorphism
(4.12)

ξ

η

vη

vξ

Feedback
Transform &
Redundancy
Resolution

(4.19)

u

λ∗, k∗

Algorithm 1

x

Dynamic
System
(2.3)

ηref(t)

Figure 4.1: Spline Path following control system block diagram for redundant Euler-
Lagrange systems.

4.2.1 Coordinate Transformation

We construct a coordinate transformation T that maps the state x of system (2.3) to a
new set of coordinates that correspond to the tangential position/velocity along the path,
and the distance and velocity towards/transversal to the path.
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Tangential States

For the moment assume that the closest spline to the output y is known; denote it as k∗. In
the case that nspline = 1, the k notation can be dropped to ease readability. Furthermore,
denote the parameter of spline k∗ that corresponds to the closest point to the output y as
λ∗ ∈ Ik∗ [48] (cf. Equation (3.4)):

λ∗ := $k∗(y) := arg inf
λ∈Ik∗

‖y − σk∗(λ)‖ . (4.3)

The first tangential state is the projected, traversed arclength along the path (cf. Equa-
tion (3.4), (3.5)):

η1 = η1k∗ (x) := sk∗ ◦$k∗ ◦ h(x) +
k∗−1∑
k=1

sk(λ(k,max)) (4.4)

where

sk(λ) :=

λ∫
λ(k,min)

∥∥∥∥dσk∗(λ)

dλ

∥∥∥∥ dλ.

This integral does not have to be computed for real time implementation if only tangential
velocity control is required, which will be the case in the experiment (Section 4.3). Note
the slight abuse of notation for using η1 to represent both the state and the map. The
summation term on the right in (4.4) is used to get the arclength over the entire path P , so
that η1 remains continuous even as the current spline number k∗ increments/decrements.
Note that this summation can be computed offline and accessed as a look-up-table during
real-time control.

With η1 representing the projected tangential position of the output y along the path,
tangential velocity is computed by taking the time derivative. By the fundamental theorem
of calculus dsk∗

dλ∗
= ‖σ′k∗(λ∗)‖. Geometric arguments provide that d$k∗

dy
= Kk∗(y)σ′k∗(λ

∗)>

where Kk∗ : Rp → R is a smooth scalar function [28]. To solve for Kk∗(y), the following
identity may be used:

$k∗(y) = $k∗(σk∗($k∗(y))).
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Differentiating both sides:

d$k∗

dy
=

d$k∗

dy
σ′(λ)|λ=λ∗

d$k∗

dy

⇒d$k∗

dy
σ′k∗(λ)|λ=λ∗ = 1

⇒d$k∗

dy
σ′k∗(λ)|λ=λ∗ =

(
Kk∗(y)σ′k∗(λ

∗)>
)
σ′k∗(λ

∗) = 1

⇒Kk∗(y) =
1

‖σ′k∗(λ∗)‖
2 .

Thus η2 can be compactly written as

η2 = η2k∗ (x) := η̇1 =
dsk∗

dλ∗
d$k∗

dy

∂h

∂xc
= 〈e1k∗ (λ

∗), J(xc)xv〉|λ∗=$◦h(x)

(4.5)

where e1 is the unit-tangent Frenet-Serret vector:

e1k∗ (λ
∗) :=

dσk∗

dsk∗
=

dσk∗

dλ

∣∣∣∣
λ=λ∗

dλ∗

dsk∗
=

σ′k∗(λ
∗)

‖σ′k∗(λ∗)‖
. (4.6)

.

Numerical Optimization for λ∗ and k∗

The tangential coordinates defined by (4.4), (4.5) rely on the computation of the parameters
k∗ – which characterizes which of the nspline curves σk(Ik) is closest to the system’s output
– and λ∗ – which characterizes the point σk∗(λ

∗) closest to the system’s output.

Assumption 4.2.1 (Initial λ∗ and k∗ are known). Based on the initial conditions of the
system at time t = 0, the corresponding k∗ ∈ {1, ..., nspline} and λ∗ ∈ Ik∗ are known.

Assumption 4.2.1 can be satisfied by apriori global minimum brute-force optimization
solvers to find the closest point of h(x(0)) to the path P . One can do this by quantizing the
path P and searching for the point with minimum distance to the output, whilst keeping
track of the curve number k and the path parameter λ. The output to this approach
will not yield the exact solution (due to the quantization of P), but will be adequate for
sufficiently small quantization. In the case that multiple global minima exist, one can be
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chosen arbitrarily. Then for t > 0, a numerical local optimizer like gradient descent can
be used online, initialized at the previous time step’s k∗, λ∗. The algorithm we developed
is Algorithm 1 below.

Due to the nature of numerical algorithms, the computation of λ∗ and k∗ for t > 0 is
done discretely. At the next time-step t = ∆t (where ∆t is sampling time of the computer)
and as the output y moves, the next, closest local minimum of ‖y − σk∗(λ)‖ is the global
minimum, assuming that the output y hasn’t moved far within the time step. Thus, simple
numerical algorithms like gradient descent can be used to find the nearest local minimum
which will end up being the global minimum. The idea is illustrated in Figure 4.2 below.

Figure 4.2: Numerical optimization: At the start of the run, the true λ∗ is known by
Assumption 4.2.1. As the output y moves, at each subsequent time-step a numerical
optimizer is likely to find the global minimum of ‖y − σk∗(λ)‖ if initialized at the previous
time-step’s λ∗, since the global minimum will be near.

For a moment assume that the output y is already on the path (y = σk∗(λ
∗)). If

the output y moves too far within one time step (corresponds to a large change in the
path parameter λ∗), then there may be a local minimum between the initial guess (the
previous time-step’s solution) and the true global minimum. Thus, we can ensure that a
numerical algorithm will not get stuck at such a well by ensuring the path parameter only
changes by some amount ∆λ, which keeps the function ‖y − σk∗(λ)‖y=σk∗ (λ∗) convex for
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λ ∈ [λ∗ −∆λ, λ∗ + ∆λ]. If σk∗ is unit-speed parametrized, i.e., ‖σ′(λ)‖ = 1 for all λ, then
∆λ corresponds to the allowable distance along the curve that can be travelled.

This ∆λ is a conservative estimate for the allowable change in parameter in one time-
step, since requiring the function to be convex is sufficient, not necessary to ensure con-
vergence of a numerical algorithm to λ∗ if initialized properly. In logic notation, ∆λ must
satisfy

(∀λ∗ ∈ Ik∗) (∀λ ∈ [λ∗ −∆λ, λ∗ + ∆λ] ∩ Ik∗)
d2
(
‖y − σk∗λ)‖y=σk∗ (λ∗)

)
dλ2

> 0

which is equivalent to

(∀λ∗ ∈ Ik∗) (∀λ ∈ [λ∗ −∆λ, λ∗ + ∆λ] ∩ Ik∗)

〈σk∗(λ∗)− σk∗(λ), σ′′k∗(λ)〉+
〈σk∗(λ∗)− σk∗(λ), σ′k∗(λ)〉2

‖σk∗(λ∗)− σk∗(λ)‖2 < ‖σ′k∗(λ)‖2
. (4.7)

The relation in (4.7) can be used as a test to infer the allowable speed at which the
output y can traverse a path in order for a numerical optimizer to succeed in evaluating
$k∗(y) = arg infλ∈Ik∗ ‖y − σk∗(λ)‖. In particular for a unit-speed parametrized curve and
assuming the output is on the path P , if (4.7) holds for some ∆λ, then the allowable speed
along the curve (η2) is ∆λ

∆t
.

Example 2. (Ellipse) Let nspline = 1 and consider the path of a single ellipse (the k∗

subscript will be dropped) σ(λ) = (2 cos(λ), sin(λ)). When λ∗ = 0, all λ ∈ [−1.5136, 1.5136]
satisfies the inequality in (4.7). This means that when the output is at σ(0), the change
in the path parameter in one time step is +/ − 1.5136. This value can be solved for
analytically or numerically using the inequality in (4.7). We can run the same test for all
λ∗ over the path and take the smallest resulting range to be the ∆λ. 4

A numerical algorithm like steepest descent works for finding λ∗ if it starts within ∆λ of
λ∗, however it normally takes many iterations to converge since the algorithm takes small
step sizes to the solution [14]. Another approach is to use some knowledge about ηref

2 to
adjust the step size. In particular, if the path is unit-speed parametrized, one could use
an initial step size of ηref

2 ∆t in the direction of the steepest descent to quickly approach
the solution. If the path is not unit-speed parametrized, a map of ηref

1 (t) and λ∗ can be
constructed using (4.4) sampled at each time step, and the smallest jump in λ∗ can be
used as the initial step size. An algorithm like monotonic gradient descent with adaptive
step-size works nicely (Algorithm 1) using this initial step size [102].
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Determining k∗ is just a matter of checking if the λ∗ computed by the numeric algorithm
is outside the domain Ik∗ . If it is, then k∗ must be incremented or decremented, as done in
Algorithm 1. Let $̄k∗(λ) := ‖y − σk∗(λ)‖ be the function to be minimized. The algorithm
for determining λ∗ and k∗ can be found in Algorithm 1.

Algorithm 1 Determining λ∗ and k∗ at each time step.

Require: The closest spline k∗ and corresponding λ∗, stepsize α, the gradient ∂$̄k∗
∂λ (λ∗), and an ε for the

stopping criterion.
Ensure: The closest spline k∗ and the λ∗ minimizing $̄k∗(λ) = ‖y − σk∗(λ)‖.
1: Initialize $̄λ∗ = $̄k∗(λ

∗), g = ∂$̄k∗
∂λ (λ∗)

>

2: repeat
3: λ∗′ ← λ∗ − αg/ ‖g‖ , $̄λ∗′ ← $̄k∗(λ

∗)
4: if $̄λ∗′ < $̄λ∗ then
5: λ∗ ← λ∗′, $̄λ∗ ← $̄λ∗′

6: g ← ∂$̄k∗
∂λ (λ∗′)

>

7: α← 1.2α {increase the stepsize}
8: else
9: α← 0.5α {decrease the stepsize}

10: end if
11: until |λ∗′ − λ∗| < ε
12: if λ∗ > max(Ik∗) then
13: k∗ ← k∗ + 1
14: GOTO Line 1
15: else if λ∗ < min(Ik∗) then
16: k∗ ← k∗ − 1
17: GOTO Line 1
18: end if

Algorithm 1 is ran at each time step in order to calculate the coordinate transformation.
In Algorithm 1, lines 1 to 11 are the familiar monotonic gradient descent algorithm with
stepsize adaptation [102]. Lines 12 to 18 determine which spline we are on. Depending on
the path following application, if there is a known neighbourhood of the tangential velocity,
the stepsize α in Algorithm 1 can be tuned in order to minimize the number of steps taken
in the gradient descent and thus the computational load.

Remark 4.2.1. In [48], the path to be followed was assumed to be a one-dimensional
embedded submanifold, which precludes self-intersecting curves. By employing Algorithm
1 under Assumption 4.2.1, this work removes that restriction and enlarges the class of
admissible paths.

Consider first the case in which two curves σi, σj, i, j ∈ {1, . . . , nspline} overlap. That is,
there exist two closed, possibly disconnected, sets Λi ⊂ Ii, Λj ⊂ Ij with (∀λi ∈ Λi)(∃λj ∈
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Λj)σi(λi) = σj(λj). Suppose that at the current time-step, we have k∗ = i and λ∗ = λi ∈ Λi.
Then the coordinate transformation employed is completely determined by the curve σi.
At the next time-step, the algorithm will search Ik for its next update. This local search
implies that the algorithm will not “jump” to Ij despite the existence of intersection points.

The second case, the one in which there is single curve that is not injective, is handled
similarly. Suppose there exist two values λ1, λ2 ∈ Ik∗ , λ1 < λ2, with σk∗(λ1) = σk∗(λ2). By
continuity, it is possible to find two open intervals I1, I2 ⊂ Ik∗ with λ1 ∈ I1 and λ2 ∈ I2

and I1∩ I2 = ∅. Now suppose that at the current time-step, we have λ∗ = λ1. At the next
time-step, the algorithm will search I1 for its next update. This local search implies that
the algorithm will not “jump” to I2 despite the existence of an intersection point.

In addition, when the output y is equidistant to multiple points on the path, the
algorithm will again just choose the λ∗ that is closest to the previous time-step’s λ∗, due
to the local nature of the monotonic gradient descent algorithm. •

Transversal States

The transversal states represent the cross track error to the path using the remaining FSF
(normal) vectors as follows. The k∗ notation will be dropped for brevity. The generalized
Frenet-Serret (FS) vectors are constructed applying the Gram-Schmidt Orthonormalization
process to the vectors σ′(λ), σ′′(λ), . . . , σ(P )(λ):

ej(λ) :=
ēj(λ)

‖ēj(λ)‖
(4.8)

where

ēj(λ) := σ(j)(λ)−
j−1∑
i=1

〈
σ(j)(λ), ei(λ)

〉
ei(λ),

for j ∈ {1, . . . , P}. This formulation is well-defined by Assumption 4.1.2. For curves
that violate Assumption 4.1.2, other ad-hoc orthonormalization processes can be used, see
Remark 4.1.2. The transversal positions can be computed by projecting the error to the
path, y − σ(λ∗), onto each of the FS normal vectors:

ξj−1
1 = ξj−1

1 (x) := 〈ej(λ∗), h(x)− σ(λ∗)〉|λ∗=$◦h(x) (4.9)

for j ∈ {2, . . . , P}.
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To compute the transversal velocities, we take the time derivative of (4.9). First note

the identity d
dt

ej(λ
∗) = e′j(λ

∗)d$
dy
ẏ, and d$

dy
= σ′(λ∗)>

‖σ′k∗ (λ∗)‖2 from Section 4.2.1. Then,

ξj−1
2 := ξ̇j−1

1 =

(
e′j(λ

∗)
d$

dy

∣∣∣∣
y=h(x)

J(xc)xv

)>
(h(x)− σ(λ∗))

+ ej(λ
∗)>

(
J(xc)xv − σ′(λ∗)

d$

dy

∣∣∣∣
y=h(x)

J(xc)xv

)

=

(
e′j(λ

∗)
σ′(λ∗)>

‖σ′(λ∗)‖2J(xc)xv

)>
(h(x)− σ(λ∗))

+ ej(λ
∗)>
(
J(xc)xv − e1(λ∗)e1(λ∗)>J(xc)xv

)
and using the simplification that 〈ej, e1〉 = 0 for j > 1 and η2(x) = 〈e1, J(xc)xv〉 yields

ξj−1
2 := ξj−1

2 (x) = ξ̇j−1
1 =

η2(x)

‖σ′(λ∗)‖
〈
e′j(λ

∗), h(x)− σ(λ∗)
〉

+ 〈ej(λ∗), J(xc)xv〉 |λ∗=$◦h(x), (4.10)

j ∈ {2, . . . , P}, and e′j(λ
∗) are given by the generalized FS equations (4.11)

e′1(λ)
e′2(λ)

...
e′p−1(λ)
e′p(λ)

 = ‖σ′(λ)‖


0 X1(λ) . . . 0 0

−X1(λ) 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 0 Xp−1(λ)
0 0 . . . −Xp−1(λ) 0




e1(λ)
e2(λ)

...
ep−1(λ)
ep(λ)

 (4.11)

where Xi(λ) =
〈e′i(λ),ei+1(λ)〉
‖σ′(λ)‖ , i ∈ {1, ..., P − 1} are the generalized curvatures [5]. If P = 2,

then e′2(λ∗) and h(x) − σ(λ∗) are orthogonal and ξ1
2 simplifies to 〈e2(s(λ∗)), J(xc)xv〉.

Figure 4.3 illustrates the P = 3 case.

Diffeomorphism

In this section, we show that the tangential and transversal maps defined above can be
used to construct a diffeomorphism. For brevity we again drop the spline k notation. First,
define the lift of curve σ to Rn as

Γ := {x ∈ Rn : ξ1
1(x) = ξ2

1(x) = ... = ξP−1
1 (x) = 0}
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σk∗+1(Ik∗+1)
σk∗(Ik∗)

σk∗(λ
∗)

e3

e1e2

y = h(x)

σk∗(λ(k∗,max))

Rp

= σk∗+1(λ(k∗+1,min))

Figure 4.3: Example of the FSF when P = 3.

which represents the states x that correspond to the output y being on the curve. The
above set is not necessarily a manifold since the curves considered can be self-intersecting
or even self-overlapping, thus it is more general than the restrictive manifold case analysed
in [48] and Chapter 3.

Lemma 4.2.2. There exists a domain U ⊆ Rn with Γ ⊂ U such that for all x ∈ U ,
and (4.3) is solved by Algorithm 1, the 2p functions (4.4), (4.5), (4.9), (4.10) have linearly
independent differentials.

Proof. Note that (4.3) is solved for by Algorithm 1, so if the output y is equidistant to
multiple points on the path, then a λ∗ is always well defined by the local search.
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Next we write the differentials for each function.

∂η1

∂x
=
[
ds
dλ

d$
dy
J(xc) , 01×N

]
=
[
e1(λ∗)>J(xc) , 01×N

]
∂η2

∂x
=
[
∗ , e1(λ∗)>J(xc)

]
∂ξj−1

1

∂x
=

[(
(h(x)− σ(λ∗))>

(
1

‖σ′(λ∗)‖
e′j(λ

∗)e1(λ∗)>
)

+
(
ej(λ

∗)>
))
J(xc) , 01×N

]
∂ξj−1

2

∂x
=

[
∗ ,

(
(h(x)− σ(λ∗))>

(
1

‖σ′(λ∗)‖
e′j(λ

∗)e1(λ∗)>
)

+
(
ej(λ

∗)>
))
J(xc)

]
where ∗ denotes a vector of dimension 1×N . Looking at the transversal terms, the product

1
‖σ′(λ∗)‖ (h(x)− σ(λ∗))>

(
e′j(λ

∗)
)

produces a scalar, call it α. Thus the terms become

∂ξj−1
1

∂x
=
[(
αe1(λ∗)> + ej(λ

∗)>
)
J(xc) , 01×N

]
∂ξj−1

2

∂x
=
[
∗ ,

(
αe1(λ∗)> + ej(λ

∗)>
)
J(xc)

]
Since the domain U does not include singularity points of J(xc) by the class of systems,
the differentials will be linearly independent if the vectors ei, i = 1, ..., p are orthogonal.
These vectors are orthogonal because they are the FS orthonormal basis vectors.

By [52, Proposition 5.1.2], for each x∗ ∈ U , it is possible to find a function ϕ : Rn →
Rn−2p so that by the Inverse Function Theorem [52] there exists a neighbourhood Ux∗ such
that the mapping

T : Ux∗ ⊆ Rn → T (Ux∗) ⊆ Rn

x 7→ (η1, η2, ξ
1
1 , ξ

1
2 , . . . , ξ

p−1
1 , ξp−1

2 , ζ)

= (η1(x), η2(x), ξ1
1(x), ξ1

2(x), . . . , ξp−1
1 (x), ξp−1

2 (x), ϕ(x))

(4.12)

is a diffeomorphism onto its image. In practice the domain of T can often be extended to
all of U (see Section 4.3).
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Let us bring back the spline notation k to explicitly indicate that the coordinate trans-
formation is dependent on the curve k∗, which is determined using Algorithm 1. Namely,
the coordinate transformation can be viewed as a collection of nspline maps

Tk : Uk ⊆ Rn → Tk(Uk) ⊆ Rn

x 7→ (η1k(x), η2k(x), ξ1
1k

(x), ξ1
2k

(x), . . . , ξp−1
1k

(x), ξp−1
2k

(x), ϕk(x)) =

sk(λ
∗) +

∑k−1
k=1 sk(λ(k,max))

〈e1k(λ∗), J(xc)xv〉
〈e2k(λ∗), h(x)− σk(λ∗)〉

η2k (x)

‖σ′k(λ∗)‖
〈
e′2k(λ∗), h(x)− σk(λ∗)

〉
+ 〈e2k(λ∗), J(xc)xv〉

...
〈epk(λ∗), h(x)− σk(λ∗)〉

η2k (x)

‖σ′k(λ∗)‖
〈
e′pk(λ∗), h(x)− σk(λ∗)

〉
+ 〈epk(λ∗), J(xc)xv〉

ϕk(x)


where λ∗ = $k ◦ h(x), k ∈ {1, . . . , nspline}. As we show later, satisfying a path following
task depends on a state feedback involving the η and ξ states. Thus, it is desirable for η
and ξ to remain continuous from one curve on the path to the next, i.e., as k changes via
Algorithm 1, to avoid wear on equipment due to jerky motions. The following proposition
will show this.

Proposition 4.2.3. The coordinate transformation

T̄k(x) := [η1k(x), η2k(x), ξ1
1k

(x), ξ1
2k

(x), ..., ξp−1
1k

(x), ξp−1
2k

(x)]> (4.13)

is continuous (except for η1k(x) for closed curves) as k changes by Algorithm 1.

Proof. Based on Algorithm 1, k changes when the output of the system crosses the hyper-
plane shown in Figure 4.4. Thus we must show that T̄k(x) = T̄k+1(x) for x that correspond
to the output y = h(x) on this hyperplane. This is equivalent to showing

(∀x ∈ {x ∈ Rn|x = ($k ◦ h(x))−1(λ(k,max))}) T̄k(x) = T̄k+1(x).

First, the coordinate transformation relies on the computation of λ∗ = $k◦h(x), which can
be easily verified to be continuous in x for a fixed k. The tangential position for a fixed k
is continuous since sk(λ

∗) is a function of σ′(λ∗), which is continuous by Assumption 4.1.1.
On the hyperplane, η1k(x) = sk(λ(k,max))+

∑k−1
i=1 si(λ(k,max)) =

∑k
i=1 si(λ(k,max)) = η1k+1

(x)
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σk(Ik)

σk+1(Ik+1)

Rp

σk(λ(k,max))
= σk+1(λ(k+1,min))

hyperplane

Figure 4.4: Spline k and spline k+ 1, their stitch point σk(λ(k,max)) = σk+1(λ(k+1,min)), and
the hyperplane.

and is still continuous at the transition. For closed curves, when k transitions between 1
and nspline, the value of η1k(x) resets between 0 and

∑nspline

i=1 si(λ(k,max)), respectively.

For the remaining states, h(x), J(x) are continuous by the class of systems (2.3).
The remaining terms are the FS vectors and its derivatives. For a fixed k, the FS
vectors ejk(λ∗) depends on σ(j)(λ∗) for j = 1, ..., p by (4.8), and thus will be continu-
ous by Assumption 4.1.1. Furthermore, the derivative of the FS vectors are governed
by the FS equations for general spaces (4.11) , and depend only on the generalized

curvatures Xi(λ) =
〈e′i(λ),ei+1(λ)〉
‖σ′(λ)‖ , i ∈ {1, ..., p − 1}. Thus, the highest derivative that

appears again is σ(p)(λ∗) and so the FS vector derivatives will remain continuous for
a fixed spline k. At the transition point, ejk(λ(k,max)) = ejk+1

(λ(k+1,min)) holds if and

only if σ
(j)
k (λ(k,max)) = σ

(j)
k+1(λ(k+1,min)) for j ∈ {1, . . . , P}. This is satisfied by Assump-

tion 4.1.1. To show that e′jk(λ(k,max)) = e′jk+1
(λ(k+1,min)) for j ∈ {1, . . . , P}, by (4.11)

it suffices to show that the generalized curvatures are continuous at the transition, i.e.,
Xik(λ(k,max)) = Xik+1

(λ(k+1,min)) for i ∈ {1, . . . , p− 1}. By definition of the curvatures, this
then simplifies to showing e′jk(λ(k,max)) = e′jk+1

(λ(k+1,min)) for j ∈ {1, ..., p − 1}. These
derivatives can be expressed by evaluating the derivative of (4.8), and so the equation will

hold if σ
(j)
k (λ(k,max)) = σ

(j)
k+1(λ(k+1,min)) for j ∈ {1, . . . , P}. Again by Assumption 4.1.1 this

holds.
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4.2.2 Dynamics and Control

The dynamics in transformed coordinates are

η̇1 = η2

η̇2 = L2
fη1(x) + LgLfη1(x)u

ξ̇1
1 = ξ1

2

ξ̇1
2 = L2

fξ
1
1(x) + LgLfξ

1
1(x)u

...

ξ̇p−1
1 = ξp−1

2

ξ̇p−1
2 = L2

fξ
p−1
1 (x) + LgLfξ

p−1
1 (x)u

ζ̇ = Lfϕ(x) + Lgϕ(x)u =: fζ(x, u)

(4.14)

where x = T−1(η, ξ, ζ). The Lie derivatives can be computed given the state maps from
Section 4.2.1 and the class of system (2.3) as follows.

Recall
d$k∗

dy
=

σ′(λ∗)>

‖σ′(λ∗)‖2 =
e>1 (λ∗)

‖σ′(λ∗)‖

∣∣∣∣
λ∗=$◦h(x)

For the η dynamics, recall:

η2 = e1(λ∗)T|λ∗=$◦h(x)J(xc)xv

By product rule and chain rule,

η̇2 = e′1(λ∗)T
dλ∗

dt
J(xc)xv + e′1(λ∗)T

(
∂J(xc)xv

∂x
ẋ

)
= e′1(λ∗)T

dλ∗

dt
J(xc)xv + e′1(λ∗)T

(
∂J(xc)xv
∂xc

xv + J(xc) (fv(x) + gv(x)u)

)
dλ∗

dt
=

d$k∗

dy
ẏ =

e>1 (λ∗)

‖σ′(λ∗)‖
J(xc)xv =

η2

‖σ′(λ∗)‖

⇒ η̇2 = e′1(λ∗)T
η2

‖σ′(λ∗)‖
J(xc)xv + e′1(λ∗)T

(
∂J(xc)xv
∂xc

xv + J(xc) (fv(x) + gv(x)u)

)
= e′1(λ∗)T

η2

‖σ′(λ∗)‖
J(xc)xv + e′1(λ∗)T

(
∂J(xc)xv
∂xc

xv + J(xc)fv(x)

)
︸ ︷︷ ︸

Lfη2(x)=L2
fη1(x)

+ e′1(λ∗)TJ(xc)gv(x)︸ ︷︷ ︸
Lgη2(x)=LgLfη1(x)

u
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For the ξ dynamics, recall:

ξj−1
2 = 〈ej(λ∗), J(xc)xv〉+

η2(x)

‖σ′(λ∗)‖
〈
e′j(λ

∗), h(x)− σ(λ∗)
〉
|λ∗=$◦h(x)

= 〈ẏ, ej(λ
∗)〉+

〈
y − σ(λ∗), e′j(λ

∗)
η2(x)

‖σ′(λ∗)‖

〉
Note that

dej(λ
∗)

dt
= e′j(λ

∗)
dλ∗

dt
= e′j(λ

∗)
η2

‖σ′(λ∗)‖
d 1
‖σ′(λ∗)‖

dt
=

d 1
‖σ′(λ∗)‖

dλ∗
dλ∗

dt
= −〈σ

′(λ∗), σ′′(λ∗)〉
‖σ′(λ∗)‖3

η2

‖σ′(λ∗)‖
= −η2

〈σ′(λ∗), σ′′(λ∗)〉
‖σ′(λ∗)‖4
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By product rule and chain rule,

ξ̇j−1
2 = 〈ÿ, ej(λ

∗)〉+

〈
ẏ, e′j(λ

∗)
η2(x)

‖σ′(λ∗)‖

〉
+〈

ẏ − σ′(λ∗) η2

‖σ′(λ∗)‖
, e′j(λ

∗)
η2(x)

‖σ′(λ∗)‖

〉
+〈

y − σ(λ∗), e′′j (λ
∗)

(
η2

‖σ′(λ∗)‖

)2

+ e′j(λ
∗)

η̇2

‖σ′(λ∗)‖
− e′j(λ

∗)η2
2

〈σ′(λ∗), σ′′(λ∗)〉
‖σ′(λ∗)‖4

〉

=

〈
∂J(xc)xv
∂xc

xv + J(xc) (fv(x) + gv(x)u), ej(λ
∗)

〉
+

〈
J(xc)xv, e′j(λ

∗)
η2(x)

‖σ′(λ∗)‖

〉
+〈

J(xc)xv − e1(λ∗)η2, e′j(λ
∗)

η2(x)

‖σ′(λ∗)‖

〉
+〈

y − σ(λ∗), e′′j (λ
∗)

(
η2

‖σ′(λ∗)‖

)2

+ e′j(λ
∗)

1

‖σ′(λ∗)‖
(
L2
fη1(x) + LgLfη1(x)u

)
−

e′j(λ
∗)η2

2

〈σ′(λ∗), σ′′(λ∗)〉
‖σ′(λ∗)‖4

〉
=

〈
∂J(xc)xv
∂xc

xv + J(xc) (fv(x) + gv(x)u), ej(λ
∗)

〉
+〈

2J(xc)xv − e1(λ∗)η2, e′j(λ
∗)

η2(x)

‖σ′(λ∗)‖

〉
+〈

y − σ(λ∗), e′′j (λ
∗)

(
η2

‖σ′(λ∗)‖

)2

+ e′j(λ
∗)

1

‖σ′(λ∗)‖
(
L2
fη1(x) + LgLfη1(x)u

)
−

e′j(λ
∗)η2

2

〈σ′(λ∗), σ′′(λ∗)〉
‖σ′(λ∗)‖4

〉
=

〈
∂J(xc)xv
∂xc

xv + J(xc)fv(x), ej(λ
∗)

〉
+〈

2J(xc)xv − e1(λ∗)η2, e′j(λ
∗)

η2(x)

‖σ′(λ∗)‖

〉
+〈

y − σ(λ∗), e′′j (λ
∗)

(
η2

‖σ′(λ∗)‖

)2

+ e′j(λ
∗)

1

‖σ′(λ∗)‖
L2
fη1(x)− e′j(λ

∗)η2
2

〈σ′(λ∗), σ′′(λ∗)〉
‖σ′(λ∗)‖4

〉
+

〈J(xc)gv(x)u, ej(λ
∗)〉+

〈
y − σ(λ∗), e′j(λ

∗)
1

‖σ′(λ∗)‖
LgLfη1(x)u

〉
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Thus,

L2
fη1(x) =

η2

‖σ′(λ∗)‖
〈e′1(λ∗), J(xc)xv〉+

〈
e1(λ∗),

∂(J(xc)xv)

∂xc
xv + J(xc)fv(x)

〉
LgLfη1(x) = e1(λ∗)>J(xc)gv(xc)

L2
fξ

j−1
1 (x) =

〈
ej(λ

∗),
∂(J(xc)xv)

∂xc
xv + J(xc)fv(x)

〉
+

η2

‖σ′(λ∗)‖
〈
e′j(λ

∗), 2J(xc)xv − e1η2

〉
+

〈
h(x)− σ(λ∗), e′′j (λ

∗)

(
η2

‖σ′(λ∗)‖

)2

+ e′j(λ
∗)

(
LgLfη1(x)

‖σ′(λ∗)‖
− η2

2

〈σ′(λ∗), σ′′(λ∗)〉
‖σ′(λ∗)‖4

)〉
LgLfξ

j−1
1 (x) = ej(λ

∗)>J(xc)gv(xc) + (h(x)− σ(λ∗))>e′j(λ
∗)
LgLfη1(x)

‖σ′(λ∗)‖

for j ∈ {2, . . . , P} and λ∗ = $ ◦ h(x). Physically, see their definitions in Section 4.2.1, the
η-subsystem represents the dynamics tangent to the path, and the ξ-subsystem represents
the dynamics transversal to the path. Thus, the redundant dynamics fζ represent the
dynamics of the system (2.3) that do not produce any output motion.

It then follows from Lemma 4.2.2 that the decoupling matrix

β(x) :=


LgLfη1(x)
LgLfξ

1
1(x)

...

LgLfξ
p−1
1 (x)

 =


e1(λ∗)>

(h(x)−σ(λ∗))>

‖σ′(λ∗)‖ e′2(λ∗)e1(λ∗)> + e2(λ∗)>

...
(h(x)−σ(λ∗))>

‖σ′(λ∗)‖ e′p(λ
∗)e1(λ∗)> + ep(λ

∗)>

 J(xc)gv(xc)

has full rank for all x ∈ U . This is equivalent to saying that for each x ∈ U , system (2.3)
with output (η1(x), ξ1

1(x), . . . , ξp−1
1 (x)) has a vector relative degree of {2, . . . , 2} and we can

perform partial feedback linearization. Let

α(x) :=
[
L2
fη1(x) L2

fξ
1
1(x) . . . L2

fξ
P−1
1 (x)

]>
(4.15)

and introduce an auxiliary input v =
[
vη vξ

]> ∈ R× RP−1 such that

v = β(x)u+ α(x) (4.16)

the dynamics (4.14) become

ζ̇ = fζ(x, u) η̇1 = η2 ξ̇j1 = ξj2
η̇2 = vη ξ̇j2 = vξj
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where j ∈ {1, . . . , P − 1}, x = T−1(η, ξ, ζ), and fζ(x, u) is used for brevity (see Equation
(3.7)).

In U the ξ-subsystem is linear and controllable, and can be stabilized to ensure at-
tractiveness and invariance of the path P . One can do this using a simple PD controller
vξj = −Kj

P ξ
j
1 − Kj

Dξ
j
2, j ∈ {1, . . . , P − 1}, for positive Kj

P , K
j
D. Another transversal

controller is (3.20) which is used on the experimental platform to overcome modelling un-
certainties. Doing so will stabilize the largest controlled invariant subset of Γ known as the
path following manifold [48], see Chapter 3. The η-subsystem is also linear and control-
lable, thus a tangential controller can be designed for vη to track some desired tangential
position or velocity profile ηref(t). A block diagram of the entire control system can be
seen in Figure 4.1.

Remark 4.2.4. Suppose a desired tangential velocity trajectory is to be tracked, ηref
2 (t). In

the case that Assumption 4.1.1 fails for i > 0, ηref
2 (t) can be designed such that it approaches

zero at the junction of the splines, then ramping up to, for instance, some desired steady
state value just after the junction. This way, the control input remains continuous and the
system avoids unwanted transients associated with the differential discontinuities of the
path. •

4.2.3 Redundancy Resolution

As we saw in the last chapter, if N = P , there is no ϕ map and thus no redundant
dynamics. However, if N > P , then the system has internal dynamics. Unlike kinematic
redundancy resolution techniques [98], we seek a scheme at the dynamic level that can
incorporate actuator constraints while ensuring the internal dynamics of the system are
bounded. The approach should also work when the joint-space and task-space dynamics
are not necessarily related by a static input conversion map (as is the case for torque-
input model of a robot manipulator [58]). Such systems include a combined motor and
manipulator model (see Section 4.3, where a dynamic relation exists between motor input
voltage and end-effector force), or mobile manipulator systems.

Suppose the ξ-subsystem is stabilized and the η-subsystem is tracking a desired pro-
file ηref(t) by some outer loop controller for v. The zero-dynamics correspond to the
redundant dynamics ζ̇ = fζ(x, u) under the transform (4.16), x = T−1(ηref(t), 0, ζ) and
vη = η̇ref

2 (t), vξ = 0. In order to ensure a well-behaved response, we must ensure bounded-
ness of the zero dynamics.

With v generated by some outer loop controller, there is some freedom in the choice of
the control input u under the feedback transform (4.16) (recall v ∈ Rp, u ∈ RN=n/2 and
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n > 2p); this freedom can be used to enforce boundedness of the zero dynamics. Since
the relation from u to the states is dynamic, one can use dynamic programming to achieve
some desired (and bounded) trajectory in the zero dynamics. However, this in general
is quite complicated. This is why previous works on path following have relied on the
zero dynamics being absent, assumed to be stable, and are analysed in relatively simple
cases [28]). To make things simple, consider the static optimization

min
u

(u− r(x))>W (u− r(x)) (4.17)

under the constraint (4.16). It is a static minimization of a quadratic function of u under
a linear constraint, for which a closed form solution for u can be solved for using Lagrange
multipliers. The matrix W ∈ Rn×n is a positive definite weight matrix, and the function
r : Rn → Rn is used to bias the control input u to achieve desired behaviour in the zero
dynamics. For example, if r(x) ≡ 0 and W is the identity matrix, then we are minimizing
control effort while staying on the path and following some desired ηref(t).

Most real systems have actuation and configuration limits. Thus, another useful criteria
for redundancy resolution is to design u so that the configuration variables xc are driven
away from their limits. For example, consider a joint on a manipulator. If this joint is at its
minimum value, setting the control effort corresponding to this joint to be the maximum
control effort will likely increase the value of the joint, thereby pushing it away from the
negative joint limit. The corresponding r function to achieve this behaviour in (4.17) is

r(xc)i = − uimax − uimin

xcimax
− xcimin

(xci − xcimin
) + uimax , (4.18)

for i ∈ {1, . . . , N}, or graphically shown below in Figure 4.5.

r(xc)i

xcimax
xcimin

uimax

uimin

xci

Figure 4.5: The function r(xc) for avoiding joint and actuation limits.
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Using Lagrangian Multipliers, the solution to (4.17) under constraint (4.16) is

u = β†(x)(v − α(x)) +
(
In×n − β†(x)β(x)

)
r(x) (4.19)

where β†(x) = W−1β(x)>
(
β(x)W−1β(x)>

)−1
and In×n is the identity matrix.

Conjecture 4.2.5. Using (4.19) and (4.18) to generate the control input u results in
boundedness of the redundant dynamics ζ̇ = fζ(x, u), while achieving path following and
maintaining joint limits when possible, in the situation that system (2.1) has inherent
damping.

Conjecture 4.2.5 has been tested and verified on the following two examples 3-4, and
on our experimental platform in Section 4.3.

Example 3. (2-DOF linear system) Consider the linear system in Figure 4.6 with
output y ∈ R taken to be the position of the top-most block. Let mi, bi and ui be the
mass, coefficient of friction, and force acting on each respective block. The corresponding

Figure 4.6: A Planar 2-DOF fully-actuated system where m1,m2, b1, b2 > 0.

dynamics are

ẋ =


0 1 0 0
0 − b1+b2

m1
0 b2

m1

0 0 0 1
0 b2

m2
0 − b2

m2

x+


0 0
1
m1

0

0 0
0 1

m2

u
=: Ax+Bu

y =
[
0 0 1 0

]
x.

53



For this particular example, N = 2, P = 1. Thus P−1 = 0 and there are no transversal
dynamics. Therefore, under our path following context, the position of the output along
the path is η1 = x3. The remaining function ϕ : R4 → R2 is chosen to complete a
diffeomorphism. For instance

T : R4 → R4

x 7→ (η1(x), η2(x), ζ1(x), ζ2(x)) = (x3, x4, x1, x2)

yields the dynamics in the transformed coordinates

η̇1 = η2

η̇2 =
b2

m2

(ζ2 − η2) +
1

m2

u2 =: vη

ζ̇1 = ζ2

ζ̇2 = −
(
b1 + b2

m1

)
ζ2 +

b2

m1

η2 +
1

m1

u1.

The corresponding terms in the feedback transform (4.16) are α(x) = b2
m2

(x2 − x4) and

β(x) =
[
0 1

m2

]
. Now assume the desired tangential reference trajectory is

ηref(t) =

[
ηref

1

0

]
for some constant ηref

1 . The control law vη = KP (ηref
1 − η1) +KD(−η2) for positive KP , KD

will force η to converge to ηref . Thus the zero dynamics are the redundant dynamics when
η = ηref and α(x) + β(x)u = vη = 0, i.e.

ζ̇1 = ζ2

ζ̇2 = −
(
b1 + b2

m1

)
ζ2 +

1

m1

u1.

Using the controller (4.19) yields the zero dynamics

ζ̇1 = ζ2

ζ̇2 = −
(
b1 + b2

m1

)
ζ2 +

1

m1

r(x)1.

and thus the zero dynamics can be made globally exponentially stable if, for example,
r(x)1 is a linear function of ζ1 = x1 with negative slope. This is precisely the case with
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our proposed r function (4.18). Furthermore, the equilibrium point will be ζ2 = 0, and the
value of x = T−1(ηref , ζ1, ζ2 = 0) for which r(x)1 vanishes. In our proposed r function, this
occurs when ζ1 = x1 = u1max

u1max−u1min
(x1max−x1min

)+x1min
. If u1max = −u1min

, which usually

is the case for practical examples, then the equilibrium point is ζ1 = 1
2
(x1min

+ x1max), the
average value of the joint limits. Thus, the path following constraints are met and the zero
dynamics are stabilized while achieving the objective of staying within joint limits using
(4.18). 4

Example 4. (3-DOF planar manipulator) Consider a planar 3-DOF robot manipulator
and the desired path of a circle, and the point η1 = 0 on the path is to be stabilized, shown
in Figure 4.7.

Figure 4.7: A Planar 3-DOF fully-actuated manipulator whose task is to stabilize a point
on a circle.

Here N = 3, P = 2 and thus the dimension of redundancy is 1. Let’s further assume
that each link has unit mass and inertia, with the center of mass of each link be at the
midpoint of each link. Without loss of generality, we assume gravity is ignored. The
dynamics can be derived as per [98] to yield the form (2.1).

Let the redundant state be ζ1 = ζ1(x) = xc1 + xc2 + xc3 , the sum of the joint an-
gles, the angle the end-effector makes with the ground. Thus ζ2 = xv1 + xv2 + xv3 , and
ζ̇2 =

∑3
i=1 [f(x) + g(x)u]i

∣∣
x=T−1(η,ξ,ζ)

. The zero dynamics correspond to these redundant

dynamics when ξ = 0, η = 0 and thus v = 0. Stability of the zero dynamics depends on
the choice of u.
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Suppose that u is chosen as in (4.19) with r from (4.18). The parameters for the r
function are uimax = −uimin

= 10 for i = 1, 2, 3. The joint limits are chosen so that
x = T−1(η = ηref , ζ1 = 0, ζ2 = 0) is the average value of the joint limits. This is done to
see if ζ = (0, 0) will become an equilibrium point for the zero dynamics.

The resulting phase curves for the zero dynamics for the 3-DOF simple robot case with
viscous friction can be found in Figure 4.8.

ζ1 [rad]

ζ 2
[r

ad
/s

]

−3 3

0

0

Figure 4.8: Phase portrait of the zero dynamics for the 3-DOF manipulator example with
G = 0.

Notice there are two equilibrium points in the zero dynamics phase plane: One is unsta-
ble and one that is asymptotically stable. The unstable equilibrium point is the singularity
configuration of the manipulator on the zero dynamics manifold. The asymptotically stable
equilibrium point is located at ζ = (0, 0), which corresponds to the joint positions being
at the midpoint of their joint limits. Furthermore, if the system were to have no viscous
friction, ζ = (0, 0) will no longer be asymptotically stable. 4

Remark 4.2.6. The proposed approach assumes that the system is fully actuated. To
examine the under-actuated system case, letm be the number of inputs, P be the dimension
of the output space, and N be the degrees of freedom of the system. There is a basic
requirement ( [48]) that m ≥ P − 1 in order to only follow the path, and m ≥ P in order
to follow the path and move along it in a desired fashion.

If N > m = P , it is still possible to follow the path in a desired fashion, however
the internal dynamics would be completey uncontrollable, since all the freedom over the
control input will be used to stay on the path and traverse the path. If N = m > P ,
then Conjecture 4.2.5 applies. If N > m > P , then there will be some uncontrolled
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internal dynamics and the proposed redundancy resolution approach may not work to
ensure boundedness of these internal dynamics. •

Remark 4.2.7. In the case that the system hits a singularity (J(x) loses rank), the
controller will fail as the decoupling matrix β loses rank, and there will no longer be
a solution to the feedback transformation (4.16) or (4.19). The proposed methodology
assumes that J is non-singular by the class of systems (2.4). Practically, one just has
to ensure there exists non-singular configurations to follow the path, and the redundancy
resolution scheme can be used to stay away from these configurations. •

4.2.4 Continuity of control input

The tangential and transversal dynamics using the linearizing control input v become a
series of double integrators. Stabilizing such dynamics can be done using linear control
techniques. For the path P it would be nice for the control input u to remain continuous
as the output moves from one curve to another within P .

Theorem 4.2.8. If the auxiliary input v is chosen to be a continuous function of T̄k(x)
with k = k∗ selected by Algorithm 1, then the control input u is continuous for the entire
splined path P.

Proof. If v is a continuous function of η and ξ, then v is continuous if and only if the η and
ξ states are continuous. This is in fact the case by Proposition 4.2.3, thus v is continuous
over the entire path.

The control input u is calculated based on the feedback transform (4.16) for the k’th
spline:

v = βk∗(x)u+ αk∗(x)

Since v is continuous, u is continuous if and only if βk∗(x) and αk∗(x) are continuous (as-
suming the optimization to solve for u in the redundant case is also smooth). Equivalently,
in a similar manner to Proposition 4.2.3, we must show that

• βk(x) and αk(x) are continuous given k;

• βk(x) and αk(x) are continuous at the transistion of k:

(∀x ∈ {x ∈ Rn|x = ($k ◦ h(x))−1(λ(k,max))}) βk(x) = βk+1(x) , αk(x) = αk+1(x)
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Using the definition for βk(x) from Section 4.2.2, the term J(xc)gv(xc) is continuous
over the path (by system assumptions) and is not dependent on the spline k. The remain-
ing terms are all used in T̄k(x), and thus it follows from Proposition 4.2.3 that βk(x) is
continuous.

Similarly, using the definition for αk(x) from Section 4.2.2, the terms e′′jk(λ∗), j ∈
{1, . . . , P} are continuous for a given spline k because by using the FS formulae from

Proposition 4.2.3, the highest derivative that appears will be σ
(p+1)
k (λ∗); our path is Cp+1

by Assumption 4.1.1. The remaining terms in α are continuous since they are the same
ones in T̄k(x), which were already shown to be continuous in Proposition 4.2.3.

4.3 Experiment

4.3.1 System

The experimental platform for this Chapter is the CPM (2.7). The model falls into the class
of systems (2.2)-(2.4) with fv(x) = −M−1(xc) (C(x)xv +G(xc)), gv(xc) = M−1(xc)A(xc),
with N = 4. The dimension of the output space is P = 3 – y1 and y2 are the end-effector
positions projected on the ground plane, and y3 is the end-effector’s height off the ground.
That is,

y = h(q) =

cos(q1) (a2 cos(q2) + a3 cos(q2 + q3) + a4(cos(q2 + q3 + q4))
sin(q1) (a2 cos(q2) + a3 cos(q2 + q3) + a4(cos(q2 + q3 + q4))

a2 sin(q2) + a3 sin(q2 + x3) + d1


Since N > P , the CPM system is redundant.

4.3.2 Path Generation

Waypoints in the 3-dimensional workspace were specified a-priori, and a standard spline-
fitting process using polynomials [35] was used to fit splines through these way points while
ensuring fourth-derivative continuity. Thus, quintic polynomial splines are required to fit
the waypoints.

A total of 15 way points are specified. The way points were placed to create self-
intersections in the path to show the robustness of Algorithm 1. Mathematically, our path
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is regular and C4, satisfies Assumptions 4.1.1 and 4.1.2, and is given as the following after
spline interpolation

σk : Ik → R3, k = 1, 2, ..., 14

λ 7→

∑5
i=0 aiλ

i∑5
i=0 biλ

i∑5
i=0 ciλ

i

 ,
where Ik = [0, lk], and lk is the chord length between way point k and k + 1.

4.3.3 Control Design

The first step in the control design is to define the coordinate transformation. The k∗

and λ∗ are determined by Algorithm 1. The initial guess for Algorithm 1 is determined
a-priori by solving the optimization globally using brute force and given the (known) initial
output position y0 = h(x0). Then, when the real time control law is run, Algorithm 1 is
used to determine the k∗ and λ∗ at each time step. The coordinate transformation follows
from Section 4.2.1. Since n − 2p = 2, we need a map ϕk : Rn → R2 to complete the
diffeomorphism. We let ϕ1k(x) = xc2 + xc3 + xc4 and ϕ2k(x) = xv2 + xv3 + xv4 for all k to
represent the angle and its rate, respectively, of the end-effector with respect to the ground
plane. It can be shown that this completes the diffeomorphism.

The dynamics in the transformed space are then

η̇1 = η2

η̇2 = L2
fη1∗k

(x) + LgLfη1∗k
(x)u

ξ̇1
1 = ξ1

2

ξ̇1
2 = L2

fξ
1
1∗k

(x) + LgLfξ
1
1∗k

(x)u

ξ̇2
1 = ξ2

1∗k

ξ̇2
2 = L2

fξ
2
1∗k

(x) + LgLfξ
2
1∗k

(x)u

ζ̇1 = ζ2

ζ̇2 =
4∑
i=2

[fv(x) + gv(x)u]i

where x = T−1
k∗ (η, ξ, ζ), k∗ is chosen by Algorithm 1, and ζ̇ represent the redundant dy-

namics for path following.
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Setting v = βk∗(x)u + αk∗(x) as previously defined in (4.16), the following partially
linearised system is obtained:

η̇1 = η2 ξ̇1
1 = ξ1

2 ξ̇2
1 = ξ2

2

η̇2 = vη ξ̇1
2 = vξ1 ξ̇2

2 = vξ2

ζ̇ = f̄ζ(x, v)

where x = T−1
k∗ (η, ξ, ζ) and f̄ζ represents the redundant dynamics based on our choice of

control input u. The desired task is to track a constant tangential velocity profile (i.e., to
track some ηref

2 ) while staying on the path (force ξ to go to zero). Designing a controller for
v is a linear control design problem; the one designed in Chapter 3 is used as it was shown
to be robust to the modelling inaccuracies. The tangential controller is the PI controller
(3.17), and the transversal controller is (3.20).

To solve for u based on the auxiliary control v, the optimization is done as outlined
in Section 4.2.3 using (4.18). The actuation limits are uimax = −uimin

= 50% duty cycle
for i = 1, . . . , 4. The joint limit values xcimax

, xcimin
were set to their true limits for joints

i = 1, 2, 3, and for the wrist joint (i = 4) two different runs were done, one with limits set
to 0− 45 degrees and another to 45− 90 degrees. The results are found in the subsequent
section.

We implement the path following controller on the CPM via Labview Real-Time Module c©

to control the motor PWM amplifiers and to read the optical encoders. The loop rate of
the controller is 20 ms. The encoders read the linear actuator distances, so an inverse
measurement model is used to retrieve the states xc of the system. The encoder resolution
for the waist is 1.3E − 5 rad, and for the linear actuators is 4.2E − 5 inch. The derivative
of xc is numerically computed to retrieve the xv states using a first-order approximation.
The tangential controller (3.17) is the only dynamic part of the control algorithm, and is
discretized also using a first-order approximation.

4.3.4 Results

The results of the path following controllers using both joint limit values can be found in
Figures 4.9-4.13. The output of Algorithm 1 is also shown for reference, with the number
of iterations the gradient descent takes to converge at each time step shown.

The path following controller naturally converges to the closest point on the path due
to the explicit stabilization of the path following manifold.
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Figure 4.9: Experiment: Output position.

Note that in the Cartesian plot, the responses are very similar, with similar path errors.
The transformed state plots also show this as expected: the controllable η and ξ subsys-
tems behave the same in both scenarios, because these subsystems, under the feedback
transform, do not depend on the redundant state dynamics (ζ). The redundant state ζ
trajectory differs, however, since we are using the redundancy to maintain different joint
angle limits using (4.17),(4.18). The plots show well-behaved dynamics and boundedness
for ζ as we had postulated for systems with inherent damping.

Closer inspection of the xc states in Figure 4.12 shows that indeed our controller was
able to satisfy the respective joint angle limits. The angle trajectories are also slightly
different for the first three joints, because maintaining the output on the path with a
different preferred position of the wrist forces the angles for the elbow and shoulder links
to adjust accordingly. All this is done automatically by (4.17),(4.18).

Figure 4.13 shows well behaved control action without chattering.
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Figure 4.10: Experiment: Algorithm 1 information.

4.4 Summary

This chapter proposes a method for following general paths in the form of sequences of
curves; notably spline interpolated paths which can be made to go through arbitrary way
points. The path following manifold corresponding to this path is stabilized, thus rendering
the path attractive and invariant. A numerical algorithm is used to allow the use of paths
which are self-intersecting. This in combination with the robust controller used in Chapter
3 fully achieve PF1 to PF3.

Furthermore, a redundancy resolution scheme is proposed based on a static optimiza-
tion. A conjecture that this scheme can yield bounded zero-dynamics is made and, in
particular, satisfy an objective of staying away from joint limits. This scheme has been
validated in two analytical examples, as well as on our experimental platform. A rigorous
proof may be direction for future work. This achieves PF4 for redundant Euler-Lagrange
systems. In the next chapter, we will apply the ideas of the redundancy resolution devel-
oped for use on a more general, mobile manipulator system.
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Figure 4.11: Experiment: Transformed state positions.
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Chapter 5

Mobile Manipulator Path Following

This chapter presents a framework of path following via set stabilization for mobile ma-
nipulator systems. The mobile manipulator is modelled as a single redundant dynamic
system. The mobile base considered belongs to a large class of wheeled ground vehicles,
including those with nonholonomic constraints, see Chapter 2. The path following frame-
work stems from Chapter 3 in terms of robust control, and Chapter 4 in terms of path
following of splines and redundancy resolution. The controller simultaneously controls the
manipulator and mobile base. The result is a unified path following controller without any
trajectory planning performed on the mobile base. The approach is experimentally veri-
fied on a 4-degree-of-freedom (4-DOF) manipulator mounted on a differential drive mobile
platform in Section 5.3.

5.1 Problem Formulation

The problem studied in this chapter is to find a continuous feedback control law for
um, γb, γs for the mobile manipulator system (2.2)(2.8) with output (2.15), to achieve PF1
to PF4. This will be done via set stabilization [76] as has been done in the previous
chapters. Since the mobile manipulator system is redundant, the redundancy is used to
avoid (physical or artificial) manipulator and steering wheel limits.

The class of paths considered are the same as in Chapter 4, instead now the output
space is of dimension p.
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5.2 Path Following Control Design

The control design approach will rely on the output y having a well-defined relative degree
of {2, ..., 2}. That is, the control inputs um, γb, γs all appear in the second time-derivative
of y. It can be shown that this is not the case: the control inputs γb appear too soon by
one derivative. Hence, by delaying the appearance of this input via dynamic extension,
we can make y have a well-defined relative degree for the augmented system (Section
5.2.1). Then a virtual output (Section 5.2.2) is constructed that incorporates the desired
path (4.1). Through partial feedback linearization, the virtual output partitions the system
dynamics into a controllable transversal and tangential sub-systems that govern the motion
transversal to the path and along the path, respectively, and a redundant sub-system that
governs the motion of the system that does not produce any output motion (Section 5.2.3).
A novel redundancy resolution approach is then used to ensure the redundant dynamics
remain bounded (Section 5.2.4), while maintaining joint limits of the manipulator. The
overall block diagram can be found below in Figure 5.1.

σk(λ), k ∈ {1, ..., nspline}

Tangential
Controller

(3.17)

Transversal
Controller

(3.20)

Diffeomorphism
(5.12)

ξ

η

vη

vξ

Feedback
Transform &
Redundancy
Resolution

(5.25)

um

q, q̇, xb, θ, σ

ηref(t)

um, γs
γb

ub

Dynamic
Extension

(5.1)
γbub

x

x

ξ

η
Mobile Ma-
nipulator
(2.2),(2.8)

γs

Figure 5.1: Spline path following controller block diagram for mobile manipulator systems.
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5.2.1 Dynamic Extension

Dynamic extension amounts to controlling the derivative of the actual control input. Since
γb appears too soon by one derivative when computing the derivatives of y, we introduce
an auxiliary control variable ub ∈ Rδb as follows

γ̇b = ργb + ub (5.1)

where ρ < 0 is a damping coefficient. It is typical with dynamic extension [3] to let ρ = 0,
however we will see in Section 5.2.4 that setting ρ = 0 results in unbounded internal
dynamics.

State Space Equations

To facilitate the control design procedure, we write the dynamics (2.2),(2.8),(5.1) with
output (2.15) in state-space form. First, let xc := (q, xb, θ) ∈ RN×R2×R, xv := (q̇, γb, σ) ∈
RN × Rδb × Rδs . Then,

ẋc =

[
q̇

R(θ)Σ(σ)γb

]
=: Fc(x) (5.2)

ẋv =

−M−1(q) (C(q, q̇)q̇ +G(q))
ργb

0δs×1

+

M−1(q)A(q) 0N×δb 0N×δs
0δb×N Iδb×δb 0δs×δs
0δb×N 0δb×δb Iδs×δs

umub
γs

 (5.3)

=: Fv(x) +Gv(x)u (5.4)

y =

[
R(θ) 03×(p−3)

0(p−3)×3 I(p−3)×(p−3)

]
h(q) +

 xb1
xb2

0(p−2)×1

 =: H(xc) (5.5)

where x := (xc, xv) ∈ R2N+3+δb+δs is the state of the system, u := (um, ub, γs) ∈ RN+δb+δs

is the control input to the system, and y is the output. Note that Fc(x) and Fv(x) are

smooth vector fields, Gv(x) is smooth and has full rank, and ∂H(xc)
∂xv

= 0. Note that the
actual inputs to control the physical systems (2.2),(2.8) are um, γb, γs.

The state space equations can be compactly written as

ẋ =

[
ẋc
ẋv

]
=

[
Fc(x)
Fv(x)

]
+

[
0(N+3)×(N+δb+δs)

Gv(x)

]
u =: f(x) + g(x)u (5.6)

y = H(xc) (5.7)

The mobile manipulator system is redundant in the sense that dimu = N + δb + δs ≥
dim y = p.
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5.2.2 Virtual Output

As we have seen in previous chapters, the virtual output construction is two-fold: the first
virtual output is the projected position of the output y along the desired path (Section
5.2.2). The second virtual output are the transversal positions towards the path along each
FSF normal vector (Section 5.2.2). Essentially, the results of Chapter 4 apply here but for
the system (5.6),(5.7).

Tangential State

The first virtual output, η1(x), is the tangential position of the output y along the desired
path. Assume that the closest curve to the output y is known; denote its index as k∗ ∈
{1, . . . , nspline}. Furthermore, denote the parameter of spline k∗ that corresponds to the
closest point to the output y as λ∗ ∈ Ik∗

λ∗ := $k∗(y) := arg inf
λ∈Ik∗

‖y − σk∗(λ)‖ . (5.8)

The minimization for λ∗ and the determination of k∗ are done numerically using Algorithm
1 from Chapter 4. Henceforth, the k∗ notation will be dropped for brevity.

The first virtual output is the projected, traversed arclength along the spline:

η1 = η1(x) := sk∗ ◦$ ◦H(xc) +
k∗−1∑
k=1

sk(λ(k,max)) (5.9)

where

sk(λ) :=

λ∫
λ(k,min)

∥∥∥∥dσk(λ)

dλ

∥∥∥∥ dλ.

Transversal States

The remaining virtual outputs are selected to represent the cross track error to the path
using the remaining FSF normal vectors, known as transversal positions (see Chapter 4).

The transversal positions can be computed by projecting the error to the path, y−σ(λ∗),
onto each of the FS normal vectors:

ξj−1
1 = ξj−1

1 (x) := 〈ej(λ∗), H(xc)− σk∗(λ∗)〉|λ∗=$◦H(xc) (5.10)
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for j ∈ {2, . . . , p}.

The tangential and transversal positions are illustrated in Figure 5.2 in the case that
p = 3.

σ2(I2)

σ1(I1) σ1(λ∗)
e3

e1e2

y = H(xc)

σ1(λ(1,max)) = σ2(λ(2,min))
R3

ξ1
1(x)

ξ2
1(x)

η1(x)

Figure 5.2: The tangential and transversal state positions when p = 3.

5.2.3 Dynamics and Control

It will be shown that the virtual output (η1(x), ξ1
1(x), . . . , ξp−1

1 (x)) ∈ Rp has a well-defined
vector relative degree of {2, 2, . . . , 2} for all x ∈ U , where

U :=

{
x ∈ R2N+3+δb+δs | rank

(
∂H

∂xc

∂Fc
∂xv

Gv(x)

)
= p

}
(5.11)

(see (5.17)) when (5.8) is solved for numerically by Algorithm 1. We emphasize that (5.8)
is solved for numerically by a local search since if the output y is equidistant to multiple
points on the path, then (5.8) is not well defined and neither is the relative degree.

Therefore, there exists a local coordinate transformation

T : U → R2N+3+δb+δs (5.12)

x 7→ (η1(x), Lfη1(x), ξ1
1(x), Lfξ

1
1(x), . . . , ξp−1

1 (x), Lfξ
p−1
1 (x), ϕ(x)) (5.13)

= (η1, η2, ξ
1
1 , ξ

1
2 , . . . , ξ

p−1
1 , ξp−1

2 , ζ), (5.14)

where Lfη1(x) = ∂η1(x)
∂xc

Fc(x) and Lfξ
j
1(x) =

∂ξj1(x)

∂xc
Fc(x), j ∈ {1, . . . , p− 1}, is a diffeomor-

phism onto it’s image for a suitable function ϕ : R2N+3+δb+δs → R2N+3+δb+δs−2p [52] (which
may limit the domain of T by [52, Proposition 5.1.2], but in practice (see Section 5.3.2),
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these functions do not need to be computed unless one wants to visualize the redundant dy-
namics or study their stability properties). Note that since the virtual output η1 represents
the tangential position of the output y along the path, η2 represents the tangential velocity
of the output along the path. Similarly, since ξj1 represents the transversal positions to
the path, ξj2 represents the transversal velocities, j ∈ {1, . . . , p− 1}. Note that there will
always be an internal state ζ, since by Assumption 2.2.1, N + δb + δs ≥ N + δm ≥ p and
δb + δs ∈ {2, 3} always implies 2N + 3 + δb + δs − 2p > 0, which is expected as mobile
manipulators are highly redundant systems.

The dynamics in the transformed coordinates are

η̇1 = Lfη1(x) = η2

η̇2 = L2
fη1(x) + LgLfη1(x)u

ξ̇1
1 = Lfξ

1
1(x) = ξ1

2

ξ̇1
2 = L2

fξ
1
1(x) + LgLfξ

1
1(x)u

...

ξ̇p−1
1 = Lfξ

p−1
1 (x) = ξp−1

2

ξ̇p−1
2 = L2

fξ
p−1
1 (x) + LgLfξ

p−1
1 (x)u

ζ̇ = Lfϕ(x) + Lgϕ(x)u =: fζ(x, u)

(5.15)

where x = T−1(η, ξ, ζ). The expressions for the Lie derivatives can be found below and are
computed in a similar manner as in Chapter 4, applied to the system (5.6):

η2 = Lfη1(x) =
ds

dλ∗
d$

dy

∂H

∂x
ẋ =

〈
e1(λ∗),

∂H

∂xc
Fc(x)

〉
,

ξj−1
2 = Lfξ

j−1
1 =

η2(x)

‖σ′(λ∗)‖
〈
e′j(λ

∗), H(xc)− σ(λ∗)
〉

+

〈
ejk∗ (λ

∗),
∂H(xc)

∂xc
Fc(x)

〉
,

L2
fη1(x) =

η2(x)

‖σ′(λ∗)‖

〈
e′1(λ∗),

∂H(xc)

∂xc
Fc(x)

〉
+

〈
e1(λ∗),

∂ ∂H(xc)
∂xc

Fc(x)

∂xc
Fc(x) +

∂H(xc)

∂xc

∂Fc(x)

∂xv
Fv(x)

〉
,

LgLfη1(x) = e1(λ∗)>
∂H(xc)

∂xc

∂Fc(x)

∂xv
Gv(xc),
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L2
fξ

j−1
1 (x) =

〈
ej(λ

∗),
∂ ∂H(xc)

∂xc
Fc(x)

∂xc
Fc(x) +

∂H(xc)

∂xc

∂Fc(x)

∂xv
Fv(x)

〉

+
η2(x)

‖σ′(λ∗)‖

〈
e′j(λ

∗), 2J
∂H(xc)

∂xc
Fc(x)− e1η2(x)

〉
+

〈
H(xc)− σ(λ∗), e′′j (λ

∗)

(
η2(x)

‖σ′(λ∗‖

)2

+ e′j(λ
∗)

(
LgLfη1(x)

‖σ′(λ∗)‖
− η2(x)2 〈σ′(λ∗), σ′′(λ∗)〉

‖σ′(λ∗)‖4

)〉
,

LgLfξ
j−1
1 (x) = ej(λ

∗)>
∂H(xc)

∂xc

∂Fc(x)

∂xv
Gv(x) + (H(xc) − σ(λ∗))>e′j(λ

∗)
LgLfη1(x)

‖σ′(λ∗)‖

for j ∈ {2, . . . , p} and λ∗ = $ ◦H(xc).

Based on the virtual output construction (Section 5.2.2), the η-subsystem represents
the dynamics tangent to the path, and the ξ-subsystem represents the dynamics transversal
to the path. Thus, the dynamics fζ represent the dynamics of the system (5.6) that do not
produce any output motion. These are the redundant dynamics to path following.

Next we perform standard partial feedback linearization for non-square systems on the
virtual output (η1(x), ξ1

1(x), . . . , ξp−1
1 (x)). Let

α(x) :=
[
L2
fη1(x) L2

fξ
1
1(x) . . . L2

fξ
p−1
1 (x)

]T ∈ Rp (5.16)

β(x) :=


LgLfη1(x)
LgLfξ

1
1(x)

...

LgLfξ
p−1
1 (x)

 ∈ Rp×(N+δb+δs). (5.17)

The decoupling matrix β(x) has full row rank p in the set U (see (5.11)) since each ei are
orthogonal by FSF construction, thus in U the virtual output has a well-defined relative
degree [52].

Remark 5.2.1. A necessary condition for β(x) to have rank p is that each matrix ∂H
∂xc
, ∂Fc

∂xv

and Gv(x) have rank of at least p. The matrix ∂H(xc)
∂xc

has the form

∂H(xc)

∂xc
=

[ [
R(θ)1:2,1:2 02×(P−2)

0(p−2)×2 I(p−2)×(P−2)

]
J(q)

I2×2

0(p−2)×2

[
R′(θ)1:2,1:2 02×(P−2)

0(p−2)×2 0(p−2)×(P−2)

]
h(q)

]
(5.18)
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and always has rank of at least 2 due to the ground vehicle (thus is always full rank if
p = 2). For p > 2, it has full rank if J(q) is non-singular.

The matrix ∂Fc(x)
∂xv

has the form

∂Fc
∂xv

=

[
IN×N 0N×δb 0N×δs
03×N R(θ)Σ(σ) R(θ)∂Σ(σ)

∂σ

]
, (5.19)

thus N + 3 ≥ rank(∂Fc

∂xv
) ≥ N + δb ≥ p (by Assumption 2.2.1) and will depend on the

particular ground vehicle. For a unicycle (Section 5.3.1), for all x, rank(∂Fc(x)
∂xv

) = N + δb =
N + 2.

The matrix Gv(x) (see Equation (5.2)) always has full rank of N + δb + δs ≥ p. •

Next, introduce an auxiliary input v := (vη, vξ) ∈ R× Rp−1 such that

v = β(x)u+ α(x). (5.20)

The dynamics (5.15) then become

ζ̇ = fζ(x, u) η̇1 = η2 ξ̇j1 = ξj2
η̇2 = vη ξ̇j2 = vξj

where j ∈ {1, . . . , p− 1} and x = T−1(η, ξ, ζ).

In the set U the ξ-subsystem is linear and controllable, and can be stabilized to ensure
attractiveness and invariance of the path P [48], thereby satisfying PF1 to PF2 using the
robust controller (3.20). The η-subsystem is also linear and controllable, thus a tangential
controller can be designed for vη to track a desired tangential position or velocity profile
ηref(t). On the experimental platform, this is done via a PI controller for robustness with
feed-forward (3.17), thereby satisfying PF3. Figure 5.1 shows a block diagram of the entire
control system.

5.2.4 Redundancy Resolution

Once the auxiliary control signal v ∈ Rp is generated to stabilize the η and ξ-subsystems
for PF1 to PF3, the feedback transformation (5.20) must be solved to generate the actual
control signal u ∈ RN+δb+δs . When N + δb + δs = p, there is a unique solution to (5.20),
and one must ensure that the internal dynamics ζ̇ = fζ(x, u) remain bounded.
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For most mobile manipulator systems (see Section 5.3 for an example), N + δb+ δs > p.
Thus there is some freedom in the choice of the control input u under the feedback transform
(5.20). This freedom can be used to enforce boundedness of the internal dynamics. The
approach used here uses the ideas of Chapter 4 but applied to mobile manipulator systems.
Consider the static optimization

min
u

(u− r(x))>W (u− r(x)) (5.21)

s.t. v = β(x)u+ α(x)

The matrix W ∈ R(N+δb+δs)×(N+δb+δs) is a positive-definite weighting matrix, and the func-
tion r : RN+3 → RN+δb+δs is used to bias the control input u to achieve desired behaviour
in the internal dynamics.

In this application, we want to bias u = (um, γb, γs) such that the manipulator stays
away from joint and actuation limits and the vehicle stays away from steering limits (PF4).
We apply a similar approach as in Chapter 4 for redundancy resolution: if a joint qi, i ∈
{1, ..., N} of the manipulator is at its minimum limit qmin

i , setting the control effort ui, i ∈
{1, ..., N} (i.e., um) corresponding to this joint to be the maximum control effort umax

i will
likely increase the value of the joint, thereby pushing it away from the negative joint limit.
These joint limits can be set artificially to bias the manipulator in a preferred position (so
as to avoid singular configurations of J(q), see Remark 5.2.1) or set to their true joint limit
values. If the vehicle has steering wheels (δs > 0), that has steering limits, then a similar
logic can be applied to the steering limits σmax

i , σmin
i and steering input limits γmax

si
, γmin

si

for i ∈ {1, . . . , δs}. For γb, we’d like to minimize the control effort so that the mobile base
moves as little as possible. The corresponding r function to achieve this behaviour in (5.21)
is

r(x)i := −u
max
i − umin

i

qmax
i − qmin

i

(qi − qmin
i ) + umax

i , i ∈ {1, ..., N} (5.22)

r(x)i := 0, i ∈ {N + 1, N + δb} (5.23)

r(x)i := −u
max
i − umin

i

σmax
j − σmin

j

(σj − σmin
j ) + umax

i , i ∈ {N + δb + 1, ..., N + δb + δs} , j = i− (N + δb)

(5.24)

Using Lagrangian multipliers, the solution to (5.21) is

u = β†(x)(v − α(x)) +
(
In×n − β†(x)β(x)

)
r(x) (5.25)

where β†(x) := W−1β(x)>
(
β(x)W−1β(x)>

)−1
.
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In Chapter 4, Conjecture 4.2.5, we showed via examples and experiments on manip-
ulators that a similar control law (5.25) ensures boundedness of the internal dynamics
while maintaining joint limits of a manipulator when each degree of freedom has inherent
viscous friction. In this paper, for mobile manipulator systems, boundedness of internal
dynamics and maintaining joint limits of the manipulator holds when ρ < 0 in the dynamic
extension (5.1) (PF4). If ρ = 0, PF1 to PF3 can still be achieved, but at least one of the
base position states (xb, θ) may become unbounded, see Ex. 5. The reason is ub controls
the mobile base acceleration through (5.1). So although (5.22) is chosen such that base
acceleration is minimized, ideally keeping ub = 0, then the base velocities will remain at
a some constant, not necessarily zero, value, resulting in the base positions (namely θ) to
continuously grow. Thus, ρ < 0 is used to dampen these dynamics. The same doesn’t
happen for the steering dynamics of σ since the steering dynamics are governed by a single
integrator. So γs is minimized, ideally 0 when possible, implies the steering position is
constant when possible, thus remaining bounded. A simulation for a ground vehicle with
steering can be found in Example 6.

Example 5. (Internal Dynamics) Consider the mobile manipulator system of Section
5.3.1. In this system and in most systems, umax

i = −umin
i for use in (5.22). The joint limits

are set to their true values except for the waist joint q1 where qmin
1 := 0◦, qmax

1 := 20◦.
Thus the optimal control effort for the waist r(xc)1 = 0 when q1 = 10◦, so that the desired
position of the waist is 10◦, that is, the manipulator should face to the right of the vehicle
(or the vehicle is to stay towards the left of the desired path). The path is shown in
Figure 5.3, where two simulation results are included that show PF1 to PF3 are achieved,
and there is automatic coordination between the manipulator and the mobile base. When
ρ = 0, PF4 is not achieved as there is an internal state that is unbounded. Namely, the yaw
state θ of the manipulator continuously increases and the vehicle orbits the end-effector as
the end-effector follows the path, see Figure 5.4-5.5.

When ρ < 0, PF4 is achieved as discussed above. At the very start of the run, the
base automatically orients itself by rotating, travels backwards until the end-effector is
at its preferred position while the end effector is on the path P , then proceeds forward
as it achieves PF3. Note that the initial position of the base could have been placed
further away from the path, and the same controller will automatically move the base to
a neighbourhood of the path, see Figure 5.6. Further notice the controller automatically
speeds up the mobile base when the end-effector is traversing the higher curvature areas
of the path in order to maintain the desired constant tangential velocity profile.

4
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Figure 5.3: Example 5: Simulation of ρ = 0 (left) and ρ = −10 (right). ηref
2 = 100mm/ sec.

The preferred position of q1 is set to 10 degrees. That is, the manipulator should face to
the right of the mobile base. In both figures, this is the case. However, when ρ = 0, the
mobile base orbits the output position y = H(xc(t)) such that it maintains the preferred
position and is on the desired path P . Each snapshot of the mobile base is taken every 1.5
seconds.

Example 6. (Car-like ground vehicle) Consider the same 4-DOF CPM manipulator
as in Section 5.3.1, but instead of a unicycle ground vehicle we consider a car-like ground
vehicle as in Example 1. The car model we consider has l = 1m and σmax = −σmin = 60◦

(saturated steering can be seen in Figure 5.11). Applying the path following controller
framework of Section 5.2, to the same path in Example 5, with ρ = −10, yields the
responses in Figures 5.9 to 5.12. The vehicle takes a different trajectory towards the path
compared to the unicycle robot in Example 5, due to the fixed turning radius. In Figure
5.10, there are multiple points where the car actually travels backwards while the end-
effector progresses forwards along the path in order to achieve PF3 (at points (0,1500),
(750,2900), and (-1500,1000)).

4

Remark 5.2.2. The weighting matrix W plays an important role to ensure the joint limits
are satisfied. If the associated weights for the manipulator joint actuation are too low, the
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Figure 5.4: Example 5: State position xc = (q, xb, θ) trajectories – ρ = 0.

controller may not move the mobile base at all before the manipulator reaches, say, a
singular configuration. If the weights are high enough, then the controller will increase
control effort to the base so that the base moves while the manipulator satisfies its joint
limits. •
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Figure 5.5: Example 5: Control inputs um, γb – ρ = 0.

5.3 Experiment

5.3.1 System Model

The mobile manipulator system can be found in Chapter 2, Section 2.2.3. The general
mobile vehicle equations (2.8) reduce to the unicycle equations (2.16). On the Clearpath
mobile platform, δs = 0 and δb = 2. The output space is taken to be the 3-dimensional
Euclidean space, that is p = 3.
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Figure 5.6: Example 5: Simulation with ρ = −10, with the initial pose of the mobile
manipulator further away from the path. Each snapshot of the mobile base is taken every
1.5 seconds.

5.3.2 Path Following Controller

The desired path is generated by spline-interpolating 3-dimensional waypoints using quintic
polynomials [34]. The control design approach then follows from Section 5.2. For this
mobile manipulator system, significant modelling uncertainties arise due to inaccurate
manipulator modelling (Chapter 2) and the assumption of a perfect kinematic model of
the mobile base, as well as ignoring the coupling dynamics between the two. This results
in imperfect cancellation of the actual system dynamics using (5.16),(5.17). The robust
controller (3.20) will asymptotically stabilize the ξj-subsystem in the presence of modelling
uncertainty. For this application, these constants are used as tuning parameters as is done
in Chapter 3, thereby achieving PF1 and PF2.

The η-subsystem is also linear and controllable, thus a tangential controller can be
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Figure 5.7: Example 5: State position xc = (q, xb, θ) trajectories – ρ = −10.

designed for vη to track some desired tangential position or velocity profile ηref(t). Our
goal is to track a desired constant velocity profile ηref

2 . This can be done using the PI
controller (3.17), thereby achieving PF3. A block diagram of the entire control system
can be found in Figure 5.1.

The manipulator has a Labview Real-Time Module R©which is used to read the linear
actuator distances using optical encoders and to control the motor PWM amplifiers. The
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Figure 5.8: Example 5: Control inputs um, γb – ρ = −10.

encoder readings are converted to joint angles q and numerically differentiated to approxi-
mate q̇. This module communicates with ROS via the Rosbridge package. The Husky is a
ROS-enabled robot which takes in γb to control the robot, and gives out (xb, θ) data based
on a sensor fusion of wheel odometry and an on-board IMU. The path following controller
is implemented using MATLAB Robotics System Toolbox.

5.3.3 Results

The joint limits in (5.22) are set so that in Figure 5.13, the waist of the manipulator prefers
90 degrees (the manipulator is ahead of the vehicle), and again in another run Figure 5.18,
so that the waist prefers 160 degrees (the manipulator is to the left of the vehicle). A
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Figure 5.10: Example 6: 3D response. Each
snapshot of the mobile base is taken every 1.5
seconds.

simulation of the case when the manipulator waist prefers 10 degrees (the manipulator is
to the right of the vehicle) can be found in Figure 5.3. In all cases, ηref

2 = 100mm.

As shown in the 3D and 2D plots, the proposed path following controller successfully
satisfies the goals PF1 and PF2. The output y automatically goes towards the closes
point on the path P due to the coordinate transformation employed. A key advantage
to the proposed approach is the automatic coordination of the manipulator and mobile
base. Based on the preferred position of the manipulator via (5.22), the mobile base
automatically orients itself. In the second lap of the path (indicated in magenta), the
mobile base actually moves backwards until xb ≈ (−1000, 500)mm, at which point the
base turns and moves forward in order to keep the manipulator at its preferred position
and to traverse the path at the desired rate ηref

2 , without any explicit trajectory planning
and tracking for the mobile base.

We see that in the state trajectory Figure 5.20, the manipulator positions q quickly
converge to their preferred positions when possible, in particular, the waist q1 approaches
90◦. The virtual output trajectories can be found in Figure 5.21 and show that the system
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Figure 5.11: Example 6: State position xc = (q, xb, θ) and steering angle σ trajectories.

is traversing the path at a constant (desired) rate (PF3), while the transversal errors
quickly approach 0 resulting in convergence to the desired path P (PF1 and PF2). At
steady state, the cross-track errors are less than ≈ 15mm.

When the preferred waist position is adjusted, the mobile base automatically takes
another route for the same desired path P . In Figure 5.19, it can be seen that the mobile
base tries to stay to the right of the path in order to respect the artificial preferred position
of the waist of the manipulator. Note that at the high curvature areas, the mobile base
speeds up significantly (apparent by the decreased density of the mobile base snapshots)
in order to respect PF3.
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Figure 5.12: Example 6: Control inputs um, γb, γs.

5.4 Summary

This chapter proposes a unified path following controller for mobile manipulator systems.
The controller automatically moves the mobile base and the manipulator such that the end-
effector traverses a path in the output space at a desired position or velocity profile. There
is no explicit trajectory required for the mobile base or the end-effector to follow. The
desired path is rendered invariant and attractive, and the redundancy resolution scheme
employed allows for the manipulator and vehicle steering wheels to stay away from their
respective limits.
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Figure 5.15: Experiment: Preferred q1 = 90◦. State position xc trajectories.

85



Figure 5.16: Experiment: Preferred q1 = 90◦. Virtual output trajectories. Notice from η1

just over 2 laps are completed.
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Figure 5.17: Control input um, γb – preferred q1 = 90◦.
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Figure 5.20: Experiment: Preferred q1 = 160◦. State position xc trajectories.
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Figure 5.21: Experiment: Preferred q1 = 160◦. Virtual output trajectories.
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Figure 5.22: Control input um, γb – preferred q1 = 160◦.
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Chapter 6

Conclusions and Future Work

In this thesis, we design a control framework of path following for spline paths and systems
with kinematic redundancies and modelling uncertainties. In the surveyed literature, in
the context of path following control, the class of paths are restrictive. In Chapter 4, these
restrictions are alleviated by designing a numerical algorithm and a systematic approach
to generate the zero-level set representation of splines. The robust controller developed in
Chapter 3 is used to address the modelling uncertainties of most practical implementations.
These contributions have key practical implications, as splines are a very powerful class of
paths that allow robots to traverse any set of waypoints, and most systems have modelling
errors.

In Chapter 4, a novel redundancy resolution approach was also developed that allows a
redundant Euler-Lagrange system to achieve robust path following of splines while main-
taining a preferred pose. In Chapter 5, this idea is applied to general mobile manipulators
to yield a novel approach to unified path following for such systems. Dynamic extension
with damping was used so that the virtual output has a full relative degree and to ensure
boundedness of the internal dynamics. The approach automatically controls the manip-
ulator and the ground vehicle in a parallel manner. This was shown in simulation and
experiments with a 4-DOF manipulator on a car-like robot and a differential drive robot,
respectively.

As the chapters progressively build up on one another, one could look at Chapter 5
as the general case of robust path following of splines for redundant mechanical systems,
namely, mobile manipulators. Then, Chapter 4 shows the special case in which there is no
ground vehicle. Both chapters rely on the robust controller in Chapter 3 for the practical
implementation.
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Future Work

The redundancy resolution approach was shown to work on examples and on the experimen-
tal platforms, and relied on a solving a constrained static optimization. Generalizing the
optimization function and providing conditions for which it yields stable internal dynamics
is a direction for future work. Furthermore, the static function used in the optimization can
be used to avoid obstacles in the workspace by adjusting the preferred pose in real-time,
which may also be direction for future work. The static optimization, however, doesn’t
take into account dynamic effects, such as gravity. It may be interesting to extend the
redundancy resolution technique through dynamic programming.

Analyzing when the virtual output constructed in the mobile manipulator path fol-
lowing controller loses full relative degree is another direction for future work. This will
help determine which configurations of the mobile manipulator with respect to the path
following should be avoided. Dynamic programming may also be used instead of a static
optimization, in order to incorporate the dynamics of the system and to respect acceleration
and jerk constraints.
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