61 research outputs found

    Integration of dual-clutch transmissions in hybrid electric vehicle powertrains

    Get PDF
    This dissertation presents a study focused on exploring the integration of Dual-Clutch Transmissions (DCTs) in Hybrid Electric Vehicles (HEVs). Among the many aspects that could be investigated regarding the electrification of DCTs, research efforts are undertaken here to the development of control strategies for improving vehicle dynamic performance during gearshifts and the energy management of HEVs. In the first part of the dissertation, control algorithms for upshift and downshift maneuvers are developed for a Plug-in Hybrid Electric Vehicle (PHEV) architecture in which an electric machine is connected to the output of the transmission, thus obtaining torque filling capabilities during gearshifts. Promising results, in terms of the vehicle dynamic performance, are obtained for the two transmission systems analyzed: Hybrid Automated Manual Transmission (H-AMT) and Hybrid Dual-Clutch Transmission (H-DCT). On the other hand, the global optimal solution to the energy management problem for a PHEV equipped with a DCT is found by developing a detailed Dynamic Programing (DP) formulation. The main control objective is to reduce the fuel consumption during a driving mission. Based on the DP results, a novel real-time implementable Energy Management Strategy (EMS) is proposed. The performance of such controller, in terms of the overall fuel usage, is close to that of the optimal solution. Furthermore, the developed approach is shown to outperform a well-known causal strategy: Adaptive Equivalent Consumption Minimization Strategy (A-ECMS). One of the main aspects that differentiates the EMSs proposed here to those presented in previous works is the introduction of a model to estimate the energy consumption during gearshifts in DCTs. Thus, this dissertation illustrates how through the electrification of powertrains equipped with DCTs both the vehicle dynamic performance and the energy consumption can be improved

    Advanced Control and Estimation Concepts, and New Hardware Topologies for Future Mobility

    Get PDF
    According to the National Research Council, the use of embedded systems throughout society could well overtake previous milestones in the information revolution. Mechatronics is the synergistic combination of electronic, mechanical engineering, controls, software and systems engineering in the design of processes and products. Mechatronic systems put “intelligence” into physical systems. Embedded sensors/actuators/processors are integral parts of mechatronic systems. The implementation of mechatronic systems is consistently on the rise. However, manufacturers are working hard to reduce the implementation cost of these systems while trying avoid compromising product quality. One way of addressing these conflicting objectives is through new automatic control methods, virtual sensing/estimation, and new innovative hardware topologies

    Gear shift strategies for automotive transmissions

    Get PDF
    The development history of automotive engineering has shown the essential role of transmissions in road vehicles primarily powered by internal combustion engines. The engine with its physical constraints on the torque and speed requires a transmission to have its power converted to the drive power demand at the vehicle wheels. Under dynamic driving conditions, the transmission is required to shift in order to match the engine power with the changing drive power. Furthermore, a gear shift decision is expected to be consistent such that vehicle can remain in the next gear for a period of time without deteriorating the acceleration capability. Therefore, an optimal conversion of the engine power plays a key role in improving the fuel economy and driveability. Moreover, the consequences of the assumptions related to the discrete state variable-dependent losses, e.g. gear shifting, clutch slippage and engine starting, and their e¿ect on the gear shift control strategy are necessary to be analyzed to yield insights into the fuel usage. The ¿rst part of the thesis deals with the design of gear shift strategies for electronically controlled discrete ratio transmissions used in both conventional vehicles and Hybrid Electric Vehicles (HEVs). For conventional vehicles, together with the fuel economy, the driveability is systematically addressed in a Dynamic Programming (DP) based optimal gear shift strategy by three methods: i) the weighted inverse of the power re¬serve, ii) the constant power reserve, and iii) the variable power reserve. In addition, a Stochastic Dynamic Programming (SDP) algorithm is utilized to optimize the gear shift strategy, subject to a stochastic distribution of the power request, in order to minimize the expected fuel consumption over an in¿nite horizon. Hence, the SDP-based gear shift strategy intrinsically respects the driveability and is realtime implementable. By per¬forming a comparative analysis of all proposed gear shift methods, it is shown that the variable power reserve method achieves the highest fuel economy without deteriorating the driveability. Moreover, for HEVs, a novel fuel-optimal control algorithm, consist-ing of the continuous power split and discrete gear shift, engine on-o¿ problems, based on a combination of DP and Pontryagin’s Minimum Principle (PMP) is developed for the corresponding hybrid dynamical system. This so-called DP-PMP gear shift control approach benchmarks the development of an online implementable control strategy in terms of the optimal tradeo¿ between calculation accuracy and computational e¿ciency. Driven by an ultimate goal of realizing an online gear shift strategy, a gear shift map design methodology for discrete ratio transmissions is developed, which is applied for both conventional vehicles and HEVs. The design methodology uses an optimal gear shift algorithm as a basis to derive the optimal gear shift patterns. Accordingly, statis¬tical theory is applied to analyze the optimal gear shift pattern in order to extract the time-invariant shift rules. This alternative two-step design procedure makes the gear shift map: i) respect the fuel economy and driveability, ii) be consistent and robust with respect to shift busyness, and iii) be realtime implementation. The design process is ¿exible and time e¿cient such that an applicability to various powertrain systems con¿gured with discrete ratio transmissions is possible. Furthermore, the study in this thesis addresses the trend of utilizing the route information in the powertrain control system by proposing an integrated predictive gear shift strategy concept, consisting of a velocity algorithm and a predictive algorithm. The velocity algorithm improves the fuel economy in simulation considerably by proposing a fuel-optimal velocity trajectory over a certain driving horizon for the vehicle to follow. The predictive algorithm suc¬cessfully utilizes a prede¿ned velocity pro¿le over a certain horizon in order to realize a fuel economy improvement very close to that of the globally optimal algorithm (DP). In the second part of the thesis, the energetic losses, involved with the gear shift and engine start events in an automated manual transmission-based HEV, are modeled. The e¿ect of these losses on the control strategies and fuel consumption for (non-)powershift transmission technologies is investigated. Regarding the gear shift loss, the study ¿rstly ever discloses a perception of a fuel-e¿cient advantage of the powershift transmissions over the non-powershift ones applied for commercial vehicles. It is also shown that the engine start loss can not be ignored in seeking for a fair evaluation of the fuel economy. Moreover, the sensitivity study of the fuel consumption with respect to the prediction horizon reveals that a predictive energy management strategy can realize the highest achievable fuel economy with a horizon of a few seconds ahead. The last part of the thesis focuses on investigating the sensitivity of an optimal gear shift strategy to the relevant control design objectives, i.e. fuel economy, driveability and comfort. A singu¬lar value decomposition based method is introduced to analyze the possible correlations and interdependencies among the design objectives. This allows that some of the pos¬sible dependent design objective(s) can be removed from the objective function of the corresponding optimal control problem, hence thereby reducing the design complexity

    Development of Real-time Optimal Control Strategy of Hybrid Transit Bus Based on Predicted Driving Pattern

    Get PDF
    The control strategy of a hybrid electric vehicle (HEV) has been an active research area in the past decades. The main goal of the optimal control strategy is to maximize the fuel economy and minimize exhaust emissions while also satisfying the expected vehicle performance. Dynamic programming (DP) is an algorithm capable of finding the global optimal solution of HEV operation. However, DP cannot be used as a real-time control approach as it requires pre-known driving information. The equivalent consumption minimization strategy (ECMS) is a real-time control approach, but it always results in local optima due to the non-convex cost function. In my research, a ECMS with DP combined model (ECMSwDP) was proposed, which was a compromise between optimality and real-time capability. In this approach, the optimal equivalent factor (lambda) for a real-time ECMS controller can be derived using ECMSwDP for a given driving condition. The optimal lambda obtained using ECMSwDP was further processed to derive the lambda map, which was a function of vehicle operation and driving information. Six lambda maps were generated corresponding to the developed representative driving patterns. At each distance segment of a drive cycle, the suitable lambda value is available from one of the six lambda maps based on the identified driving pattern and current vehicle operation.;An adaptive ECMS (A-ECMS) model with a driving pattern identification model is developed to achieve the real-time optimal control for a HEV. A-ECMS was capable of controlling the ratio of power provided by the ICE and battery of a hybrid vehicle by selecting the lambda based on the identified lambda map. The effect on fuel consumption of the control strategies developed using the rule-based controller, ECMSwDP, A-ECMS, and DP was simulated using the parallel hybrid bus model developed in this research. The control strategies developed using A-ECMS are able to significantly improve the fuel economy while maintaining the battery charge sustainability. The corrected fuel economy observed with A-ECMS with a penalty function and the average lambda of RDPs was 5.55%, 13.67%, and 19.19% gap to that observed with DP when operated over the Beijing cycle, WVU-CSI cycle, and the actual transit bus route, respectively. The corrected fuel economy observed with A-ECMS with lambda maps of the RDPs was 4.83%, 10.61%, and 14.33% gap to that observed with DP when operated on the Beijing cycle, WVU-CSI cycle, and actual transit bus route, respectively. The simulation results demonstrated that the proposed A-ECMS approaches have the capability to achieve real time suboptimal control of a HEV while maintaining the charge sustainability of the battery

    Future Transportation

    Get PDF
    Greenhouse gas (GHG) emissions associated with transportation activities account for approximately 20 percent of all carbon dioxide (co2) emissions globally, making the transportation sector a major contributor to the current global warming. This book focuses on the latest advances in technologies aiming at the sustainable future transportation of people and goods. A reduction in burning fossil fuel and technological transitions are the main approaches toward sustainable future transportation. Particular attention is given to automobile technological transitions, bike sharing systems, supply chain digitalization, and transport performance monitoring and optimization, among others

    Electric Vehicle Efficient Power and Propulsion Systems

    Get PDF
    Vehicle electrification has been identified as one of the main technology trends in this second decade of the 21st century. Nearly 10% of global car sales in 2021 were electric, and this figure would be 50% by 2030 to reduce the oil import dependency and transport emissions in line with countries’ climate goals. This book addresses the efficient power and propulsion systems which cover essential topics for research and development on EVs, HEVs and fuel cell electric vehicles (FCEV), including: Energy storage systems (battery, fuel cell, supercapacitors, and their hybrid systems); Power electronics devices and converters; Electric machine drive control, optimization, and design; Energy system advanced management methods Primarily intended for professionals and advanced students who are working on EV/HEV/FCEV power and propulsion systems, this edited book surveys state of the art novel control/optimization techniques for different components, as well as for vehicle as a whole system. New readers may also find valuable information on the structure and methodologies in such an interdisciplinary field. Contributed by experienced authors from different research laboratory around the world, these 11 chapters provide balanced materials from theorical background to methodologies and practical implementation to deal with various issues of this challenging technology. This reprint encourages researchers working in this field to stay actualized on the latest developments on electric vehicle efficient power and propulsion systems, for road and rail, both manned and unmanned vehicles

    Flexible calculation approaches to support the European CO2 emissions regulatory scheme for road vehicles

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Powertrain Architectures and Technologies for New Emission and Fuel Consumption Standards

    Get PDF
    New powertrain design is highly influenced by CO2 and pollutant limits defined by legislations, the demand of fuel economy in for real conditions, high performances and acceptable cost. To reach the requirements coming from both end-users and legislations, several powertrain architectures and engine technologies are possible (e.g. SI or CI engines), with many new technologies, new fuels, and different degree of electrification. The benefits and costs given by the possible architectures and technology mix must be accurately evaluated by means of objective procedures and tools in order to choose among the best alternatives. This work presents a basic design methodology and a comparison at concept level of the main powertrain architectures and technologies that are currently being developed, considering technical benefits and their cost effectiveness. The analysis is carried out on the basis of studies from the technical literature, integrating missing data with evaluations performed by means of powertrain-vehicle simplified models, considering the most important powertrain architectures. Technology pathways for passenger cars up to 2025 and beyond have been defined. After that, with support of more detailed models and experimentations, the investigation has been focused on the more promising technologies to improve internal combustion engine, such as: water injection, low temperature combustions and heat recovery systems

    Powertrain Systems for Net-Zero Transport

    Get PDF
    The transport sector continues to shift towards alternative powertrains, particularly with the UK Government’s announcement to end the sale of petrol and diesel passenger cars by 2030 and increasing support for alternatives. Despite this announcement, the internal combustion continues to play a significant role both in the passenger car market through the use of hybrids and sustainable low carbon fuels, as well as a key role in other sectors such as heavy-duty vehicles and off-highway applications across the globe. Building on the industry-leading IC Engines conference, the 2021 Powertrain Systems for Net-Zero Transport conference (7-8 December 2021, London, UK) focussed on the internal combustion engine’s role in Net-Zero transport as well as covered developments in the wide range of propulsion systems available (electric, fuel cell, sustainable fuels etc) and their associated powertrains. To achieve the net-zero transport across the globe, the life-cycle analysis of future powertrain and energy was also discussed. Powertrain Systems for Net-Zero Transport provided a forum for engine, fuels, e-machine, fuel cell and powertrain experts to look closely at developments in powertrain technology required, to meet the demands of the net-zero future and global competition in all sectors of the road transportation, off-highway and stationary power industries
    • …
    corecore