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Abstract 

Development of Real-time Optimal Control Strategy of Hybrid Transit Bus Based on 

Predicted Driving Pattern 

 Wei Qi 

The control strategy of a hybrid electric vehicle (HEV) has been an active research area in the past 

decades. The main goal of the optimal control strategy is to maximize the fuel economy and 

minimize exhaust emissions while also satisfying the expected vehicle performance. Dynamic 

programming (DP) is an algorithm capable of finding the global optimal solution of HEV operation. 

However, DP cannot be used as a real-time control approach as it requires pre-known driving 

information. The equivalent consumption minimization strategy (ECMS) is a real-time control 

approach, but it always results in local optima due to the non-convex cost function. 

In my research, a ECMS with DP combined model (ECMSwDP) was proposed, which was a 

compromise between optimality and real-time capability. In this approach, the optimal equivalent 

factor (λ) for a real-time ECMS controller can be derived using ECMSwDP for a given driving 

condition. The optimal λ obtained using ECMSwDP was further processed to derive the λ map, 

which was a function of vehicle operation and driving information. Six λ maps were generated 

corresponding to the developed representative driving patterns. At each distance segment of a drive 

cycle, the suitable λ value is available from one of the six λ maps based on the identified driving 

pattern and current vehicle operation. 

An adaptive ECMS (A-ECMS) model with a driving pattern identification model is developed to 

achieve the real-time optimal control for a HEV. A-ECMS was capable of controlling the ratio of 

power provided by the ICE and battery of a hybrid vehicle by selecting the λ based on the identified 

λ map. The effect on fuel consumption of the control strategies developed using the rule-based 

controller, ECMSwDP, A-ECMS, and DP was simulated using the parallel hybrid bus model 



 

 

developed in this research. The control strategies developed using A-ECMS are able to 

significantly improve the fuel economy while maintaining the battery charge sustainability. The 

corrected fuel economy observed with A-ECMS with a penalty function and the average λ of RDPs 

was 5.55%, 13.67%, and 19.19% gap to that observed with DP when operated over the Beijing 

cycle, WVU-CSI cycle, and the actual transit bus route, respectively. The corrected fuel economy 

observed with A-ECMS with 𝜆 maps of the RDPs was 4.83%, 10.61%, and 14.33% gap to that 

observed with DP when operated on the Beijing cycle, WVU-CSI cycle, and actual transit bus 

route, respectively. 

The simulation results demonstrated that the proposed A-ECMS approaches have the capability to 

achieve real time suboptimal control of a HEV while maintaining the charge sustainability of the 

battery.
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𝜂𝑒𝑚 Electric machine efficiency 

𝜂𝑝𝑎𝑡ℎ 
The efficiency of the drivetrain used in regenerating/discharging the 

battery 
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𝜔𝑒𝑚 Electric machine speed 

𝜔𝑖𝑐𝑒 Engine speed 

𝜆 Equivalent factor of ECMS 

𝜆𝑎𝑣𝑒,𝑤/ 𝑖  The extracted averages of 𝜆 with improved cost function 

 𝜆𝑎𝑣𝑒,𝑤/𝑜 𝑖 The extracted averages of 𝜆 without improved cost function 

𝜆𝑜𝑝𝑡 Optimal equivalent factor 

𝜆0 Initial equivalent factor in ECMS with penalty 

𝜎 Mass coefficient considering inertia effect. 

𝛥𝐸𝑜𝑛/𝑜𝑓𝑓 The difference engine on or off status in DP cost function, Equation 4.11 

∆𝑆𝑂𝐶 The change in SOC of battery 

𝜏 Unit convert parameter, Equation 4.31 

 

Subscripts 

  𝑎𝑣𝑒 Average value 

  𝑐𝑜𝑟𝑟 Corrected 
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 𝑚𝑖𝑛 Minimum value 

 𝑚𝑎𝑥  Maximum value 

 𝑟𝑒𝑓 Reference value, equation  

  𝑤/  With 

  𝑤/𝑜  Without 

 



 

 

1 Introduction 

1.1 Background 

The ever increasing fuel consumption (FC) and emissions of pollutants, as well as 

continuous concern for greenhouse gas (GHG) emissions have led to the development of 

more efficient and cleaner transportation technologies. Past researches have focused on 

technologies capable of significantly improving the engine thermal efficiency, application 

of after-treatment systems, and further reduction of vehicle energy consumption through 

better design of vehicle dynamics. A more holistic approach in reducing the FC and GHG 

emissions of on-road vehicles is the development and application of hybrid vehicle 

technologies. The application of hybrid technology decreases FC by recovering and re-

using energy that, for conventional vehicles, is lost during the vehicle braking process 

(Sundstrom and Guzzella 2009). FC is reduced further through hybrid technology by 

shifting the engine operation from a low to high efficiency zone, storing electrical energy 

in a relatively large battery (which acts as an energy buffer), downsizing the engine, the 

electrification of the auxiliary system, and the automatic start/shutoff of the engine during 

vehicle stop and go mode (Panday and Bansal 2014). 

Hybrid vehicles can be categorized as mild hybrid vehicles, or full hybrid vehicles. A mild 

hybrid vehicle is essentially a conventional vehicle that has been modified to allow for 

electrification of the auxiliary system, which makes it possible to shut down the internal 

combustion engine (ICE) during coasting and idle periods, and to restart it when propulsion 

power is requested such as when acceleration is needed. In comparison, a full hybrid 

vehicle, sometimes called a strong hybrid, is a vehicle that can run on either the ICE, the 

electric motor only, or a combination of both. A full hybrid bus usually can recovery the 

vehicle’s kinetic energy during the braking process, convert it to electrical energy, and 
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store it in the battery for vehicle propulsion or powering the auxiliary system. The electric 

motor of a hybrid vehicle can either power the vehicle by itself or work together with the 

ICE to provide the energy needed for vehicle operation. Traditionally, a hybrid electric 

vehicle (HEV) can be classified as one of three types: series, parallel, and combination.  

i. Series hybrid vehicle 

The series hybrid vehicle is driven by an electric motor, which is powered by the battery 

and electricity produced by the onboard ICE-alternator system. In a series hybrid vehicle, 

the ICE is not mechanically connected to the propulsion wheels but run as an onboard 

generator.  

ii. Parallel hybrid vehicle 

In a parallel hybrid vehicle, both the ICE and electric motor are mechanically connected in 

parallel with the wheels. A parallel hybrid vehicle can operate with the electric motor only, 

ICE only, or both. A parallel hybrid vehicle generally falls into two types classified by the 

layout of motor: pre-transmission and post-transmission. 

iii. Combination hybrid vehicle 

Combination hybrid vehicle incorporates the features of both a series and parallel HEV. 

An additional mechanical connection exists between the ICE and transmission compared 

with the series hybrid, and an additional generator is installed between the ICE and power 

converter compared with the parallel hybrid.  

A hybrid vehicle usually achieves its best performance when operated with frequent 

acceleration, decelerations, stop and goes, and long idle periods, which are characteristics 

of a vehicle that operates run in heavily populated urban areas. The high cost of hybrid 

vehicles makes them more suitable for vehicles which run for a long time each day. The 

operation of a vehicle with a fixed route through urban areas makes the hybrid vehicle 

achieve its best potential in reducing FC and GHG because of the frequent start-stops, 



3 

 

accelerations and deceleration operations. Among the vehicles considered, transit buses are 

recognized as the one most suitable for hybridization. Hybrid electric buses (HEBs) are 

defined as transit buses carrying at least two sources of motive energy on board and using 

electrical energy to provide partial or complete drive power to the vehicle’s wheels 

(Salmasi 2007). There is an infinite number of HEB driveline configurations based on a 

combination of 4 critical components: fuel converters (including ICEs, generators, and 

electric motors), drive-trains, auxiliaries, and elements for the storage of energy 

regenerated during the braking process. The physical configuration is only one of the 

important factors which influences the fuel economy and emissions. The energy 

management strategy also can have significant impact on FC and emissions. The 

availability of two different energy storage systems, two power systems, an electrified 

auxiliary system, different operation modes, and management of the battery charging or 

discharging, makes the control of the hybrid system much more complex than that of 

traditional vehicles. This requires the development and application of more advanced HEV 

control strategies than those of traditional vehicles. 

1.2 Motivation 

The control strategy of a HEV has been an active research area in the past decades. The 

main goal is to maximize the vehicle fuel economy (FE) rated in miles per gallon (mpg) 

and minimize emissions while also satisfying the expected driving performance. The 

control strategies can be categorized as one of the following three types: (1) The heuristic 

rule-based controllers, which are widely implemented in current HEVs but cannot 

guarantee the optimal result (Pisu and Rizzoni 2007); (2) The global optimality method of 

the dynamic programming (DP) (Sundstrom and Guzzella 2009) controller can obtain the 

global optimal solution, but it requires the pre-known driving cycle information and there 

is a heavy calculation cost. Accordingly, the DP controller traditionally cannot be used in 
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real-time control, which is often implemented as a benchmark for the development of the 

energy management controller; (3) The equivalent consumption minimization strategy 

(ECMS) (Paganelli, et al. 2002), which is a compromise between the optimal and real-time 

control approaches. The ECMS is considered to be a local optimization control approach 

and is widely used in HEV energy management, but ECMS only uses a randomly selected 

constant equivalent factor (𝜆), which can’t guarantee charge sustainability of the entire 

driving cycle. In order to apply in real-time controllers, some researchers proposed the 

adaptive equivalent consumption minimization strategy (A-ECMS) (Onori, Serrao and 

Rizzoni 2010), which changes 𝜆  based on the state of charge (SOC) of battery and 

maintains the SOC around the reference variation. However, A-ECMS cannot guarantee 

the near-optimal and desired SOC of battery under active driving conditions such as the 

up/down hill driving phase (Han, Park and Kum 2014). The optimal control strategy is 

performed over a fixed driving cycle, by assuming the future driving conditions are known. 

However, the driving pattern of a transit bus operated on a fixed route is influenced by the 

traffic volume, road surface, local activities, unexpected environments, extreme weather, 

and the operation of the accessory system which largely depends on the ambient conditions. 

As reported by Ericsson, prior knowledge of the driving pattern and environment can make 

a significant impact on the potential of the hybrid vehicle in reducing fuel consumption 

and exhaust emissions if the control strategies can be adjusted to address the future driving 

patterns. 

1.3  Objectives of Thesis 

The objective of this study is to develop the real-time optimal control strategies of a parallel 

HEB. The following are the main tasks to be completed: 

 To develop a HEB model using Autonomie as a platform and validate it against 

experimental data;  
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 To develop the code for DP and ECMS and examine the potential of DP and ECMS 

in improving the performance of a simulated parallel HEB; 

 To develop a model combining ECMS with DP for the extraction of the optimal 𝜆, 

which might be a function of battery SOC, vehicle operation features, route 

information, etc.;  

 To develop a model capable of predicting the operation features of HEBs operated 

on a fixed route, as well as a model capable of identifying the representative driving 

patterns with the known or predicted driving features;  

 To develop an A-ECMS based on the 𝜆 extracted with the current vehicle operation 

data and the predicted future operation features;  

 To numerically compare the impact of the control strategies developed using rule-

based control, ECMS, ECMSwDP, and A-ECMS on the fuel economy of a 

simulated parallel HEB. 

1.4 Thesis Outline 

There are 8 chapters in this thesis. The current chapter briefly introduces the outline of 

hybrid vehicles, the motivation, and the main objectives of this research. 

Chapter 2 presents the literature review relating to HEVs and control technologies, and 

identifies the need for developing real-time optimal control strategies for hybrid vehicles. 

Chapter 3 introduces the development of a parallel HEB model and its validation against 

experimental data reported in the literature. This model is used as the platform for the 

development and examination of the control strategies to be discussed and developed in 

this research. 
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Chapter 4 presents the DP and ECMS algorithms and examines the impact of the control 

strategies developed using DP and ECMS in improving the fuel economy of a parallel HEB 

operated over the Beijing cycle and WVU-CSI cycle. 

Chapter 5 develops an algorithm combining ECMS with DP, noted as ECMSwDP. The 

main outcome of ECMSwDP is the optimal 𝜆(𝑡) or λ map for real time adaptive-ECMS. 

Chapter 6 reports the development of a driving feature prediction model, and a driving 

pattern identification model.  

Chapter 7 proposes the development of an A-ECMS model capable of generating the robust, 

real-time and suboptimal control strategies for HEBs. The impact of control strategies 

developed using ECMS, ECMSwDP and A-ECMS on the fuel economy will be examined 

and discussed. 

Chapter 8 concludes this dissertation with a brief summary of work completed, major 

contributions made, and conclusions drawn based on the results obtained in this research. 

The future research work that should be conducted is recommended. 
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2 Literature Review 

2.1  Hybrid Electric Bus 

Improvement of the public transportation system has been recognized as one of the possible 

solutions to the ever-increasing traffic congestion and air pollution in metropolitan areas 

such as Washington D.C., USA and Beijing, China. The diesel-fueled transit buses with 

conventional drivetrain are known to be high in fuel cost and emissions. Transit buses in 

the USA consumed approximately 2,233 million gallons of diesel fuel in 2014 (U.S. 

Department of Energy 2014). Further reducing the FC and exhaust emissions from transit 

buses has been the focus of transit agencies.  

Transit buses have been identified as one platform that is suitable for hybridization 

(Williamson, Wirasingha and Emadi 2006). 

 The large space of HEBs make it possible to integrate the battery size and electric 

powertrain system.  

 With high frequency start-stops and deceleration driving conditions, HEBs can 

recover more energy through a regenerative braking system than vehicles operated 

at a relatively constant speed. 

 Operated at fixed route and fixed schedule, which makes its operation features more 

recognizable and predictable than other vehicles. This makes it possible to develop 

specific control strategies unique to a bus route or transit bus agency. 

 A transit bus usually operates 8 hours or more each day, and 5 or more days a week 

which makes it possible for transit agencies to reduce FC, as well as GHG emissions 

at reduced operation cost. Transit buses are usually designed and fabricated to serve 

for 12 years or more in US. This makes it easier to have a reasonably short payback 

period. 
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 The energy storage system (ESS) can be used as a buffer for extremely transient 

driver power demanded HEBs, which can make the vehicle operate with a smaller 

size engine with less transient modes on its more efficient zones. This is desirable 

but usually difficult to achieve with a conventional bus. 

2.2 Hybrid Electric Bus Powertrain 

The charge sustaining (CS) and charge depleting (CD) configurations are in a full hybrid, 

the engine and motor offer comparable levels of propulsion power and can work 

independently or in conjunction with each other. The ISG configuration is a mild hybrid 

which has an oversized starter motor that makes it possible to turn off the engine when the 

bus is coasting, braking or stopped, then restarts the motor quickly and seamlessly when 

vehicle needs power for actions such as acceleration. The application of the ISG 

configuration makes it possible to shut down engine during vehicle coasting and stop (Eick 

2012, C. Chan 2002). 

2.2.1 Charge Sustaining Hybrid Electric Powertrain 

In a CS hybrid powertrain, to avoid costly battery replacements during the expected life of 

the vehicle, there must be enough mechanical power produced by the engine to drive the 

bus over a reasonable route and the batteries must endure an extended period of vehicle 

operation. 

Series Hybrid Electric Powertrain 

The wheels of a series hybrid electric powertrain are propelled by a traction motor powered 

by electrical energy stored in the battery or generated by the ICE. The electrical energy 

recovered during the braking process is also stored in the battery for future application in 

powering the traction motor and the electrical auxiliary system. Since the ICE is not 
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directly mechanically connected to the wheels, it can operate at an engine load and speed 

independent of vehicle power request, speed and gear ratio, which makes it possible for the 

ICE to operate at the better efficiency. The ICE can even be switched off for short periods 

of time for an engine free operation of the bus. Figure 2.1 shows the series hybrid electric 

powertrain configuration. 
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Figure 2.1 Configuration of series hybrid vehicles 

However, as the electric machine is the only drive mechanism connected to the wheels, a 

large traction motor is necessary. Another weakness of the series hybrid configuration is 

that energy is first converted from mechanical power to electricity by a generator and later 

on converted to mechanical work by a motor. The combined efficiency of the generator-

battery-motor system is about 80% (Eick 2012), indicating a loss of 20% of the mechanical 

work to waste heat in ESS. The dissipation of thermal energy generated by the electrical 

system, especially the battery, consumes energy and requests the development of complex 

thermal management systems. Some examples of companies that manufacture series 

hybrid buses include BAE Systems, ISE and E-bus which sell 40-foot and 22-foot series 

hybrid electric transit buses in the U.S. market (County 2005). 
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Parallel Hybrid Electric Powertrain  

The parallel hybrid vehicle is referred to in powertrain technology as having the engine 

and electric motor mechanically connected in parallel to the transmission. Parallel hybrid 

vehicles can operate on engine only mode, electric only mode, or both. 
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Figure 2.2 Configuration of parallel hybrid vehicles 

The ICE and electric machine of a parallel hybrid electric powertrain are mechanically 

connected to the transmission. This makes the parallel system more complex but more 

efficient than a series hybrid configuration during most operating conditions. This is due 

to the elimination of the mechanical work to electricity, and electricity to mechanical work 

conversion loop. 
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There are two types of parallel hybrid vehicles, which are classified by the layout of the 

motor: pre-transmission and post-transmission parallel hybrid vehicle. A pre-transmission 

motor, shown in Figure 2.2-A, operates over a smaller speed range than a post-transmission 

motor, and it can effectively provide more torque to the drive wheels at low speed. 

However, the motor power of a post-transmission configuration (Figure 2.2-B) doesn’t 

need to pass through the transmission, so it can get a higher efficiency for driving the 

wheels or recapturing braking energy. 

Eaton manufactures parallel hybrid systems for medium/heavy-duty trucks and 40 to 60-

foot transit buses. The chassis configuration used for simulation studies in this thesis is the 

pre-transmission parallel hybrid electric powertrain. 

Complex Hybrid Electric Powertrain 

The complex hybrid architecture is to some extent a combination of the series and parallel 

hybrid bus. Compared to the series configuration, a mechanical link between the generator 

and the electric motor is added. A complex hybrid has one more generator than a parallel 

hybrid. With this design, it is possible to combine the advantages of both the series and 

parallel HEV configurations, but the design and control are much more intricate.  
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Figure 2.3 Configuration of complex (power split) hybrid vehicles 

The Allison buses currently on the market employ a planetary system with a range shift, 

which has been termed a split parallel (Clark, Zhen and Wayne 2009). In the light-duty 
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market, the Toyota Prius has demonstrated the best FE with a planetary system, as shown 

in Figure 2.3. 

2.2.2 Charge Depleting Hybrid Electric Powertrain 

A charge depleting hybrid system refers to a mode of vehicle operation powered mainly by 

the electrical energy stored in the battery pack. Battery electric vehicles operate solely in 

this mode. Most plug-in hybrid electric vehicles (PHEVs) operate in CD mode at startup, 

consume electricity only, and later on switch to CS mode after the battery has reached its 

minimum SOC threshold, and exhausted the vehicle's all electric range (AER) (Markel 

2006).  

The electrical energy stored in the battery pack of a PHEV is supplied from an off-vehicle 

source when the vehicle is parked, while the electricity recovered during the braking 

process can also be stored in the battery but only contribute to a very small portion of the 

total energy stored in battery. PHEV typically utilizes the stored power to drive the vehicle 

in electric only mode for a certain distance, so the battery is normally larger than that of a 

CS hybrid powertrain (Zhang, Mi and Zhang 2011).  

Series Plug-in Hybrid Electric Powertrain 

A series plug-in hybrid electric powertrain basically consists of an electric motor to propel 

the vehicle. When the battery charge is depleted, the onboard generator system provides 

electrical power for charging the battery or powering the motor to propel the vehicle. In a 

series plug-in powertrain, there is no direct mechanical connection between the engine and 

drive wheels, so the ICE can work at its high efficient zone when powering the generator. 

Ebus Inc. has produced series PHEV transit buses that utilize a diesel powered micro 

turbine to drive the on-board generator and provide additional operation range once the 

primary charge in the battery pack is depleted (Vyas, Santini and Johnson 2009, Eick 2012). 

http://en.wikipedia.org/wiki/Battery_pack
http://en.wikipedia.org/wiki/Battery_electric_vehicle
http://en.wikipedia.org/wiki/Plug-in_hybrid
http://en.wikipedia.org/wiki/All-electric_range
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Parallel Plug-in Hybrid Electric Powertrain 

In the parallel plug-in hybrid electric powertrain, there is a mechanical linkage from the 

ICE to the drive wheels that can assist the electric motor for aggressive acceleration or high 

speeds. Unlike the parallel HEVs, parallel PHEVs normally have a significantly greater 

AER before the ICE needs to be turned on. Azure Dynamics provides parallel plug-in 

hybrid powertrains for Ford’s E-Series and F-Series truck chassis (Eick 2012). 

Parallel and Series powertrain configurations are the two primary options for PHEVs. As 

these types of PHEV operate by drawing power from the battery, the PHEV is considered 

to be a CD mode. When operating in CD mode without any assistance from the ICE, the 

PHEV is operating as an electric vehicle. When the ICE is turned on, the PHEV operates 

on CS mode, similar to traditional hybrid vehicles. 

2.2.3 The Integrated Starter Generator Hybrid Electric Powertrain 

The ISG hybrid electric powertrain is primarily an electric motor machine mounted on the 

crankshaft between the ICE and transmission. The ISG architecture is categorized into 

parallel and mild hybrid configurations because of its relatively small size of motor adopted 

(Mao, et al. 2008), illustrated in Figure 2.4.  
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Figure 2.4 Configuration of ISG hybrid vehicles 

This mild hybrid, or stop-start system, shuts off the engine when the vehicle is at rest in 

order to save fuel, and automatically restarts it when the driver requests acceleration. This 
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is typically accomplished through an electric motor/generator that can assist the ICE during 

acceleration and recover electrical energy and send it to the battery pack during 

deceleration, but does not have enough power to propel the vehicle on its own. Mild hybrids 

typically achieve FC savings of 8 to 12 percent if designed properly and operate on frequent 

stop and go operation (Eick 2012).  

2.3 Hybrid Vehicle Control Strategies 

A major challenge for the improvement of hybrid vehicles is the coordination of multiple 

energy sources to minimize FC and exhaust emissions, to sustain battery energy, and to 

achieve the drivability and operational ability expected by the driver. The actions taken by 

the control strategies play a critical role in determining the performance and efficiency of 

a hybrid vehicle (Onori and Serrao 2011, Sundstrom and Guzzella 2009, Paganelli, et al. 

2002, Pisu and Rizzoni 2007). Hybrid powertrain control strategies can be classified in 

accordance of properties optimization (global/local optimality), computational burden 

(online/offline control), and the use of prediction model for the forgoing operation features 

with the prior knowledge of routes (Salmasi 2007). Typically, there are three types of 

control strategies: common rule-based control strategy, optimization based control 

strategies, and optimal predictive control strategies.  

2.3.1 Common Rule-Based Control Strategy 

The common rule-based control strategy selects the operation modes according to the 

predefined rules designed based on heuristics, intuition and human expertise (engineering 

knowledge), without prior knowledge of the route (Wirasingha and Emadi 2011, Tie and 

Tan 2013, Panday and Bansal 2014). The rule-based control strategies for hybrid vehicles 

can be classified into the deterministic rule-based method and fuzzy rule-based method. 
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The Deterministic Rule-Based Methods 

Deterministic rule-based controllers select certain operation modes such as electric vehicle 

(EV) mode, engine mode, engine charge mode, power split mode and performance limited 

mode based on a set of rules and instantaneous inputs of driving condition that have been 

defined and implemented prior to actual operation (Tie and Tan 2013). Deterministic rule-

based methods consist of thermostat (on/off) strategy, power follower (baseline) control 

strategy, modified power follower strategy and state machine based strategy (Bayindir, 

Gözüküçük and Teke 2011, Wirasingha and Emadi 2011). 

The simplest deterministic rule-based controller would be the thermostat controller as 

shown in Figure 2.5. It operates on the simple principle that the ICE will be turned on or 

off based on the SOC and the torque request of the vehicle. The controller has been 

successful used in a series hybrid drive train, where the electric motor provides all the 

propulsion, and the ICE is required to sustain a defined SOC. The thermostat control 

strategy is robust, simple and easy to control but leads to high frequency on and off 

(charging and discharging) cycles of the engine and battery.  

 

Figure 2.5 Thermostat control strategy for a series HEV (Source: Autonomie vRev12) 

In power follower (baseline) control strategy, the ICE is the primary source of power, and 

the electric powertrain system provides the additional power or sustains a charge in the 
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ESS. This controller is used in parallel and split powertrain hybrid vehicle, such as Honda 

Insight and Toyota Prius HEVs. The disadvantage is that the controller doesn’t consider 

the powertrain component efficiency and the reduction in exhaust emissions (Rajamani 

2011). The modified power follower strategy is an improved baseline control strategy, 

which is based on energy usage and emissions through a cost function representing overall 

FC and emissions at all candidate operating points. Although this strategy has helped to 

some extent in solving the problems associated with the former approach, repeating 

calculation of all candidates operating points is not desirable for online implementation 

(Johnson, Wipke and Rausen 2000). Another state machine based controller is composed 

of a set of operation modes, where mode selection is determined by considering a change 

in driver demand. This strategy cannot guarantee the vehicle will be able to obtain the 

optimized energy usage and emissions (Sorrentino, Rizzo and Arsie 2011). 

The Fuzzy Rule-Based Control Strategy 

Fuzzy logic is ideal for multi-domain, nonlinear, and time-varying hybrid electric 

powertrain system since it is robust, adaptable to variations, and easily adjustable. The 

fuzzy rule-based methods include conventional fuzzy strategy, fuzzy adaptive strategy and 

fuzzy predictive strategy (Wirasingha and Emadi 2011).  

The inputs of the conventional fuzzy logic controllers are battery SOC and the desired ICE 

torque. Based on these inputs, the controller then selects a certain operation mode (Lee, et 

al. 2000). The application of this controller was shown to achieve better FE than the simple 

deterministic rule-based strategy. However, the conventional fuzzy logic controllers are 

still based on predetermined rules and can only be optimized for specific driving patterns. 

The fuzzy adaptive strategy is based on weight of fuel efficiency and emissions, where the 

weight defines the relative importance of these parameters. The main drawback of the 

fuzzy adaptive strategy is neglecting the driveline efficiencies (Schouten, Salman and 
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Kheir 2002). Fuzzy predictive strategy was explored by Rajagopalan, et al. (2003), which 

is based on driving history and current data to decide the future operation modes through a 

look-ahead window along a fixed route. This controller can be implemented in real-time 

control tasks but still does not guarantee optimized vehicle performance. 

2.3.2 Optimization Based Control Strategies 

Rule-based control strategies only optimize the performance of each component 

individually, not maximize the efficiency of the powertrain, and so can’t optimize the 

system efficiency of HEV. Optimization based control strategies can maximize the 

efficiency of the powertrain and minimize the cost function of FC or emissions (Amiri, et 

al. 2009). Optimization based controllers can be classified as global optimization or real-

time optimization controllers. 

Global Optimization 

Global optimization, also known as horizon optimization, requires the knowledge of future 

and past power demands to minimize the cost function of FC and emissions over a fixed 

driving route. The controllers are often optimized offline and then implemented as an 

optimal performance benchmark of a HEVs’ control strategies. Global optimization control 

strategies can be divided into linear programming, genetic algorithm (GA), DP and 

stochastic DP categories (Bayindir, Gözüküçük and Teke 2011).  

Linear programming is mostly used for fuel efficiency optimization in series HEVs 

(Wirasingha and Emadi 2011). It uses piecewise linear approximations to transform hybrid 

powertrain, fuel efficiency and emissions into linear programs. The linear programming 

depends on powertrain structure. However, building a linear model for a complex topology 

is difficult.  
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A genetic algorithm is easy to use for complex nonlinear optimization for the wide range 

of search space. However, unlike an analytical approach, the GA method needs more time 

for heavy calculations and can’t provide the designer with the necessary view of HEV 

powertrain. Montazeri-Gh (2006) applied a GA for the optimization of the control 

parameters in a parallel HEV, and the fitness function was defined to minimize the vehicle 

FC and emissions.  

DP is both mathematical optimization and a computer programming method, which is one 

of the most popular approaches for solving the optimal power management problem of 

HEVs by minimizing a cost function over a driving cycle. DP can easily handle the 

constraints and nonlinearity of the problems while obtaining a globally optimal solution. 

The main drawbacks of the DP method include the computational complexity and the 

requirement of full knowledge of the drive cycle, which is not available prior to the 

completion of the actual vehicle mission. Therefore, DP is not able to adapt to any changes 

and cannot be utilized in a real-time controller (Bilbao, et al. 2014, Mansour and Clodic 

2012, Sundstrom and Guzzella 2009). 

The stochastic DP optimization method uses random variables to formulate an optimization 

problem, which serves to maximize its rewards in the worst-case scenario while providing 

the required torque demanded by the driver and keeping the SOC of the battery at a steady 

level. Lin (2004) found that the obtained stochastic DP control algorithm was better than a 

rule-based control strategy trained from deterministic DP results. This method still requires 

prior knowledge of the routes. 

Real-Time Optimization  

A global optimization algorithm can’t be implemented directly online due to the pre-known 

driving cycle information and the cost of calculation. Instead, real-time optimization, 

which solves an optimization problem for only the current step, is implementable. Real-
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time optimization control strategies can be divided into Pontryagin’s minimum principle 

(PMP), robust control approach, ECMS and A-ECMS. 

PMP is a special case of Euler-Lagrange equation of calculus for variations. For an 

optimum solution, PMP provides only necessary conditions. The sufficient conditions are 

satisfied by Hamilton-Jacobi-Bellman equation. In PMP, the number of nonlinear second-

order differential equations linearly increases with the dimension. Control based on PMP 

usually takes less computational time for getting an optimal trajectory, so PMP is suggested 

as a viable real-time strategy (Kim, Cha and Peng 2011). Accordingly, PMP is still 

recognized as a local optimal, not a global solution. 

The ECMS is developed by calculating the total FC as sum of real fuel consumed by the 

ICE and equivalent fuel consumption of the electrical system (Delprat, Guerra and Rimaux 

2002, Paganelli, et al. 2002). The equivalent power consumption is expressed as  𝑚𝑓,𝑒𝑞𝑢 =

𝑚𝑓 + 𝜆 ∙ 𝑃𝑒𝑙𝑒 , where 𝑚𝑓,𝑒𝑞𝑢  is the equivalent fuel consumption, 𝑚𝑓  is the fuel 

consumption by the ICE, 𝑃𝑒𝑙𝑒 is the electric energy consumption, and 𝜆 is the equivalent 

factor that converts electrical energy into fuel consumption. This control method minimizes 

the equivalent fuel consumed by the ICE and battery. As shown in Figure 2.6, a small 

perturbation of 𝜆 leads to non-charge sustaining operation. The red line (the optimal value 

of 𝜆 = 2.227) is the sustaining SOC trajectories. Although ECMS is able to achieve nearly 

optimal performance, it is very sensitive to the variation in 𝜆, and results in significant 

variation of final SOC. The operation of ECMS with 𝜆 = 3 will charge the battery to the 

up-SOC limit, which makes it impossible to further store the electrical energy recovered 

from the braking process. However, ECMS operation with 𝜆 = 1 would discharge to its 

low-SOC limit which makes it impossible to run the electric motor when high driving 

power is requested. 
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Figure 2.6 SOC trajectories with the variation of λ (Beijing cycle) 

Over-charging or depleting the battery can be solved by the A-ECMS, which adjusts the 

value of 𝜆 based on the feedback from the current SOC (De Jager, Steinbuch and Keulen 

2008, Musardo, et al. 2005). These methods actually account for the dynamic change in 

the value of 𝜆 to maintain the SOC around the reference level. Although A-ECMS is easily 

utilized, robust and computationally cheap, it cannot guarantee near optimality. The reason 

for this is A-ECMS is extended by penalizing the deviation of SOC from a reference value. 

If the battery isn’t sufficiently large, the ESS can’t absorb all the energy made available 

from regenerative braking (Ambuhl and Guzzella 2009). 

2.3.3 Optimal Predictive Control Strategies 

As previously outlined, the SOC and power demand of the current driving state are the 

only inputs to both rule-based and optimization based control strategies, but these control 

strategies do not account for the upcoming route and vehicle operation information. In the 

case where the upcoming route information was not given, the engine was shut off during 

idle time and the lower power ranges with the driving power provided by the motor. The 
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calculated SOC before the start of the high speed micro-trip was very low. In another case 

with the upcoming high speed micro-trip accounted for, the engine provides the electrical 

work to increase the SOC of the battery to its upper limit. With the upcoming route 

accounted for, the SOC of the battery is bumped to its high limit, which makes it possible 

to run the engine in its high efficiency region with partial power provided by the battery 

through avoiding the operation of the engine at extremely high load. Lin (2002), 

Cassebaum (2011), and Larsson (2014) stated that the optimal predictive control could 

offer superior fuel economy to the instantaneous strategies. The prediction model can be 

categorized into two approaches: model-based method and data-driven method (Shen 

2008). 

Model based approaches can predict future traffic conditions on the route of interest based 

on traffic flow theory. There are two different types of model based approaches: 

macroscopic and microscopic. Macroscopic models study traffic from an overall or average 

perspective in order to describe the traffic situation while microscopic models study the 

motion of individual vehicles (Miller 2011). These model based approaches are 

computationally complex and require expertise for design and maintenance of the traffic 

model. 

Data driven approaches relate observed traffic conditions with current and past traffic data 

without requiring extensive expertise, so these approaches are fast and easy to implement 

(Park, et al. 2011). Various data driven prediction algorithms have been proposed to exploit 

driving conditions over the past several years including fuzzy logic, auto regressive 

integrated moving average (ARIMA), non-parametric regression, Kalman filter, Bayesian 

classifying, decision tree, fuzzy clustering analysis, neutral network (NN), support vector 

machine, and Markov chain (Xu, et al. 2009, Shen 2008, Miller 2011). Two levels of 

driving information can be used in optimal predictive control strategies. 
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The Past Driving Information of Route 

The past driving data can be collected, archived, calculated and analyzed by the data logger 

GPS unit (see Figure 2.7). The GPS is installed on the transit bus, and the on-board GPS 

& communication module automatically sends the bus’s running data to the operation 

center. The stored data were longitude, altitude, time stamp, differential fix, differential 

age, dilution of precision, etc. Some data from the vehicle, including vehicle speed, brakes 

and accelerations, are recorded. Those data reflect the real world environment, reflecting 

the actual road features, traffic situations, and driving behavior. 

 

Figure 2.7 GPS and data logger unit 

The stored history database can be used to develop a driving pattern prediction model, 

which can provide integrated driving information for the vehicle main controller to make 

decisions. The control strategy can be more adaptive to a variety of driving conditions (Lin, 

Jeon, et al. 2004, Xu, et al. 2009). There are numerous short-term prediction models, such 

as multiple-regression analysis, time-series forecasting, artificial neural networks and 

adjusted Kalman filter (Lee, Lee and Cho 2006). The past driving information is the critical 

point of predicting short term speeds. More complete and accurate past data will provide 

more precise predictions. 
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The Current Driving Information of the Route 

The geographic information system (GIS), GPS, intelligent transportation systems (ITS), 

vehicle to vehicle (V2V) communication, and vehicle to infrastructure (V2I) create more 

opportunities to provide the current driving information with details such as time, speed, 

trip distance, slope, acceleration, and deceleration (C. Zhang 2010). Hajimiri (2006) 

designed a fuzzy logic controller with the driving condition difference between the current 

and predicted future condition accounted for. The short-term traffic properties prediction 

is based on the data driven technique and is a critical component for optimal predictive 

control system (Vlahogianni, Karlaftis and Golias 2014, Wang and Lukic 2011).The 

current driving information should be acquired online in a certain time or distance based 

segment. If the segment is too short, the current data may not reflect the driving cycle 

correctly; if the segment is too large, the computational burden may be too heavy for real-

time control (Ye, Szeto and Wong 2012, Chan, Dillon and Chang 2013).  

2.4 Summary 

Figure 2.8 summarizes the control strategies of hybrid vehicles. This serves as a guide to 

identify or select the correct method of optimization. It is suggested that the best strategy 

should be implemented in real-time, provide global optimal results, and get fit to the 

dynamic simulation environment. In my research, a model which is capable of predicting 

the forgoing vehicle driving patterns and combines the advantages of both DP and ECMS 

method will be developed.  
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1.▲2. ∆ 3.▲4.▲5.▲
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1. ∆ 2.▲3. ∆ 4. ∆ 5. ∆

1. ∆ 2.▲3. ∆ 4.▲5. ∆

1. ∆ 2.▲3. ∆ 4. ∆ 5. ∆

1. ∆ 2.▲3. ∆ 4.▲5. ∆

Determined rule based control

1.▲2. ∆ 3. ∆ 4.▲5.▲

1.▲2. ∆ 3. ∆ 4.▲5.▲

1. ∆ 2. ∆ 3.▲4.▲5.▲

1.▲2. ∆ 3.▲4.▲5. ∆

Thermostat Strategy                        

Power Follower Control Strategy   
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State Machine Based Strategy        
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1.▲2. ∆ 3. ∆ 4.▲5.▲
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Genetic algorithm (GA)

Dynamic programming (DP)
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Robust control approach

Equivalent cost minimization 

strategy (ECMS)

Adaptive ECMS(A-ECMS)

 

Figure 2.8 Classification and comparison of control strategies 
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3 Hybrid Electric Vehicle Modeling and Validation 

3.1 Modeling of the Hybrid Electric Powertrain 

The parallel hybrid bus powertrain model is based on a transit bus equipped with a pre-

transmission parallel hybrid powertrain and a 4.76L Deutz-BF4M1013FC diesel engine. 

Table 3.1 presents the specifications of the parallel hybrid bus. The topology of the full 

parallel hybrid electric powertrain is showed in Figure 3.1. 
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Figure 3.1 Topology of the full parallel hybrid electric powertrain 

The model accounts for vehicle longitudinal dynamics, and has static nonlinear maps 

describing the efficiency of the combustion engine, electric machine, and battery. 

3.1.1 Engine Model 

The engine of this transit bus is an electronically controlled in-line 4 cylinder 4.76L Deutz 

diesel engine equipped with an intercooler and turbocharger. The rated power is 140 kW 

at 2300 rpm and the peak torque is 646 Nm at 1400 rpm from the test data.  
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Table 3.1 Basic specifications of the parallel hybrid transit bus (Zeng 2005) 

Component Specifications 

Engine 

Model: Deutz-BF4M1013FC 

No. Cylinders: 4 

Air Intake: Turbocharged 

Power: 140kW(187hp) @ 2300rpm 

Torque: 640Nm(472ft-lb) @1600rpm 

Idle speed: 900 rpm 

Weight: 560kg 

Motor/Generator (M/G) 

Type: AC 

Peak Power: 80kw (107hp) 

Continuous Power: 40kw (53hp) 

Peak Torque: ±380Nm (280ft-lb) 

Continuous Torque: ±260Nm (191ft-lb) 

Base Speed: 1500 rpm 

Maximum Speed: 5000rpm 

Voltage: 360V 

Energy storage 

Type: nickel-metal hydride battery (NiMH) 

Single Voltage: 12V 

Cell No.: 30 

Capacity: 27 Ah 

Peak power(estimate): 75kW(100hp) 

Weight(estimate): 174kg 

Drivetrain 

Type: 6-speed AMT 

1st gear ratio:7.285; 2st gear ratio: 4.193 

3st gear ratio:2.485; 4st gear ratio: 1.563 

5st gear ratio:1.000; 6st gear ratio: 0.847 

Ratio of final drive: 6.333 

Vehicle 

Model: FAW-CA6110HEV 

Dimensions: 11496mm (37.7ft) × 2500mm (8.2ft) × 3075mm (10.1ft) 

Overall Weight: 15000kg (33069lb) 

Frontal Area: 6.5m2 (70ft2) 

Aerodynamic Drag Coefficient: 0.65 

Coefficient of Rolling Resistance: 0.0098 

Wheel Radius: 509mm (1.67ft) 

 

Calculation of fuel and NOx rate is based on the brake specific fuel consumption (BSFC) 

map and NOx emissions map, which are functions of engine speed  𝜔𝑖𝑐𝑒 and torque 𝑇𝑖𝑐𝑒. 

�̇�𝑓𝑢𝑒𝑙 / 𝑁𝑂𝑥
= 𝑓𝐵𝑆𝐹𝐶/ 𝑁𝑂𝑥 ( 𝜔𝑖𝑐𝑒,  𝑇𝑖𝑐𝑒) Equation 3.1 

The BSFC map and steady-state NOx emissions map for the engine are showed in Figure 

3.2 and Figure 3.3, respectively. 
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Figure 3.2 BSFC map (data from Chen 2010) 

 

Figure 3.3 NOx emissions map (data from Chen 2010) 

3.1.2 Electric Machine Model 

The performance of the electric machine (EM) can be represented with the maximum 

torque, power, and speed. In this study, the EM model includes an AC asynchronous motor 

with a continuous power output of 40 kW and a peak power of 80 kW, an inverter, and an 
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EM controller. The maximum torque is ±260Nm, the rotating inertia of the rotor is assumed 

to be 0.047 kg.m2 (Chen 2010). 

 

Figure 3.4 Efficiency map of the EM (data from Chen 2010) 

Equation 3.2 and Equation 3.3 describe the relationships between the inputs and outputs of 

the EM model. 

𝑇𝑒𝑚 = 𝑠𝑖𝑔𝑛(𝑇𝑒𝑚,𝑟𝑒𝑞) ∙ |𝑚𝑖𝑛 (𝑇𝑒𝑚,𝑟𝑒𝑞, 𝑇𝑒𝑚,𝑚𝑎𝑥, 𝑇𝑏𝑎𝑡𝑡,𝑚𝑎𝑥)| Equation 3.2 

𝑃𝑒𝑚 = 𝑇𝑒𝑚𝜔𝑒𝑚(𝜂𝑒𝑚)𝑘 Equation 3.3 

Where 𝑇𝑒𝑚,𝑟𝑒𝑞 is the requested EM torque, 𝑇𝑒𝑚,𝑚𝑎𝑥 is the maximum torque limit posed by 

the EM, 𝑇𝑏𝑎𝑡𝑡,𝑚𝑎𝑥   is the maximum torque limit posed by the battery, 𝑃𝑒𝑚  is the required 

electrical power, and 𝜂𝑒𝑚 is the EM efficiency as a function of torque and speed, as shown 

in Figure 3.4.  𝑘 indicates the direction of the power flow. If the EM is used as a motor, 

𝑘 = −1 and the motor provides propulsion power to the vehicle. When regenerating, 𝑘 =

1 and the vehicle’s kinetic energy is converted to electrical energy and then stored in the 

battery. 
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3.1.3 Battery Model 

The battery used is a NiMH battery with a capacity of 27 Ah. The battery model was 

developed based on a simple resistive equivalent circuit model, where the open-circuit 

voltage 𝑉𝑜𝑐 and resistor 𝑅𝑖 are functions of battery SOC at 40 ℃ as shown in Figure 3.5 and 

Figure 3.6, respectively. This simple model allows for the expression of the terminal 

voltage of the battery as 

𝑉𝑏 = 𝑉𝑜𝑐 − 𝑅𝑖 ∙ 𝐼𝑏 Equation 3.4 
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Figure 3.5 Internal resistance of the NiMH battery as a function of SOC at 40 ℃ (Chen 

2010) 
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Figure 3.6 Internal OCV of the NiMH battery as a function of SOC at 40 ℃ (Chen 2010) 

The requested battery power (𝑃𝑏) is  

𝑃𝑏 = 𝑉𝑏 ∙ 𝐼𝑏 = 𝑉𝑜𝑐 ∙ 𝐼𝑏 − 𝑅𝑖 ∙ 𝐼𝑏
2 Equation 3.5 
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The battery current is calculated from the above requested battery power (𝑃𝑏) equation. 

𝐼𝑏 =
𝑉𝑜𝑐 − √𝑉𝑜𝑐

2 − 4 ∙ 𝑅𝑖 ∙ 𝑃𝑏

2 ∙ 𝑅𝑖
 Equation 3.6 

By the Coulomb counting method, the SOC of the battery is  

𝑆𝑂𝐶(𝑘 + 1) = 𝑆𝑂𝐶(𝑘) −
∫ (

𝑉𝑜𝑐 − √𝑉𝑜𝑐
2 − 4 ∙ 𝑅𝑖 ∙ 𝑃𝑏

2 ∙ 𝑅𝑖
）

𝑘𝑓

𝑘0

𝑄𝑏
 

Equation 3.7 

The parameter 𝑄𝑏 is the nominal battery capacity. The SOC of the battery is physically 

limited to [0, 1].  

3.1.4 Transmission Model and Torque Coupler Model 

The transmission adjusts engine speed  𝜔𝑖𝑐𝑒  and torque  𝑇𝑖𝑐𝑒  to meet the wheel power 

demand 𝑃𝑟𝑒𝑞 while keeping the engine from operating too aggressively. A complete 

gearbox model includes two critical maps: a gear ratio map, which is indexed by gear 

position, and a transmission efficiency map, which is a function of speed, torque and gear 

position. The test transit bus was equipped with a 6 speed automated manual transmission 

which combined the advantages of manual transmission, such as light weight and high 

efficiency, and the advantages of automatic transmission, such as convenience for drivers. 

It had the potential to improve efficiency by up to 7% at no cost to driving comfort (Zeng 

2005). The transmission ratios were 7.285 (1st gear), 4.193 (2nd gear), 2.485 (3rd gear), 

1.563 (4th gear), 1.000 (5th or direct gear), and 0.847 (6th gear).  

A torque coupler is a device with a fixed ratio installed between the motor and the 

transmission, by which motor speed and torque are divided and multiplied, respectively.  
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3.1.5 Chassis Model 

The chassis model was based on the road load equation shown in Equation 3.8, which 

considered rolling resistance, aerodynamic drag, road grade, and acceleration loss related 

to inertia and mass of the powertrain. 

𝑃𝑟𝑒𝑞 = 𝑃𝑟 + 𝑃𝑤𝑑 + 𝑃𝑔𝑑 + 𝑃𝑎𝑐𝑐

=
1

3600 ∙ 𝛾𝑡
(𝑚 ∙ 𝑔 ∙ 𝑓 ∙ 𝑐𝑜𝑠 𝛼 +

𝐶𝐷 ∙ 𝐴 ∙ 𝑣𝑟𝑒𝑞
2

21.15
 

+𝑚 ∙ 𝑔 ∙ 𝑠𝑖𝑛 𝛼 + 𝜎 ∙ 𝑚 ∙
𝑑𝑣𝑟𝑒𝑞

𝑑𝑡
) ∙ 𝑣𝑟𝑒𝑞 

Equation 3.8 

Where𝛾𝑐 , 𝛾𝑡, 𝛾𝑓 and𝛾𝑡 = 𝛾𝑐 ∙ 𝛾𝑡 ∙ 𝛾𝑓, are the torque coupler efficiency, gearbox efficiency, 

final drive efficiency and overall transmission efficiency, respectively. The 𝛼 = tan−1( 𝑖) 

denotes grade angle. 𝑃𝑟 ,  𝑃𝑤𝑑  , 𝑃𝑔𝑑  and 𝑃𝑎𝑐𝑐  represent power losses due to the rolling 

resistance, wind drag, climbing, and the power needed for acceleration, respectively. The 

𝜎 represents a mass coefficient with inertia effect accounted for. 

3.1.6 The Rule-Based Control Strategy  

In the forward-looking simulation tool Autonomie, the control strategy is the simplest 

determined rule-based controller (Slezak 2013). It operates on the simple principle that the 

ICE will be turned on or off based on the SOC and the torque request of the vehicle. The 

controller has been used in series hybrid powertrains, where the EM provides all the 

propulsion, and the ICE is required to sustain a defined SOC. Rule-based control strategy 

is robust, simple and easy to implement but leads to high frequency on and off of the engine 

and charging and discharging of the battery. 

Under the assumption that the power requirement can be satisfied, the rule-based control 

strategy of a parallel hybrid powertrain model should enable the SOC to be restored to its 

target quickly, which will allow for highly efficient charging and discharging of the battery 
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and ensure the ESS has enough power to meet the powertrain requirement. When the SOC 

is above the maximum threshold allowed for the ESS, the strategy will switch to a 

discharging mode. In this mode, the vehicle will be propelled mainly by the electric motor 

if possible. The engine will not be turned on unless the torque demand from the vehicle is 

above the maximum torque of the motor and vehicle speed is above the electric launch 

speed. When the SOC is below its minimum value, the strategy will switch to the 

recharging mode. The engine will provide excess power to recharge the ESS through the 

electric generator. 

3.2 Validation of Hybrid Bus Model 

The parallel hybrid bus powertrain simulation model is developed referring to a 

CA6110HEV transit bus, which was tested and reported by Zeng (2005) using the China’s 

Urban Bus (CUB) cycle and the Beijing cycle with different initial SOCs. Chen (2010) 

developed and validated one simulation model using PSAT.  

In this research, Autonomie’s composite modeling and simulation tool was utilized to 

develop and validate the transit bus model. The simulation results were compared with the 

fuel consumption measured by Zeng (2005) when the initial SOC in each simulation was 

set identical to that in the test. 

Figure 3.7 and Figure 3.8 show the measured versus simulated vehicle speed and simulated 

SOC for the parallel hybrid bus model on the Beijing driving cycle, respectively. The initial 

SOC is 51%. Figure 3.9 shows the simulated engine and motor operation under the rule-

based controller. From Figure 3.9 (b), the motor in the hybrid bus mostly charge the battery 

with electricity recovery during the braking process or the engine power. As shown in 

Figure 3.9 (a), the engine propels the vehicle with low torque throughout the cycle, so there 

is no pure electric mode in the simulation results. 
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Figure 3.7 Measured versus simulated vehicle speed and gear number over the Beijing cycle 
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Figure 3.8 Simulation of SOC over the Beijing cycle (Initial SOC=51%) 

The model was validated by comparing the fuel consumption and the change in SOC 

(ΔSOC). Table 3.2 shows the fuel consumption and battery SOC measured by Zeng (2005), 

simulated using PSAT (Chen 2010), and Autonomie in this research, respectively. The fuel 

consumption and relative deviation predicted was consistent with experimental data with 

an error of less than 5%. The vehicle model is considered validated. 
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(a) Engine operating points distribution 

 

 
(b) Motor operating points distribution 

 

Figure 3.9 Distribution of power source operating points over the Beijing cycle 
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Table 3.2 Validation results of the hybrid bus model (Zeng 2005, Chen 2010) 

Cycle Data source 

Fuel consumption  Initial SOC Final SOC 

(L/100km) 
Relative 

error (%) 
Value (%) Value (%) 

Relative 

deviation (%) 

 

CUB-5* 

Measured 33.3 -  

65.0 

 

64.0 - 

PSAT simulated 31.9 4.1 66.7 4.2 

Autonomie simulated 32.3 3.0 64.8 1.2 

 

CUB-5** 

Measured 30.5 -  

69.0 

 

68.0 - 

PSAT simulated 29.8 2.2 66.9 1.6 

Autonomie simulated 30.9 1.3 68.7 1.0 

 

CUB-10 

Measured 29.5 - 

70.0 

69.0 - 

PSAT simulated 30.1 1.8 66.8 3.2 

Autonomie simulated 30.6 3.7 69.8 1.2 

 

Beijing 

 

Measured 33.0 - 

51.0 

50.0 - 

PSAT simulated 33.0 0.0 51.6 3.2 

Autonomie simulated 33.4 1.2 50.9 1.8 

* is the five repeat CUB cycle with initial SOC of 0.65; ** is the five repeat CUB cycle with initial SOC of 0.69. 

3.3 Summary 

Model assumptions and a description of the various elements of the hybrid electric transit 

bus model have been presented. Autonomie simulated results were compared with the 

experimental data over four various driving schedules. The validation results show that the 

relative errors were less than 4.1% and 4.2% for fuel consumption and the change in SOC, 

respectively. In conclusion, the parallel hybrid bus powertrain model is validated. The 

validated hybrid bus model will be used as a platform to simulate the effect of control 

strategies on fuel consumption and exhaust emissions. 
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4 DP and ECMS 

Rule-based control strategies only optimize the performance of each component 

individually, not the system efficiency of the powertrain. Optimization based energy 

management strategies can maximize the efficiency of the powertrain and minimize the 

cost function of fuel consumption or emissions. Optimization based controllers can be 

divided into global optimization and real-time local optimization. 

4.1 Dynamic Programming 

DP is a method for solving complex optimization problems by breaking them down into 

simpler sub-problems based on Bellman’s principle of optimality (Bilbao, et al. 2014). It 

is a powerful tool for finding the global optimal solution of a nonlinear dynamic system 

for given boundary conditions. 

The discrete formulation of DP is expressed as 

𝑥(𝑘 + 1) = 𝑓(𝑥(𝑘), 𝑢(𝑘)) Equation 4.1 

Where 𝑘 is the discrete time index, 𝑥(𝑘) is the state vector, 𝑢(𝑘) is the control vector and 

𝑓(∙ , ∙) is a nonlinear, time-varying, discrete time mapping of the state variable and control 

input. To generate the best control vector 𝑢(𝑘), the principle of optimality is utilized to 

minimize or maximize the functional cost, which can be described by: 

𝐽 = 𝑆(𝑥(𝑘𝑓), 𝑘𝑓) + ∑ 𝑉(𝑥(𝑘), 𝑢(𝑘))

𝑘𝑓−1

𝑘=0

 Equation 4.2 

In Equation 4.2, 𝐽 represents the minimized/maximized cost-to-go function, 𝑆(𝑥(𝑘𝑓), 𝑘𝑓) 

is the cost function of the final state and ∑ 𝑉(𝑥(𝑘), 𝑢(𝑘))
𝑘𝑓−1

𝑘=0  is the sum of cost-to-go from 

every stage to the next stage as a function of the current state and control. In a backward 

DP algorithm, the last stage is solved first, and then the sub-problem involving last two 

stages, last three stages, etc. until the entire problem is solved step by step. The optimal 



37 

 

cost-to-go is the cost-to-go from the current state to the final state when the minimized 

optimal control policy is applied as 

𝐽𝑁(𝑘𝑓) = 𝑆(𝑘𝑓) Equation 4.3 

𝐽𝑘(𝑥(𝑘)) = 𝑚𝑖𝑛𝑢(𝑘)[𝑉(𝑥(𝑘), 𝑢(𝑘)) + 𝐽𝑘+1(𝑥(𝑘 + 1))] 

𝑘 = 𝑁 − 1, 𝑁 − 2, … , 0 

Equation 4.4 

The DP algorithm can be implemented proceeding backward in time from step 𝑁 − 1 to 

step 0, so if one had found the optimal control, state and cost from any stage k +1 to the 

final stage 𝑘𝑓, then one can find the optimal values for any stage 𝑘 to the end stage 𝑘𝑓. The 

optimization goal is to find the control state 𝑢(𝑘) which minimizes the FC or emissions 

along a known in advance driving cycle. 

4.1.1 The Application of DP in Developing Hybrid Vehicle Control Strategies 

DP is frequently applied to hybrid vehicles to minimize the FC, and is accomplished using 

a backward approach and needs prior knowledge of the driving cycle. Firstly, the 

state/control variables, grid selection, constrains and cost matrix should be defined and 

explained. 

State Variables and Control Variables 

The state vector consists of the requested vehicle speed  𝑣𝑟𝑒𝑞, SOC, engine speed 𝜔𝑖𝑐𝑒, and 

electric motor speed  𝜔𝑒𝑚 . The control vector includes engine torque  𝑇𝑖𝑐𝑒  and motor 

torque 𝑇𝑒𝑚. In a parallel hybrid electric vehicle, some of the state and control variables 

depend on other state and control variables:  𝜔𝑖𝑐𝑒 =
𝜔𝑒𝑚

𝜆𝑐
=

𝜔𝑟𝑒𝑞

𝜆𝑓∙𝜆𝑡
  ,  𝑇𝑖𝑐𝑒 = 𝑇𝑟𝑒𝑞 − 𝑇𝑒𝑚 . 

Accordingly, the DP algorithm can be simplified into one control variable( 𝑇𝑖𝑐𝑒), and one 

state variable (SOC) while maintaining the accuracy of the solutions.  
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The Grid Selection 

The DP algorithm is based on a discrete decision route. Hence, the state and control 

variables have to be limited and discretized in the grids. Three grids are defined in this 

problem: the time grid  𝑁 ∈ [𝑘0, 𝑘0 + 1, ⋯ , 𝑘𝑓] , control grid  M ∈ [ 𝑇𝑖𝑐𝑒_𝑚𝑖𝑛,  𝑇𝑖𝑐𝑒_𝑚𝑖𝑛 +

1, ⋯ , 𝑇𝑖𝑐𝑒_𝑚𝑎𝑥], and state grid 𝐿 ∈ [𝑆𝑂𝐶1, 𝑆𝑂𝐶2, ⋯ , 𝑆𝑂𝐶2000]. 

The time is sampled in 𝑁 steps over the length of the driving cycle 𝑘0 to 𝑘𝑓, where  𝑁 =

𝑘𝑓−𝑘0

𝑘
 . The time step 𝑘 is 1 second during computation, so the length of time vector 𝑁 is 

the number of seconds of the whole route. The control grid M varies between the maximum 

 𝑇𝑖𝑐𝑒_𝑚𝑎𝑥 and minimum  𝑇𝑖𝑐𝑒_𝑚𝑖𝑛 engine torque, where  M =
 𝑇𝑖𝑐𝑒_𝑚𝑎𝑥− 𝑇𝑖𝑐𝑒_𝑚𝑖𝑛

𝑑( 𝑇𝑖𝑐𝑒)
 , and the step 

size of the control variable 𝑑( 𝑇𝑖𝑐𝑒) is 1 Nm. The engine brake torque 𝑇𝑖𝑐𝑒_𝑚𝑖𝑛 is -100 Nm. 

The maximum engine torque 𝑇𝑖𝑐𝑒_𝑚𝑎𝑥 is derived from the engine map function based on 

engine speed 𝜔𝑖𝑐𝑒 as described by Equation 4.5: 

 𝑇𝑖𝑐𝑒_𝑚𝑎𝑥(𝑘) = 𝑓𝑒𝑛𝑔𝑖𝑛𝑒 𝑚𝑎𝑝( 𝜔𝑖𝑐𝑒(𝑘)) Equation 4.5 

The state grid 𝐿 is 
 𝑆𝑂𝐶𝑚𝑎𝑥− 𝑆𝑂𝐶𝑚𝑖𝑛

𝑑(SOC)
 steps between the minimum and maximum SOC value. 

The initial SOC is 50% (SOC1000), the SOC value ranges from the minimum of 40% (SOC1) 

to a maximum of 60% (SOC2000), and the increment 𝑑(SOC) = 0.01% , so the error can be 

neglected. 

Calculation and Constraints 

The calculation process of DP is shown in Figure 4.1. The DP control objective is to 

determine the minimum cost described by the cost-to-go matrix 𝐶, which is the cumulative 

fuel consumption (g/s) over a whole drive cycle.  The principle is to find the optimal notes 

(control/state variables) trajectory in the cost-to-go matrix 𝐶, where the cost considered in 

our DP problem is the minimum fuel accumulated consumption calculated by Equation 4.6: 
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𝐽(𝑘,  𝑆𝑂𝐶.(𝑘)) = 𝑚𝑖𝑛 (𝐽(𝑘 − 1,  𝑆𝑂𝐶.(𝑘 − 1))

+ 𝑗(𝑇𝑖𝑐𝑒.(𝑘−1),𝑆𝑂𝐶.(𝑘−1))→(𝑇𝑖𝑐𝑒.(𝑘),𝑆𝑂𝐶.(𝑘))) 

𝑘 = 1, ⋯ , 𝑁 

Equation 4.6 

At each time step 𝑘 the variables with the following inequality constraints from Equation 

4.7 to Equation 4.10 are applied: 

 𝜔𝑖𝑐𝑒 𝑚𝑖𝑛 ≤ 𝜔𝑖𝑐𝑒(𝑘) ≤ 𝜔𝑖𝑐𝑒 𝑚𝑎𝑥 Equation 4.7 

 𝑇𝑖𝑐𝑒 𝑚𝑖𝑛(𝜔𝑖𝑐𝑒(𝑘)) ≤  𝑇𝑖𝑐𝑒(𝑘) ≤  𝑇𝑖𝑐𝑒 𝑚𝑎𝑥(𝜔𝑖𝑐𝑒(𝑘)) Equation 4.8 

 𝑇𝑒𝑚 𝑚𝑖𝑛(𝜔𝑒𝑚(𝑘), 𝑆𝑂𝐶(𝑘)) ≤  𝑇𝑒𝑚(𝑘) ≤  𝑇𝑒𝑚 𝑚𝑎𝑥(𝜔𝑒𝑚(𝑘), 𝑆𝑂𝐶(𝑘)) Equation 4.9 

𝑆𝑂𝐶𝑚𝑖𝑛 ≤ 𝑆𝑂𝐶(𝑘) ≤ 𝑆𝑂𝐶𝑚𝑎𝑥 Equation 4.10 

Where: 𝑗(𝑇𝑖𝑐𝑒.(𝑘−1),𝑆𝑂𝐶.(𝑘−1))→(𝑇𝑖𝑐𝑒.(𝑘),𝑆𝑂𝐶.(𝑘)) is one of all the instantaneous minimum fuel 

consumption from time step 𝑘 − 1  to   𝑘 , which depends on the state and control 

variables( 𝑆𝑂𝐶(∙), 𝑇𝑖𝑐𝑒(∙)). 

𝐽(𝑘 − 1,  𝑆𝑂𝐶.(𝑘 − 1)) is the minimum accumulated cost from the initial time step 𝑘 − 2 

to 𝑘 − 1 at state variable 𝑆𝑂𝐶(∙). Figure 4.1 shows the calculation process of DP, where 

the columns and rows of cost-to-go matrix 𝐶 correspond to the time grid 𝑁 and state grid 𝐿, 

respectively. Each node of the matrix 𝐶 can be found between the maximum and minimum 

SOC from the driving cycle time step k0  to  𝑘𝑓 , which corresponds to the minimum 

accumulated fuel consumption of the powertrain. 

At time step 𝑘, there are several nodes between the minimum and maximum constraints of 

the state variable. The minimum cost 𝐽(𝑘,  𝑆𝑂𝐶.(𝑘)) is calculated from the last time step 

𝑘 − 1 to each of the possible states  𝑆𝑂𝐶.(𝑘) at time step 𝑘 between the limitations of the 

state variables. The instantaneous minimum fuel consumption 

𝑗(𝑇𝑖𝑐𝑒.(𝑘−1),𝑆𝑂𝐶.(𝑘−1))→(𝑇𝑖𝑐𝑒.(𝑘),𝑆𝑂𝐶.(𝑘)) between these two points has to be determined. The 

obtained instantaneous minimum fuel consumption is then added to the cost coming from 
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the nodes at time step 𝑘 − 1 and saved into the cost-to-go matrix 𝐶 at the time step 𝑘 if its 

cost is less than the existing cost value of the corresponding node. 
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Figure 4.1 Calculation process of DP applied to HEV 

The same repeated calculation procedure continues to the next time step 𝑘 + 1, 𝑘 + 2, …  

until the end time step 𝑁  of the scheduled route. The final cost 𝐽(𝑁, 𝑆𝑂𝐶(𝑁))  is the 

resulting minimum cumulative fuel consumption of the powertrain during the studied route. 

After establishing the cost-to-go matrix 𝐶, the optimal nodes which result in the minimum 

fuel consumption should be identified. The DP algorithm solution procedure starts at the 

final desired state value (final SOC) and moves backward state by state each time finding 

the optimal node for that state until the initial state value (initial SOC). The optimal notes 

trajectory (red line in Figure 4.1) is identified, and the associated control and state variables 

are acquired from the identified notes. 
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At last, the DP algorithm stores the sequence of optimal powertrain operation (control and 

state variables) and applies them to control the powertrain during the scheduled trip with 

the minimum FC. 

4.1.2 DP Simulation Result  

Although the DP and rule-based algorithms are significantly different, the transmission 

control strategy can be assumed as the same. Accordingly, the gear ratio can be extracted 

from the rule-based controller (Autonomie software) and used as a lookup table in the DP 

algorithm. The extracted gear number of the Beijing cycle is shown in Figure 3.7. 

Table 4.1 Variables and grids of DP algorithm 

 Variables Grid 

Stage Time [s] N ∈ [0: 1: End]  

Control Engine torque [Nm] M ∈ [−100: 1: 𝑇𝑖𝑐𝑒_𝑚𝑎𝑥]  

State SOC [-] L ∈ [0.4: 0.0001: 0.6] 

 

The validated hybrid bus model was utilized to simulate the operation of a hybrid transit 

bus. The initial and final SOC are set to 0.5, the quantization increment of the SOC, ICE 

torque Tice, and time step 𝑘 is set to 0.01%, 1 Nm, and 1s, respectively. The engine brake 

torque is -100Nm as shown in Table 4.1. 

In this section, the results of the DP procedure are compared to those of the rule-based 

algorithm applied to Beijing cycles. The potential of DP in improving the FE is also 

examined using a revised WVU-CSI cycle to cover more versatile driving conditions. The 

revised WVU-CSI cycle combined the WVU City cycle, WVU Suburban cycle, and WVU 

Interstate cycle. The speed of WVU Interstate cycle is scaled by a factor of 0.7 due to 

power limitations of the hybrid bus as shown in Figure A. 1. 

The comparison of simulation results, the distribution of power source and power operation 

points are shown in Figure 4.2-4.4 and Figure A. 2-A. 4 for the Beijing cycle and WVU-

CSI cycle, respectively. 
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Figure 4.2 Comparison of trajectories between rule-based and DP over the Beijing cycle 

As shown in Figure 4.2 and Figure A. 2, although the SOC starts and finishes at the same 

initial and final SOC 0.5, the fluctuation of SOC trajectories derived using DP is bigger 

than that derived using rule-based algorithm. The DP algorithm consumes more electrical 

energy to propel the vehicle or assist the engine than rule-based controller. The increased 

electric only operation time caused FE improvement. In the study of the WVU-CSI cycle, 

the SOC trajectory shows that DP charges the battery above the reference SOC in lower 

power requested driving conditions (WVU-City cycle and WVU-Suburban cycle) then 

uses the battery power in higher power demand situations (WVU-Interstate cycle). This is 

because that DP has prior knowledge of the entire driving cycle and the DP model assumes 

that all kinetic energy is either consumed due to the power loss or recovered by the brake 

energy recovery system without involving mechanical brake. 
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Figure 4.3 Distribution of the (a) demand power, (b) rule-based engine power, (c) DP engine 

power, (d) rule-based battery power and (e) DP battery power over the Beijing cycle. 

The distribution of the demand power, engine power and battery power are shown in Figure 

4.3 and Figure A. 4. In the study of the Beijing cycle (Figure 4.3), the DP battery power 

range (-15kW to 20kW) is greater than that of rule-based controller (-5kW to 3kW) since 

the power to propel the vehicle was mostly provided by the engine in the rule-based 

controller. On the contrary, the engine power range and frequency optimized using DP is 

smaller than that of rule-based controller. There is no power distribution between 8kW 

to13kW as shown in Figure 4.3-c.  

In the similar results are shown in the study of the WVU-CSI cycle (Figure A. 4), the DP 

battery power range (-30kW to 80kW) is greater than that of the rule-based controller (-

35kW to 23kW) while the DP engine power range is smaller than that of rule-based 
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controller. The simulation results indicate that the control strategies developed using DP 

clearly favors more battery power usage. 

 

(a) Engine speed, torque, and efficiency 

 

(b) Motor speed, torque and efficiency 

Figure 4.4 Rule-based and DP power source operation points distribution maps over the 

Beijing cycle 

This phenomenon can be further validated by comparing the power operating points of the 

engine and motor as shown in Figure 4.4 and Figure A. 3. The DP operating points on the 
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engine efficiency map are almost in the high torque optimum region to charge the battery 

or the idle torque region in the low power request driving condition, which will turn off the 

engine and reduce the FC and NOx emissions. As shown in Figure 4.4-a, the rule-based 

operating points are farther from the high efficiency zone. The engine was operated over a 

wider area especially in the low efficiency region. 

Table 4.2 compares the FE and NOx emissions simulated using DP with those achieved by 

rule-based control strategies over the Beijing cycle. The application of DP was found to 

reduce the FC and NOx emissions by 58.44% and 21.12%, respectively. 

Table A. 1 compares the FE and NOx emissions simulated using DP with those achieved 

by rule-based control strategies over the WVU-CSI cycle. The application of DP was found 

to reduce the FC and NOx emissions by 34.02% and 17.38%, respectively. 

Table 4.2 DP and rule-based simulation results for Beijing cycle 

 FE (mpg) FC (gram/mi) NOx (gram/mi) 

Rule-based 7.05 448.64 22.40 

DP 11.17 281.81 17.67 

4.1.3 The Potential of DP in Improving Cost Function 

As shown in Figure 4.2, the engine and motor were turned on and off more frequently in 

DP simulation results. To avoid the excessive number of these unfavorable events and 

make the model feasible, a penalty in terms of engine on/off and motor current was added. 

The DP with an improved cost function can be expressed as Equation 4.11: 

𝐽 = ∑ (𝑓𝑢𝑒𝑙𝑘 + 𝛼|𝐼𝑘| + 𝛽𝛥𝐸𝑜𝑛 𝑜𝑓𝑓⁄ ,𝑘 )
𝑁−1
𝑘=0 , k = 1,2 ⋯ N Equation 4.11 

Where 𝐼 is the battery current, 𝛥𝐸𝑜𝑛/𝑜𝑓𝑓 = |𝐸𝑘(𝑜𝑛, 𝑜𝑓𝑓) − 𝐸𝑘−1(𝑜𝑛, 𝑜𝑓𝑓)| is the absolute 

value of the difference between engine on or off status, 𝛼 𝑎𝑛𝑑 𝛽 are the weighting factors, 

which have to be adjusted to improve drivability of the simulated solution. After testing, it 

was found that α=0.02 and β=5 can provide better simulation results. The engine power 
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and motor power trajectories shown in Figure 4.5 represent the optimal operation between 

the two power sources in achieving the best fuel economy. 
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Figure 4.5 The simulated results of the rule-based controller and DP with an improved cost 

function over the Beijing cycle 

 

4.1.4 The Trade-off between FE and NOx Emissions 

In general, the operation of an engine at high load and high speed usually leads to a higher 

average operating temperature and higher NOx emissions. For example, Rousseau & et al. 

(2002) investigated certain trade-offs of a vehicle. An increase of FC by 13% was 

accompanied with a 40% reduction in NOx emissions.  

In this research, the trade-off between NOx emissions and FE is examined by adding a 

weighting factor γ, and the DP cost function is revised as Equation 4.12: 

  𝐽 = ∑ (fuel𝑘 + 𝛼|𝐼𝑘| + βΔEon 𝑜𝑓𝑓⁄ ,k + γ𝑁𝑂𝑋𝑘
)N−1

k=0   

k=1, 2⋯N 

Equation 4.12 
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In the Beijing cycle, the trade-offs between FE and NOx emissions are studied by varying 

the weighting factor over a range of 𝛾 ∋ [0, 5, 10, 15, 20, 25, 30]. Figure 4.6 shows the 

variation of the FE penalty with changes in NOx emissions simulated using DP with 

different γ values. The reduction in NOx emissions is always accompanied with significant 

deterioration in FE. Increasing γ leads to significant NOx reduction while causing a small 

FE increase. The penalty to fuel economy become significant when γis over 15. The case 

with γ=15 seem to achieve the best trade-off, a 13.5% reduction in NOx emissions is 

achieved with a 2.7% increase in FC when compared to optimization based on the fuel 

consumption only case (α=0, β=0, γ=0). 
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Figure 4.6 The trade-off between FE and NOx emissions simulated using DP 

Figure 4.7 shows the simulated impact of a fuel penalty on the operation of a hybrid vehicle 

over the Beijing cycle. In the case simulated with α=0.02, β=5, the on/off frequency of the 

engine and motor was reduced significantly and against the unexpected fuel consumption 

from the low efficiency operation zone. However, the NOx emissions was increased due to 

the operation of the engine over a high load. The trade-off between the lower on/off 
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frequency and the enhanced power from engine still reduced the NOx emissions from 

17.67g/mile (α=0, β=0, γ=0) to 17.03g/mile (α=0.02, β=5, γ=0). 
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Figure 4.7 The simulated NOx emissions with or without an improved cost function over the 

Beijing cycle simulated using DP 

The NOx trajectories of the case simulated with α=0.02, β=5, and γ=15 show that this case 

charges/discharges the battery more than the other two cases, and has an added the benefit 

of more battery power utilized, which improves the FE and decreases the NOx emissions. 

Table 4.3 compares the FE, FC, and NOx emissions simulated using DP and the rule-based 

control strategy. The case simulated with α=0.02, β=5, and γ=0 was able to further improve 

the fuel economy and decrease NOx emissions, indicating the benefit achieved by the 

proposed less frequent on/off operation of the engine and motor. The proposed tradeoff 

case (α=0.02, β=5, γ=15) was able to further reduce NOx emissions by 10.3% with a 4.3% 

penalty in fuel economy compared to the no tradeoff case (α=0.02, β=5, γ=0). 
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Table 4.3 DP with or without penalty and rule-based simulation results for the Beijing cycle 

 FE (mpg) FC (gram/mi) NOx (gram/mi) 

Rule-based 7.05 448.64 22.40 

DP (α=0, β=0, γ=0) 11.17 281.81 17.67 

DP (α=0.02, β=5, γ=0) 11.35 274.23 17.03 

DP (α=0.02, β=5, γ=15) 10.86 290.09 15.28 

Note: α, β, γ is the weighting factors of battery current, engine on/off, and NOx emissions 

4.2 Equivalent Consumption Minimization Strategy 

ECMS is a power distribution strategy based on PMP, which is defined as finding the local 

optimal solution for the power proportion of electric and ICE at each time step under 

consideration of an energetic equivalence factor (Kutter and Bäker 2010). The ECMS is 

developed by calculating the sum of fuel consumption as the FC by the ICE and equivalent 

FC of the electrical system (Delprat, Guerra and Rimaux 2002, Paganelli, et al. 2002). 

4.2.1 Pontryagin’s Minimum Principle 

The PMP is used in optimal control theory to find the best possible control for taking a 

dynamic system from one state to another, especially in the presence of constraints for the 

state 𝑥 or input 𝑢 controls.  

Minimize the cost function, which can be described by: 

𝐽 = 𝛹(𝑥(𝑇)) + ∫ 𝐿(𝑥(𝑡), 𝑢(𝑡))𝑑𝑡
𝑇

0

 Equation 4.13 

Where 𝑇 is the terminal time of the system. The constraints on the system dynamics can be 

adjoined to the Lagrangian  𝐿 by introducing a time varying Lagrange multiplier vector 𝜆, 

whose elements are noted as the co-states of the system. This motivates the construction of 

the Hamiltonian 𝐻 (Kirk 2012). 

𝐻(𝜆(𝑡), 𝑥(𝑡), 𝑢(𝑡), 𝑡) = 𝜆(𝑡)𝑓(𝑥(𝑡), 𝑢(𝑡)) + 𝐿(𝑥(𝑡), 𝑢(𝑡))   

   𝑡 ∈ [0, 𝑇] 
Equation 4.14 

Necessary Conditions from PMP: 
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I. State and co-state equation: 

�̇�(𝑡) = 𝑓(𝑥(𝑡), 𝑢(𝑡)) Equation 4.15 

�̇�(𝑥) = −
𝜕𝐻

𝜕𝑥
(𝜆(𝑡), 𝑥(𝑡), 𝑢(𝑡), 𝑡) Equation 4.16 

II. Initial condition and terminal conditions when the final state 𝑥(𝑇) and final time 𝑇 

are free (i.e., its differential variation is not zero): 

𝑥(0) = 𝑥0 Equation 4.17 

𝜆(𝑇) = 𝛹𝑥(𝑥(𝑇)) Equation 4.18 

𝛹𝑇(𝑥(𝑇)) + 𝐻(𝑇) = 0 Equation 4.19 

III. Minimum condition: for all 𝑡 ∊ [0, 𝑇] and for all permissible control input 𝑢 

𝐻(𝜆(𝑡), 𝑥(𝑡), 𝑢(𝑡), 𝑡) ≤ 𝐻(𝜆(𝑡), 𝑥(𝑡), 𝑢, 𝑡) Equation 4.20 

PMP needs to satisfy the conditions in Equation 4.15 to Equation 4.20 to solve an optimal 

control problem. 

4.2.2 Application of ECMS in Developing Hybrid Vehicle Control Strategies 

The ECMS was derived from PMP and converted the uncertainty conditions to the correct 

optimal value of the co-state, which was a time-variable equivalent factor (Paganelli, et al. 

2002). In the hybrid vehicle model, 𝑆𝑂𝐶(𝑡) is considered as the state 𝑥(𝑡), engine torque 

𝑇𝑖𝑐𝑒(𝑡) as the input control 𝑢(𝑡), and the fuel consumption rate 𝑚𝑓 as 𝐿 function which is 

independent of 𝑆𝑂𝐶(𝑡). From the Hamiltonian function Equation 4.14 and state Equation 

4.15, the Hamiltonian of HEV can be expressed as: 

𝐻(𝜆(𝑡), 𝑆𝑂𝐶(𝑡), 𝑇𝑖𝑐𝑒(𝑡), 𝑡) = 𝑚𝑓(𝑇𝑖𝑐𝑒(𝑡), 𝑡) 

+𝜆(𝑡)𝑆𝑂𝐶(𝑆𝑂𝐶(𝑡), 𝑇𝑖𝑐𝑒(𝑡), 𝑡) 

Equation 4.21 

Where the co-state 𝜆(𝑡) is sometimes referred to as the Lagrange multiplier or adjoint state 

and taken as the 𝜆(𝑡)  that converts battery energy consumption to equivalent fuel 

consumption. 
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According to the optimal control policy of PMP, Equation 4.21 must satisfy the necessary 

conditions for optimality listed below. 

The state equation and the co-state equation can be expressed as Equation 4.22 and 

Equation 4.23, respectively. 

𝑆𝑂𝐶̇ (𝑡) =
𝜕𝐻

𝜕𝜆(𝑡)
= 𝑓(𝑆𝑂𝐶(𝑡), 𝑇𝑖𝑐𝑒(𝑡)) Equation 4.22 

�̇�(𝑡) = −𝜆(𝑡)
𝜕𝑆𝑂𝐶̇ (𝑆𝑂𝐶(𝑡), 𝑇𝑖𝑐𝑒(𝑡), 𝑡)

𝜕𝑆𝑂𝐶(𝑡)
 Equation 4.23 

The SOC boundary condition was set as Equation 4.24 to ensure battery charge sustaining 

for the optimal control of parallel HEVs. 

𝑆𝑂𝐶(0) = 𝑆𝑂𝐶(𝑇) = 𝑆𝑂𝐶𝑖𝑛𝑖𝑡𝑖𝑎𝑙 Equation 4.24 

For optimality, the minimum condition in Equation 4.20 should be considered to determine 

the optimal control variable, 𝑇𝑖𝑐𝑒(𝑡) at every time step. 

Therefore, the Hamiltonian aimed at instantaneous minimization has the physical meaning 

of an instantaneous equivalent fuel consumption function described by 

𝑚𝑓,𝑒𝑞𝑢(𝑡, 𝑢) = 𝑚𝑓(𝑡, 𝑢) + 𝜆(𝑡) ∙
𝑃𝑒𝑙𝑒(𝑡, 𝑢)

𝐻𝑓
 Equation 4.25 

where 𝑚𝑓,𝑒𝑞𝑢(𝑡, 𝑢)  is the instantaneous equivalent fuel consumption, 𝑚𝑓(𝑡, 𝑢)  is 

instantaneous fuel consumption of the ICE, 𝑃𝑒𝑙𝑒(𝑡, 𝑢) is the instantaneous electrochemical 

power stored in battery, 𝜆(𝑡) is the equivalent factor that converts electrical system power 

into the equivalent FC, and 𝐻𝑓 is the lower heating value of the fuel.  

In the original ECMS formulation, the 𝜆(𝑡) represents the chain of efficiencies through 

which the chemical energy in the fuel is transformed into electrical power and vice-versa, 

based on each operating condition of the powertrain and driving mission (Onori and Serrao 

2011). Accounting for the loss of transforming the battery energy into fuel and vice versa, 
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the losses involved are lumped into the  𝜆(𝑡). The equivalent factor 𝜆(𝑡) is a time-variant 

value based on the change of battery SOC and vehicle operating conditions. 

In a charge-sustaining situation, the SOC mainly operates in a narrower range, e.g., from 

0.5 to 0.7; hence, the voltage and the resistance may not vary so much in the range. In this 

case, from Equation 4.23 

�̇�(𝑡) = −𝜆(𝑡)
𝜕𝑆𝑂𝐶̇ (𝑆𝑂𝐶(𝑡), 𝑇𝑖𝑐𝑒(𝑡), 𝑡)

𝜕𝑆𝑂𝐶(𝑡)
≈ 0 ⟹  𝜆(𝑡) = 𝜆 Equation 4.26 

When ignoring the change of battery SOC, a time-invariant value 𝜆 of the certain driving 

condition exists. 𝜆 will be the optimal equivalent factor of the ECMS over the fixed driving 

condition. 

Accordingly, 𝜆 will be the time variant value when the impact of SOC on the equivalent 

factor is accounted for. If the change of SOC is ignored, 𝜆 will be the time-invariant value 

as shown in the Equation 4.27. 

𝐸𝐹 = 𝜆(𝑡)   𝐶𝑜𝑛𝑠𝑖𝑑𝑒𝑟 𝑡ℎ𝑒 𝑐ℎ𝑎𝑛𝑔𝑒 𝑜𝑓 𝑆𝑂𝐶 
Equation 4.27 

𝐸𝐹 = 𝜆    𝐼𝑔𝑛𝑜𝑟𝑒 𝑡ℎ𝑒 𝑐ℎ𝑎𝑛𝑔𝑒 𝑜𝑓  𝑆𝑂𝐶  

If the transit bus route is unknown, it is challenging to determine the suitable time-invariant 

𝜆 , which means that the constant 𝜆  need to be estimated. Also, 𝜆  is considered as an 

optimization variable that acts as a single tuning parameter, which corresponds to the 

“equivalent fuel” price of electrical energy. The larger the value of 𝜆, the more expensive 

electrical energy is, and the more attractive it is to charge the battery through engine and 

brake energy recovery. The smaller the value of  𝜆, the cheaper electrical energy is, and the 

more beneficial it is if electrical power is used to propel the vehicle conjointly with engine 

power. 
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4.2.3 ECMS Simulation Result  

In order to compare the performance of the ECMS with the global optimal solution 

obtained from DP, the pre-transmission parallel HEV (Figure 3.1) is modeled in the 

MATLAB/ m script environment. The characteristics of the vehicle used here are shown 

in Table 3.1. Based on the assumption, the gear ratio of the ECMS can be extracted from 

Autonomie and formatted as a lookup table in the model, and the initial and final SOC are 

set to 0.5. The minimum and maximum SOC value is 0.4 and 0.6, respectively. The ECMS 

model primarily uses simplified quasi-static map based models for all the ICE and EM as 

shown in Figure 3.2, Figure 3.3 and Figure 3.4. At each time step the variables should 

satisfy the inequality constraints, as shown in Equation 4.7 to Equation 4.10. 

The ECMS algorithm is very sensitive to the variation of 𝜆, which results in significant 

fluctuation of the SOC trajectory. To keep the SOC of the ESS within a specified limit 

(𝑆𝑂𝐶𝑚𝑖𝑛 < ∀𝑆𝑂𝐶 < 𝑆𝑂𝐶𝑚𝑎𝑥) during the driving period, the value of 𝜆 must be modified 

when the SOC trajectory is close to the maximum or minimum values, through the equation 

expressed as， 

𝜆(𝑡) = 𝜆𝑚𝑎𝑥     ∀𝑆𝑂𝐶 < 𝑆𝑂𝐶𝑚𝑖𝑛 
Equation 4.28 

𝜆(𝑡) = 𝜆𝑚𝑖𝑛     ∀𝑆𝑂𝐶 > 𝑆𝑂𝐶𝑚𝑎𝑥 

In this section, the simulation results of the ECMS procedures are compared to those of DP 

over the Beijing cycle. In order to validate the performance of the optimal ECMS for 

different driving conditions, the WVU-CSI cycle was chosen as the testing cycle, and the 

simulation results are shown in the Appendix B. 

Figure 4.8 (Beijing cycle) and Figure B. 1 (WVU-CSI cycle) compare the SOC, engine 

power, battery power and FC calculated using an optimal ECMS and DP, respectively. The 

SOC, 𝑃𝑒, 𝑃𝑏 and FC trajectories are similar and close between DP and ECMS with 𝜆𝑜𝑝𝑡, as 

shown in Figure 4.8 and Figure B. 1. 
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This phenomenon can be further validated by comparing the power operating points of the 

engine and motor as shown in Figure 4.9 and Figure B. 2. The electric motor is operated 

mainly in the efficient regions similar to the DP solution as shown in Figure 4.9-b and 

Figure B. 2-b. 

The corrected fuel economy 𝐹𝐸𝑐𝑜𝑟𝑟 is defined as the sum of the mass of fuel consumed 

along with a correction for the net change in battery SOC. The 𝐹𝐸𝑐𝑜𝑟𝑟 is expressed as  

𝐹𝐸𝑐𝑜𝑟𝑟  = 𝐹𝐸 +
𝜏 · ∆𝑆𝑂𝐶 ∙ 𝑄𝑏

𝜂𝑝𝑎𝑡ℎ ∙ 𝐻𝑓
 Equation 4.29 

Where 𝐹𝐸 is the fuel economy; 𝑄𝑏 is the nominal battery capacity; 𝐻𝑓 is the lower heating 

value of the fuel; 𝜂𝑝𝑎𝑡ℎ  is the approximated efficiency of the drivetrain used in 

regenerating/discharging the battery; ∆𝑆𝑂𝐶  is the change in SOC; 𝜏 is the unit convert 

parameter. 

Table 4.4 shows the simulated fuel economy of the Beijing cycle. The optimal 𝜆 value 

(𝜆 = 𝜆𝑜𝑝𝑡 = 2.227) is selected with the corrected fuel economy 𝐹𝐸𝑐𝑜𝑟𝑟 = 10.81 mpg  and 

Δ𝑆𝑂𝐶 = −0.04%, which is only a 3.22% gap to DP simulated fuel economy. 

The corrected fuel economy gap to that observed using DP is calculated by Equation 4.30. 

𝐺𝑎𝑝 𝑡𝑜 𝐷𝑃 =
𝐹𝐸(𝐷𝑃) − 𝐹𝐸𝑐𝑜𝑟𝑟(·)

𝐹𝐸(𝐷𝑃)
 Equation 4.30 

As shown in Table B. 1, the operation of this bus over the WVU-CSI cycle with the optimal 

ECMS control strategies burn almost 6% more fuel than the operation of this bus on the 

control strategy developed using DP. 

Table 4.4 DP (α=β=γ=0) and ECMS with optimal λ simulation results over the Beijing cycle 

 FE (mpg) ΔSOC 𝑭𝑬𝒄𝒐𝒓𝒓  (mpg) Gap to DP 

Optimal ECMS (λ=λopt=2.227) 10.80 -0.04% 10.81 3.22% 

DP (α=0, β=0, γ=0) 11.17 0.00 11.17 0.00% 
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Figure 4.8 The comparison between DP (α=β=γ=0) and ECMS with optimal λ simulation 

results over the Beijing cycle 

Figure 4.9-a and Figure B. 2-a. shows that the ICE worked on the high efficient and torque 

region of the engine map. It is evident that this bus operated on the DP algorithm 

charges/discharges the battery more often than the optimal ECMS and achieves the benefit 

of more battery power utilized. The ECMS model assumes that all kinetic energy is either 

consumed due to the power loss or recovered by the brake energy recovery system without 

involving mechanical brake. 
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(a) Engine speed, torque and efficiency 

 
(b) Motor speed, torque and efficiency 

 

Figure 4.9 DP (α=β=γ=0) and ECMS with optimal λ power source operation points 

distribution in maps (Beijing cycle) 

4.2.4 ECMS with Penalty Function 

Since the transit bus route information is not known in advance, an approximated 𝜆 has to 

be selected. In Figure 2.6, the estimated time-invariant  𝜆 strongly affects the charge and 

discharge of the battery. A minor increase in 𝜆  (2.1 to 2.3) will result in serious 

discharging/charging of the battery. 
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To ensure a charge-sustainable solution for a parallel hybrid vehicle, the penalty equation 

was taken into consideration in the ECMS algorithm (De Jager, Steinbuch and Keulen 2008, 

Onori, Serrao and Rizzoni 2010); that is,  

𝑃(𝑆𝑂𝐶) = 1 + |
𝑆𝑂𝐶𝑟𝑒𝑓 − 𝑆𝑂𝐶

𝑆𝑂𝐶𝑟𝑒𝑓 − 𝑆𝑂𝐶𝑚𝑖𝑛
|

𝑛

 , ∀𝑆𝑂𝐶 < 𝑆𝑂𝐶𝑟𝑒𝑓 

Equation 4.31 𝑃(𝑆𝑂𝐶) = 1 , ∀𝑆𝑂𝐶 = 𝑆𝑂𝐶𝑟𝑒𝑓 

𝑃(𝑆𝑂𝐶) = 1 − |
𝑆𝑂𝐶𝑟𝑒𝑓 − 𝑆𝑂𝐶

𝑆𝑂𝐶𝑚𝑎𝑥 − 𝑆𝑂𝐶𝑟𝑒𝑓
|

𝑛

 , ∀𝑆𝑂𝐶 > 𝑆𝑂𝐶𝑟𝑒𝑓 

where 𝑆𝑂𝐶𝑚𝑖𝑛  , 𝑆𝑂𝐶𝑚𝑎𝑥  and 𝑆𝑂𝐶𝑟𝑒𝑓  represent the minimum, maximum and reference 

SOC value, typically 40%, 60% and 50%, respectively, and n is the exponential coefficient 

governing the shape of the correction function to control the reaction rates of the penalty 

weight. The penalty function corrects 𝜆 whenever the current SOC deviates from 𝑆𝑂𝐶𝑟𝑒𝑓. 

The penalty 𝑃(𝑆𝑂𝐶) is inappreciable whenever SOC is close to the reference value and 

increases nonlinearly as the SOC deviates from the reference as shown in Figure 4.10.  
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Figure 4.10 Penalty weight used in ECMS to correct the SOC deviation 
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From the instantaneous equivalent fuel consumption function Equation 4.25 and the 

penalty Equation 4.31, the instantaneous equivalent fuel consumption with penalty is 

expressed as 

𝑚𝑓,𝑒𝑞𝑢(𝑡, 𝑢) = 𝑚𝑓(𝑡, 𝑢) + 𝜆(𝑡) ∙ 𝑃(𝑆𝑂𝐶) ∙
𝑃𝑒𝑙𝑒(𝑡, 𝑢)

𝐻𝑓
 Equation 4.32 

In the Beijing cycle, the corrected fuel economy (𝐹𝐸𝑐𝑜𝑟𝑟) and the change in SOC (∆𝑆𝑂𝐶) 

are examined by varying the exponential coefficient 𝑛 over a range of 𝑛 ∋ [0, 0.25, 0.5,

0.75, 1, 2, 4] . Figure 4.11 shows variation of the 𝐹𝐸𝑐𝑜𝑟𝑟𝑎𝑛𝑑 ∆𝑆𝑂𝐶  simulated using 

ECMS with different exponential coefficients of penalty equation. A small exponential 

coefficient 𝑛 causes high frequency charging/discharging the battery. When 𝑛 is greater 

than 0.5, increasing 𝑛 leads to a slight increment of 𝐹𝐸𝑐𝑜𝑟𝑟  while causing a significant 

change of 𝑆𝑂𝐶. The case with 𝑛 = 1 seems to achieve the best result, the better 𝐹𝐸𝑐𝑜𝑟𝑟 =

10.78 𝑚𝑝𝑔 and the smaller ∆𝑆𝑂𝐶 = 1.17%. 
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Figure 4.11 The effect of the exponential coefficient on FEcorr and ∆SOC 

The penalty function added to the ECMS in achieving relatively stable and sustainable 

SOC is demonstrated in Figure 4.12. It is evident that the SOC is very sensitive to the 𝜆 
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value selected. The operation of this vehicle with ECMS without penalty function, 

represented by 𝜆 = 2.1 and 2.3, was not able to maintain sustainable SOC. In comparison, 

the SOC trajectories observed with the ECMS integrated with the penalty function (𝜆0 =

2.1 𝑎𝑛𝑑 2.3) was comparable to that derived using DP and the optimal 𝜆 = 2.227. 
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(a) ECMS w/o penalty 
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(b) ECMS w/ penalty 

Figure 4.12 Comparison of SOC trajectories obtained by DP and ECMS w/ or w/o penalty 

in the Beijing cycle (n=1)  

In the penalty function, the selected exponential coefficient (n) is 1, which can provide 

sufficient response rates for the penalty weight and get better 𝐹𝐸𝑐𝑜𝑟𝑟  while ensuring a 
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charge-sustainable operation of the battery. The corrected time-varying 𝜆 trajectory was 

quickly modified to approach the 𝜆𝑜𝑝𝑡=2.227 (the red line in Figure 4.13). 
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Figure 4.13 Comparison of λ trajectories obtained by ECMS w/ or w/o penalty in the 

Beijing cycle (n=1) 

In the ECMS without penalty algorithm, it is possible to find a time-invariant 𝜆 for the 

perfect charge sustaining ability and FE of parallel HTBs. This value is considered as the 

optimal equivalent factor 𝜆𝑜𝑝𝑡 of the ECMS. In the ECMS with penalty algorithm, the 

corrected 𝜆(𝑡) is affected by the variation in SOC. It is important to find a suitable initial 

value 𝜆0 for the perfect charge sustaining ability and improved fuel economy.  

The optimal equivalent factor 𝜆𝑜𝑝𝑡 is selected based on the convergence of SOC and the 

normalized 𝐹𝐸𝑐𝑜𝑟𝑟, which is compared the global optimal solution obtained from DP as 

shown in Table 4.5.  

The ECMS with penalty has been shown to perform well for the reasonable initial 𝜆0=2.1 

and 2.3. As the SOC trajectory stay close to its reference and the simulated 𝐹𝐸𝑐𝑜𝑟𝑟 results 

are comparable to that developed using optimal ECMS as shown in Table 4.5 and Figure 

4.12. In this research, the optimal initial value 𝜆0 will be developed using ECMSwDP. 
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Table 4.5 Comparison of corrected FE obtained by DP and ECMS w/ or w/o penalty in the 

Beijing cycle 

 
Constant λ  

and Initial λ0 
FE(mpg) ΔSOC FEcorr (mpg) Gap to DP 

ECMS 

w/o penalty 

λ=2.1 11.22 -8.92% 9.76 12.62% 

λ=2.3 9.82 4.84% 10.61 5.01% 

ECMS 

w/ penalty 

λ0=2.1 10.73 0.3% 10.77 3.58% 

λ0=2.3 10.60 1.17% 10.78 3.49% 

Optimal ECMS λopt=2.227 10.80 -0.04% 10.81 3.22% 

DP(α=β=γ=0) - 11.17 0.00 11.17 0.00% 

 

4.3 Summary 

This chapter presents the DP and ECMS strategies and their application in improving the 

performance of a hybrid transit bus in the backward vehicle simulator. The simulation 

results obtained using DP are the globally optimal solution with the known operation cycle. 

Although DP cannot be used as on-time controller, the results obtained using DP represent 

the best performance theoretically achievable and provide the benchmark for the evaluation 

of the actual controlling approaches. In this research, the cost function of DP is further 

improved with the penalty terms on engine on/off, motor current and NOx emissions for 

the benefit achieved by the proposed less frequent on/off operation of the engine, motor 

and NOx emissions reduction. 

The ECMS was further improved by adding the penalty function associated with the 

deviation in SOC by adjusting the 𝜆  based on the SOC variation of battery without 

considering the driving condition and the selection of initial 𝜆0 . Such a modification 

enhances the robustness of the strategy development of the energy management controller. 

The development of the optimal λ (which is a function of SOC, vehicle operation features, 

or route information) will be investigated in the next chapter. 
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5 ECMSwDP 

As previously described, the optimization of a HEV control strategy is a dynamic optimal 

problem involving a nonlinear cost function and nonlinear constraints. DP is capable of 

dealing with a nonlinear non-convex optimization problem and finding the globally optimal 

solution. However, the optimization of HEV operation using DP requires the pre-known 

driving cycle and heavy calculation cost. Accordingly, DP cannot be used in the real-time 

optimal controller. ECMS is a real-time control approach but always results in local 

optimal solution because of the non-convex cost function. To take the advantage of the 

global optimality of DP and the real-time capability of ECMS as show in Figure 5.1, one 

ECMS with DP combined model (ECMSwDP) was proposed. In this approach, the optimal 

𝜆 for ECMS can be derived using DP under various driving conditions and terrains of 

future transit bus routes. The 𝜆  derived using DP will be used in a real-time ECMS 

controller to achieve the best compromise between the FE and exhaust emissions of a 

hybrid electric transit bus. 

DP

ECMS

Combination of 

DP and ECMS

Optimality 

Real-time 
 

Figure 5.1 The benefit from the combination of DP and ECMS 
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5.1 The ECMSwDP Algorithm 

In the ECMSwDP algorithm, DP minimizes the equivalent cost function of the ECMS 

presented in Equation 4.25. The known driving power requested is used to derive the 

optimal time-varying 𝜆 trajectory noted as 𝜆(𝑡). This algorithm will promote the local 

optimal solution from ECMS toward the global optimal solution of DP. 

The equivalent cost of ECMSwDP is parameterized by (𝑚𝑓, 𝑃𝑒𝑙𝑒), which replaced the 

engine operation variables (𝑇𝑖𝑐𝑒,  𝜔𝑖𝑐𝑒) used in DP operation. The fuel rate is calculated 

using the brake specific fuel consumption (BSFC), which is a function of engine torque 𝑇𝑖𝑐𝑒 

and engine speed 𝜔𝑖𝑐𝑒 presented in the Equation 3.1.  

Also, for any time-variant 𝜆(𝑡), we can find an optimal and feasible engine operation point 

(𝑇𝑖𝑐𝑒,  𝜔𝑖𝑐𝑒) by solving the equivalent cost function. The fuel consumption  𝑚𝑓 is derived 

from the engine map, and the 𝑃𝑒𝑙𝑒 is calculated using battery power equation presented in 

Equation 3.5.  

The control variable of ECMSwDP is the equivalent factor 𝜆 instead of engine torque  𝑇𝑖𝑐𝑒 

as in the original DP. At the same time, the feasible engine and motor operation points 

should follow the inequality constraints from Equation 4.7 to Equation 4.10: 

The variables and grids of ECMSwDP algorithm have been shown in Table 5.1. The 

control grid  Ρ  varies between the maximum (𝜆𝑚𝑎𝑥)  and minimum  (𝜆𝑚𝑖𝑛)  equivalent 

factor, which is defined as  𝑃 ∈ [𝜆𝑚𝑖𝑛, 𝜆𝑚𝑖𝑛 + 0.1, ⋯ 𝜆𝑚𝑎𝑥], where the step size of the 

control variable 𝑑(λ) is 0.1. The initial and final SOC are set to 0.5, the quantization 

increment of the SOC and time step is set to 0.01% and 1s, respectively. The engine brake 

power is accounted for by setting the minimum engine torque as -100Nm. 
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Table 5.1 Variables and grids of ECMSwDP algorithm 

 Variables Grid 

Stage Time [s] N ∈ [0: 1: End]  

Control λ [-] 𝑃 ∈ [𝜆𝑚𝑖𝑛: 0.1: 𝜆𝑚𝑎𝑥] 

State SOC [-] L ∈ [0.4: 0.0001: 0.6] 

 

The ECMSwDP model calculates the optimal ECMS cost  𝐽(𝑘, 𝜆) at each time step 𝑘 of 

the control grid  𝑃 , and the corresponding databases {𝑇𝑖𝑐𝑒(𝑘, 𝜆),  𝑇𝑒𝑚(𝑘, 𝜆),  𝑚𝑓(𝑘, 𝜆),

𝜔𝑖𝑐𝑒(𝑘, 𝜆), 𝜔𝑒𝑚(𝑘, 𝜆)}  are calculated and stored. For example, Figure 5.2 shows the 

calculated 𝜆 database for the Beijing cycle. It is possible to approximate the optimal co-

state of the ECMS based on realistic data rather than heuristic information. For each control 

variable 𝜆(𝑘) ∈ 𝑃, the corresponding {𝑚𝑓(𝑘), 𝑆𝑂𝐶(𝑘), } can be calculated by the one to 

one relationship databases given by in Equation 3.1 and Equation 3.7. After that, following 

the same progress as the DP algorithm, the ECMSwDP model calculates and stores the 

sequence of the optimal powertrain operation (𝑇𝑖𝑐𝑒 , 𝑇𝑒𝑚, 𝜔𝑖𝑐𝑒 , 𝜔𝑒𝑚) and the corresponding 

control variables  𝜆(𝑡) , which is the optimal 𝜆  based on the battery SOC and driving 

condition. The calculation procedures for implementing ECMSwDP to the parallel HEV is 

shown in Figure 5.3. 

 
𝐽(𝑘, 𝜆) 
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𝑇𝑖𝑐𝑒(𝑘, 𝜆) 

 
 𝑇𝑒𝑚(𝑘, 𝜆) 

 
 𝑚𝑓(𝑘, 𝜆) 

 
  𝜔𝑖𝑐𝑒(𝑘, 𝜆), 𝜔𝑒𝑚(𝑘, 𝜆) 

Figure 5.2 The λ corresponding databases of the ECMS cost (Beijing cycle) 
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state until the SOCinitial  

No

DP

ECMSwDP

 
Figure 5.3 Flow chart of ECMSwDP procedures 
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5.2 Simulation Results and Discussions 

This subsection implements the ECMSwDP described in the previous section to extract the 

optimal 𝜆  and develop the 𝜆  lookup table for an ECMS controller. The simulated 

performance with ECMSwDP is compared to the globally optimal solution developed 

using DP. The effect of road grade and 𝜆 range on vehicle performance with ECMSwDP 

is examined and discussed. Similar to that of the DP and ECMS model, the ECMSwDP 

simulator primarily uses a simplified quasi-static map in the pre-transmission parallel HEV 

model, which was developed in the MATLAB/ m script environment. 

5.2.1 The Extraction of Time-Variant λ(t) using the ECMSwDP Model 

In ECMSwDP model, DP minimizes the equivalent cost function of the ECMS showed in 

Equation 4.25 from the fixed route with known driving information to derive the optimal 

time-variant 𝜆(𝑡) trajectory. Figure 5.3 shows the the variation of the SOC and optimal 

𝜆(𝑡) trajectory derived using ECMSwDP with or without the improved cost function over 

the Beijing cycle. In order to further validate the performance of the optimal ECMSwDP 

for different driving conditions, the WVU-CSI cycle was chosen as another testing cycle. 

The simulation results are shown in the Appendix C. 

As shown in Figure 5.4, the 𝜆(𝑡) values are very sensitive to the change of the SOC. At the 

beginning of cycle, 𝜆(𝑡) is very low, indicating the preference of using electrical energy. 

This is consistent with the gradually decreasing SOC. The consumption of electrical energy 

prior to deceleration after 100 s discharges the battery and makes it available to absorb the 

electrical energy recovered during the coming braking process or the energy from the ICE. 

As shown in Figure 5.4, the 𝜆(𝑡) values observed between 100s to 180s is relatively high 

indicating the preference of charging the battery with electricity recovered during the 

braking process. This is consistent with the corresponding increase in SOC. However, the 
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𝜆(𝑡) values at the beginning of the WVU-CSI cycle showed in Figure C. 1 are high, 

indicating the preference of using engine power to charge the battery for the upcoming hard 

driving condition. The ECMSwDP model assumes that all kinetic energy is either 

consumed due to the power loss or recovered by the brake energy recovery system without 

involving mechanical brake. 

As shown in Figure 5.4, the fluctuation of the SOC trajectory derived with improved cost 

function is relatively smooth compared to that without the improved cost function. 

Accordingly, the engine delivers less work in charging battery for reducing NOx emissions 

when the improved cost function is applied.  
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Figure 5.4 The extracted time-variant λ(t) obtained by ECMSwDP with or without the 

improved cost function over the Beijing cycle 

Also, the significant change in the 𝜆(𝑡) trajectory observed with the improved cost function 

is less frequent (still vary a lot but less frequent) than that without the improved cost 
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function. The operation of the engine and EM is relatively steady with the improved cost 

function. The average value of 𝜆  extracted with improved cost function (𝜆𝑎𝑣𝑒,𝑤/𝑖 =

2.149) is smaller than the one without the improved cost function penalty ( 𝜆𝑎𝑣𝑒,𝑤/𝑜 𝑖 =

2.203), indicating the ECMSwDP with the improved cost function tends not to charge 

battery using engine power, which reduces NOx emissions.  

It is noted that the 𝜆𝑎𝑣𝑒,𝑤/𝑖 = 2.149 and 𝜆𝑎𝑣𝑒,𝑤/𝑜 𝑖 = 2.203 are very close to the optimal 

𝜆 value 𝜆𝑜𝑝𝑡 = 2.227 derived using the ECMS as presented in Chapter 4. It seems that the 

average of the 𝜆(𝑡) derived using ECMSwDP can be considered as the optimal 𝜆 described 

in Chapter 4. 

5.2.2 The Study of ECMS with the Extracted λ(t)  

In this session, the 𝜆(𝑡) extracted using the ECMSwDP model was verified as the optimal 

one for the ECMS algorithm. Figure 5.5 compares the Beijing cycle performance of this 

hybrid bus operated with ECMS with 𝜆(𝑡) derived using ECMSwDP. 

The variation of 𝑆𝑂𝐶 , 𝑃𝑒 , and 𝑃𝑏  observed using ECMS with 𝜆(𝑡)  extracted using 

ECMSwDP are comparable to those observed with DP. The corrected fuel economy 

observed using ECMS with the 𝜆(𝑡) extracted using ECMSwDP is 10.80 mpg, which is 

comparable to the 11.17 mpg observed using DP. As shown in Table 5.2, the difference in 

the changes in SOC observed in these two cases is very small. As shown in Figure 5.6, the 

distribution of the engine and electric motor operation points are also similar. 
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Figure 5.5 The comparison between the ECMS with the extracted λ(t) and DP without the 

improved cost function over the Beijing cycle 

 

Table 5.2 Comparison of the ECMS with the extracted λ(t) and DP (α=β=γ=0) simulation 

results in the Beijing cycle 

 FE(mpg) ΔSOC FEcorr (mpg) Gap to DP 

ECMS w/ the extracted 𝝀(𝒕) 10.79 0.01% 10.80 3.12% 

DP(α=β=γ=0) 11.17 0.00% 11.17 0.00% 
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(a) Engine operation points distribution 

 

(b) Electric Motor operation points distribution 

Figure 5.6 ECMS with the extracted λ(t) and DP power source operation points distribution 

in maps (Beijing cycle) 

5.2.3 The Study of ECMS Based on the Average of the λ Extracted Using 

ECMSwDP 

As previously described in Chapter 4 (Equation 4.27), the 𝜆 can be approximated as a 

constant for the known driving condition when the changes in the SOC of the battery can 

be ignored. The optimal constant 𝜆  (noted as  𝜆𝑜𝑝𝑡)  is usually derived based on the 
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minimum  𝐹𝐸𝑐𝑜𝑟𝑟  simulated while satisfying the battery charge sustainability. However, 

this makes it very difficult for the real-time controller to derive the  𝜆𝑜𝑝𝑡 without knowing 

the actual vehicle operations or predicted operation characteristics. 
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Figure 5.7 The variation in SOC, λ, Pe, Pb over the Beijing cycle simulated with ECMS w/ 

and w/o penalty function, and DP 

In this research, the time variant 𝜆(𝑡) developed using ECMSwDP may provide a new 

method for the selection of the optimal constant value  𝜆𝑜𝑝𝑡. As mentioned in the prior 

section, the averages of the 𝜆 (t) derived using ECMSwDP with or without improved cost 

function (𝜆𝑎𝑣𝑒,𝑤/𝑖 = 2.149 and 𝜆𝑎𝑣𝑒,𝑤/𝑜 𝑖 = 2.203) are very close to the optimal 𝜆 value 

( 𝜆𝑜𝑝𝑡 = 2.227) . Accordingly, the average of 𝜆  extracted using ECMSwDP may be 

considered as approximate  𝜆𝑜𝑝𝑡 in the ECMS. Such an assumption will be demonstrated 
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as valid by comparing the performance of the HEB operated with ECMSwDP, and ECMS 

w/ and w/o the penalty function as presented in Chapter 7.  

The average 𝜆  derived without accounting for the improved cost function noted as 

 𝜆𝑎𝑣𝑒,𝑤/𝑜 𝑖 = 2.203 was used as example. The impact of the ECMS w/ and w/o penalty 

function in satisfying the battery charge sustainability is also examined. Figure 5.7 shows 

the performance of this HEB over the Beijing cycle observed with ECMSwDP, ECMS 

without the penalty function represented by a constant 𝜆 (𝜆𝑎𝑣𝑒 = 2.203), and ECMS with 

the penalty function represented by the initial 𝜆0 (𝜆𝑎𝑣𝑒 = 2.203).  The operation of this 

HEB over the Beijing Cycle with ECMS without the penalty function represented by a 

constant 𝜆 (𝜆 = 𝜆𝑎𝑣𝑒 = 2.203) was not able to achieve the charge sustainable operation of 

battery. In comparison, the application of the penalty function makes it possible for ECMS 

to achieve the battery charge sustainability when the average 𝜆 derived by ECMSwDP is 

considered as the optimal initial 𝜆 noted as 𝜆0 (𝜆0 = 𝜆𝑎𝑣𝑒 = 2.203). 

Table 5.3 compares the fuel economy achieved in the three cases simulated. The corrected 

fuel economy of this HEB using ECMS with penalty function was 10.78 mpg, which was 

3.49% gap to the best fuel economy (11.17 mpg) achieved using DP. Accordingly, the 

average extracted 𝜆 value derived from ECMSwDP can be set as the appropriate initial 

value 𝜆0 of the ECMS with penalty.  

Table 5.3 The simulation results of the ECMS with or without penalty function and DP in 

the Beijing cycle 

 𝝀  FE(mpg) ΔSOC FEcorr (mpg) Gap to DP 

Rule-based - 7.05 -0.10% 7.05 36.88% 

ECMS w/o penalty λ=λave=2.203 11.06 -1.81% 10.56 5.46% 

ECMS w/ penalty λ=λave=2.203 10.66 0.78% 10.78 3.49% 

DP(α=β=γ=0) - 11.17 0.00% 11.17 0.00% 

 

This was also demonstrated using the WVU-CSI cycle as an example using the 𝜆 (𝜆𝑎𝑣𝑒 =

2.115) extracted using ECMSwDP as the initial 𝜆0. As shown in Table 5.4, the corrected 
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fuel economy of this HEB over the WVU-CSI cycle observed with ECMS w/ penalty using 

the average 𝜆 extracted using ECMSwDP as the initial 𝜆𝑜 = 2.115 was 10.66 mpg. There 

is 9.51% gap to the best fuel economy achieved using DP. The detailed information is 

presented in Appendix C. 

Table 5.4 The simulation results of the ECMS with or without penalty function and DP in 

the WVU-CSI cycle 

 λ  FE(mpg) ΔSOC% FEcorr (mpg) Gap to DP 

Rule-based - 8.74 -0.60 8.61 26.91% 

ECMS w/o penalty λ=λave=2.115 11.89 -9.67 10.24 13.07% 

ECMS w/ penalty λ=λave=2.115 10.65 0.17 10.66 9.51% 

DP(α=β=γ=0) - 11.78 0.00 11.78 0.00% 

 

5.2.4 Effect of Road Grade on the ECMSwDP 

Leon (2011) and Khan (2009) proposed to characterize hypothetical road grade using a 

sine wave and the grade can be assumed as a function of cycle distance. The sinusoidal 

grade function can be expressed as: 

𝐺𝑟𝑎𝑑𝑒 = 𝐺𝑚 sin (2𝜋 ∙
𝑠 − 𝐷𝑃

𝐷𝑡
) Equation 5.1 

Where: 𝐺𝑟𝑎𝑑𝑒  is the function output of the current road grade, 𝐺𝑚  is the 

maximum/minimum road grade, 𝐷𝑡 is the total distance of the drive cycle, 𝑠 is the function 

input distance, and 𝐷𝑃 ∈ [0, 𝐷𝑡] is the phase shift of the wave. The elevation is expressed 

as function 

𝐸 = ∫ sin 𝛼
𝐷𝑡

0

𝑑𝑠 Equation 5.2 

where 𝛼 = arctan (𝐺𝑟𝑎𝑑𝑒/100). 

Figure 5.8 shows an example of the grade added to the Beijing Cycle. The effect of road 

grade on the 𝜆  and SOC is also examined with an assumed constant speed (14 mph) 

operation over a mile-long route with significant variation in elevation, as shown in Figure 
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5.9. The variation of elevation with distance is assumed as a sine function where the sine 

wave maximum grade varied from from 1% to 10%. The feasible variable values are 

maximum road grade 𝐺 ∈ {1%, 2%, ⋯ 10%}, traveled distance 𝐷𝑡 = 1𝑚𝑖𝑙𝑒 and phase 

shift 𝐷𝑃 = 0, respectively. The model developed in this research is applied to examine the 

impact of road grade on 𝜆 of this vehicle operated with ECMSwDP. The ECMSwDP model 

assumes that all kinetic energy is either consumed due to the power loss or recovered by 

the brake energy recovery system without involving mechanical brake. 
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Figure 5.8 Beijing cycle sin wave function and elevation Gm=3% Dp/Dt=0 

Figure 5.10 shows the SOC trajectories obtained using ECMSwDP when the maximum 

grades of the sine wave are varied from 1% to 10%. Increasing the maximum grade from 

1% to 10%, the minimum SOC observed prior the maximum grade decreased from 0.493 

to 0.415 as shown in Figure 5.11. The battery is discharged with the extent of discharge 

decided based on the upcoming downhill grade. Increasing the grade will further decrease 

the mimumum SOC of the battery trajectories. The higher the grade, the more battery 

energy is discharged in preparation for absorbing brake recovery energy of the downhill 

terrain. 
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Figure 5.9 Synthetic constant speed with sine wave maximum grade from 1% to 10% 
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Figure 5.10 Comparison of SOC trajectories obtained by ECMSwDP over the synthetic 

driving cycle 
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Figure 5.11 The relationship between the minimum SOC and the grade by ECMSwDP over 

synthetic driving cycle 

Figure 5.12 shows the 𝜆 trajectories obtained using ECMSwDP. Over a sine wave with a 

maximum grade from 1% to 10%, the 𝜆 range is 𝜆 ∋ [2,4]. The lowest 𝜆 value observed 

from 50s to 100s is 2, which makes the controller discharge the battery so it can store the 

electrical energy to be recovered during the upcoming downhill terrain. When compared 

to the rule-based simulation results, the ECMSwDP algorithm improved the fuel economy 

by 48.7%. The highest improvement was observed with the maximum grade of 10%. This 

is due to the extra buffer in the battery on the top of the hill in anticipation of capturing 

regeneration energy. 
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Figure 5.12 Comparison of λ trajectories obtained by ECMSwDP over a sine wave with a 

maximum grade from 1% to 10% and a cruising speed of 14mpg 

5.2.5 The Effect of λ Range on the ECMSwDP 

The equivalence factor 𝜆 plays a crucial role in the ECMS. The electrical energy consumed 

is weighted by the equivalence factor 𝜆, which is affected by the varied overall efficiencies 

of the electrical and thermal paths, the battery SOC, and the driving condition. The change 

of the 𝜆 range will affect the tradeoff, and accordingly affect the FE and NOx emissions 

simulated. As previously described, the control variable of the ECMSwDP algorithm is the 

equivalent factor 𝜆 instead of engine torque  𝑇𝑖𝑐𝑒, and equivalent factor grid Ρ is defined 

as  𝑃 ∈ [𝜆𝑚𝑖𝑛, 𝜆𝑚𝑖𝑛 + 0.1, ⋯ 𝜆𝑚𝑎𝑥]. The 𝜆 range is represented by 𝜆𝑚𝑖𝑛 and 𝜆𝑚𝑎𝑥. If the 𝜆 

range is set too narrow, the state trajectory and the resulting FE may get distorted. If the 𝜆 

range is set too wide, the simulation will take excessively long time to run.  

In this section, the effects of the 𝜆  range on fuel economy and NOx emissions of 

ECMSwDP algorithm are examined with the assumed 𝜆  range varying from 𝜆𝑚𝑖𝑛 ∈

[0, 1,2]  to  𝜆𝑚𝑎𝑥 = 10 . As shown in Figure 5.13, the increase in the range of 𝜆  by 

increasing the  𝜆𝑚𝑎𝑥 improves the FE for each 𝜆𝑚𝑖𝑛  examined. The operation of this 
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vehicle with 𝜆 range from 𝜆𝑚𝑖𝑛 ∈ [0, 1] to 𝜆𝑚𝑎𝑥 = 10 was shown to significantly decrease 

the NOx emissions. The 𝜆  range from 𝜆𝑚𝑖𝑛 = 2  to  𝜆𝑚𝑎𝑥 = 10 , the reduction in NOx 

emissions is negligible. 

The minimum value of 𝜆 in the range (𝜆𝑚𝑖𝑛) apparently affected on the NOx reduction. 

The smaller 𝜆𝑚𝑖𝑛, the greater the value of reduction in NOx emissions. This algorithm 

prefers to use more battery power, which then decreased the NOx emissions. The wider 𝜆 

range and smaller 𝜆𝑚𝑖𝑛  provides more potential for the vehicle to achieve better fuel 

consumption and lower NOx emissions than the narrower 𝜆 range (resolution) and higher 

𝜆𝑚𝑖𝑛, but requires more computational resources.  
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Figure 5.13 Effect of λ range on the FE and NOx Emissions 

For example, at each time step, if the λ range [0, 10] is considered, there are 110 nodes ( 

𝑃 ∈ [0: 0.1: 10]), and 110×2000 combinations (L ∈ [0.4: 0.0001: 0.6]) involved, which is 

larger than the 60×2000 iterations when the λ range [0, 5] is selected. 

As shown in Figure 5.13, the 𝜆  range [0, 5] achieves the best compromise of FE 

improvement, NOx reduction and the computational effort especially when the NOx 

emissions are a major concern. 
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The study case with λ ranges of [0, 5] and [2, 4] 

Table 5.5 compares the FE and NOx emissions simulated with 𝜆 ranges of [0, 5] and [2, 4]. 

The FE with a 𝜆 range of [0, 5] is 10.64mpg, which is 2% lower than the 10.86 mpg 

observed with a 𝜆 range of [2, 4]. The NOx emissions observed with a 𝜆 range of [0, 5] is 

9.95 gram/mi, which is 34.88% lower than the 15.28 g/mile observed with a 𝜆 range of [2, 

4]. 

Table 5.5 Simulation results of different λ range obtained by ECMSwDP over the Beijing 

cycle 

 FE (mpg) FC (gram/mi) NOx (gram/mi) 

DP γ=15, λ ϵ [2,4] 10.86 290.09 15.28 

DP γ=15, λ ϵ [0,5] 10.64 295.96 9.95 
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Figure 5.14 Comparison of the different λ ranges obtained by ECMSwDP over the Beijing 

cycle 



81 

 

Figure 5.14 compares the operation of this vehicle over the Beijing cycle simulated using 

ECMSwDP with 𝜆 ranges of [0, 5] and [2, 4]. The larger the range of 𝜆, the more battery 

power is used, and more engine power is needed to propel the vehicle and charge the battery. 

An increased electrical motor only operation time achieved a large NOx emissions 

reduction and more FE improvement. However, the battery charging and discharging losses 

will future offset the FE improvement observed with a 𝜆 range of [0, 5]. 

5.3 Summary 

An ECMSwDP model was designed in a backward vehicle simulator for a parallel electric 

hybrid transit bus. The objective of the ECMSwDP algorithm is to find the globally optimal 

𝜆 for the application of ECMS in optimizing the operation of the hybrid vehicle. The fuel 

economy observed using ECMS with 𝜆 derived using ECMSwDP is comparable to that 

observed using DP over the Beijing cycle. The simulation results obtained over the Beijing 

cycle and WVU-CSI cycle demonstrated that the average of the 𝜆  extracted using 

ECMSwDP is comparable to the optimal one. In this research, the average of the 𝜆 value 

extracted using ECMSwDP can be as the appropriate initial 𝜆 value noted as 𝜆0 of the 

ECMS with penalty and the appropriate optimal 𝜆 of ECMS without penalty. The fuel 

economy of this hybrid vehicle operated over the Beijing cycle obtained using ECMS with 

and without penalty function with the average 𝜆 extracted using ECMSwDP is only 3% 

and 9% lower than those observed using DP.  

The average extracted time variant 𝜆(𝑡) from ECMSwDP can provide a new method for 

the selection of the initial 𝜆0 value of the ECMS algorithm with a penalty. The ECMSwDP 

algorithm is sensitive to the road grade and achieves performance improvement in fuel 

economy than rule-based control strategy, because of the enough buffer in the battery on 

the top of the hill in anticipation of future regeneration energy. Also, the 𝜆 range influences 
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the resolution of the control variable in the ECMSwDP algorithm, which plays an 

important role in determining the accuracy and performance of the ECMSwDP. 

In conclusion, the ECMSwDP algorithm provides the foundation for the development of a 

robust, real-time and suboptimal control strategy of hybrid electric transit bus.
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6 Driving Pattern Identification Model 

The determination of the appropriate 𝜆 using ECMSwDP needs known bus driving patterns 

beforehand, which are usually not available prior to the departure of the vehicle. 

Accordingly, there is a need to develop a model capable of predicting the upcoming driving 

pattern. This is critical for the vehicle controller to determine the appropriate 𝜆. The control 

strategy developed based on the predicted driving pattern can be more adaptive to a variety 

of routes and driving conditions. There are two main methods capable of predicting the 

driving patterns. The first one is to predict with the information reported by the GIS, GPS, 

ITS, V2V or V2I (Marano, et al. 2012). The second one is to predict the upcoming driving 

patterns through analyzing the historical driving information from an ECU data logger and 

current driving condition from a vehicle controller area network (He, Sun and Zhang 2012). 

In this thesis, the future driving patterns are predicted using the past and current driving 

conditions, followed by a short prediction scope including numerous distance segments, 

and concluding with a full route prediction. 

6.1 Driving Pattern Features 

The fuel economy and exhaust emissions are affected by the driving patterns. An analysis 

of HEBs operation cycles leads to the development of the numbers of features needed for 

the accurate description of the driving pattern. Montazeri-Gh, Fotouhi, & Naderpour (2011) 

introduced a group of 21 features needed in describing the driving patterns. In this thesis, 

15 features, showed in Table 6.1, have been examined. 
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Table 6.1 The driving pattern features 

 Symbol Explanation Formula Units 

P1 �̅� Average speed with idle �̅� =
∫ 𝑣𝑑𝑡

𝑡
 mph 

P2 �̅�𝑛𝑜 𝑖𝑑𝑙𝑒  
Average speed 

without idle 
�̅�𝑛𝑜 𝑖𝑑𝑙𝑒 = �̅� ∙

1

1 − 𝐼𝑑𝑙𝑒(%)/100
 mph 

P3 𝜈𝑚𝑎𝑥 Maximum speed 𝜈𝑚𝑎𝑥 = max (𝑣𝑖 , 𝑖 = 1,2, ⋯ , 𝑘) mph 

P4 𝜎𝜈 Standard deviation speed 𝜎𝜈 = √
1

𝑛𝜈 − 1
∑(𝜈𝑖 − �̅�)2

𝑁

𝑖=1

  , 𝜈𝑖 < 0 mph 

P5 𝑃𝑖 Idle time percent 
𝑃𝑖 =

𝑡𝑖

𝑡
 

𝑡𝑖 is the idle time 
% 

P6 𝑁 Number of stops per mile 𝑁 =
𝑁

𝑑
 - 

P7 �̅�𝑚𝑖𝑐 Average micro trip time 
�̅�𝑚𝑖𝑐 =

𝑡

𝑛𝑚𝑖𝑐

 

𝑛𝑚𝑖𝑐 is the number of micro trip 

s 

P8 �̅�+ Average acceleration 
�̅�+ =

1

𝑡+

∑ 𝛼𝑖

𝑁

𝑖=1

 , 𝛼𝑖 > 0 

𝑡+ is the time with 𝛼𝑖 > 0 

g 

P9 �̅�− Average deceleration 
�̅�− =

1

𝑡+

∑ 𝛼𝑖

𝑁

𝑖=1

 , 𝛼𝑖 < 0 

𝑡+ is the time with 𝛼𝑖 < 0 

g 

P10 𝑃𝑎 Acceleration time percent 
𝑃𝑎 =

𝑡+

𝑡
 

𝑡+ is acceleration time 
% 

P11 𝑃𝑑 Deceleration time percent 
𝑃𝑎 =

𝑡𝑑

𝑡
 

𝑡𝑑 is deceleration time 
% 

P12 𝜎𝑎 Standard deviation acceleration 𝜎𝑎 = √
1

𝑛𝑎 − 1
∑(𝛼𝑖 − �̅�)2

𝑁

𝑖=1

  , 𝛼𝑖 > 0 

𝑛𝑎 is the number of acceleration 

g 

P13 𝜎𝑑 Standard deviation deceleration 𝜎𝑑 = √
1

𝑛𝑑 − 1
∑(𝛼𝑖 − �̅�)2

𝑁

𝑖=1

  , 𝛼𝑖 < 0 

𝑛𝑑 is the number of deceleration 

g 

P14 𝑅𝑀𝑆𝑎 Root mean squared acceleration 𝑅𝑀𝑆𝑎 = √
∑ 𝛼𝑖

2𝑁
𝑖=1

𝑛𝑎

, 𝛼𝑖 > 0 g 

P15 
𝑃𝐾𝐸* 

 

Positive acceleration  

kinetic energy 

𝑃𝐾𝐸 =
∑(𝜈𝑓

2 − 𝜈𝑖
2)

𝑑
, 𝛼 > 0 

𝑣𝑓= Final speed (mpg) 𝑣𝑖= Initial speed (mpg) 

𝑑= Section length(mile) 

g 

*The term PKE represents the sum of the positive kinetic energy changes during acceleration in m/s2 

6.1.1 The Key Driving Pattern Features for the Description of the Driving Pattern  

The more number of driving features employed, the more accurate in describing the 

characteristics of the driving patterns involved. However, some features dependent of 

others and considered redundant, which can be numerically identified and excluded from 
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the list of key driving features. In this research, the dominating driving features will be 

identified by eliminating the redundant features using the following methods. 

 Principal component analysis (PCA) 

Table 6.2 shows the values of the 15 features of the available 54 test cycles. In this research, 

the number of vehicle driving features is reduced by principal component analysis (PCA), 

an independent method widely used to reduce data dimension, and eliminate multi-

collinearity (Jolliffe 2002). The set of features includes less variables but still provides the 

information necessary to accurately describe the main characteristics of the driving cycle. 

The following is the brief description of the PCA process (Smith 2002): 

a. The normalization of the raw data: The indices are of different orders of magnitude, so 

normalization is needed. With the assumed characteristics of driving cycle of  𝑥𝑖 , 𝑖 =

1,2, ⋯ 𝑝, each variable can be normalized as follows: 

�̂�𝑖 =
𝑥𝑖 − �̅�𝑖

𝜎𝑥𝑖

 Equation 6.1 

Where �̅�𝑖, and 𝜎𝑥𝑖
 is the average and standard deviation of 𝑥𝑖, respectively. 

b. The calculation of the covariance matrix 𝑅. 

c. The calculation of the eigenvectors 𝜆1 ≥ 𝜆2 ⋯ ≥ 𝜆𝑞 and eigenvalues 𝑈1, 𝑈2 ⋯ , 𝑈𝑞 of the 

covariance matrix R. 

d. The calculation of the contribution rate: 

𝐸𝑖 =
𝜆𝑖

∑ 𝜆𝑖
𝐾
𝑖=1

 Equation 6.2 

e. The calculation of the 𝑚 principal components: 

𝐶𝑖 = (�̂�1,�̂�2, ⋯ �̂�𝐾,)𝐸𝑖, 𝑖 = 1,2, ⋯ 𝑚 Equation 6.3 

Figure 6.1 shows the eigenvalues associated with a component. The eigenvalues of the first 

three principal components are greater than 1, and the eigenvalues of the remainder 

principal components are relatively small and less than 1. The first three principal 



86 

 

components will be used to conduct the regression analysis. From the calculation results, 

the first three principal components contribute 47.6%, 29.3%, and 11.7% to the whole 

information of the original data set. In other words, up to 85.6% of the variances can be 

accurately described by the first three main components.  

 

Figure 6.1 The eigenvalues associated with a component 

The component matrix of PCA shows the loading of each variable on each principal 

component. As shown in Table 6.3, some pairs of variables ( �̅�+ & �̅�− and �̅� & �̅�𝑛𝑜 𝑖𝑑𝑙𝑒) 

were found to have approximately same load on the components. It is evident that these 

pairs are related to each other or dependents. Accordingly, the average speed without idle 

�̅�𝑛𝑜 𝑖𝑑𝑙𝑒 and the average deceleration �̅�− were excluded from the list of vehicle operation 

features. The number of vehicle operation features are decreased from 15 to 13 for the 

further regression analysis. 



87 

 

Table 6.2 The driving features of the current 54 heavy-duty drive cycles collected 

Schedule Description 
�̅� 

(mph) 

�̅�𝒏𝒐 𝒊𝒅𝒍𝒆 

(mph) 

𝝂𝒎𝒂𝒙 

(mph) 

𝝈𝝂 

(mph) 

𝑷𝒊 

(%) 

�̂� 

(-) 

�̅�𝒎𝒊𝒄 

(s) 

�̅�+ 

(g) 

�̅�− 

(g) 

𝑷𝒂 

(%) 

𝑷𝒅 

(%) 

𝝈𝒂 

(g) 

𝝈𝒅 

(g) 

𝑹𝑴𝑺𝒂 

(g) 

𝑷𝑲𝑬 

(g) 

HERPI 

(%) 

Arterial Arterial Segment of BAC 23.2 29.6 40.0 16.3 21.9 2.0 60.8 
2.3E-

02 

2.3E-

02 
38.3 12.5 

3.3E-

02 

6.4E-

02 

7.9E-

02 

0.4 
52.7 

BAC Business Arterial Commuter 17.8 23.8 55.0 16.2 25.1 3.6 41.6 
2.0E-

02 

2.0E-

02 
27.8 10.6 

3.5E-

02 

5.8E-

02 

7.4E-

02 

0.3 
42.8 

BEELINE WCDOT Bus Cycle 14.4 20.0 49.7 14.8 25.3 3.5 53.0 
2.3E-

02 

2.3E-

02 
39.8 32.5 

3.8E-

02 

4.6E-

02 

6.8E-

02 

0.8 
58.4 

Braunschweig Braunschweig City Bus Cycle 13.9 19.0 36.2 11.4 25.4 4.3 44.8 
2.2E-

02 

2.2E-

02 
38.7 29.6 

4.0E-

02 

4.9E-

02 

7.1E-

02 

0.6 
55.0 

CBD Central Business District Cycle 12.9 16.2 20.0 8.2 20.1 7.0 32.0 
2.3E-

02 

2.3E-

02 
27.5 12.5 

3.9E-

02 

6.2E-

02 

8.0E-

02 

2.1 
48.0 

CBD_Truck Central Business District Cycle Truck 9.2 11.5 20.0 7.1 18.7 6.4 49.4 
1.5E-

02 

1.5E-

02 
50.6 26.1 

1.5E-

02 

2.6E-

02 

3.7E-

02 

1.6 
56.4 

CILCC Composite International Truck Local Cycle and Commuter 13.9 16.9 55.0 12.4 17.6 2.0 105.2 
8.5E-

03 

8.5E-

03 
15.4 13.5 

2.1E-

02 

2.2E-

02 

3.3E-

02 

0.2 
38.0 

CSHVC City Suburban Heavy-Duty Vehicle 14.1 18.8 43.8 13.1 23.3 1.9 100.3 
1.5E-

02 

1.5E-

02 
36.7 30.4 

2.5E-

02 

2.9E-

02 

4.4E-

02 

0.4 
51.7 

CSHVR Commuter segment of BAC 14.1 18.8 43.8 13.1 23.3 1.9 100.3 
1.5E-

02 

1.5E-

02 
36.7 30.4 

2.5E-

02 

2.9E-

02 

4.4E-

02 

0.4 
51.7 

Commuter-DieselNet European Urban Drive Cycle 46.3 49.7 55.0 16.8 6.8 0.2 290.0 
8.1E-

03 

8.1E-

03 
28.0 4.2 

1.9E-

02 

3.9E-

02 

4.5E-

02 

0.7 
18.6 

Commuter 
European Cycle for Emissions Certification of Heavy-duty 

Diesel Vehicles 
42.3 49.7 55.0 20.7 14.7 0.2 291.0 

7.4E-

03 

7.4E-

03 
27.0 4.1 

1.8E-

02 

3.7E-

02 

4.3E-

02 

0.7 
18.4 

Commuter310 Rural and Motorway Sections of ETC Cycle 42.3 49.7 55.0 20.7 15.0 0.2 290.0 
7.4E-

03 

7.4E-

03 
25.5 3.8 

1.8E-

02 

3.7E-

02 

4.3E-

02 

0.7 
18.6 

Commuter No Init_Idle European Transient Cycle, Segment1 46.3 49.7 55.0 16.8 6.8 0.2 290.0 
8.1E-

03 

8.1E-

03 
28.0 4.2 

1.9E-

02 

3.9E-

02 

4.5E-

02 

0.7 
18.6 

ECE_15 Extra Urban Driving Cycle 11.3 16.8 31.1 10.6 32.7 4.9 44.0 
1.4E-

02 

1.4E-

02 
21.4 18.4 

2.8E-

02 

3.0E-

02 

4.6E-

02 

4.2 
50.9 

ETC_FIGE EUDC for Low Power Cycle 36.5 38.2 56.5 17.8 3.8 0.3 346.4 
9.3E-

03 

9.3E-

03 
43.6 38.2 

1.8E-

02 

2.9E-

02 

3.7E-

02 

0.1 
15.5 

ETC_Rur_Mot Freeway Operation of Heavy-duty Trucks 45.8 47.8 56.5 12.3 4.2 0.1 1199.0 
6.7E-

03 

6.7E-

03 
41.4 36.9 

1.6E-

02 

2.9E-

02 

3.5E-

02 

0.1 
10.3 

ETC_Urban Heavy Heavy-Duty Diesel Truck-Creep 14.2 16.2 30.9 8.5 11.3 1.7 133.3 
1.4E-

02 

1.4E-

02 
44.6 37.8 

2.1E-

02 

2.7E-

02 

3.9E-

02 

0.5 
47.9 

EUDC Heavy Heavy-Duty Diesel Truck- Cruise 38.8 43.3 74.6 19.6 10.5 0.2 359.0 
9.9E-

03 

9.9E-

03 
25.7 10.5 

1.9E-

02 

3.0E-

02 

3.8E-

02 

0.4 
29.8 

EUDC_Low Heavy Heavy-Duty Diesel Truck- Trans 36.9 41.2 55.9 17.1 10.5 0.2 359.0 
7.8E-

03 

7.8E-

03 
18.0 7.5 

1.8E-

02 

2.9E-

02 

3.6E-

02 

0.3 
24.7 

Freeway Arterial Segment of BAC 34.1 38.3 60.7 21.8 10.5 0.3 293.8 
8.1E-

03 

8.1E-

03 
38.8 37.4 

1.4E-

02 

1.7E-

02 

2.5E-

02 

0.2 
13.5 

HHDDT_All Business Arterial Commuter 31.2 35.8 59.3 23.6 12.3 0.5 202.7 
6.8E-

03 

6.8E-

03 
42.1 37.9 

1.5E-

02 

1.8E-

02 

2.5E-

02 

0.1 
10.6 

HHDDT_Creep WCDOT Bus Cycle 1.8 3.1 8.2 2.0 41.3 24.1 49.7 
3.4E-

03 

3.4E-

03 
18.1 26.8 

1.3E-

02 

1.2E-

02 

1.9E-

02 

20.7 
25.3 

HHDDT_Cruise Braunschweig City Bus Cycle 39.9 43.4 59.3 22.0 7.8 0.3 320.3 
5.1E-

03 

5.1E-

03 
43.8 40.3 

1.1E-

02 

1.2E-

02 

1.8E-

02 

0.1 
4.6 

HHDDT_Trans Central Business District Cycle 15.3 18.4 47.5 13.4 16.4 1.8 111.8 
1.4E-

02 

1.4E-

02 
42.8 32.0 

2.3E-

02 

2.9E-

02 

4.2E-

02 

1.1 
48.7 

HWFET EPA Highway Fuel Economy 48.2 48.6 59.9 10.2 0.8 0.1 760.0 
8.7E-

03 

8.7E-

03 
44.1 38.8 

1.8E-

02 

2.1E-

02 

3.0E-

02 

0.3 
15.9 

Houston Bus Cycle (333) 
Metropolitan Transit Authority of Harris County, Houston, 

TX 
11.1 18.5 31.8 11.7 39.4 6.0 33.1 

1.5E-

02 

1.5E-

02 
32.9 29.4 

3.3E-

02 

3.6E-

02 

5.3E-

02 

0.5 
49.4 
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Int_Local 
City-suburban Drive Cycle, International Truck & Engine 

Corporation 
12.2 15.0 35.0 9.8 18.7 2.3 102.5 

8.1E-

03 

8.1E-

03 
13.6 13.5 

2.1E-

02 

2.1E-

02 

3.2E-

02 

0.9 
40.2 

JE05 Japanese 2005 Heavy-duty Vehicle Cycle 17.0 22.7 54.4 15.9 25.2 1.6 97.8 
1.2E-

02 

1.2E-

02 
38.5 36.9 

2.4E-

02 

2.6E-

02 

4.0E-

02 

0.3 
37.7 

KCM King County Metro Bus Cycle 23.4 28.9 60.0 18.1 18.9 1.9 66.4 
2.1E-

02 

2.1E-

02 
42.2 29.5 

3.6E-

02 

4.9E-

02 

6.7E-

02 

0.3 
44.6 

KCM1 Section 1of KCM Cycle,1-5 41.8 46.5 60.0 18.9 10.2 0.2 450.0 
6.9E-

03 

6.9E-

03 
23.2 26.9 

1.5E-

02 

1.6E-

02 

2.4E-

02 

0.7 
14.8 

KCM2 Section 2 of KCM Cycle, Rte-174 19.6 23.9 46.7 13.4 18.2 2.8 54.0 
2.8E-

02 

2.8E-

02 
54.1 29.2 

3.7E-

02 

5.7E-

02 

7.8E-

02 

1.7 
59.7 

KCM3 Section 3 of KCM Cycle, Rte-120 16.4 21.3 38.3 12.8 23.1 3.6 46.5 
2.6E-

02 

2.6E-

02 
48.2 29.2 

4.1E-

02 

5.7E-

02 

7.9E-

02 

1.1 
58.5 

KCM4 Section 4 of KCM Cycle, Rte-106 15.0 20.1 31.2 10.8 25.4 3.4 52.0 
2.3E-

02 

2.3E-

02 
40.9 35.1 

4.0E-

02 

4.3E-

02 

6.7E-

02 

3.1 
57.9 

Liberty WCDOT Bus Cycle 12.0 18.6 49.7 13.8 32.2 3.8 53.2 
1.9E-

02 

1.9E-

02 
36.0 29.6 

3.4E-

02 

4.1E-

02 

6.0E-

02 

0.6 
57.1 

MCS Mexico City Bus Schedule 11.1 16.2 42.7 12.0 30.7 4.1 54.7 
1.7E-

02 

1.7E-

02 
36.6 34.0 

3.3E-

02 

4.0E-

02 

5.7E-

02 

0.3 
53.8 

Manhattan Low Speed Bus Operation in Manhattan 6.8 11.0 25.3 7.3 36.1 9.7 34.8 
2.0E-

02 

2.0E-

02 
35.4 28.6 

3.6E-

02 

4.2E-

02 

6.2E-

02 

1.7 
60.1 

NYC BUS Very Low Speed Bus Operation in New York City 3.7 11.2 30.7 6.5 65.4 17.9 18.9 
1.5E-

02 

1.5E-

02 
12.8 23.0 

4.8E-

02 

3.8E-

02 

6.4E-

02 

5.3 
57.7 

NY_Comp Heavy-duty Vehicle, New York City 8.8 13.3 36.0 9.5 33.2 7.6 36.2 
1.6E-

02 

1.6E-

02 
33.2 29.1 

3.3E-

02 

3.5E-

02 

5.3E-

02 

1.1 
59.2 

Nuremberg_R36 Nuremberg Bus Route 36 8.9 12.8 33.2 8.9 30.8 9.0 31.2 
2.0E-

02 

2.0E-

02 
34.8 36.5 

3.9E-

02 

3.7E-

02 

6.1E-

02 

1.3 
58.0 

OCTA Orange County Transit Authority Bus Cycle 12.3 16.2 40.6 10.3 21.3 4.7 48.5 
2.1E-

02 

2.1E-

02 
46.5 33.1 

3.6E-

02 

4.5E-

02 

6.5E-

02 

0.7 
56.3 

Paris ADEME-RATP Paris Bus Cycle 6.6 10.3 29.7 7.3 34.7 13.4 26.6 
1.8E-

02 

1.8E-

02 
34.3 32.2 

3.3E-

02 

4.0E-

02 

5.8E-

02 

0.9 
57.4 

ROUTE77 Bus Route to BOS Airport, MA 16.8 19.9 50.0 13.6 14.3 3.7 49.2 
2.0E-

02 

2.0E-

02 
40.9 30.0 

3.8E-

02 

4.7E-

02 

6.7E-

02 

1.0 
47.1 

SORT_1_Estimated European Geometric Route for Urban Traffic 7.5 12.5 24.9 8.0 39.4 9.3 31.3 
1.6E-

02 

1.6E-

02 
23.2 21.9 

3.1E-

02 

3.2E-

02 

5.0E-

02 

11.9 
59.1 

SORT_2_Estimated European Geometric Route for Mixed Traffic 11.1 16.9 31.1 11.3 33.5 5.2 41.0 
1.7E-

02 

1.7E-

02 
27.6 22.2 

2.9E-

02 

3.3E-

02 

5.0E-

02 

6.6 
56.4 

SORT_3_Estimated European Geometric Route for Suburban Traffic 15.7 19.5 37.3 12.5 19.8 3.3 55.3 
1.9E-

02 

1.9E-

02 
35.3 24.6 

2.7E-

02 

3.4E-

02 

5.1E-

02 

4.4 
56.2 

UDDS EPA Heavy-duty Urban Dynamometer Driving Schedule 18.8 28.5 58.0 19.8 33.3 2.5 50.6 
1.3E-

02 

1.3E-

02 
27.0 22.6 

3.0E-

02 

3.2E-

02 

4.8E-

02 

0.6 
39.9 

VC_274 Washington Metropolitan Area Transit Authority Bus Cycle 21.1 30.6 58.0 21.6 29.0 2.7 45.4 
1.6E-

02 

1.6E-

02 
39.5 32.8 

3.0E-

02 

3.8E-

02 

5.4E-

02 

0.8 
38.9 

VC_28 5 Speed Truck Cycle 7.3 12.9 36.5 9.4 39.5 8.5 35.1 
1.7E-

02 

1.7E-

02 
33.6 28.1 

3.3E-

02 

3.8E-

02 

5.6E-

02 

1.8 
61.7 

VC_637 City Driving Cycle for Heavy Trucks 27.4 31.4 58.0 19.3 11.9 0.9 123.5 
1.5E-

02 

1.5E-

02 
45.2 36.2 

2.6E-

02 

3.9E-

02 

5.2E-

02 

0.4 
33.5 

WMATA Yard Operation of Heavy-duty Trucks 8.3 14.0 47.5 10.3 38.4 6.1 43.6 
1.5E-

02 

1.5E-

02 
32.7 28.2 

2.8E-

02 

3.5E-

02 

5.0E-

02 

0.9 
58.9 

WMATA_COMMUTER_2 EPA Highway Fuel Economy 34.6 53.3 67.0 27.8 34.9 0.1 526.0 
7.4E-

03 

7.4E-

03 
35.5 29.7 

1.7E-

02 

2.2E-

02 

3.0E-

02 

0.5 
16.9 

WVU_5_Peak 
Metropolitan Transit Authority of Harris County, Houston, 

TX 
20.0 24.4 39.9 13.5 17.9 1.0 148.0 

7.6E-

03 

7.6E-

03 
23.4 13.0 

1.4E-

02 

2.0E-

02 

2.7E-

02 

0.7 
29.5 

WVU_City 
City-suburban Drive Cycle, International Truck & Engine 

Corporation 
8.5 12.8 35.8 10.2 30.5 3.8 76.5 

1.1E-

02 

1.1E-

02 
34.7 28.0 

2.0E-

02 

2.4E-

02 

3.5E-

02 

1.1 
51.5 

Yard Japanese 2005 Heavy-duty Vehicle Cycle 3.3 6.5 16.8 4.7 47.2 12.0 47.3 
7.0E-

03 

7.0E-

03 
24.8 19.1 

1.6E-

02 

1.9E-

02 

2.7E-

02 

2.7 
46.1 
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Table 6.3 Component matrix of PCA 

 
Variables 

Principal Component 

1 2 3 

P1 �̅� -0.75 0.56 -0.15 

P2 �̅�𝒏𝒐 𝒊𝒅𝒍𝒆 -0.73 0.55 -0.15 

P3 𝝂𝒎𝒂𝒙 0.65 -0.59 -0.12 

P4 𝝈𝝂 -0.52 0.65 -0.31 

P5 𝑷𝒊 0.65 -0.59 -0.12 

P6 �̂� 0.42 -0.73 0.10 

P7 �̅�𝒎𝒊𝒄 -0.72 0.23 0.19 

P8 �̅�+ 0.85 0.50 0.02 

P9 �̅�− 0.85 0.50 0.02 

P10 𝑷𝒂 0.32 0.64 0.91 

P11 𝑷𝒅 0.29 0.20 0.68 

P12 𝝈𝒂 0.79 0.29 -0.13 

P13 𝝈𝒅 0.73 0.57 -0.25 

P14 𝑹𝑴𝑺𝒂 0.64 0.49 -0.18 

P15 𝑷𝑲𝑬 0.21 0.03 0.08 

 

 Stepwise regression 

The recovery of brake energy for the production of electricity was recognized as one of the 

major contributors to the improvement in fuel economy of a hybrid bus. As reported by 

Ehsani, Gao, & Butler (1999), about 30% to 50% of the propulsion energy was converted 

to thermal energy during the braking process when operated in the urban driving condition. 

Transit buses usually operate at low average speed, acceleration/deceleration driving 

pattern. There is more potential brake energy to be recovered from transit buses than other 

vehicles which operate on relatively constant speed with less frequent deceleration and 

braking processes. The potential of the brake recovery energy is a critical characteristic in 

evaluating the potential benefit of the hybridization of a transit hybrid bus. Although the 

energy recovered is affected by the capacity and SOC of the battery, the maximum power 

of the generator, the maximum recoverable kinetic energy primarily depends on driving 

characteristics (Vyas and Bertram 2013). 

In this research, Dr. Li proposes a new parameter noted as the hybrid energy recovery 

potential index (HERPI) defined as the ratio of the maximum electrical energy recoverable 

during the braking processes relative to the total propulsion energy needed in each specific 

cycle. It can be expressed as  
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𝐻𝐸𝑅𝑃𝐼 =
𝐸𝐵𝑅

𝐸𝑡𝑟𝑎𝑐
=

∑|�̇�𝑟𝑜𝑎𝑑,𝑖<0| · 𝛥𝑡𝑖

∑ �̇�𝑟𝑜𝑎𝑑,𝑖>0 · 𝛥𝑡𝑖

 Equation 6.4 

Where 𝐸𝐵𝑅 is the potential braking energy, 𝐸𝑡𝑟𝑎𝑐 is the total tractive energy, �̇�𝑟𝑜𝑎𝑑,𝑖<0 is 

the braking power, �̇�𝑟𝑜𝑎𝑑,𝑖>0 is the tractive power. 

In this research, the HERPI of the 54 driving cycles was calculated and presented in Table 

6.2. The HERPI will be considered as the response variable of stepwise regression in 

identifying the key driving pattern features dominating the HERPI. The flow chart for 

extracting the key driving pattern features is shown in Figure 6.2. 

Fo

54 Existing duty cycles or 

fixed route data

Hybrid energy recovery potential index 

(HERPI) of each duty cycles (response 

variable)
Driving pattern features of 

each duty cycles(variables)

Stepwise 

regression 

Key driving pattern features 
 

Figure 6.2 Flow chart of extracting key driving pattern features 

The key driving pattern features having significant impact on the proposed HERPI were 

identified using the stepwise regression method. The output of the stepwise regression 

method is the minimum number of variables you would need to measure or predict the 

criterion variable (Hinman 2006). Stepwise regression was conducted using the software 

SPSS for Windows version 19. The regression results are shown in Table 6.4.  
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Table 6.4 Stepwise regression coefficients 

Model R Square Features and Symbol 

Unstandardized 

Coefficients 

Standardized 

Coefficients t Sig. 

B Std. Error Beta 

1 
0.587 

 

(Constant) 0.155 0.024  6.392 0.000 

Average 

acceleration 
�̅�+ 2.069 0.168 0.766 12.325 0.000 

2 0.859 

(Constant) 0.302 0.018  17.231 0.000 

Average 
acceleration 

�̅�+ 1.792 0.100 0.663 17.869 0.000 

Average Speed �̅� -0.016 0.001 -0.532 -14.332 0.000 

3 0.880 

(Constant) 0.376 0.024  15.684 0.000 

Average 

acceleration 
�̅�+ 1.937 0.099 0.717 19.482 0.000 

Average Speed �̅� -0.015 0.001 -0.502 -14.221 0.000 

Acceleration Time 

Percent 
𝑃𝑎 -0.003 0.001 -0.153 -4.202 0.000 

 

The data reported in Table 6.4 shows the linear regression equation coefficients for the 

various model variables. The “B” values are the coefficients for each variable. These are 

the values that the variable’s data should be multiplied by in the final linear equation for 

predicting the HERPI. The “Constant” is the intercept equivalent in the equation. The 

Significance (Sig.) should be 0.05 or less to be significant at 95 percent. As shown in Table 

6.4, there are three models, the “best” one -variable, two-variable and three-variable model. 

The adjusted R2 value of 0.578, 0.859 and 0.880 gives the most useful measure of the 

success of the model, respectively. 

The capability of each model in predicting the HERPI is validated by comparing the HERPI 

predicted with the known key variable with that calculated for each cycle. The regression 

function is developed using data of 43 cycles noted as model training cycles. The 11 cycles 

left was used to evaluation cycles. As shown in Figure 6.3, the one variable  

(�̅�+) model is not able to accurately predict the HERPI of these test cycles as indicated by 

low 𝑅2  of the training and evaluation cycles. The regression model with two key variables 

(�̅�+𝑎𝑛𝑑 �̅� ) is able to successfully predict the HERPI of the 54 cycles. The 𝑅2 of the linear 

fit from training cycles and evaluation cycles were 0.86, and 0.84, respectively. The 

regression model with three key variables (�̅�+, �̅�, 𝑎𝑛𝑑 𝑃𝑎) will do slightly better than that 

with two key variables (�̅�+ 𝑎𝑛𝑑 �̅� ). In this research, the regression model with two key 
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variables (�̅�+𝑎𝑛𝑑 �̅� ) is used to evaluate the HERPI of the actual cycles. The HERPI can 

be calculated by the linear regression equation HERPI = 0.302 + 1.792 × �̅�+ − 0.016 ×

�̅� . Figure 6.4 shows the three-dimensional contour plot for HERPI as a function of 

�̅�+𝑎𝑛𝑑 �̅� . The two key driving pattern features ( �̅�+, �̅� ) will be utilized as the input 

parameters of the driving pattern prediction model. 
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a. HERPI predicted vs. target under the variable �̅�+ 
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b. HERPI predicted vs. target under the variables �̅�+ 𝑎𝑛𝑑 �̅� 
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c. HERPI predicted vs. target under the variables �̅�+, �̅�, 𝑎𝑛𝑑 𝑃𝑎 
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d. Effect of variables on R2 of HERPI 

Figure 6.3 Validation of the models under different variables 



93 

 

 

Figure 6.4 Three-dimensional contour plot of the HERPI with variables average 

acceleration and speed 

 

6.2 Representative Driving Pattern Development 

The representative driving patterns (RDP) are developed using the K-means cluster 

analysis, a data classification method carried out by separating the data into groups with 

the number of clusters pre-defined by the user (Vojnikova 2009). 

6.2.1 The Development of RDP from the 54 Heavy-duty Driving Cycles 

The 54 heavy-duty driving cycles can be classified into numerous clusters (driving patterns) 

using the K-means cluster model based on the Euclidean distance. In this research, the 

driving cycle is represented by the two key driving pattern features (�̅�+, �̅�), which are the 

input variables of the K-means model. Table 6.5 shows the (�̅�+, �̅�) and distance of the 6 

representative driving cycles K-means cluster identified from the 54 heavy-duty cycles. 

These 6 cycles are recognized as the RDPs developed and shown in Figure 6.5. The (�̅�+, �̅�) 

of these representative driving patterns will be used as the key driving features to identify 

the future driving patterns as shown in Table 6.6. 
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Table 6.5 Cluster membership and the distance 

Cycle Cluster Distance Cycle Cluster Distance 

HHDDT_Creep 1 4.79 BAC 5 3.98 

Yard 1 7.79 CSHVC 5 3.99 

NYC BUS 2 0.00 CSHVR 5 3.99 

NY_Comp 3 3.46 ECE_15 5 5.02 

WMATA 3 3.66 ETC_Urban 5 5.73 

Liberty 3 4.09 JE05 5 6.01 

Nuremberg_R36 3 4.15 SORT_3_Estimated 5 6.39 

OCTA 3 4.96 Houston Bus Cycle(333) 5 7.28 

KCM4 3 5.15 WVU_City 5 7.53 

Braunschweig 3 5.51 UDDS 5 7.83 

BEELINE 3 6.70 CBD 5 8.81 

KCM3 3 6.73 SORT_2_Estimated 5 8.87 

MCS 3 6.76 CBD_Truck 5 9.33 

SORT_1_Estimated 3 7.20 KCM 5 10.04 

VC_28 3 7.89 VC_274 5 10.22 

Paris 3 9.47 CILCC 5 10.98 

KCM2 3 9.71 Int_Local 5 11.85 

Manhattan 3 10.08 Arterial 5 11.96 

Commuter_No_Init_Idle 4 1.92 WVU_5_Peak 5 16.41 

Commuter-DieselNet 4 1.93 Freeway 6 1.34 

KCM1 4 3.74 ETC_FIGE 6 3.75 

ETC_Rur_Mot 4 4.53 EUDC_Low 6 4.92 

Commuter 4 4.86 EUDC 6 5.28 

Commuter310 4 4.86 HHDDT_All 6 5.57 

HWFET 4 7.83 WMATA_COMMUTER_2 6 6.96 

HHDDT_Trans 5 1.51 HHDDT_Cruise 6 7.33 

ROUTE77 5 2.31 VC_637 6 10.47 

 

Table 6.6 Identification features of six RDPs 

Key driving pattern 

parameters 

Cluster Center 

1 2 3 4 5 6 

Representative Driving Cycle 
HHDDT 

Creep 
NYC BUS NY Comp 

Commuter 

No Init Idle 

HHDDT 

Trans 
Freeway 

Average speed [mph] 2.55 3.68 11.26 44.71 15.32 34.93 

Average acceleration [g] 0.005 0.015 0.02 0.008 0.015 0.009 
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Figure 6.5 Six representative standard driving cycles 

6.3 The Short Term Prediction for Driving Pattern Features 

Short term driving pattern prediction is defined as the process of estimating the anticipated 

driving patterns in the short term future with the known historical and current traffic 

information (Vlahogianni, Golias and Karlaftis 2004). The short term (also called segment) 

traffic information can be categorized into a time based segment and a distance based segment. 
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6.3.1 The Short Term Prediction Based on Distance Segment 

Numerous sources in the literatures (Van Lint and Hinsbergen 2012, Murphey, et al. 2008, Xu, 

et al. 2009) have reported the prediction of the vehicle operation features using the time based 

segment and the prediction was conducted using the standard emissions test cycles. Although 

operated on a fixed route, the operation characteristics of the transit bus over each segment at 

different times are not unique but plural.  

In this research, the transit route is divided into distance-based segments. Figure 6.6 shows 

the average velocity of transit bus operation over each distance-based segment. The 

horizontal axis represents the distance from 675m to 1125m. This piece of the route is 

divided into ten even segments with 45m in each segment. The average velocity of each 

segment can be calculated. In this research, the RDP of the distance based segment are the 

inputs of the prediction model, which provide better results, and more useful information 

than the time based segment. 

 

Figure 6.6 The distance based segment 

The mathematical statement of the short-term driving pattern predicted at position 𝑑 can be 

expressed as follows: 

�̂�(𝑑 + 𝐷) = 𝑓{𝑥(𝑑), 𝑥(𝑑 − 𝐷), 𝑥(𝑑 − 2𝐷)} Equation 6.5 
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Where, 𝐷 is the distance segment of the prediction,  𝑥(𝑑), 𝑥(𝑑 − 𝐷) 𝑎𝑛𝑑 𝑥(𝑑 − 2𝐷) are 

the measured driving pattern features of current and past distance based segments, and 

�̂�(𝑑 + 𝐷) is the predicted features at the 𝑑 + 𝐷 horizon. 

Figure 6.7 illustrates the prediction of the travel distance by means of a distance-space 

diagram. From the start of the look ahead window, the past three driving pattern features 

at window in 1{ 𝑥(𝑑), 𝑥(𝑑 − 𝐷), 𝑥(𝑑 − 2𝐷)}  as the inputs of prediction model, the 

predicted features at window  out 1 {�̂�(𝑑 + 𝐷)} . Due to disturbances and model-plant 

mismatch, the actual driving features are different from the predicted ones. So the next 

input window will be implemented only until the next measurement becomes available 

from the vehicle ECU or GPS. The prediction will continue to next window out 2 {�̂�(𝑑 +

2𝐷)} with the input window in 2{ 𝑥(𝑑 − 𝐷), 𝑥(𝑑 − 2𝐷), 𝑥(𝑑 − 3𝐷)}. The entire route can 

be predicted. 
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Figure 6.7 Illustration of the distance based segment prediction diagram 
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6.3.2 The Wavelet Neural Network  

Wavelet neural networks (WNN) combines the theory of wavelets and neural networks 

into one. A WNN model generally consists of a feed-forward neural network and one 

hidden layer with the activation functions drawn from an orthonormal wavelet (Chan, 

Dillon and Singh, et al. 2012). 

A WNN is more efficient than the conventional neural networks in approximating 

nonlinearities appearing in servo systems (Falamarzi, et al. 2014). Benefiting from the 

wavelet transform localization properties and self-studying of artificial neural networks, a 

WNN possesses improved capacity of approximation and the training times are 

significantly reduced. 

Figure 6.8 shows the architecture of the WNN model. The model is a three-layer structure, 

consisting of an input neuron layer x(i), a hidden neuron layer, and an output neuron 

layer  y(k) . The connections between hidden neurons and output neurons are named 

weights  ωi→h , and ωh−k , respectively. The input data is directly transmitted into the 

wavelet nodes in the hidden neuron layer. The discrete wavelet transform is described as 

follow: 

𝛹𝑎,𝑏(𝑥) = |𝑎|
1
2𝛹(

𝑥 − 𝑏

𝑎
) Equation 6.6 

Where a is the dilation parameter and b is the translated parameter.  

The parameter n is the number of input-dimensions and m is the number of the wavelets. 

The output function is described by the following formula: 

𝑦(𝑘) = ∑ 𝜔ℎ−𝑘

𝑚

𝑗

𝛹𝑗(𝑥) Equation 6.7 
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Where Ψ𝑗, 𝑗 = 1, … 𝑚  is used as a nonlinear transformation function of hidden nodes, and 

ωh−k, j = 1, … m is used as the adjustable weighting parameters to provide the function 

approximation. 
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Figure 6.8 The architecture of the WNN model 

 

In this WNN model, the neural network simulator is described as follows: 

(1) To initialize the parameters 

The dilation parameter 𝑎, translation parameter 𝑏 and the neuron connection weights ωi→h, 

ωh−k are initialized to random values [0, 1]; 

(2) To normalize the input and target output 

The inputting vector data 𝑥(𝑖)  is normalized and the corresponding output vector values 

𝑦(𝑘)  fall in the range [–1, 1]; 

(3) To reduce the error between the desired and actual output 

𝑒 = ∑ �̇�

𝑚

𝑘=1

(𝑘) − 𝑦(𝑘) Equation 6.8 

Where  �̇�(𝑘) is the desired output and 𝑦(𝑘) is the WNN actual output. 
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The error can be reduced by adjusting ωi→h,ωh−k, a, and b. 

(4) Error criteria 𝛿 

Step (3) is repeated until 𝑒 satisfies the given error criteria 𝛿, and the training process of 

the WNN is completed. 

6.3.3 Case Study of the Future Driving Feature Prediction 

The model was applied to predict the operation velocity of one session of Route 6 in 

Southeast Area Transit (SEAT) district of Preston, CT. The average speed is one of the key 

driving pattern features. The average speed and average acceleration predicted using the 

WNN with the selected distance segment can be used as the input of the driving pattern 

identification model. Figure 6.9 shows the average speed predicted using four segment 

distances. The distance of the segment selected was found to significantly affect the 

acuracy of the predicted average velocity. The shorter the distance of the reference segment 

selected, the more accurate the predicted average speed was. 

 

 

 

 

 



101 

 

 

(a) predicted with distance segment of 30 m  

 

(b) predicted with distance segment of 45 m  

 

(c) predicted with distance segment of 60 m  

 

(d) predicted with distance segment of 75 m  

Figure 6.9 The average speed predicted using different distance segment 

6.3.4 Driving Pattern Identification Model 

The predicted key driving pattern features are of different orders of magnitude. In this 

research, the predicted driving pattern features are normalized. The normalized features 

will serve as the inputs of the driving pattern identification model. The six representative 

driving patterns will be used as initial candidate patterns. The corresponding identification 

features are extracted using the k-means cluster center and stored in the identification 

model. Figure 6.10 shows the architecture of the driving pattern identification model. The 

model predicts the driving features of the coming distance segment with the known features 

of the prior two segments. 
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Figure 6.10 The architecture of the driving pattern identification model 

The driving pattern identification model identifies the driving patterns by comparing the 

predicted driving features with that of the representative driving patterns using the 

following equation. 

𝐶𝑘 = 𝑚𝑖𝑛{|�̅�𝑝 − �̅�𝑘| + |�̅�+,𝑝 − �̅�+,𝑘|} 

𝑘 = 1,2, … 6 

Equation 6.9 

Where ·𝑝  is the normalized predicted future driving features, ·𝑘  is the normalized 

identification features from the 6 candidates driving patterns, and  𝐶𝑘  is the predicted 

driving pattern. 
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Figure 6.11 The identified driving patterns of one session from Rt6 
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The driving pattern identification model will classify the current driving pattern into one 

of the six representative standard driving cycles (driving patterns), then the appropriate 

average 𝜆 or 𝜆 maps will be utilized accordingly. Figure 6.11 shows identified driving 

patterns of one session of Route 6 in SEAT district of Preston, CT. 

6.4 Summary 

This chapter presents the development of the driving pattern prediction model capable of 

identifying the upcoming driving patterns based on the driving features predicted. The key 

driving parameters were derived using principal component analysis and stepwise 

regression. The latter examined the features dominating the proposed HERPI, an index 

proposed to evaluate the potential benefit of a typical cycle or operation over a route 

achievable by recovering the brake energy. The average acceleration and speed were 

selected as the two key driving pattern features and utilized as the input parameters of 

driving pattern prediction model. The RDPs were developed using the K-means cluster 

model. The examination of the current 54 heavy-duty driving cycles leads to the 

development of 6 RDPs including the NYC Bus, Freeway, NY Comp, Commuter No Init 

Idle, HHDDT Creep, and HHDDT Trans. 

A Wavelet neural network (WNN) was used in the short term driving features prediction 

model for estimating the driving pattern features with the known historical and current traffic 

information. The shorter the distance of the reference segment selected, the more accurate 

the predicted average speed was. The predicted driving pattern features will serve as the 

inputs of the driving pattern identification model, which compares the predicted future 

driving pattern features with the identification features from the 6 candidate driving 

patterns and derives the driving pattern of the upcoming distance segment in the transit 

route. 
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7 Adaptive ECMS Based on ECMSwDP with Driving Pattern 

Identification Model 

As reported in the previous chapters, the pattern of the driving features was shown to 

significantly affects the optimal 𝜆 derived using the ECMSwDP approach. However, the 

optimal solution of an ECMSwDP can be developed only when the driving cycle is 

available. Such a limitation can be solved by the proposed adaptive ECMS (A-ECMS) with 

𝜆  derived using the driving pattern identified, which provides the suboptimal control 

strategies of a hybrid bus. In this research, the success of the A-ECMS in developing the 

suboptimal control strategies is examined by observing the extent of approximation of the 

FC achieved with A-ECMS to the optimal one observed with the ECMSwDP. The 

simulation results will be analyzed and discussed. 

7.1 Structure of the Proposed Controller 

Figure 7.1 depicts the structure of the suboptimal controller developed using the A-ECMS 

with the 𝜆 derived using the predicted driving pattern. The controller can be divided into 

two parts: (1) the off-line calculation which is able to generate the optimal 𝜆 maps or the 

average 𝜆 value based on the representative driving patterns; (2) the real-time controller 

using A-ECMS is going to utilize the 𝜆 identified by the the off-line calculation and the  

future driving patterns based on the predicted driving features. 
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Figure 7.1 Flow chart of real-time optimal control strategy of hybrid transit bus based on 

predicted driving patterns 

7.2 Adaptive ECMS 

As reported in the past chapters, the 𝜆 plays a crucial role for the battery to keep the 

sustainable charging requirement, and achieve the optimal fuel economy. The solution is 

extremely sensitive to the value of 𝜆(𝑡), which can be tuned appropriately with the known 

knowledge of the routes and vehicle operating features. To achieve optimal results, one 
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algorithm is suggested to adjust 𝜆 based on feedback from the SOC and past or future 

driving conditions while maintaining the battery charge sustainability of the entire driving 

cycle. The proposed A-ECMS is an algorithm with 𝜆 refined according to the feedback of 

the known or predicted vehicle operating conditions (Musardo, et al. 2005, Onori, Serrao 

and Rizzoni 2010, Onori and Serrao 2011). 

Figure 7.2 shows the schematically SOC trajectories derived using ECMS with constant 𝜆 

and A-ECMS with 𝜆 varied with vehicle operating conditions, respectively. The A-ECMS 

decreased the 𝜆 to be lower than the constant 𝜆 of the ECMS and depleted the battery SOC 

to its lower limit at the end of the uphill operation. This made it possible for the battery to 

absorb more electrical energy made available during the brake process from the upcoming 

downhill operation. 
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Figure 7.2 The schematic diagram of SOC trajectories derived using ECMS and A-ECMS 
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There are a few adaptation methods, which include: (1) adaptation based on feedback from 

SOC; (2) adaptation based on  𝜆  maps; and (3) adaptation based on driving pattern 

predicted. 

The previously described ECMS with penalty function in chapter 4 is one method of the 

A-ECMS based on SOC feedback. This feedback controller dynamically modifies the 𝜆 

values to maintain the SOC variation close to the reference SOC with the penalty Equation 

4.9. Figure 7.3 shows the schematic diagram of A-ECMS based SOC. 
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Figure 7.3 A-ECMS based on SOC feedback 

7.2.1 The A-ECMS Based on λ Maps from the Vehicle Operation Data 

Figure 7.4 shows the A-ECMS based on 𝜆 map. In the adapter, the 𝜆 map is generated with 

the optimal  𝜆 trajectories of a known representative driving pattern derived using the 

ECMSwDP. 
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Figure 7.4 A-ECMS based on λ map 
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In the 𝜆 map, there is a unique 𝜆 for each given 𝑆𝑂𝐶(𝑘), power request 𝑃𝑟𝑒𝑞(𝑘) or driving 

features such as vehicle speed 𝑣(𝑘) and acceleration 𝑎(𝑘) from the off-line calculation 

using the ECMSwDP. The consequent real-time solution is solved online since the 𝜆 maps 

are derived using the global optimal method. Such a solution can be considered as a 

suboptimal solution comparable to the optimal one derived using DP, which provides the 

best solution. 

The creation of the  𝝀 map: The 𝜆 values derived using ECMSwDP model is further 

processed to derive the 𝜆 map, which is a function of SOC and given driving pattern 

features. In this research, the Originpro 2015 software is utilized to build the 𝜆 maps. The 

gridding methods are Kriging correlation and thin plate spline for data interpolation and 

smoothing. Figure 7.5 shows the 𝜆 maps and contours as a function of SOC, speed, power 

request and acceleration obtained by ECMSwDP over the Beijing cycle. In the maps, the 

Not-a-Numbers (NaNs) are replaced by the average lambda 𝜆𝑎𝑣𝑒 from the extracted 𝜆(𝑡) 

of the ECMSwDP. 

As shown in Figure 7.5-a, the 𝜆  at low speed is close to zero. It is evident that the 

ECMSwDP model aggressively discharges the battery to propel the vehicle using the 

electric motor in the Beijing cycle simulated. As shown in Figure 7.5-b, d and f, the 𝜆 

observed within the negative power request zone (representing the braking process), is very 

high, indicating the preference for charging battery. This is consistent with the high 𝜆 value 

observed when the acceleration rate is negative as shown in Figure 7.5-c and e. 

https://en.wikipedia.org/wiki/Interpolation
https://en.wikipedia.org/wiki/Smoothing
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a. 𝝀(𝑺𝑶𝑪, 𝒗) 

 

b. 𝝀(𝑺𝑶𝑪, 𝑷𝒓𝒆𝒒) 

 

c. 𝝀(𝑺𝑶𝑪, 𝒂) 

 

d. 𝝀( 𝑷𝒓𝒆𝒒, 𝒗) 

 

e. 𝝀( 𝒂, 𝒗) 

 

f. 𝝀( 𝒂, 𝑷𝒓𝒆𝒒) 

Figure 7.5 The λ maps as a function of SOC, v, Preq and a derived using ECMSwDP over the 

Beijing cycle 

7.2.2 The Study of A-ECMS Based on Different λ Map Functions 

The A-ECMS extracts the 𝜆 value from the above six 𝜆 maps created using ECMSwDP 

with two of the four known parameters including the current vehicle speed, power request, 

acceleration rate, and the SOC of the battery over Beijing cycle. Figure 7.6 and Figure 7.7 

compare the simulated variation of the SOC and 𝜆 of the hybrid vehicle with the A-ECMS 
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based variations on 𝜆 maps as a function of 𝑆𝑂𝐶, 𝑣, 𝑃𝑟𝑒𝑞 and 𝑎 obtained by ECMSwDP 

and DP over the Beijing cycle. The SOC trajectories of A-ECMS with different 𝜆 maps are 

comparable. The variation of 𝜆 based on SOC and the power request map seems smoother 

than that of other cases observed. 
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Figure 7.6 The comparison between A-ECMS based on λ maps as a function of (SOC, v), 

(SOC, Preq) and (SOC, a) obtained and DP simulation results over the Beijing cycle 
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Figure 7.7 The comparison between A-ECMS based on λ maps as a function of (v, Preq), 

(Preq, a) and (v, a) obtained and DP simulation results over the Beijing cycle 

Table 7.1 compares the fuel economy and changes in SOC of the Beijing cycle operation 

with A-ECMS using 𝜆 from different 𝜆 map functions. The battery charge is to some extent 

sustainable as the ΔSOC is relatively small. The fuel economy observed using A-ECMS 

with 𝜆(𝑣, 𝑎), 𝜆(𝑃𝑟𝑒𝑞 , 𝑎 ), 𝜆(𝑃𝑟𝑒𝑞, 𝑣) are comparable and about 5% gap to that observed 

with DP, the best fuel economy achievable in the Beijing cycle. In comparison, the fuel 

consumption improvement observed with 𝜆 involving SOC and one of the three vehicle 

operation parameters (𝑣, 𝑎, and , 𝑃𝑟𝑒𝑞) was slightly less than that based on other maps. The 

power request is a function of velocity and acceleration for a specific vehicle. The 𝜆 map 

referring to velocity and acceleration may be considered as the suitable pair for the A-

ECMS control strategies developed.  
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Table 7.1 The fuel economy and changes in SOC observed using A-ECMS with λ maps as a 

function of two of the four parameters including SOC, v, Preq and a over the Beijing cycle 

 FE (mpg) ΔSOC 𝑭𝑬𝒄𝒐𝒓𝒓  (mpg) Gap to DP 

A-ECMS w/ 𝝀(𝑺𝑶𝑪, 𝒗) 10.48 0.01% 10.49 6.09% 

A-ECMS w/ 𝝀(𝑺𝑶𝑪, 𝑷𝒓𝒆𝒒) 10.32 0.49% 10.41 6.80% 

A-ECMS w/ 𝝀(𝑺𝑶𝑪, 𝒂) 9.84 0.52% 9.90 11.37% 

A-ECMS w/ 𝝀(𝑷𝒓𝒆𝒒, 𝒗) 10.46 0.57% 10.56 5.46% 

A-ECMS w/ 𝝀(𝑷𝒓𝒆𝒒, 𝒂 ) 10.45 0.56% 10.53 5.73% 

A-ECMS w/ 𝝀(𝒗, 𝒂) 10.57 0.19% 10.61 5.01% 

DP(α=β=γ=0) 11.17 0.00% 11.17 0.00% 

Note: 𝑭𝑬𝒄𝒐𝒓𝒓  is the corrected fuel economy expressed in Equation 4.26. 

 

This is further demonstrated using the WVU-CSI cycle as an example shown in Table 7.2. 

The corrected fuel economy of this vehicle operation over the WVU-CSI cycle with 

different 𝜆 maps is 12.56% to 17.74% gap to that observed using DP, while the divergence 

of SOC derived from A-ECMS based on multiple 𝜆 maps ranges from -5.16% to 5.87%. 

Table 7.2 shows the large deviation of corrected 𝐹𝐸𝑐𝑜𝑟𝑟 and the convergence of SOC. This 

may be due to the creation of the 𝜆  map based on the gridding methods for data 

interpolation and smoothing. 

As shown in Table 7.1 and Table 7.2, the best fuel economy was observed with A-ECMS 

using the 𝜆 map as a function of vehicle speed 𝑣 and acceleration 𝑎 while maintanaining 

the sustainable SOC of the bettery. The 𝜆(𝑣, 𝑎) map is utilized in the A-ECMS approach. 

Table 7.2 The fuel economy and changes in SOC observed using A-ECMS with λ maps as a 

function of two of the four parameters including SOC, v, Preq and a over the WVU-CSI cycle 

 FE(mpg) ΔSOC 𝑭𝑬𝒄𝒐𝒓𝒓 (mpg) Gap to DP 

A-ECMS w/ 𝝀(𝑺𝑶𝑪, 𝒗) 9.99 1.86% 10.06 14.60% 

A-ECMS w/ 𝝀(𝑺𝑶𝑪, 𝑷𝒓𝒆𝒒) 10.02 -5.16% 9.72 17.49% 

A-ECMS w/ 𝝀(𝑺𝑶𝑪, 𝒂) 10.00 5.87% 10.20 13.41% 

A-ECMS w/ 𝝀(𝑷𝒓𝒆𝒒, 𝒗) 9.96 -4.81% 9.69 17.74% 

A-ECMS w/ 𝝀(𝑷𝒓𝒆𝒒, 𝒂 ) 11.01 -4.96% 9.70 17.66% 

A-ECMS w/ 𝝀(𝒗, 𝒂) 10.22 2.20% 10.30 12.56% 

DP(α=β=γ=0) 11.78 0.00% 11.78 0.00% 

 

https://en.wikipedia.org/wiki/Interpolation
https://en.wikipedia.org/wiki/Smoothing
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7.3 The A-ECMS Based on λ Maps with Driving Pattern Identification 

This research proposes to develop A-ECMS based on 𝜆 maps with the driving pattern 

identified by the driving pattern identification model as shown in Figure 7.8.  
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information 

 

Figure 7.8 A-ECMS based on λ maps with driving pattern identification 

The key components of this approach include: (1) a driving features prediction model 

capable of predicting the upcoming driving features based on the past and current driving 

information; (2) a driving pattern identification model capable of identifying the driving 

pattern with the driving features predicted; (3) A-ECMS with 𝜆 maps as a function of 

velocity and acceleration of the representative driving pattern. The key point of this 

approach is the determination of the 𝜆 map based on the predicted driving patterns.  

The past and current vehicle operation data could be made available by recording the 

vehicle operation data from the engine control unit (ECU) or GPS. The corresponding λ 

maps can be created by the ECMSwDP and later on utilized in the real-time A-ECMS. 

In the driving pattern identification model, the predicted driving features including velocity 

and acceleration over a short trip distance segment is compared to the created 

representative driving patterns. The closest driving pattern will be identified as the 
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predicted representative driving pattern. The wavelet neural network will be used in the 

driving pattern prediction model. 

7.3.1 The λ(v, a) Maps Corresponding to the RDPs 

Figure 7.9 shows the six maps of the 𝜆 extracted from ECMSwDP as functions of vehicle 

speed 𝑣 and acceleration 𝑎 of the six representative driving cycles. 

 

Pattern1: HHDDT Creep 

 

Pattern2: NYC BUS 

 

Pattern3: NY Comp 
 

Pattern4: Commuter No Init Idle 

 

Pattern5: HHDDT Trans 

 

Pattern6: Freeway 

Figure 7.9 λ maps of the six RDPs 
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Table 7.3 shows the fuel economy of this bus operated over the the six representative 

driving cycles with the A-ECMS with the 𝜆 maps obtained by ECSMwDP. The simulated 

results are compared with the operation of this bus with the ECMSwDP algrithom. As 

shown in Table 7.3, the corrected fuel economy observed with A-ECMS with 𝜆 maps from 

its own cycle is 6.28% to 14.28% gap to that observed with DP while maintianing the 

charge sustainability of the battery as indicated by the changes in SOC.  

Table 7.3 The simulation results of A-ECMS based on its own λ maps corresponding to the 

six RDPs 

Driving 

Pattern 

A-ECMS with based on its own λ maps 
FE of DP 

(mpg) 
Gap to DP 

Representative  

Driving Cycle 

FE 

(mpg) 
ΔSOC 

𝑭𝑬𝒄𝒐𝒓𝒓 

(mpg) 

Pattern1 HHDDT Creep 3.97 0.04% 4.00 4.59 12.85% 

Pattern2 NYC Bus 6.65 0.30% 6.83 7.33 6.82% 

Pattern3 NY Comp 7.85 -0.21% 7.79 8.93 12.77% 

Pattern4 Commuter No Init Idle 9.59 -0.26% 9.47 10.30 8.06% 

Pattern5 HHDDT Trans 8.08 -1.30% 7.76 8.94 13.20% 

Pattern6 Freeway 13.62 -0.32% 13.51 15.76 14.28% 

 

7.3.2 The Study of A-ECMS Based on λ Maps with Driving Pattern Identification 

In this section, the recognized 𝜆 map for each driving pattern is then implemented in the 

HEB model with the A-ECMS algorithm to evaluate the performance of this vehicle 

operated on other cycles. As reported in Chapter 6, the distance of the segment selected 

was found to significantly affect the accuracy of the predicted driving features. In this study, 

the distance of the segment is 45m. 

Figure 7.10 compares the vehicle operation between A-ECMS based on 𝜆 maps with the 

driving pattern identification and ECMSwDP simulation results over the Beijing cycle. The 

RDP identified in each segment is presented in Figure 7.10. The SOC trajectory observed 

with A-ECMS was comparable to that of the off-line ECMSwDP controller with the 

exception of the segment from 1320 s to 1800 s. As shown in Table 7.4, the corrected fuel 
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economy observed with A-ECMS with 𝜆 maps from the RDP is 10.63 mpg, which is 4.83% 

gap to that observed using DP. The application of the A-ECMS improved the fuel economy 

by 50.78% (from 7.05 to 10.63 mpg) over the reference points observed with the rule-based 

control. 
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Figure 7.10 The comparison between A-ECMS based on λ maps with the driving pattern 

identification and ECMSwDP simulation results over the Beijing cycle 

Table 7.4 Simulation results of A-ECMS based on λ maps with the driving pattern 

identification over the Beijing cycle 

 FE(mpg) ΔSOC 𝑭𝑬𝒄𝒐𝒓𝒓 (mpg) Gap to DP 

Rule-based 7.05 -0.10% 7.05 36.88% 

A-ECMS w/ 𝝀(𝒗, 𝒂) maps 10.73 -0.32% 10.63 4.83% 

DP (α=0, β=0, γ=0) 11.17 0.00% 11.17 0.00% 

 

The potential of the A-ECMS with 𝜆 maps of RDP based on the predicted driving features 

in improving the performance of a HEB is also examined using the WVU-CSI cycle as an 

example. As shown in Table 7.5, the corrected fuel economy observed with A-ECMS is 

10.61% gap to that observed with DP. The application of A-ECMS with 𝜆 maps of RDP 
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based on the predicted driving features improved the fuel economy by 22.30% (from 8.61 

to 10.53 mpg).  

Table 7.5 Simulation results of A-ECMS based on λ maps with the driving pattern 

identification over the WVU-CSI cycle 

 FE(mpg) ΔSOC 𝑭𝑬𝒄𝒐𝒓𝒓 (mpg) Gap to DP 

Rule-based 8.74 -0.60% 8.61 26.91% 

A-ECMS w/ 𝝀 maps 10.65 -0.83% 10.53 10.61% 

DP (α=0, β=0, γ=0) 11.78 0.00% 11.78 0.00% 

 

The simulation results of the Beijing cycle and WVU-CSI cycle demonstrated the potential 

of A-ECMS based on 𝜆 maps with driving pattern identification in improving the fuel 

economy of a hybrid vehicle. It is evident that the A-ECMS with λ maps can be considered 

as real-time sub-optimal controller. 

7.3.3 The A-ECMS with or without a Penalty Based on the Average of the λ 

Extracted with Driving Pattern Identification  

Chapter 5 demonstrated that the average of the extracted 𝜆  values derived using 

ECMSwDP was comparable to the optimal 𝜆 value. The average extracted 𝜆 value can be 

set as the constant 𝜆 of the ECMS without a penalty function or the initial value 𝜆0 of the 

ECMS with a penalty function for a known driving condition or driving pattern. Table 7.6 

shows the average 𝜆 of the six RDPs derived using ECMSwDP. 

Table 7.6 The average of the λ values extracted corresponding to the six RDPs 

RDPs 

Pattern 

1 2 3 4 5 6 

Representative 

Driving Cycle 

HHDDT 

Creep 
NYC BUS NY Comp 

Commuter 

No Init Idle 

HHDDT 

Trans 
Freeway 

The average of the 𝝀 

extracted (𝝀𝒂𝒗𝒆) 
1.831 1.694 1.636 2.188 2.125 2.026 

 

Figure 7.11 shows the structure of the proposed A-ECMS, where the adaptive equivalent 

factor is determined by the corresponding average of the 𝜆 identified using the current and 
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predicted driving pattern features. At each distance segment of a drive cycle, one 𝜆 is 

available from one of the six average extracted 𝜆, and based on the RDP. 
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Figure 7.11 A-ECMS based on the average of the λ values extracted with driving pattern 

identification 

Figure 7.12 compares the operation of this vehicle between A-ECMS with or without a 

penalty based on the average of the 𝜆 extracted with the driving pattern identification and 

ECMSwDP simulation results over the Beijing cycle. The SOC curves generated using the 

A-ECMS without a penalty deviated from the respective one generated by the off-line 

ECMSwDP controller. The battery was not sustainable. The SOC curves generated using 

the A-ECMS with a penalty function, however, adjusted the 𝜆 according to the deviation 

between the feedback of the current SOC observed and the reference SOC. The SOC 

observed at the end of vehicle operation is very close to it’s initial value. It is evident that 

the battery is charge sustainable when vehicle operates with A-ECMS with a penalty 

function. 
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Figure 7.12 The comparison between A-ECMS with or without a penalty based on the 

average of the λ extracted with the driving pattern identification and ECMSwDP simulation 

results over the Beijing cycle 

Table 7.7 compares the fuel consumption observed with A-ECMS with or without a penalty 

based on the average of the λ extracted with the driving pattern identification and 

ECMSwDP simulation. The corrected fuel economy observed with A-ECMS without the 

penalty function is 10.37 mpg, which is 7.16% gap to that observed with DP. The corrected 

fuel economy observed with A-ECMS with the penalty function is 10.55 mpg, which is 

5.55% gap to that observed with DP. The fuel economy observed with and without the 

penalty function is comparable to that observed using DP. As shown in Table 7.7, the 

corrected fuel economy observed using A-ECMS with penalty function (10.55 mpg) is 

49.65% better than that observed with the rule based control strategies (7.05 mpg).  
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Table 7.7 Simulation results by A-ECMS with or without a penalty based on the average of 

the λ extracted with the driving pattern identification over the Beijing cycle 

 FE (mpg) ΔSOC 𝑭𝑬𝒄𝒐𝒓𝒓 (mpg) Gap to DP 

Rule-based 7.05 -0.10% 7.05 36.88% 

A-ECMS w/o penalty 10.09 -2.16% 10.37 7.16% 

A-ECMS w/ penalty 10.78 -0.7% 10.55 5.55% 

DP(α=β=γ=0) 11.17 0.00% 11.17 0.00% 

 

The potential of the A-ECMS with or without a penalty function based on the average of 

the 𝜆 extracted with the driving pattern identification in improving the performance of the 

HEB is also examined using the WVU-CSI cycle as an example. As shown in Table 7.8, 

the corrected fuel economy observed with A-ECMS with a penalty function is 13.67% gap 

to that with DP. The corrected fuel economy observed using A-ECMS is 10.17 mpg, which 

is 18.12% higher than the 8.61 mpg observed with the rule-based control strategy. 

Table 7.8 Simulation results of A-ECMS with or without a penalty based on the average of 

the λ extracted with the driving pattern identification over the WVU-CSI cycle 

 FE(mpg) ΔSOC 𝑭𝑬𝒄𝒐𝒓𝒓 (mpg) Gap to DP 

Rule-based 8.74 -0.60% 8.61 26.91% 

A-ECMS w/o penalty 10.59 -6.67% 9.61 18.42% 

A-ECMS w/ penalty 10.15 -0.24% 10.17 13.67% 

DP(α=β=γ=0) 11.78 0.00% 11.78 0.00% 

 

7.3.4 The Evaluation of the Control Approaches Examined in This Research  

The extents of excellence of the controlling approaches were usually evaluated by 

comparing the corrected fuel economy observed using the controlling approaches 

developed with that obtained with DP. The closer the fuel economy obtained to that 

obtained with DP, the better this control algorithm was for approaching the optimal 

solution. In this research, the extent of excellence of a control approach in improving the 

fuel economy is further evaluated by examining its capability in achieving the potential to 

the best improvement (PTBI) solution using the corrected fuel economy observed with the 
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reference control strategy and DP as the low and high limit, respectively. The PTBI in the 

corrected fuel economy 𝑃𝑇𝐵𝐼𝐹𝐸𝑐𝑜𝑟𝑟
 is defined as: 

𝑃𝑇𝐵𝐼𝐹𝐸𝑐𝑜𝑟𝑟
 =

𝐹𝐸𝑐𝑜𝑟𝑟(.) − 𝐹𝐸𝑐𝑜𝑟𝑟(𝑅𝑢𝑙𝑒−𝑏𝑎𝑠𝑒𝑑)

𝐹𝐸𝐷𝑃 − 𝐹𝐸𝑐𝑜𝑟𝑟(𝑅𝑢𝑙𝑒−𝑏𝑎𝑠𝑒𝑑)
× 100 Equation 7.1 

where 𝐹𝐸𝑐𝑜𝑟𝑟(.) is the corrected fuel economy achieved by the proposed control approaches;  

𝐹𝐸𝐷𝑃  is the fuel economy obtained using DP (the preferred reference); and 

𝐹𝐸𝑐𝑜𝑟𝑟(𝑅𝑢𝑙𝑒−𝑏𝑎𝑠𝑒𝑑) is the corrected fuel economy achieved using the rule-based controller 

(the bottom reference).  

Table 7.9 summaries the corrected fuel economy and the 𝑃𝑇𝐵𝐼𝐹𝐸𝑐𝑜𝑟𝑟
 observed when this 

vehicle is operated on the Beijing cycle with controlling approaches examined in this 

research. 

Table 7.9 Comparison of fuel economy and the change in SOC simulated using different 

control approaches over the Beijing cycle 

Control Approaches 

Simulation Results for the Beijing Cycle 

FE 

(mpg) 
ΔSOC 

𝑭𝑬𝒄𝒐𝒓𝒓 

(mpg) 
Gap to DP 

Improved  

𝑭𝑬𝒄𝒐𝒓𝒓 
𝑷𝑻𝑩𝑰𝑭𝑬𝒄𝒐𝒓𝒓

 

Real-

time 

Rule-based (Bottom Reference) 7.05 -0.10% 7.05 36.88% 0.00% 0.00% 

A-ECMS 

w/o penalty 𝝀𝒂𝒗𝒆 10.09 -2.16% 10.37 7.16% 47.09% 80.58% 

w/ penalty 𝝀𝒂𝒗𝒆 10.78 -0.70% 10.55 5.55% 49.65% 84.95% 

w/ 𝝀 maps 10.73 -0.32% 10.63 4.83% 50.78% 86.89% 

Off-

line 

ECMS 

w/o penalty 𝝀𝒂𝒗𝒆 11.06 -1.81% 10.56 5.46% 49.79% 85.19% 

w/ penalty 𝝀𝒂𝒗𝒆 10.66 0.78% 10.78 3.49% 52.91% 90.53% 

Optimal 𝝀𝒐𝒑𝒕 10.80 -0.04% 10.81 3.22% 53.33% 91.26% 

DP (Preferred Reference) 11.17 0.00% 11.17 0.00% 58.44% 100.00% 

 

The gap to DP achieved with the A-ECMS with a penalty function and A-ECMS with 𝜆 

maps are 5.55% and 4.83%, respectively. It is evident that the A-ECMS with a penalty 

function and A-ECMS with 𝜆 maps can be considered as a sub-optimal controller capable 

of significantly improving the fuel economy of this hybrid vehicle. The 𝑃𝑇𝐵𝐼𝐹𝐸𝑐𝑜𝑟𝑟
 

achieved with the A-ECMS with a penalty function (84.85%) and A-ECMS with 𝜆 maps 
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(86.89%) is slightly lower than the 𝑃𝑇𝐵𝐼𝐹𝐸𝑐𝑜𝑟𝑟
achieved using the off-line ECMS with the 

selected 𝜆𝑎𝑣𝑒 and 𝜆𝑜𝑝𝑡 is 90.53% and 91.26%, respectively. 

Table 7.10 compares the fuel economy of this vehicle operated on the WVU-CSI cycle 

with real-time A-ECMS and predicted driving features and ECMS calculated off-line with 

a known driving cycle. The gap to DP achieved using A-ECMS with a penalty function 

and A-ECMS with 𝜆 maps is 13.67% and 10.61%, respectively. The application of the 

proposed A-ECMS with 𝜆 maps of predicted RDPs improves the fuel economy from 8.61 

mpg observed with the rule-based controller to 10.53 mpg. 

Table 7.10 Comparison of fuel economy and the change in SOC simulated using different 

control approaches over the revised WVU-CSI cycle 

Control Approaches 

Simulation Results for the WVU-CSI Cycle 

FE 

(mpg) 
ΔSOC 

𝑭𝑬𝒄𝒐𝒓𝒓 

(mpg) 
Gap to DP 

Improved  

𝑭𝑬𝒄𝒐𝒓𝒓  
𝑷𝑻𝑩𝑰𝑭𝑬𝒄𝒐𝒓𝒓

 

Real-

time 

Rule-based (Bottom Reference) 8.74 -0.60% 8.61 26.91% 0.00% 0.00% 

A-ECMS 

w/o penalty 𝝀𝒂𝒗𝒆 10.59 -6.67% 9.61 18.42% 11.61% 31.55% 

w/ penalty 𝝀𝒂𝒗𝒆 10.15 -0.24% 10.17 13.67% 18.12% 49.21% 

w/ 𝝀 maps 10.65 -0.83% 10.53 10.61% 22.30% 60.57% 

Off-line 
ECMS 

w/o penalty 𝝀𝒂𝒗𝒆 11.89 -9.67% 10.24 13.07% 18.93% 51.42% 

w/ penalty 𝝀𝒂𝒗𝒆 10.65 0.17% 10.66 9.51% 23.81% 64.67% 

Optimal 𝝀𝒐𝒑𝒕 11.10 -0.09% 11.09 5.86% 28.80% 78.23% 

DP (Preferred Reference) 11.78 0.00% 11.78 0.00% 36.82% 100.00% 

 

7.4 Simulation with a Real-World Route 

The potential of the proposed A-ECMS control strategies in improving the fuel economy 

of this hybrid bus is also examined over the actual transit bus data sampled in Route 6 in 

SEAT district in Preston, CT. The contribution of Pingen Chen and the technical staff 

associated with the testing campaigns should be acknowledged. Figure 7.13 and Figure 

7.14 show the route of the transit bus and the actual vehicle speed data sampled in SEAT. 



123 

 

End Start

 

Figure 7.13 Transit bus Route 6 in the SEAT district of Preston, CT 
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Figure 7.14 The actual Rt6 cycle sampled in SEAT 

This route consisted of three different road types: inner-city traffic fearturing an average 

speed below 10 mph, an urban route with a speed limit of 30 mph, and a suburban route 

with relatively long distances between stops and the speed limit was 50 mph. There were 

several traffic lights and stop signs in this route. These features, along with the presence of 

flagmen, characterized the operation of the transit bus on this route as having frequent stops 

and goes. The total distance of round trip was 10.5 miles.  

The effect of the proposed A-ECMS approaches on the fuel economy of the hybrid bus 

operated over route 6 in SEAT was examined. Figure 7.15 compares the performance of 

this hybrid vehicle with the rule-based controller, the proposed A-ECMS with a penalty 

function, the A-ECMS with 𝜆 maps of the identified RDPs, and the DP algorithem when 
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this HEV is operated over the actural route data shown in Figure 7.14. The driving patterns 

are identified based on the assumed segment distance of 45m and shown in Figure 7.15. 

The SOC observed at the end of this actual cycle is comparable to the initial one. The 

sustainable operation of the battery is satisfied although the variation in SOC are 

significantly different. As shown in Figure 7.15, the fluctuation of the SOC trajectory 

observed with the A-ECMS with a penalty function is much smoother than that observed 

with the A-ECMS with 𝜆 maps and DP. This is due to the contribution of the SOC penalty 

function, which forces the system to charge or discharge the battery when the SOC is away 

from the reference value regardless the operating conditions of the vehicle. The variation 

of the SOC observed with A-ECMS with λ maps is comparable to that observed with the 

DP algorithm although the λ value at each point may be siginificantly different.  
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Figure 7.15 The comparison of simulation results from the proposed A-ECMS based on λ 

maps of the predicted RDPs, the A-ECMS with a penalty based on the average of the λ 

extracted with driving pattern identification, rule-based, and DP over Rt6 in SEAT 
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Table 7.11 summarizes the simultated fuel economy, the gap to DP, and the change in SOC 

when this vehicle is operated over Rt6. The corrected fuel economy achieved with the A-

ECMS with a penalty function and the A-ECMS with 𝜆 maps is 8.46 mpg and 8.97 mpg, 

which is 80.80% and 85.67% of that observed with DP, respectively. When compared with 

the fuel economy (6.19 mpg) observed with the rule-based control strategy, the application 

of the A-ECMS with 𝜆 maps improved the fuel economy by 44.91% (from 6.19 to 8.97 

mpg). The gap to DP achieved with the A-ECMS with a penalty function and A-ECMS 

with 𝜆 maps is 19.19% and 14.33%, respectively. It is evident that the A-ECMS control 

approaches proposed in this research are able to significantly improve the fuel economy 

when this vehicle is operated over an actual route. 

Table 7.11 Comparison of fuel economy and the change in SOC for different control 

approaches over the actual Rt6 operational data 

 
FE  

(mpg) 
ΔSOC 

𝑭𝑬𝒄𝒐𝒓𝒓  

(mpg) 
Gap to DP 

Improved 

𝑭𝑬𝒄𝒐𝒓𝒓 
𝑷𝑻𝑩𝑰𝑭𝑬𝒄𝒐𝒓𝒓

  

Rule-based 6.19 0.05% 6.19 40.88% 0.00% 0.00% 

A-ECMS w/ penalty 8.51 -0.56% 8.46 19.19% 36.67% 53.04% 

A-ECMS w/ 𝝀 maps 8.90 1.49% 8.97 14.33% 44.91% 64.95% 

DP(α=β=γ=0) 10.47 0.00% 10.47 0.00% 69.14% 100.00% 

 

7.5 Summary 

The A-ECMS model package developed in this research consists of a driving feature 

prediction model, a vehicle operation pattern identification model, and an A-ECMS model 

capable of adjusting the 𝜆, a parameter deciding the ratio of power provided by the ICE 

and battery of the hybrid vehicle.  

This chapter explored the performance of this hybrid vehicle operated with ECMS, DP, A-

ECMS with and without a penalty function, and A-ECMS with 𝜆 maps of RDPs using the 

Beijing and WVU-CSI cycles as examples. The simulation results demonstrated the 

capability of the proposed A-ECMS with 𝜆 maps and the upcoming vehicle operation 



126 

 

features prediction model in improving the corrected fuel economy while satisfying the 

charging sustainability of the battery. The corrected fuel economy observed with A-ECMS 

with penalty function was 5.55% and 13.67% gap to that observed with DP when operated 

over the Beijing cycle and WVU-CSI cycle, respectively.  

The proposed model package is also applied to optimize the real-time operation of this 

hybrid vehicle using actual transit bus operation data sampled in SEAT. The corrected fuel 

economy observed using A-ECMS with λ maps over the actual operation data is 14.33% 

gap to that observed with DP simulation results.  

A parameter noted as the potential to the best improvement (PTBI) was proposed as a 

criterion for evaluating the extent of excellence of the real-time controllers (A-ECMS with 

and without a penalty function, and 𝜆 maps) and off-line controllers (DP, ECMS with and 

without a penalty function, and ECMS with the optimal 𝜆). The 𝑃𝑇𝐵𝐼𝐹𝐸𝑐𝑜𝑟𝑟
 of the A-

ECMS with λ maps observed was 86.89%, 60.57%, and 64.95% compared to rule-based 

simulation results when operated over the Beijing cycle, WVU-CSI cycle, and actual bus 

operation data sampled in SEAT, respectively.  

It is evident that the proposed A-ECMS model is able to significantly improve the fuel 

economy while maintaining the sustainable charging of the battery.  
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8 Conclusion and Future Work 

8.1 Conclusion 

This dissertation presents the development of the methodology capable of developing the 

real-time optimal control strategies of HEBs, their application in improving the fuel 

economy of a parallel hybrid transit bus operated over different cycles, and the evaluation 

of the extent of excellence of proposed approaches in improving the fuel economy of this 

vehicle. 

The following are the main contributions of this research: 

1) The A-ECMS model package developed in this research consists of a driving pattern 

feature prediction model capable of predicting the vehicle operation features with the 

history and current driving information, a driving pattern identification model capable of 

identifying the representative driving patterns, and an A-ECMS model capable of the 

adjusting the 𝜆, a parameter deciding the ratio of power provided by the ICE and battery 

of the hybrid vehicle.  

(2) The combination of the ECMS with DP proposed in this research is able to generate the 

𝜆 maps and near optimal 𝜆 of the driving cycles. The 𝜆 maps of 6 RDPs as a function of 

the velocity and acceleration rate were generated using ECMSwDP. At each distance 

segment of a drive cycle, the 𝜆 value is available from one of the six 𝜆 maps based on the 

predicted driving patterns and utilized in a real-time A-ECMS controller.  

(3) The codes for the optimized control of a parallel hybrid transit bus with off-line 

approaches (DP, ECMS, ECMSwDP), and real-time approaches (A-ECMS, and rule based 

control strategy) have been developed. The effects of the control strategies developed using 

the real-time and off-line approaches on the fuel economy, changes in SOC of the battery, 
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and variation in 𝜆 were numerically simulated using the Beijing cycle, WVU-CSI cycle, 

and an actual route sampled in SEAT. 

(4) A parameter noted as the Hybrid Energy Recovery Potential Index was proposed to 

evaluate the ratio of the braking energy recoverable relative to the propulsion energy. This 

parameter can be used to evaluate the potential energy recovery benefit for a specific route 

to be served with hybrid vehicles. In this research, the HERPI was used as the response 

variable of stepwise regression in identifying the key driving pattern features representing 

the operation of a hybrid vehicle.  

(5) A parameter noted as the potential to the best improvement was defined. In this research, 

the PTBI is used as a criterion in evaluating the extent of excellence of the controlling 

approaches in improving the fuel economy of a hybrid vehicle. The fuel economy observed 

using DP and a rule based controller were defined as the upper limit and lower limit, 

respectively, in evaluating the extent of excellence of control strategies developed in this 

research.  

Based on the simulation results, the following conclusions can be drawn:  

 (1) The optimization of hybrid vehicle operation using DP provides the globally best 

solution. The fuel economy observed using DP was defined as the upper limit in evaluating 

the extent of excellence of control strategies developed in this research. The optimization 

of this vehicle’s operation with the Beijing cycle and WVU-CSI cycle using DP improved 

the fuel economy by 58.44% and 34.02% compared to rule-based simulation results. 

(2) The average 𝜆 value extracted using ECMSwDP was comparable to the optimal 𝜆 value 

of ECMS. Accordingly, the average 𝜆 value extracted using ECMSwDP can be considered 

as the initial 𝜆  value (𝜆0)  for the application of ECMS with a penalty function. The 

corrected fuel economy observed using ECMS with a penalty function (𝜆0) was only 3.49% 

(Beijing cycle) and 9.51% (WVU-CSI cycle) gap to that observed using DP. 
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(3) The HERPI is dominated by the average velocity and average acceleration rate, and is 

expressed as HERPI = 0.302 + 1.792 × �̅�+ − 0.016 × �̅� for the hybrid vehicle simulated 

in this research.  

(4) After the K-means cluster analysis, six standard cycles (NYC Bus, Freeway, NY Comp, 

Commuter No Init Idle, HHDDT Creep, and HHDDT Trans) were selected as the RDPs 

out of the 54 driving cycles examined. 

(5) The control strategies developed using A-ECMS were able to significantly improve the 

fuel economy while maintaining the charging sustainability of the battery. The corrected 

fuel economy observed with A-ECMS with a penalty function and RDPs was 5.55%, 

13.67%, and 19.19% gap to that observed with DP when operated over the Beijing cycle 

and WVU-CSI cycle, and the actual transit bus route, respectively. The corrected fuel 

economy observed with A-ECMS with 𝜆 maps of the RDPs was 4.83%, 10.61%, and 14.33% 

gap to that observed with DP when operated on the Beijing cycle, WVU-CSI cycle, and 

actual transit bus route, respectively. 

(6) The real-time control strategies developed using A-ECMS were suboptimal compared 

to optimal one developed using DP. The observed 𝑃𝑇𝐵𝐼𝐹𝐸𝑐𝑜𝑟𝑟
 of the A-ECMS with a 

penalty function and RDPs were 84.95, 49.21, and 53.04% compared to rule-based 

simulation results when this hybrid bus was operated on the Beijing cycle, WVU-CSI cycle, 

and actual transit bus route, respectively. The observed 𝑃𝑇𝐵𝐼𝐹𝐸𝑐𝑜𝑟𝑟
 of the A-ECMS with 𝜆 

maps of the RDPs observed were 86.89%, 60.57%, and 64.95% compared to rule-based 

simulation results, accordingly. 

8.2 Future Work 

The real time control strategies developed using the A-ECMS approaches were suboptimal 

compared to those developed using DP. The performance of A-ECMS in improving the 
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fuel economy of a hybrid vehicle can be further improved if the following works can be 

completed:  

(1) The development of the representative driving patterns of transit buses operated on a 

fixed route. This improvement will provide the 𝜆 map of the RDPs representing the actual 

cycle and make it possible for A-ECMS to achieve better fuel economy toward that of DP.  

(2) The current model was evaluated using the fuel economy as reference. Such a model 

can be further improved to include CO2 and greenhouse gas emissions and emissions of 

pollutants such as PM and NOx. The ECMS concepts developed in this research can be 

further extended to the optimization of hybrid vehicle operation regarding the emissions of 

GHG and pollutants.  

(3) The current model was evaluated using a parallel hybrid bus as a platform. It can be 

further applied to plug-in hybrid vehicles. The application of the A-ECMS in the plug-in 

hybrid vehicle can further minimize the fuel consumed by the ICEs and exhaust emissions 

in a specific area while operated on a specific route for a specific service.  
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10 Appendix 

Appendix A: Simulation Results between Rule-Based and DP over the WVU-CSI Cycle 
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Figure A. 1 WVU-CSI cycle 
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Figure A. 2 The operation parameters obtained with rule-based and DP (α=β=γ=0) in the 

WVU-CSI cycle 
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(a) Engine operation points distribution 

 

(a) Motor operation points distribution 

Figure A. 3 Rule-based and DP (α=β=γ=0) power source operation points distribution in 

maps (WVU-CSI cycle) 
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Figure A. 4 Distribution of the (a) demand power, (b) rule-based engine power, (c) DP 

engine power, (d) rule-based battery power and (e) DP battery power during the WVU-CSI 

cycle 

 

Table A. 1 DP (α=β=γ=0) and rule-based simulation results for the WVU-CSI cycle 

 FE (mpg) FC (gram/mi) NOx (gram/mi) 

Rule-based 8.74 354.71 12.61 

DP (α=0, β=0, γ=0) 11.78 267.42 10.41 

Note: α, β, γ is the weighting factors of battery current, engine turn on/off, and NOx emissions 
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Appendix B: The Comparison between Optimal ECMS and DP Simulation Results over 

the WVU-CSI Cycle 
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Figure B. 1 The operation parameters obtained with ECMS (λopt=2.655) and DP (α=β=γ=0) 

(WVU-CSI cycle) 
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(a) Engine operation points distribution 

 
(b) Motor operation points distribution 

 

Figure B. 2 Optimal ECMS (λopt=2.655) and DP (α=β=γ=0) power source operation points 

distribution in maps (WVU-CSI cycle) 

 

Table B. 1 DP (α=β=γ=0) and Optimal ECMS (λopt=2.655) simulation results for the WVU-

CSI cycle 

 FE (mpg) ΔSOC 𝑭𝑬𝒄𝒐𝒓𝒓  (mpg) Gap to DP  

Optimal ECMS (λ=λopt=2.655) 11.10 -0.09 11.09 5.96% 

DP (α=0, β=0, γ=0) 11.78 0.00 11.78 - 
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Appendix C: The Extracted λ Values Obtained by ECMSwDP and the Comparison of 

ECMS with or without a Penalty (λ=λ0=λave=2.115) and DP Simulation Results over the 

WVU-CSI Cycle 
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Figure C. 1 The λ values extracted using ECMSwDP over the WVU-CSI cycle 
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Figure C. 2 The operation parameters obtained using ECMS with or without penalty 

function (λave=2.115) and ECMSwDP (α=β=γ=0) simulation results (WVU-CSI cycle) 
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Appendix D: The Obtained λ Maps and the Simulation Results of A-ECMS Based on λ 

maps as a Function of SOC, v, Preq and an Obtained by ECMSwDP over the WVU-CSI 

Cycle 

 

A. 𝝀(𝑺𝑶𝑪, 𝒗) 

 

B. 𝝀(𝑺𝑶𝑪, 𝑷𝒓𝒆𝒒) 

 

C. 𝝀(𝑺𝑶𝑪, 𝒂) 

 

D. 𝝀( 𝑷𝒓𝒆𝒒, 𝒗) 

 

E. 𝝀( 𝒂, 𝒗) 

 

F. 𝝀( 𝒂, 𝑷𝒓𝒆𝒒) 

Figure D. 1 The λ maps as a function of SOC, v, Preq and a obtained by ECMSwDP over the 

WVU-CSI cycle 
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with The operation parameters obtained with A-ECMS based on λ maps as a function of 

SOC, v, Preq and a obtained by ECMSwDP and DP simulation results over the WVU-CSI 
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Figure D. 3 The comparison between A-ECMS based on λ maps as function of v, Preq and a 

obtained by ECMSwDP and DP simulation results over the WVU-CSI cycle 
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Appendix E: Simulation Results of A-ECMS Based on λ Maps with Driving Pattern 

Identification over the WVU-CSI Cycle 
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Figure E. 1 The comparison between A-ECMS based on λ maps with driving pattern 

identification and ECMSwDP simulation results over the WVU-CSI cycle 
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Appendix F: Simulation Results of A-ECMS with or without a Penalty based on the 

Average of the λ Extracted with the Driving Pattern Identification over the WVU-CSI 

Cycle 
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Figure F. 1 The comparison between A-ECMS with or without a penalty based on the 

average of the λ extracted with the driving pattern identification and ECMSwDP simulation 

results over the WVU-CSI cycle 
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