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Summary

Gear Shift Strategies for Automotive Transmissions

The development history of automotive engineering has shown the essential role of

transmissions in road vehicles primarily powered by internal combustion engines. The

engine with its physical constraints on the torque and speed requires a transmission to

have its power converted to the drive power demand at the wheels. Under dynamic

driving conditions, the transmission is required to shift in order to match the engine

power with the changing drive power. Furthermore, a gear shift decision is expected

to be consistent such that the vehicle can remain in the next gear for a period of time

without deteriorating the acceleration capability. Therefore, an optimal conversion of

the engine power plays a key role in improving the fuel economy and driveability. More-

over, the consequences of assumptions related to the discrete state variable-dependent

losses, e.g. gear shift, clutch slippage and engine start, and their effect on the gear shift

control strategies are necessary to be analyzed to yield insights into the fuel usage.

The first part of the dissertation deals with the design of gear shift strategies for

electronically controlled discrete ratio transmissions used in both conventional vehicles

and Hybrid Electric Vehicles (HEVs). For conventional vehicles, together with the fuel

economy, the driveability is systematically addressed in a Dynamic Programming (DP)

based optimal gear shift strategy by three methods: i) the weighted inverse of power

reserve, ii) the constant power reserve, and iii) the variable power reserve. In addition, a

Stochastic Dynamic Programming (SDP) algorithm is utilized to optimize the gear shift

strategy, subject to a stochastic distribution of the power request, in order to minimize

the expected fuel consumption over an infinite horizon. Hence, the SDP-based gear shift

strategy intrinsically respects the driveability and is realtime implementable. By per-

forming a comparative analysis of all proposed gear shift methods, it is shown that the

variable power reserve method achieves the highest fuel economy without deteriorating

the driveability. Moreover, for HEVs, a novel fuel-optimal control algorithm, consist-

ing of the continuous power split and discrete gear shift, engine on-off problems, based

on a combination of DP and Pontryagin’s Minimum Principle (PMP) is developed for

the corresponding hybrid dynamical system. This so-called DP-PMP gear shift control

approach benchmarks the development of an online implementable control strategy in

v



vi Summary

terms of the optimal tradeoff between calculation accuracy and computational efficiency.

Driven by an ultimate goal of realizing an online gear shift strategy, a gear shift map

design methodology for discrete ratio transmissions is developed, which is applied for

both conventional vehicles and HEVs. The design methodology uses an optimal gear

shift algorithm as a basis to derive the optimal gear shift patterns. Accordingly, statis-

tical theory is applied to analyze the optimal gear shift patterns in order to extract the

time-invariant shift rules. This alternative two-step design procedure makes the gear

shift map: i) improve the fuel economy and driveability, ii) be consistent and robust

with respect to shift busyness, and iii) be realtime implementable. The design process

is flexible and time efficient such that an applicability to various powertrain systems

configured with discrete ratio transmissions is possible. Furthermore, the study in this

dissertation addresses the trend of utilizing route information in the powertrain control

system by proposing an integrated predictive gear shift strategy concept, consisting of a

velocity algorithm and a predictive algorithm. The velocity algorithm improves the fuel

economy considerably (in simulation) by proposing a fuel-optimal velocity trajectory

over a certain driving horizon for the vehicle to follow. The predictive algorithm suc-

cessfully utilizes a predefined velocity profile over a certain horizon in order to realize a

fuel economy improvement very close to that of the globally optimal algorithm (DP).

In the second part of the dissertation, the energetic losses, involved with the gear

shift and engine start events in automated manual transmission-based HEVs, are mod-

eled. The effect of these losses on the control strategies and fuel consumption for (non-

)powershift transmission technologies is investigated. Regarding the gear shift loss, the

study discloses a perception of a fuel-efficient advantage of the powershift transmissions

over the non-powershift ones applied for passenger HEVs. It is also shown that the

engine start loss can not be ignored in seeking a fair evaluation of the fuel economy.

Moreover, the sensitivity study of the fuel consumption with respect to the prediction

horizon reveals that a predictive energy management strategy can realize the highest

achievable fuel economy with a horizon of a few seconds ahead. The last part of the

dissertation focuses on investigating the sensitivity of an optimal gear shift strategy to

the relevant control design objectives, i.e. fuel economy, driveability and comfort. A

singular value decomposition based method is introduced to analyze the possible cor-

relations and interdependencies among the design objectives. This allows that some

of the possible dependent design objective(s) can be removed from the objective func-

tion of the corresponding optimal control problem, hence thereby reducing the design

complexity.
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Chapter 1

Introduction

Abstract - In this chapter, some historical and technological trends of automotive transmis-
sions used in road vehicles are briefly presented. Moreover, the background and scope of the
dissertation are presented. In addition, the challenges related to the gear shift strategy design
are discussed, which motivates the research objectives and scientific contributions. Finally, an
outline of the dissertation is given.

1.1 Automotive Transmissions

1.1.1 History

Invention of the automobile and utilizing it as a means of transportation have made a

great contribution to the growth of society. Automotive engineering and technology have

always been subject to evolution. The current state of the art in vehicular propulsion

systems is characterized by the following hierarchical interrelations:

environment ↔ traffic ↔ vehicle ↔ engine/transmission.

Since the early phase of the automotive development, the interaction between the en-

vironment and the traffic has been represented by an ever increasing number of legal

standards related to reducing the exhaust gas pollutants, noise emissions, hazardous

substances and waste, etc. The increasingly high traffic density, high demand of mobil-

ity and transportation adversely have a significant impact on the environment, causing

the large societal problems such as a rapid depleting petroleum resources, an increasing

air pollution and global warming. Meanwhile, the traffic and vehicles have been closely

connected and have affected each other in a way to meet the required human mobility

and transportation needs such as accessability, destination attainability, maximum fuel

economy, maximum driveability and comfort, etc. Hence, vehicular propulsion systems

have been designed to satisfy the various human needs, and to match the public and

1



2 1 Introduction

traffic situations, which have resulted in a strong segmentation of the vehicle classes.

Vehicles powered by internal combustion engines require a transmission to transmit the

engine power to the drive power at the wheels in accordance with a wide range of oper-

ating speeds. Therefore, in the last three decades, many different transmission designs

have been developed with competing concepts in terms of the cost, packaging, overall

gear ratio, the number of gears, efficiency, comfort and the ease of operation, etc.

Briefly, the development history of automotive transmissions can be roughly split into

two stages [89].

• Until 1980’s

In 1784, James Watt stipulated that the torque and speed of steam or internal

combustion engines must be adapted to the load by means of a transmission in

order to obtain the maximum drive power at the wheels. From 1884 till 1914,

the correct principle for the torque-speed conversion was verified. From 1914 till

the 1980’s, the geared transmissions, automatic transmissions and continuously

variable transmissions were developed. Later, the geared transmissions were more

accepted because of their high power-weight ratio. The notion of standardized

gearboxes was established. The development had continued until the 1980’s in

terms of service life, reliability, noise level and the ease of operation. The number

of speeds and the overall gear ratio constantly increased.

• 1980’s to present

The transmission research and development have been focused on the individual

solutions tailored to a particular usage. Alternative transmissions for passenger

cars are competing with each other, e.g. Manual Transmission (MT), Automated

Manual Transmission (AMT), Dual Clutch Transmission (DCT), PowerShift-

Automated Manual Transmission (PS-AMT) [130], Automatic Transmission (AT),

Continuously Variable Transmission (CVT) and Hybrid Transmission1 (HT), elec-

trically variable transmissions, etc. The number of gears increased up to eight

speeds [122] or even nine speeds [36]. In the case of commercial vehicles, the

transmissions have 6-16 speeds and cover large overall gear ratios. There are also

important developments in integrating the subsystems in both passenger and com-

mercial transmission technologies such as electronics, embedded software, function

development, as well as in system and information networking, e.g. CAN bus, ap-

plied in vehicles.

1The electric motor(s), clutch, torsional vibration damper, and hydraulics etc., of a hybrid con-
cept are fitted in the geared transmission in a space-saving and efficient manner to create a Hybrid
Transmission (HT).



1.1 Automotive Transmissions 3

1.1.2 Technology Trends

The rapid technology developments in electronics and electro-mechanical components

and their application in the powertrain system are shaping the future of automotive

transmission towards improving the fuel economy, driveability and gear shift comfort.

Growth in the vehicle market driven by the increasingly stringent emission norms will

create opportunities for the more advanced fuel-efficient transmission technologies such

as AMT, PS-AMT, DCT, and CVT, HT, etc., to reach the end consumers.

Figure 1.1: Passenger car transmissions: market share and prediction [89]
(NAFTA stands for the North American Free Trade Agreement area).
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Figure 1.1 illustrates the market share and prediction of the future market share of pas-

senger car transmissions from 2000 till 2015 [89]. From this figure, it can be observed

that the market share differs from region to region. Towards the future, it is expected

that the diversification in transmission types is increasing. Moreover, the market share

related to the automated transmissions is globally expanding, in particular for trans-

mission types with discrete ratio. However, the predicted market share for the CVT

and HT is also increasing rapidly. Furthermore, in the China and India markets of

automotive transmissions, there is also a strong shift towards the AMT and DCT tech-

nologies [109] (not shown in Figure 1.1). Electronic control of the gear shift process

in combination with an optimal shift strategy provides a means to further improve the

fuel economy, driveability and the reduction of pollutant emissions.

Improvement of the fuel economy has always been an ongoing process of the automobile

industry. Hybridization and electrification of powertrains have gained an impressive

momentum and will become a leading technological trend for future vehicles. A signifi-

cant market share of hybrid vehicles of up to 10% of the total vehicle market is expected

within 10 to 15 years [37]. Even the full-electric vehicles may benefit from a transmission

technology [1]. Currently, two-speed AMT/DCT or even three-speed DCT are being

developed. For example, the first gear provides the required acceleration torque from

standstill in order to reduce the battery current, which improves the battery lifetime

and efficiency. Meanwhile the second gear provides the required operation speed such

that the power is constant for a relatively large speed range.

1.2 Background

Every vehicle needs a transmission [89].

An automotive transmission is an inevitable system for a vehicle (even for electric

vehicles). From the analysis of the transmission technology trends, the above statement

of every vehicle needs a transmission [89] can be reaffirmed. To further elaborate on the

necessity of a transmission for road vehicles and thereby contributing to the automotive

transmission control and design, the research presented in this dissertation focuses on:

• vehicles primarily powered by internal combustion engines; and,

• designing the gear shift strategy for electronically controlled discrete ratio trans-

missions.

To realize the advantages of the electronically controlled discrete ratio transmissions,

such as a high fuel economy, an acceptable driveability, and a shifting automation, a
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Figure 1.2: Fuel map of the engine: BSFC denotes the Brake Specific Fuel Con-
sumption in [g/kWh]; Te,WOT denotes the engine torque at wide open throttle;
E-line denotes the most fuel economic operation line of the engine.

proper gear shift strategy implemented in the transmission control unit is of central im-

portance. The transmission mediates between the engine power and the power demand

at the wheels by choosing a suitable gear ratio. Under dynamic driving conditions, the

transmission is required to shift in order to match the power conversion requirements,

e.g. satisfying the engine torque and speed limitations in the driveline. A gear shift

decision is also required to be consistent such that vehicle can remain in the next gear

for a period of time without deteriorating the acceleration capability. Otherwise, this

will result in an unwanted engine lugging and shift busyness of the gear box. As long

as the driving performance is satisfied, the gear shift strategy can utilize the fuel con-

sumption characteristics of the engine in order to improve the operation efficiency of

the powertrain. This can be realized by the fact that the engine fuel consumption is

strongly dependent on the operating points. In Figure 1.2, the fuel consumption as a

function of the engine output torque and speed is shown. The contour lines represent

the lines of constant fuel rate per unit output power in [g/kWh], which is denoted as

the Brake Specific Fuel Consumption (BSFC). It measures how efficiently the engine is

using the fuel supplied to produce work. Operating the engine as close as possible to the

E-line2 helps realizing the most amount of fuel saving potential. However, the discrete

ratio transmission can not change the engine speed smoothly due to the step-changed

shifting ratios. Nonetheless, the transmission can exploit the most fuel economy region

around the E-line to improve the fuel economy by adopting a fuel-optimal gear shift

strategy. However, the driving characteristics, i.e. driveability, needs to be taken into

account as well. In many cases high fuel economy and high driveability are contradicting

2E-line denotes the most fuel economic operation line of the engine.
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attributes.

Therefore, in the next section, the challenges related to the gear shift problem of discrete

ratio transmissions used in conventional and hybrid electric vehicles will be addressed,

which motivates the research in this dissertation.

1.3 Challenges

The gear shift strategy for discrete ratio transmissions is a part of the supervisory

control algorithm. The supervisory control algorithm generates for example the set

points for the gear shift command based on the current powertrain states to improve

the operation performance of the powertrain system. In this section, the basic dynamics

of the powertrain system is briefly introduced, and some control design challenges are

formulated based on, but not limited to:

• the level of which the drive power request is known; and,

• the particular application (i.e., conventional or hybrid vehicle); and,

• the assumptions related to the development of an online strategy; and finally,

• the assumptions related to discrete state variable-dependent losses, such as gear

shift and engine start stop losses.

Figure 1.3: Hybrid powertrain topology used in this dissertation, (AMT: Au-
tomated Manual Transmission; M: electric machine). The state variables are
the engine on-off state se, the gear position ng and the battery state-of-energy
es. The corresponding control variables are the engine start-stop command use,
the gear shift command ug and the battery chemical power Ps, respectively. Pw
is the power request placed on the wheels.

The hybrid power train topology used in this dissertation is a parallel type and is

equipped with an AMT, see Figure 1.3. The secondary power source is connected at
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the primary side of the transmission. The quasi static modeling approach [42] is adopted

in this dissertation to model the main powertrain components. This approach is very

suitable for developing the supervisory control algorithm. Due to the discrete nature

of the transmission ratio, the discrete-time dynamics of the powertrain system can be

expressed in a generic form by,

x(k + 1) = f
(
x(k), u(k), z(k)

)
, (1.1)

Ceq
(
x(k), u(k), z(k)

)
= 0, (1.2)

Cin
(
x(k), u(k), z(k)

)
< 0, (1.3)

wherein: k is the fixed discrete-time step, x(k) and u(k) are the state and control

variable vectors, respectively; z(k) is the disturbance vector imposed on the vehicle; f

is the function describing the dynamics of the system state. The matrices Ceq and Cin
describe the equality and inequality constraints of the powertrain system, respectively.

From a control point of view, the power request at the wheels Pw is ordinarily referred

as the disturbance. In the optimal control problem for the powertrain system, the

disturbance can arise from the external disturbing forces acting on the system due to

changes of road conditions, traffic conditions, driver behaviors, etc. In general, the

power request can be classified into three levels.

1. The power request is known a priori for the whole driving profile.

2. The power request is totally unknown. This case mostly describes a real-life drive

mission.

3. The power request is known over a certain preview horizon. This is achieved by

means of a prediction technique and onboard route information systems.

Accordingly, the supervisory control algorithm, for example, including the gear shift

strategy, is designed such that the disturbance is expectedly attenuated in order to

improve the operation performance of the powertrain. The foreseen challenges related

to the gear shift strategy design for conventional and hybrid vehicles are discussed

next. Moreover, the consequences of the assumptions related to discrete state variable-

dependent losses, i.e. gear shift, clutch slippage and engine start, and their effect on

the control strategies are addressed in the subsequent sections.

Optimal gear shift strategy for conventional vehicles

The conventional powertrain control consists of one state variable, which is the gear

position ng(k). Hence, an optimal gear shift strategy, allowing the engine to operate in

the region closely to the E-line, will reduce the fuel consumption. Consequently, this will
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result in a lower speed and a higher torque of the engine, hence reducing the acceleration

capability, represented by the power reserve, denoted by ∆Pe = (Te,WOT − Te) ωe.

Figure 1.4 demonstrates a tradeoff between a fuel economy improvement potential and

a reduction of driveability at three indicated points 1, 2 and 3, with ∆Pe,1 < ∆Pe,2 <

∆Pe,3, respectively. A decision to choose the operating point among three of them should

be made on the basis of the ability to remain in the next gear for an acceptable period

of time. Therefore, a gear shift strategy needs to be designed such that an optimal

tradeoff between the fuel economy and driveability can be realized for the vehicle.

Figure 1.4: Tradeoff between the fuel economy and driveability for a conven-
tional vehicle.

So far, addressing the driveability in the powertrain control can be found in a relatively

limited amount of published literature, which mostly focus on satisfying a certain con-

stant power request by cooperatively control the gear shift and throttle opening [66],

or satisfying a constraint on a change in the engine power reserve for a given change

in the throttle angle by controlling the CVT ratio [135]. Nonetheless, under the effect

of the disturbance (changing driver behavior, changing road condition, etc.) the power

request varies from time to time, which requires the driveability to be addressed in an

optimal gear shift strategy for the whole drive cycle. Therefore, in this dissertation, the

focus is on developing a systematic method to analyze and define the optimal tradeoff

between the fuel economy and driveability.

Optimal gear shift strategy for HEVs

For the hybrid electric powertrain as shown in Figure 1.3, the dynamical system consists

of three state variables: the discrete engine on-off state se(k), the continuous battery

state-of-energy es(k), and the discrete gear position ng(k). The corresponding control

variables are the engine start-stop command use(k) (discrete), the battery power Ps(k)
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(continuous), and the gear shift command ug(k) (discrete). Due to the co-existence

of the continuous and discrete variables, the dynamical system is a hybrid dynamical

system as well. In general, the design of an optimal control algorithm for a hybrid

dynamical system with constraints on the state and control variables encounters complex

design challenges in terms of optimality, for example, due to the non-smoothness of the

objective function [23]. Therefore, the advantages of a HEV could be deteriorated if

the gear shift and engine on-off strategies are insufficiently optimized. Moreover, the

gear shift command ug(k) is constrained due to a practical comfort aspect, e.g. not

allowing the gear box to shift from the first gear to the highest gear at the next time

instant. Besides, the multi-objective character of the problem imposes further control

design challenges. The gear shift problem in principle can be solved by discretizing the

continuous variables (se(k) and Ps(k)) and using deterministic Dynamic Programming

(DP) [83], yet can result in a computational burden due to the ‘curse of dimensionality’.

Apparently, the tradeoff among optimality, accuracy and the computational efficiency is

seen as one of the main challenges for the design of a gear shift control algorithm

for HEVs. In addition, a computationally efficient and optimal Energy Management

Strategy (EMS) is very beneficial for accelerating the design process of a HEV at the

initial development phase, thus reducing valuable development time and cost.

Realtime gear shift strategy for automotive transmissions

In order to drive the vehicle on road, a real time implementable gear strategy for the

transmission is required. When the drive power request is totally unknown, a map-

based gear shift strategy is a solution for determining when to shift gears online. A

static gear shift map generates the shifting points, defined as a point-wise function of

the vehicle speed and the drive power request observed at the transmission input, which

determines how to shift gears correspondingly.

For conventional vehicles, the design of a gear shift map is traditionally based on know-

how, experience of the calibration engineers and tuning in a heuristic manner [87].

Hence, the gear shift map becomes consistent and relatively robust after a huge effort

and relative time-consuming trial-and-error are performed. This experience-based gear

shift strategy does not exploit the inherent potential of the powertrain system suffi-

ciently to improve the overall performance of the vehicle, and hence coming with a

lower confidence on the optimality with respect to the fuel economy and driveability. A

method in order to improve the shift rules can be found in [66]. Therefore, developing

a map-based gear shift strategy which makes the optimal tradeoff between the fuel econ-

omy and driveability in a systematic manner is seen as one of the additional research

challenges in this dissertation.

For HEVs, the design of a static gear shift map is more complex compared to conven-

tional vehicles, given that the acceleration capability can be obtained by the hybrid
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powertrain system. Therefore, developing an implementable gear shift strategy based

on a static map, which is adapted to different operation modes of the hybrid system,

would require a rigorous design and analysis.

Recently, using route information is seen as a possibility to significantly further improve

the fuel economy for HEVs, for example see, [2,10,57,152]. However, utilizing route in-

formation to predict the power request over a certain horizon will increase complexity of

the optimization problem by one more state variable, the to-be-optimized vehicle speed.

Hence, an optimized map-based gear shift strategy appears as a well-compromised solu-

tion for the velocity trajectory optimization problem. When the prediction of the power

request over a certain horizon is available, a gear shift strategy incorporated in a pre-

dictive EMS will allow the HEV to boost the fuel saving level. Again, this emphasizes

on the necessity of a computation-efficient and optimal gear shift strategy such that the

predictive EMS can be realtime implementable.

Consequences with respect to the gear shift and engine start events

Incorporation of the gear shift and engine start-stop strategies into an EMS for an AMT-

based HEV in order to maximize the fuel economy benefit can result in: i) an earlier

upshift pattern and a higher shifting frequency, and ii) a frequent stop and start of the

engine. However, it should be noted that the gear shift or engine start-stop induces

additional energy losses. For example, the vehicle speed reduces during shifting due to

a torque interruption, and higher drive power is needed from the engine to compensate

for these dynamic losses later on. Moreover, a certain amount of energy is consumed

through cranking the engine from rest. However, in literature, these losses and their

effect on the control strategy and fuel consumption are often neglected. This can finally

end up with an unfair evaluation on the fuel benefit of HEVs with respect to the gear

shift and engine start-stop strategies. Hence, it is necessary to model these losses and

analyze their effect on the control strategies for HEVs.

Moreover, analysis of the correlation among the design objectives (fuel economy, emis-

sions, driveability, etc.) and investigation of the sensitivity of an optimal control algo-

rithm to the relevant design objectives are essential. The result of this analysis can be

used to simplify the multi-objective function. A systematic method, based on Singular

Value Decomposition (SVD), for such an analysis is investigated in this dissertation.

1.4 Objectives and Contributions

Motivated by the research challenges related to the gear shift problem for discrete ratio

transmissions, used in conventional and hybrid electric vehicles as addressed in Section

1.3, the following six research objectives (O1 −O6) are specifically defined:
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• O1: define and address the driveability in a fuel-optimal gear shift strategy for

conventional vehicles on drive cycles known a priori.

• O2: design a fuel-optimal control algorithm, including the gear shift strategy, for

the hybrid dynamical system of HEVs on drive cycles known a priori.

• O3: develop an online gear shift strategy for conventional and hybrid electric

vehicles equipped with discrete ratio transmissions. The strategy improves the

fuel economy meanwhile still satisfying an acceptable driveability.

• O4: propose a gear shift strategy for a HEV to further improve the fuel economy

by exploiting route information from the GPS-based onboard navigation system.

• O5: analyze the effect of the gear shift and engine start losses on the control

strategy and fuel consumption.

• O6: investigate the sensitivity of an optimal gear shift strategy to the relevant

control design objectives, such as fuel economy, driveability, comfort, etc.

By fulfilling all the defined research objectives, the work presented in this dissertation

systematically tackles all the discussed challenges related to the gear shift problem,

thereby making a fundamental contribution in the field of the automotive transmission

control design and analysis. Explicitly, the following main contributions (C1 −C6) are

obtained:

• C1: various optimal gear shift strategies with respect to the fuel economy and

driveability are proposed for conventional vehicles. A novel concept of variable

power reserve is developed to properly address the driveability, meanwhile guar-

anteeing the highest achievable fuel economy (Chapter 2).

• C2: a novel gear shift control algorithm based on a combination of DP and Pon-

tryagin’s Minimum Principle (PMP) is developed for the hybrid dynamical system

(consisting of continuous and discrete variables) of HEVs. This so-called DP-PMP

algorithm benchmarks the gear shift problem in terms of optimality and compu-

tational efficiency (Chapter 3).

• C3: a gear shift map design methodology aiming at a realtime solution for discrete

ratio transmissions is developed. The methodology exploits the fuel economy and

driveability potential of the optimal gear shift strategies (proposed in Chapters 2

and 3) in order to realize an online gear shift strategy for conventional and hybrid

electric vehicles (Chapter 4).

• C4: a concept of integrated predictive gear shift strategy for HEVs, utilizing

route information to further explore fuel economy potential, is demonstrated in

simulation (Chapter 5).



12 1 Introduction

• C5: an analysis of the effect of gear shift and engine start losses on control strate-

gies for AMT-based HEVs. By taking the gear shift loss into account, this study

reveals a perception of a fuel-efficient advantage of powershift transmissions (DCT,

PS-AMT) over non-powershift transmissions (MT, AMT) applied for passenger

HEVs. Furthermore, the effect of the engine start loss can not be ignored in seek-

ing a fair evaluation of the fuel economy for parallel HEVs. A prediction horizon

of few seconds can help a predictive EMS to realize the highest achievable fuel

economy (Chapter 6).

• C6: a Singular Value Decomposition-based technique is introduced to analyze

the correlation among the design objectives of an optimal gear shift problem for

conventional and hybrid electric vehicles (Chapter 7).

1.5 Outline of The Dissertation

The dissertation consists of six self-contained research chapters, i.e. from Chapter 2

till Chapter 7. The work presented in the dissertation can be categorized into two

main parts. The first four chapters together form the first part, related to the gear shift

strategy design for automotive transmissions corresponding with three transparent levels

of the power request. This is shown in Figure 1.5. Meanwhile the last two chapters

form the second part, involved with the analysis of the consequences on the control

design objectives with respect to a gear shift strategy and an engine start-stop strategy,

see Figure 1.6. On both figures, the arrowed lines indicate the linkage among chapters,

meaning that the outcome of a certain chapter is used as input to another chapter. For

example, the DP-PMP control approach developed in Chapter 3 is utilized in Chapters

4 and 5 as the corresponding input. The six contributions (C1 - C6) for six chapters

are also shown in the output arrowed lines. Within the context of defining the optimal

gear shift points for automotive transmissions, the dissertation is unified by hierarchical

interconnections among the chapters. The outline of the dissertation is given next.

In relation to the first part, Chapter 2 deals with the optimal gear shift problem for

conventional vehicles. The driveability is systematically analyzed in a DP-based fuel-

optimal gear shift strategy by three methods: i) the weighted inverse of power reserve,

ii) the constant power reserve, and iii) the variable power reserve. A Stochastic Dy-

namic Programming (SDP) algorithm optimizes the gear shift strategy, subject to a

stochastic distribution of the power request, to minimize the expected fuel consumption

over an infinite horizon, hence making the obtained solution intrinsically respect the

driveability and be realtime implementable. A comparative analysis of all proposed

gear shift methods is given in terms of the fuel economy and driveability improvement.

The variable power reserve method achieves the highest fuel economy meaning without

sacrificing the driveability. Chapter 3 focuses on a fuel-optimal gear shift strategy for
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Figure 1.5: Overview of linkage among Chapters 2, 3, 4 and 5 with contribu-
tions.

HEVs, wherein a novel control algorithm based on a combination of DP and PMP is

developed. The EMS based on DP-PMP control approach benchmarks the develop-

ment of an online control strategy in terms of the tradeoff between calculation accuracy

and computational efficiency. The gear shift strategies proposed in Chapters 2 and 3

are not realtime implementable, yet result in a globally optimal solution on a priori

drive cycle. Aiming at a real time implementable solution, Chapter 4 develops a gear

shift map design methodology for discrete ratio transmissions, used in conventional and

hybrid electric vehicles. The optimal gear shift strategy proposed in Chapters 2 and

3 are utilized as the bases to derive the optimal gear shift patterns. Then statistical

theory is applied to analyze the optimal gear shift patterns in order to extract the

shift rules. Hence this alternative two-step design procedure makes the gear shift map

respect the fuel economy and driveability, consistent and robust with respect to shift

busyness. In Chapter 5, a concept of an integrated predictive gear shift strategy for

HEVs is demonstrated in simulation environment. The control strategy utilizes route

information obtained from a GPS-based onboard navigation system to further explore

the fuel economy potential.

In connection with the second part, Chapter 6 addresses the energetic losses, involving

with the gear shift and engine start events, in an AMT-based HEV. The effect of these

losses on the control strategies and fuel consumption for (non-)powershift transmission

technologies is investigated. Moreover, the sensitivity of prediction horizon on the fuel

consumption is analyzed. Chapter 7 defines the relevant control design objectives, i.e.

fuel economy, driveability and comfort, with respect to an optimal gear shift problem

of vehicular propulsion systems. A SVD-based method is introduced to analyze the

possible correlations and interdependencies among the design objectives.
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Figure 1.6: Overview of linkage among Chapters 6 and 7 with contributions.

Finally, the conclusions and recommendations of the dissertation are given in Chapter

8.
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Chapter 2

Optimal Gear Shift Strategies for
Conventional Vehicles1

Abstract - This chapter aims at designing optimal gear shift strategies for conventional pas-
senger vehicles equipped with discrete ratio transmissions. The fuel economy and driveability
are selected as the design objectives. Three methods of addressing the vehicle driveability
are proposed for a fuel-optimal gear shift algorithm based on Dynamic Programming (DP)
to quantitatively study the tradeoff between the fuel economy and driveability. Furthermore,
another method based on Stochastic Dynamic Programming (SDP) is proposed to derive an
optimal gear shift strategy over a number of drive cycles in an average sense, hence making
it respect the vehicle driveability. In contrast with the DP-based strategy, the obtained gear
shift strategy based on SDP is realtime implementable. A comparative analysis of all proposed
gear shift methods is given in terms of the fuel economy and driveability improvements.

2.1 Introduction

For conventional vehicles equipped with discrete ratio transmissions, e.g. automatic,

dual clutch, automated (manual) transmissions, etc., a decision on selecting a different

gear leads to a sudden change of the engine operating point due to a stepped change

of the transmission ratio. With highly nonlinear characteristics of the engine fuel con-

sumption and maximum torque, a change of the engine operating point due to a gear

shift can result in a deficient fuel operation state, and/or a low driveability condition

for the vehicle thereafter. Hence, an optimal gear shift strategy for a discrete ratio

transmission plays an important role in achieving a high performance for the vehicle.

In literature, there does not exist a systematic method to quantitatively investigate the

1This chapter has been prepared for a journal submission in the form as: V. Ngo, J. A. Colin
Navarrete, T. Hofman, M. Steinbuch, A. Serrarens. Optimal Gear Shift Strategies for Conventional
Vehicles. 2012.
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tradeoff between the fuel economy and driveability with respect to an optimal gear shift

strategy. Hence, in this chapter, various methods, taking the driveability into account,

are proposed for the design of the optimal gear shift strategy. They are comparatively

analyzed in terms of the fuel economy and driveability improvements, towards achieving

the most optimal method.

2.1.1 Literature Review

In literature, a substantial amount of published research can be found, addressing the

design of the ratio control strategy for automotive transmissions. With respect to a

fuel economy improvement, the control strategies aim at moving the engine operating

points as close as possible to the most fuel economy region. For a push belt Continuously

Variable Transmission (CVT), a sequence quadratic programming-based optimization

algorithm for an offline optimal ratio strategy, and an online suboptimal feed-forward

ratio controller can be found in [105]. For discrete ratio transmissions, a ratio control

strategy can be alternatively interpreted as a gear shift strategy. Due to the discrete

nature of the ratio, discrete optimization techniques, e.g. Dynamic Programming (DP),

can be efficiently utilized to derive an optimal gear shift schedule over a given drive

cycle. In addition, the suboptimal gear shift strategy revolves around the methods

based on heuristic rules, e.g. genetic algorithm, fuzzy logic, know-how of calibration

engineers or from empirical experiments, etc., for example see [18, 99]. The globally

optimal gear shift strategy is used to benchmark the fuel economy on a certain drive

cycle, and therefore not realtime implementable. Meanwhile the rule-based strategy is

less fuel economic, yet realtime implementable.

Improvement of the vehicle driveability, represented by the driver’s power demand satis-

faction, while simultaneously optimizing the fuel economy is the main challenging aspect

for the gear shift strategy design. For a CVT-based vehicle, the authors in [129] suggest

that a ratio control strategy with a fuel consumption increase by 15%-20% compared

to the E-line (indicating the most fuel-efficient line of the engine) can lead to a good

driveability acceptance. The authors in [135] propose a method for choosing the opti-

mum ratio trajectory for a CVT-based passenger vehicle. An optimization problem is

formulated focusing on maximizing the fuel economy and driveability, which is defined

by a change in the engine power reserve for a given change in the throttle angle. This

driveability definition creates a consistent and desirable vehicle response under different

road load conditions. The authors claim a good, or improved driveability, while still

achieving a fuel economy benefit compared with other ratio control schedules.

For a vehicle equipped with a discrete ratio transmission, the driveability can be im-

proved by an integrated powertrain control approach. In [87], a two-layer fuzzy gear

shift strategy for an Automatic Transmission (AT), considering the engine working con-
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ditions and the driver’s intention, can eliminate unnecessary shifts occurring when the

driver’s intention is overlooked or unclear. The authors state a better acceleration per-

formance. In [166], a gear shift method, based on pattern recognition and a learning

algorithm, is proposed. By utilizing three different dynamic parameters, i.e. the throt-

tle position, vehicle speed and acceleration, the method improves the fuel economy and

acceleration capability as claimed by the authors. Another method of combined time-

optimal and fuzzy-logic strategies to control the engine during a gear shift process of an

Automated Manual Transmission (AMT) is proposed in [167]. By decreasing the engine

speed deviation between the controlled target and actual output, and shortening the

gear shift time, the proposed control algorithm is claimed to be capable of reducing fuel

consumption, engine noise, shift jerk and the clutch friction loss. An integrated pow-

ertrain control approach based on an optimization technique to improve the driver’s

power demand satisfaction for an AT vehicle can be found in [7, 66]. DP is used to

solve a fuel-optimal gear shift and throttle control problem over a number of different

acceleration profiles. Then, the optimized gear shift map and the throttle open map

for the vehicle are extracted to govern the operation of the integrated powertrain. The

method is found to be promising in improving the fuel economy without compromis-

ing the driveability. Also for an AT, the authors in [6] propose an adaptive gearshift

strategy that compensates for variations in the vehicle and road conditions, e.g. the

load, trailering, grade, and the curvature. The method utilizes two shift maps: a fuel

economy map and a sportive map, in order to dynamically generates the shifting points

adapted to the current vehicle and road conditions in achieving the optimal tradeoff

between the fuel economy and the driveability.

2.1.2 Research Objectives

For discrete ratio transmissions, it can be observed that improving the fuel economy

while not compromising the driveability is still a challenging research problem. There

is lack of a proper method to analyze the correlation, and hence not able to define an

optimal tradeoff between the fuel economy and driveability through an optimal gear

shift strategy. Therefore, in this chapter a systematic approach will be developed con-

sisting of: i) designing a fuel-optimal gear shift strategy, ii) defining the driveability and

taking it into the fuel-optimal gear shift problem, and iii) quantitatively evaluating and

comparing the fuel economy and driveability among the proposed gear shift strategies.

Firstly, a fuel-optimal gear shift control problem is formulated and solved by using DP

to obtain a baseline fuel economy. Secondly, the vehicle driveability represented for

an acceleration capability and defined by the power reserve, is addressed in the fuel-

optimal gear shift problem by three methods. In the first method, the power reserve

is incorporated in the objective function by a weight factor. In the second method,

the driveability is respected by imposing an inequality constraint on the power reserve,
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which is equal to or larger than a constant threshold value. In the third method, a

variable power reserve concept, as a function of the vehicle speed being predefined

over a wide range of driving scenarios, is constructed and respected by an inequality

constraint to ensure an acceptable driveability. And finally, an optimal tradeoff between

the fuel economy and driveability is derived from a comparative analysis of the three

methods.

The DP-based gear shift algorithm requires the whole drive cycle to be known a priori.

It optimizes the powertrain’s operational performance by identifying an optimal gear

shift schedule over the given drive cycle. Hence, the obtained gear shift strategy can

not be implemented in realtime. Towards an online solution for a gear shift problem, a

design method based on Stochastic Dynamic Programming (SDP) is proposed for that

purpose. The SDP algorithm formulates and solves an infinite-horizon optimization

problem over a probabilistic distribution of the power request from many drive cycles

rather than a single drive cycle. The vehicle speed is also considered as a state variable.

Hence, the obtained gear shift strategy, in the form of a set of shift maps, is time-

invariant and feedback with respect to the state variables (the gear position and the

vehicle speed), such that it can be implemented in realtime. The SDP optimization

problem, subject to the power request from many drive cycles, renders the stochastic

gear shift strategy a driveability satisfaction.

This chapter is organized as follows. The fuel-optimal gear shift problem is formulated

and solved in Section 2.2. The driveability-optimal gear shift problem is discussed in

Section 2.3. The stochastic gear shift strategy is addressed in Section 2.4. And finally,

conclusions and recommendations are given in Section 2.5.

2.2 Fuel-Optimal Gear Shift Strategy

2.2.1 Powertrain Model

In order to derive a supervisory control strategy, the quasi static modeling approach is

used to model the main powertrain components. A fixed time step ∆t of one second

is chosen to simulate the powertrain system. Hence, the powertrain system dynamics

faster than 1Hz are ignored [42]. The component models in discrete time domain k are

described as follows.

• Engine: the engine fuel consumption is modeled by a static fuel efficiency map,

see Figure 2.2. It indicates the contour lines of constant Brake Specific Fuel

Consumption (BSFC), which a static point-wise function of the speed ωe(k) and

the torque Te(k). The BSFC describes the fuel rate ṁf (k) per unit output power

of the engine. The engine torque obtained at wide open throttle for the whole
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Figure 2.1: The powertrain topology of a conventional vehicle, where Te is the
torque delivered by the engine, ωe is the engine speed, Tg is the transmission
input torque, ωg is the transmission input speed, ng is the gear position, rg is
the gear ratio, rd is the final reduction gear ratio, Tw is the drive torque at
the wheels, and ωw is the wheel rotational speed. AMT stands for Automated
Manual Transmission.

engine speed range, denoted by Te,WOT , see the black solid line, is equivalent to the

engine maximum torque Te,max. The most fuel efficient operational region for the

engine, denoted by E-line, is the line which connects the points of highest efficiency

for a given engine output power (the dashed line). It can be observed that the

engine fuel consumption and the maximum torque are both highly nonlinear.

Figure 2.2: Engine fuel efficiency model, where BSFC is the Brake Specific Fuel
Consumption in [g/kWh], Te,WOT is the engine torque at wide open throttle,
which is equal to the maximum engine torque Te,max, E-line is the most fuel
efficient operational region, ωe,min is the minimum engine speed, and ωe,max is
the maximum engine speed.

The constraints on the engine speed ωe(k) and the engine torque Te(k) are,

ωe,min ≤ ωe(k) ≤ ωe,max, (2.1a)

0 ≤ Te(k) ≤ Te,max
(
ωe(k)

)
, (2.1b)
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where the engine friction torque, negative value when no combustion taking place,

is ignored in the supervisory control strategy for the conventional vehicle.

• Dry clutch: the dry clutch is considered as a boolean switch, which connects and

disconnects the engine immediately to and from the driveline. Its dynamics and

limited power losses during shifting are ignored in this chapter. Note that this

study takes no notice of the slippage loss of clutch at vehicle launch. However,

analysis of the effect of these losses to the control strategy for a hybrid electric

vehicle can be found in Chapter 6.

• Automated Manual Transmission (AMT): assuming that the transmission

efficiency η is constant for all gears, and the clutch is closed, then the speed and

torque relations in both side of the transmission are,

ωe(k) = ωg(k) = ωw(k) rg
(
ng(k)

)
rd, (2.2a)

Tw(k) = η rg
(
ng(k)

)
rd Tg(k) = η rg

(
ng(k)

)
rd Te(k), (2.2b)

where ωw(k) is the wheel rotational speed; Tw(k) is the drive torque at the wheels;

Tg(k) is the transmission input torque; rg
(
ng(k)

)
is the gear ratio of the transmis-

sion, depend on the gear position ng(k); rd is the final reduction gear ratio.

The constraints on the gear position of the 6-speed AMT are,

1 ≤ ng(k) ≤ 6. (2.3)

2.2.2 Powertrain System Dynamics

Gear position dynamics: a next gear position ng(k+1) is expressed through a current

gear position ng(k) and a gear shift command ug(k) as follows,

ng(k + 1) = ng(k) + ug(k). (2.4)

Longitudinal motion: the longitudinal motion of the vehicle in discrete time domain

is given by,

ωw(k + 1) = ωw(k) +
1

Jv,eq

(
Tw(k)− Fload(k)Rw

)
∆t, (2.5)

where Fload is the resistance load due to rolling and aerodynamic resistances; Jv,eq is an

equivalent vehicle inertia at the wheels,

Fload = crmvg cosα +mvg sinα +
1

2
ρaAfcdv

2,

Jv,eq =
(
(Je + Jc + Jp)r

2
g + Js

)
r2
d +mvR

2
w,
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and mv is the vehicle weight; Rw is the wheel radius; Je is the engine inertia; Jc is the

clutch inertia; Jp is the transmission primary inertia; Js is the transmission secondary

inertia; ρa is the air density; Af is the frontal area of vehicle; cd is the aerodynamic

drag coefficient; cr is the rolling friction coefficient; g is the gravity coefficient; v is the

vehicle velocity; and α is the road slope. It should be noted that the vehicle wheel slip

is ignored.

2.2.3 Optimal Gear Shift Control Problem

The powertrain system dynamics, described by (2.1)-(2.5), can be expressed in a generic

form by,

x(k + 1) = f
(
x(k), u(k)

)
, (2.6)

Ceq
(
x(k), u(k)

)
= 0, (2.7)

Cin
(
x(k), u(k)

)
< 0, (2.8)

where x(k) = [ng(k), ωv(k)]T and u(k) = [ug(k), Tw(k)]T are the vectors of state and

control variables,respectively; f is the function describing the dynamic system; Ceq and

Cin are the matrices of equality and inequality constraints of the system, respectively.

Imposing a bound on the discrete gear shift command ug(k) will influence the gear shift

dynamics (2.4), and affect to the optimality. For a 6-speed AMT, ug(k) belongs to the

set {−5, · · · ,−1, 0, 1, · · · , 5}. With a reason for an acceptable driveability, the gear

shift command is chosen as,

ug(k) =


−1 downshift,

0 sustaining,

1 upshift,

(2.9)

to avoid a large variation of the engine speed under a certain shift. One gear upshift

(ug(k) = 1) or one gear downshift (ug(k) = −1) for each time step of one second

is reasonable, since the average shifting time for an AMT is typically less than one

second.

Problem 2.1. Given a drive cycle v(k) with time length N , implying that the vehicle

longitudinal motion (2.5) is deterministic, find an optimal control law u∗(k) = u∗g(k) to

minimize a cost function of fuel consumption over the drive cycle, that is

u∗(k) = arg min
u(k)

J =
N−1∑
k=0

ṁf (k)∆t, (2.10)

subject to the constraints (2.6)-(2.9).
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Dynamic Programming (DP) [11] is well known as a powerful method to solve a non-

linear, non-convex optimization problem with mixed constraints while obtaining a glob-

ally optimal time-variant, state-feedback solution. In order to apply DP to the proposed

optimal control problem, we need to

• grid the state variables x(k);

• grid the corresponding control variables u(k); and,

• calculate ṁf (k) for the whole drive cycle for every grid point;

Then, the optimal cost-to-go function at any time step k, denoted as J ∗k , is defined as,

• step k = N :

J ∗N = 0, (2.11)

• step k ∈ [0, 1, . . . , N − 1]:

J ∗k
(
x(k)

)
= min

u(k)

[
ṁf (k)∆t+ J ∗k+1

(
x(k + 1)

)]
. (2.12)

The optimal cost-to-go function J ∗k is defined backwards from k = N until k = 0.

The optimal solution u∗(k) is obtained correspondingly with a specific value for the end

constraint x(N).

2.2.4 Simulation Results

Table 2.1: Relative fuel efficiency improvement of the optimal gear shift strat-
egy compared with the prescribed gear shift schedule.

Drive cycle NEDC FTP75
Relative fuel efficiency improvement [%] 14.2 25.4

In order to investigate the fuel-efficient potential of the optimal gear shift strategy, the

prescribed gear shift schedules accompanied with the test cycles NEDC and FTP75

(see, Appendix C) are chosen as the baseline shift schedules. These prescribed gear

shift schedules, denoted by Pres. and shown by the dashed lines in Figure 2.3, define

the shift points for the transmission on NEDC and FTP75 for the standardized test
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Figure 2.3: Prescribed (Pres.) and the optimal gear positions (DP) over the
NEDC and FTP75 cycles.
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Figure 2.4: Engine operating points corresponding with the prescribed gear
shift strategy (Pres.) and the optimal gear shift strategy (DP).

procedure2. The optimal gear shift schedule, denoted by DP, is shown by the solid

lines in Figure 2.3. It can be observed that, the transmission is shifted at higher rate

and to higher values than the prescribed strategy. Obviously, the engine operating

points resulted from the optimal gear shift strategy gather around the E-line as much

as possible. Meanwhile for the prescribed shift schedules, the engine operating points

are more far from the E-line, see Figure 2.4. The relative fuel efficiency improvement of

the optimal gear shift strategy compared with the prescribed schedule is of 14.2% and

2NEDC is the standard emission test cycle in Europe, thus the prescribed gear shift schedule is
accompanied to give shift signals for geared transmission vehicles. Meanwhile the prescribed gear shift
schedule for the standard emission test cycle FTP75 is given by ADVISOR.
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25.4% on NEDC and FTP75, respectively, see Table 2.1. Therefore, it can be concluded

that by optimizing the gear shift strategy, the fuel economy of conventional vehicles can

be improved significantly.

2.3 Driveability-Optimal Gear Shift Strategy

2.3.1 Driveability Definition

The fuel-optimal gear shift strategy, proposed in Section 2.2, yields an early and frequent

upshift pattern for the transmission. It renders the engine, on average, to operate at a

lower speed and high torque region, and hence improving the fuel economy. As a result,

the so-called torque reserve ∆Te, defined by a difference between the maximum engine

torque and the actual engine torque (∆Te = Te,max− Te), tends to decrease. Therefore,

if the driver demands a higher acceleration, the engine torque reserve might not be

able to fulfil the acceleration surplus. Obviously, this will deteriorate the acceleration

capability of the vehicle under certain driving situations. In other words, the fuel

economy improvement is gained at a penalty of driveability deterioration. Therefore,

in this section, a study on the tradeoff between the fuel economy and the driveability

with respect to an optimal gear shift strategy is presented. An appropriate method to

address the driveability of conventional vehicles is well defined.

The driveability in general has a broad inference, such as vehicle responsiveness, oper-

ating smoothness, driving comfort, vibration, jerk, tip-in tip-out, etc., [158]. Regarding

to the gear shift strategy, the engine operating point is changed in a stepwise manner.

So, a relevant term for determining the driveability is the acceleration capability, i.e.

how much acceleration potential is available for the vehicle after a certain gear shift.

Since the power reserve, denoted as ∆Pe (2.13) and defined by the product of the engine

speed and the torque reserve, represents an instant availability of power for accelera-

tion, it can also be used as a measurement for driveability [92, 135]. Furthermore, the

study in [145] also indicates the engine power to be the best parameter representing the

driver’s demand.

∆Pe = (Te,max − Te) ωe. (2.13)

In this chapter, three different methods are proposed to address driveability of the

vehicle,

• Method 1: incorporating the inverse of power reserve with a certain weight factor

in the objective function of a fuel-optimal gear shift control problem.

• Method 2: adding an inequality constraint for the power reserve level in a fuel-

optimal gear shift control problem in order to ensure that the vehicle actual power
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reserve is always above a certain constant threshold.

• Method 3: adding an inequality constraint for the power reserve in a fuel-optimal

gear shift control problem. The bound of the power reserve is varied with the

vehicle speed.

2.3.2 Method 1: The Weighted Inverse of Power Reserve

Aiming at maximizing the fuel economy and driveability, and then analyzing a tradeoff

between them with respect to an optimal gear shift strategy, a corresponding cost

function is constructed as,

J =
N−1∑
k=0

[
ṁf (k) + ν ∆P−1

e (k)
]
∆t, (2.14)

where ν is a weight factor imposed on an inverse of the power reserve. The corresponding

driveability optimal gear shift control problem is similar to Problem 2.1. Hence, DP is

used to solve this control problem.

The fuel consumption, denoted by FC, and the accumulative power reserve, denoted

by APR, calculated for the whole drive cycle, are used to quantify the tradeoff between

the fuel economy and driveability.

FC =
N−1∑
k=0

ṁf (k)∆t, (2.15a)

APR =
N−1∑
k=0

∆Pe(k)∆t. (2.15b)

The weight factor ν is varied as in (2.16) to study a sensitivity of the tradeoff between

the fuel economy and driveability to the gear shift strategy.

ν ∈ {0, 1, 2, 3, 4, 6, 8, 10, 12, 14} · 500 [g ·Ws−1]. (2.16)

The drive cycles used for simulation are NEDC, FTP75, LA92, CADC-urban and

CADC-road (see, Appendix C). A sensitivity analysis of FC and APR with respect

to the weight factor ν is depicted in Figure 2.5a. It can be seen that both FC and

APR increase corresponding to an increase of the weight factor for all drive cycles.

This means that the vehicle driveability can only be improved at a cost of fuel economy

reduction. Figure 2.5b shows a translation of FC and APR to the coordinate origin for

a better understanding of the correlation. Basically, a positive linear relation between

FC and APR can be seen for almost all selected drive cycles.
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Figure 2.5: Method 1: sensitivity analysis of FC and APR with respect to ν
(a); the translation of FC and APR to the coordinate origin (b).

2.3.3 Method 2: The Constant Power Reserve

Instead of introducing the power reserve in the objective function as in method 1, this

method proposes that the actual power reserve of the vehicle should be always above a

certain constant level in order to ensure a certain driveability level. Hence, an additional

inequality constraint for Problem 2.1 is introduced,

∆Pe(k) ≥ ∆Pe,lim, (2.17)

where the power reserve limit ∆Pe,lim is varied as in (2.18) to study the sensitivity of

the tradeoff between the fuel economy and driveability to the gear shift strategy.

∆Pe,lim ∈ {0, 3, 9, 12, 15, 17, 19, 21, 24, 27} [kW ]. (2.18)
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Figure 2.6: Method 2: sensitivity analysis of FC and APR with respect to
∆Pe,lim (a); the translation of FC and APR to the coordinate origin (b).
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Simulation results of FC and APR, defined in (2.15), are shown in Figure 2.6a. A

translation of FC and APR to the coordinate origin are depicted in Figure 2.6b. It can

be observed that an increase of ∆Pe,lim leads to a decrease of the fuel economy. For this

method, the higher the value of ∆Pe,lim, the better the driveability comes at a cost of

fuel economy reduction. Furthermore, it can be concluded that an increase of APR is

proportional with an increase of FC with respect to ∆Pe,lim.

2.3.4 Method 3: The Variable Power Reserve

Both Methods 1 and 2 show that, the optimal gear shift strategy is sensitive to the weight

factor ν and the power reserve limit ∆Pe,lim, respectively. These design parameters are

kept being constant for the whole drive cycle, and hence making the obtained gear shift

strategy become more conservative. To overcome this drawback, the weight factor or the

power reserve limit needs to be adapted to the changing driving conditions. Therefore,

defining a rule for such an adaptation is a key factor for a fuel-optimal gear shift control

strategy to further improve the fuel economy and driveability potentially at the same

time. In this section, a method based on a concept of variable power reserve is proposed

to address the driveability as put in a fuel-optimal gear shift strategy. The power reserve

required for a certain acceleration capability of the vehicle is varied in accordance with

its actual speed. In other words, the variable power reserve is a function of the vehicle

speed, denoted as ∆Pe,var
(
v(k)

)
. Hence, the gear shift control problem needs to respect

the variable power reserve by an inequality constraint as,

∆Pe(k) ≥ ∆Pe,var. (2.19)

A novel approach is developed to define the variable power reserve ∆Pe,var
(
v(k)

)
. This

approach is based on a statistical analysis of the vehicle acceleration characteristics on

various drive cycles. The details are presented next.

Vehicle performance characteristics

In this section, the discrete time variable k is left out of the variables for brevity. For

the functional variables, the independent variable is omitted to improve the readability,

for example rg := rg
(
ng(k)

)
. Then, if the engine output torque is Te, the propulsion

force available at the wheels is given by,

Fw = η
rg rd Te
Rw

. (2.20)

Under the influence of road material and driving conditions, e.g. dry, wet, snow, etc.,

the tractive force at the wheels induced by friction is approximated by

Ffr =
µ mv g

(
lb + cr (hg −Rw)

)
l + µ hg

, (2.21)
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where l is the wheelbase length of the vehicle; lb is the horizontal distance from the

vehicle gravity center to the rear tire; hg is the height of the vehicle gravity center; µ is

the friction coefficient between the tire and road surface.

If we assume that the standard road material of asphalt is used under a dry condition,

the corresponding peak friction coefficient µp is chosen to calculate a maximum friction

force Ffr,max at the wheels. The maximum propulsion force at the wheels, denoted as

Fw,max, is calculated by (2.20) with the engine torque at wide open throttle. So, the

vehicle maximum acceleration is derived as,

amax =
min

(
Fw,max, Ffr,max

)
− Fload

mv,eq

, (2.22)

where mv,eq is the equivalent vehicle mass at the wheels,

mv,eq =

(
(Je + Jc + Jp) r

2
g + Js

)
r2
d

R2
w

+mv.

Figure 2.7 depicts the maximum acceleration characteristic vs. the vehicle velocity cor-

responding with each gear position ng (see, the solid lines). So, the actual accelerations

of the vehicle in real-life driving are always inside these bounds. Here, the decelerations

are irrelevant for the design method, and therefore neglected.

Variable power reserve

In order to define the variable power reserve ∆Pe,var, a statistical analysis of vehicle

acceleration characteristics on various drive cycles is performed. Depend on the regions,

the driving styles, the driving purposes, etc., the drive cycles are differed from each

other. Therefore, the selected drive cycles must encompass a representative driving

profile of the vehicle, giving quantitative information of the acceleration level a driver

would normally require at every vehicle speed. In this study, to ensure objectiveness, the

drive cycles chosen are the standardized ones: ARB02, CADC, FTP75, Hurk, HWFET,

JN1015, LA92, NEDC, NYCC, and US06 (see, Appendix C).

The velocity is discretized into a finite number of values Nv with an equal discretized

step, thus giving a velocity set,

V = {v1, v2, · · · , vNv}. (2.23)

For a given drive cycle, at a certain velocity v(k) the corresponding acceleration is

approximated as,

a(k)|v(k) =
v(k + 1)− v(k)

∆t
. (2.24)
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Sampling the velocity and computing the corresponding acceleration on all chosen drive

cycles to create the velocity data. Then clustering the velocity data in accordance with

all elements of the velocity set (2.23) to form the corresponding acceleration data. The

velocity data and the acceleration data together create the statistical data of the chosen

drive cycles. Mapping the statistical data onto the vehicle performance characteristics

to realize the representative acceleration characteristics for the vehicle, see, the light

blue circles in Figure 2.7. The statistical data falling outside the acceleration bounds

are cut off due to infeasible driving situations.
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Figure 2.7: Performance characteristics of the vehicle, indicated by the six
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characteristics are indicated by the light blue circles. v is the vehicle velocity, a
is the vehicle acceleration.
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Figure 2.8: Analysis of the acceleration data at the velocity cluster vl =
30 [km/h]. a is the acceleration. Legends: acc. stands for acceleration; GEV
stands for generalized extreme value.

The acceleration data is clustered in accordance with vl ∈ V , l = 1, 2, . . . , Nv. There-
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fore, analyzing this cluster can give an insight of a driveability level for the vehicle at the

corresponding velocity. The acceleration data at each cluster of velocity is considered

as a random variable. In statistics and probability theory [85, 113], probability density

function is a function that describes the relative likelihood for a random variable to take

on a given value. Hence, probability density function is an appropriate tool to analyze

the acceleration data.

As a demonstration, an analysis for the acceleration data at the velocity cluster

vl = 30 [km/h] is given in Figure 2.8: a probability density distribution in (a), and

a corresponding cumulative probability in (b). The acceleration data can be fitted by

the generalized extreme value distribution having a cumulative distribution function,

FCD(a;κ, σ, ξ) = exp

{
−
[
1 + ξ

(
a− κ
σ

)]−1/ξ
}
,

where a is the vehicle acceleration; κ is the location parameter; σ is the scale parameter;

and ξ is the shape parameter.

The fits are shown by the red solid lines. It demonstrates that the acceleration range of

[0.3, 0.9] [m/s2] has the highest probability density, meaning that this acceleration range

is where the vehicle acceleration is most likely occurred. Nonetheless, the maximum

vehicle acceleration is at 3.1[m/s2], occurring at very small probability. Whereas, the

cumulative probability defines a probability of the vehicle acceleration a to be smaller

or equal to a certain value areq, described by,

Prob
[
a ≤ areq

∣∣vl ∈ V] = pa, (2.25)

where Prob is a probability of a certain event. Apparently, in order to have pa = 1,

areq must be equal to 3.1[m/s2].

It is observed that, a definition of an acceptable driveability level for the vehicle over the

whole velocity range is equivalent to a definition of pa for each velocity cluster vl ∈ V .

Drivers would always expect the vehicle to fully meet the acceleration request, which

means that pa = 1 ∀ vl ∈ V . This would require a gear shift strategy, resulting in

a high power reserve, ready for a possible maximum acceleration. Such a high power

reserve level will induce a sportive driving behavior, however, it decreases the fuel saving

potential considerably. Hence, defining an appropriate value for pa can improve the fuel

economy meanwhile ensuring an acceptable vehicle driveability.

Regarding to the accumulative probability, statistical and probability theories point

out that a confidence level associated with a certain pa is commonly chosen at 90%, or

95%, or 99% [85, 113]. In this study, a confidence level is chosen at 90%. Therefore,

if drivers would expect the vehicle to always satisfy the acceleration demand, it’s very

likely that the vehicle can only meet 90% of the driving demand. Hence, pa = 0.9 is

chosen for a fairly acceptable driveability level. In other words, the vehicle can follow
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up to 90% of the occurring acceleration situations. Note that 10% excluded represents

the very hard, sudden acceleration situations, which are not specifically matched with

the powertrain capability at the current gear. Hence, the transmission is required to

shift gears (downshift) such that the powertrain can accommodate the high acceleration

demand.

Once, the acceptance driveability level represented by pa has been defined, the required

acceleration areq(vl), ∀ vl ∈ V is obtained by solving a reverse problem, defined corre-

spondingly with (2.25). So, a polynomial fit areq,fit(v), as a function of the velocity, can

be achieved,

areq,fit(v) = p1v
6 + p2v

5 + p3v
4 + p4v

3 + p5v
2 + p6v + p7, (2.26)

where p1, p2, p3, p4, p5, p6 and p7 are the coefficients of the polynomial fit.
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Figure 2.9: Acceleration capability characteristics required to ensure an ac-
ceptable driveability level. v is the vehicle speed, a is the vehicle acceleration.
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Figure 2.10: Feasible operating regions corresponding with the gear positions
for a satisfaction of the vehicle driveability. v is the vehicle speed, ng is the gear
position.

Figure 2.9 depicts the required accelerations areq(vl) and the corresponding fit polyno-
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mial areq,fit(v). It represents the acceleration capability characteristics, as a function

of the vehicle speed, to ensure that the vehicle can confidently cover 90% of the actual

driving situations.

Intersections of areq,fit(v) with the vehicle performance characteristics at a certain gear

create the correspondingly feasible operating region for the powertrain at that gear

position. Hence, the intersection among the feasible operating regions yields a com-

mon operating area for optimally shifting gears meanwhile still ensuring the acceptable

driveability level, see Figure 2.10.

Finally, from (2.26), the variable power reserve is derived as,

∆Pe,var(v) = mv,eq areq,fit(v) v. (2.27)

Control problem formulation

A fuel-optimal gear shift control problem, taking into account the variable power reserve

(2.27) to respect a certain driveability requirement, is formulated as follows.

Problem 2.2. Given a drive cycle v(k) with time length N , thus making the vehicle

longitudinal motion (2.5) deterministic, find an optimal gear shift strategy u∗(k) = u∗g(k)

to minimize the cost function of fuel consumption over the drive cycle, that is,

u∗(k) = arg min
u(k)

J =
N−1∑
k=0

ṁf (k)∆t, (2.28)

subject to the constraints (2.6)-(2.9), and

∆Pe(k) ≥ max
{

0, ∆Pe,var
(
v(k)

)
− Pe,req(k)

}
, (2.29)

where Pe,req(k) is the required power to follow the given drive cycle v(k).

Note that (2.19) refers to a general constraint for meeting the driveability requirement.

Therefore, the power Pe,req(k), required to follow a given drive cycle, has to be subtracted

from ∆Pe,var
(
v(k)

)
as in (2.29). If Pe,req(k) ≥ ∆Pe,var

(
v(k)

)
holds, the constraint (2.29)

becomes inactive because the real power reserve ∆Pe(k) is always larger than zero. For

this problem, DP is also used to derive the optimal solution.

Simulation results

Simulation results of Method 3 are given in Table 2.2. The fuel-optimal gear shift strat-

egy, described in Section 2.2, is chosen as a reference. It shows that Method 3 degrades

the fuel economy compared to the reference, but benefiting a significant improvement
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Table 2.2: Simulation results of FC and APR of Method 3. The relative
FC and APR differences are obtained by comparing with the results of the
fuel-optimal gear shift strategy. Rel. denotes the relative.

Drive cycle FC [g] APR [kJ]
Rel. FC Rel. APR

difference [%] difference[%]

NEDC 457.8 1.21 · 104 -6.8 47.6
FTP75 722.7 1.93 · 104 -8.2 58.2
LA92 706.4 1.37 · 104 -3.3 28.0

CADC-urban 268.1 0.59 · 104 -7.0 51.3
CADC-road 642.8 1.39 · 104 -3.6 26.4

CADC-highway 1555.1 1.67 · 104 -0.3 3.7

of the driveability. It is also observed that on the drive cycles having aggressive acceler-

ation, high speed profiles, e.g. LA92, CADC-road, and CADC-highway, the high drive

power demand required to follow the drive cycle is more likely to satisfy the driveability

level by default, and thus deteriorating not much fuel economy. However, on the mild

and dynamic drive cycles, e.g. NEDC, FTP75 and CADC-urban, the drive power de-

mand is in moderate levels, which is less likely to fulfil the driveability level. Therefore,

the transmission tends to shift up late to ensure a driveability satisfaction. This results

in a relatively high fuel consumption on NEDC, FTP75 and CADC-urban compared to

the other cycles.

2.3.5 Comparison of Three Methods

Three methods to address the driveability in the fuel optimal gearshift control problem

were proposed, namely the weighted inverse of power reserve, the constant power reserve,

and the variable power reserve, respectively. The first two methods provide control laws

more sensitive to the design parameters and more conservative over a certain drive cycle

because ν and ∆Pe,lim are kept constant for the whole drive cycle. Meanwhile, the third

method, in which ∆Pe,var(v) is varied according to the vehicle speed, seems to yield an

optimal compromise. To verify this proposition as well as to evaluate the advantages

among the proposed three methods, a procedure is defined as,

Procedure 2.1. For a certain given drive cycle:

• apply Method 3 to get the baseline results of FC and APR, as shown in Table 2.2.

• for Method 1: tune the design parameter ν, such that the obtained FC is as close

to that of Method 3 as possible. Compute the corresponding APR.
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Table 2.3: Analysis of FC and APR of Methods 1 and 2 in comparison with
Method 3. Rel. denotes the relative.

Drive cycle Method Parameters
Rel. FC Rel. APR

difference [%] difference[%]

NEDC
1 µ = 1730 0.3 -2.4
2 ∆Pe,lim = 11.8[kW] 0.2 -8.2

FTP75
1 µ = 1730 0.0 -0.8
2 ∆Pe,lim = 11.8[kW] 0.0 -8.8

LA92
1 µ = 430 0.3 -16.4
2 ∆Pe,lim = 1.0[kW] -0.2 -22.1

CADC-urban
1 µ = 1430 0.6 -1.6
2 ∆Pe,lim = 9.8[kW] 0.5 -8.1

CADC-road
1 µ = 1130 0.1 -1.3
2 ∆Pe,lim = 9.0[kW] 0.1 -8.9

CADC-highway
1 µ = 1730 0.5 0.2
2 ∆Pe,lim = 8.8[kW] 1 -1.2

• for Method 2: tune the design parameter ∆Pe,lim, such that the obtained FC is as

close to that of Method 3 as possible. Compute the corresponding APR.

Calculate the relative FC and APR differences by comparing the results of Methods 1

and 2 with the baseline results.

Apply Procedure 2.1 for all representative drive cycles, the obtained results are shown

in Table 2.3. The relative FC difference is close to zero with an average value of 0.3%

and 0.1% for Methods 1 and 2, respectively. Meanwhile, the relative APR difference

decreases for almost drive cycles, with an average value of 4.5% and 11.2% for Methods

1 and 2, respectively. In other words, Method 3 gives the highest APR with the same

value of FC. Hence, it can be concluded that, Method 3, based on the variable power

reserve concept, is the promising solution for achieving the best tradeoff between the

fuel economy and driveability. Method 1 gives approximately the same result of FC

with a small decrease of APR compared to Method 2. Hence, a weight factor to penalize

the power reserve can result in a driveability level better than a constant power reserve

constraint.

The concept of variable power reserve, as a function of the vehicle speed and predefined

from various driving scenarios, makes the corresponding gear shift strategy independent

with the test drive cycles. Hence, the variable power reserve concept reveals itself to

be able to apply in realtime by a control approach, e.g. model predictive control [148],

to ensure a driveability satisfaction meanwhile still achieving a fuel economy benefit.
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Apparently, Methods 1 and 2, yielding solutions sensitive to the design parameters and

conservative to a drive cycle, are hard to implement in a realtime controller.

2.4 Stochastic Gear Shift Strategy

A gear shift strategy based on DP requires a knowledge of the whole drive cycle to

obtain a globally optimal solution, thus making it not a realtime solution. Meanwhile a

realtime implementable gear shift strategy can be achieved by utilizing Model Predictive

Control (MPC) or Stochastic Dynamic Programming [11]. The MPC-based algorithm

solves the optimal problem over a prediction horizon. Utilizing knowledge of the driving

profile over the prediction horizon, and applying the receding principle, the MPC-based

strategy is realtime implementable, but yielding a suboptimal solution. Meanwhile

SDP-based algorithm formulates and solves an infinite-horizon optimization problem

over a probabilistic distribution of the power demand obtained from many drive cycles

rather than a single drive cycle. This means that the SDP-based strategy is optimal

on an average sense, time-invariant and state variable feedback such that it can be

implemented in realtime.

The vehicle driveability can be addressed in a MPC-based gear shift strategy by utilizing

the variable power reserve concept (Method 3). Due to suboptimal characteristics, the

MPC-based strategy will result in a decrease of the driveability capability compared

to the DP-based gear shift strategy. Whereas, the SDP-based gear shift strategy is

optimized over many drive cycles on an average sense, which implies that the driveabil-

ity is intrinsically respected. To compare with Method 3 in terms of the driveability

improvement, details and results of the SDP-based gear shift problem are given in the

following sections.

2.4.1 Stochastic Modeling of Power Request

Markov model of power request dynamics

In real-life driving, the driver controls the vehicle speed by pressing the throttle and

brake pedals. In general, these command signals are interpreted as a power request

at the wheels to be satisfied by the powertrain. Hence, the power request, positive

or negative, is considered as an input to the powertrain controller. In this section,

a model of the power request, as a stochastic dynamic process based on the Markov

chain [70,82], is chosen to generate the power request. Assuming that, the power request

Preq is discretized to create a set,

Preq = {z1, z2, · · · , zNp}, (2.30)



38 2 Optimal Gear Shift Strategies for Conventional Vehicles

wherein Np approximates the actual continuum of values of the power request.

The vehicle speed is discretized into a finite number Nv of values, thus giving a set,

V = {v1, v2, · · · , vNv}.

The Markov chain defines a dynamics of the power request Preq by a transition proba-

bility matrix TM ∈ RNp×Np×Nv , whose elements are defined as,

tij,l = Prob
[
Preq(k + 1) = zj

∣∣∣Preq(k) = zi, v(k) = vl

]
with i, j = 1, 2, . . . , Np; l = 1, 2, . . . , Nv

(2.31)

where tij,l is the (i, j, l)th element of TM representing one-step transition probability

from the current states of Preq(k) and v(k) at current time step k to state Preq(k + 1)

at next time step k + 1.

Note that for a given power request, the vehicle longitudinal dynamics is deterministic.

Hence, specifying drive cycle characteristics is equivalent to specifying the transition

probability tij,l, which can be estimated from the known drive cycles or the past driv-

ing records. In this study, standard drive cycles are used to determine the transition

probability matrix TM. The maximum likelihood algorithm, a suitable candidate for

dealing with the discrete data, is used to derive TM.

Algorithm 2.1. Maximum likelihood estimation

1. Chose the drive cycles that represent for actual driving profiles, e.g. suburban,

urban, and highway, etc.

2. Sample the vehicle speed v(k), then calculate the corresponding power request at

current time step Preq(k), and at next time step Preq(k+1) by using the quasi-static

powertrain model.

3. Cluster v(k) in accordance with all elements of V to create the velocity cluster at

vl, and collecting the corresponding power request data.

4. For each velocity cluster vl, cluster the power request Preq(k) in accordance with

all elements of Preq to create the power request data at cluster zi, and collecting

the corresponding next power request Preq(k + 1).

5. Then, cluster the corresponding Preq(k+1) in accordance with all elements of Preq.

6. Define the transition probability by the maximum likelihood estimator, which

counts the observation data as,

tij,l =
nij,l
nil

if nil 6= 0,
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where nij,l is the number of occurrences of the transition from zi to zj at the

velocity cluster vl; nil is the total number of times that zi has occurred at the

velocity cluster vl. Apparently,

nil =

Np∑
j=1

nij,l and

Np∑
j=1

tij,l = 1.

It is worthwhile to mention that if the observation data are not rich enough to cover the

whole state space, nil may be zero for a specific case of the velocity cluster vl. There-

fore, a fuzzy smoothing algorithm [22] is used to estimate the corresponding transition

probabilities.

Algorithm 2.2. Fuzzy smoothing estimation

1. If denote the elements vl ∈ V , l = 1, 2, . . . , Nv as the velocity clusters. Then,

assume at a certain velocity cluster vl, there exists Nobs observations of the cor-

responding current and next power requests, obtained from the given drive cy-

cles. Denote a pair of observations of the power request as x = [xk, xk+1] ,
[Preq(k), Preq(k + 1)] giving,

xn , {x1, x2, . . . , xNobs}, with n = 1, 2, . . . , Nobs.

2. If denote the elements zi ∈ Preq, i = 1, 2, . . . , Np as the power request clusters.

Then, a membership function of any observed power request xk with respect to a

certain power request cluster zi is defined as,

mi(xk) =

{
Np∑
m=1

[
d(xk, zi)/d(xk, zm)

]1/(F−1)
}−1

,

where d(xk, zi) denotes the Euclidean distance between xk and zi; F is a suitable

chosen constant greater than one.

3. Use the membership function mi(xk), the smoothed transition probabilities of the

Markov chain model is estimated as,

tij,l =

∑Nobs

n=1

[
mi(x

n
k)mj(x

n
k+1)

]∑Nobs

n=1 mi(xnk)
, i, j = 1, 2, . . . , Np.

It is apparent that when F tends to one, the fuzzy smooth estimation approaches

the maximum likelihood estimation. Figure 2.11 shows an example of the estimated

transition probabilities at a velocity cluster vl = 80 [km/h]. The diagonally dominant

structure of the transition probabilities reveals a high correlation of the power request

separated by one time step. This can be explained that if the vehicle is experiencing

some power request level at the current time step, it’s likely to experience a similar

power request level at the next time step.
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Figure 2.11: Transition probability matrix at a quantized vehicle speed
80[km/h].

Define the stochastic power request

Given a Markov model of the power request, the inverse transform method [26] can

be used to define the actual vehicle power request evolution. Given a vehicle speed

clustered to vl and a current power request clustered to zi at time k, by generating

a positive random number urand with a uniform distribution, ranged [0, 1], the next

power request Preq(k + 1) can be defined as,

Preq(k + 1) =


z1, if 0 ≤ urand < ti1,l,
z2, if ti1,l ≤ urand < ti1,l + ti2,l,
· · ·

zj, if
∑j−1

q=1 tiq,l ≤ urand <
∑j

q=1 tiq,l.

(2.32)

2.4.2 Stochastic Gear Shift Algorithm

Gear shift problem formulation

Problem 2.3. Given the powertrain model and a Markov model of the power request

evolution, the objective is to define an optimal gear shift strategy u∗ = u∗g that maps the

observed states to control decisions to minimize the expected total fuel consumption over

an infinite horizon,

J = lim
N→inf

E
Preq

{
N−1∑
k=0

γk ṁf (k) ∆t

}
, (2.33)

subject to the constraints (2.6)-(2.9) and (2.31).
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The objective function consists of the instantaneous fuel consumption ṁf (k)∆t, accu-

mulated over time, discounted by a factor γ (0 < γ < 1), averaged over a stochastic

distribution of the power request. N is the horizon which approaches infinity for this

stochastic algorithm. E{. . .} denotes the expectation with respect to the considered

prediction model defined by the time-invariant Markov chain.

Applying the optimality principle of Bellman [11], the stochastic gear shift control prob-

lem is solved by a two-step algorithm, namely policy evaluation and policy improvement.

• Policy evaluation

In this policy, for each possible state vector value x, given a control policy u(x),

the cost-to-go J (x) is computed recursively as,

J s+1(x) = ṁf ∆t+ E
Preq

[
γ J s

(
f
(
x, u(x)

))]
∀x ∈ X. (2.34)

where s represents an iteration index; X is the set of admissible state value.

The recurrence relation is evaluated iteratively for all state vector values in the

discretized set of admissible states.

• Policy improvement

The optimality principle [11] indicates that an optimal control policy for the

stochastic gear shift control problem is also the control policy that minimizes

the cost-to-go function J (x) in (2.34). Hence, the optimal control policy u∗ = u∗g
for each state vector value x is defined as,

u∗(x) = arg min
u∈U(x)

{
ṁf ∆t+ E

Preq

[
γ J

(
f
(
x, u
))]}

∀x ∈ X, (2.35)

where U(x) is the set of admissible control value corresponding to the state value

x.

After both policies are completed, the optimal control policy is feedback to the policy

evaluation step, and then the entire procedure is repeated iteratively until the optimal

cost function converges. In this study, the discount factor is chosen as γ = 0.9; and the

terminate condition for the iteration process is set with ‖J s+1(x)− J s(x)‖∞ < 1%.

2.4.3 Simulation Results and Discussions

The gear shift strategy obtained from the stochastic control algorithm is a set of shift

maps. Each shift map, corresponding to each velocity cluster vl, generates the shift

points for the transmission based on the current gear position and the current power
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request. Therefore the SDP-based gear shift strategy can be directly implemented in

simulation or in realtime.

The stochastic gear shift problem is formulated and solved, subject to a probabilistic

distribution of the power request in an average sense. For the stochastic gear shift prob-

lem, the power request is considered as a dynamic process, represented by a probability

transition. Various drive cycles are used to construct the probability transition matrix

TM for the power request evolution. Therefore, the stochastic-based gear shift strategy

by default respects the power request dynamics, meaning that vehicle driveability is

taken into account. Therefore the diversity of driving scenarios in the drive cycles will

determine a driveability coverage level.

Table 2.4: Simulation results of the SDP method. The relative FC and APR
differences are obtained by comparing with Method 3. Rel. denotes the relative.

Drive cycle FC [g] APR [kJ]
Rel. FC Rel. APR

difference [%] difference[%]

NEDC 450.9 1.02 · 104 -1.5 -15.7
FTP75 700.2 1.35 · 104 -3.1 -30.1
LA92 715.8 1.10 · 104 1.3 -19.7

CADC-urban 285.1 0.46 · 104 6.3 -22.0
CADC-road 629.1 1.09 · 104 -2.1 -21.6

CADC-highway 1555.9 1.58 · 104 0.1 -5.4

Method 3 (see, Section 2.3) gives an optimal tradeoff between the fuel economy and

driveability. This method is based on the variable power reserve concept, which is

extracted from a statistical analysis of the power request over various drive cycles.

As analyzed, the stochastic gear shift strategy intrinsically respects the driveability.

Hence, it is necessary to compare the stochastic gear shift strategy with Method 3

for approaching the insight on the driveability aspect among the proposed gear shift

strategies.

To do so and to ensure a fair comparison, the standard drive cycles, utilized for building

the probability transition matrix of the SDP algorithm, are chosen the same as Method

3, which are ARB02, CADC, FTP75, Hurk, HWFET, JN1015, LA92, NEDC, NYCC,

and US06 (see, Appendix C). The stochastic gear shift strategy is tested on the repre-

sentative drive cycles (also the same as Method 3). Simulation results are displayed in

Table 2.4. Compared with the results of Method 3, the stochastic gear shift strategy

gives a better fuel economy on NEDC, FTP75 and CADC-road. Meanwhile on LA92,

CADC-urdan and CADC-highway it reveals a fuel deficiency. On average, the relative

FC difference of the stochastic method compared with Method 3 is 0.2%, which renders
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the two methods to be nearly equal on the fuel economy aspect. However, the nega-

tive relative APR differences on all the tested drive cycles mean that the SDP method

results in a less acceleration capability compared with Method 3. In conclusion, the

variable power reserve concept introduced in Method 3 offers the best way to improve

the fuel economy while still satisfying an acceptable driveability level.

2.5 Conclusions

In this chapter, the fuel economy potential of a conventional vehicle equipped with an

AMT is explored by a fuel-optimal gear shift strategy based on DP. Simulation results

over the standard drive cycles shows a substantial improvement of the fuel economy.

The tradeoff between the fuel economy and driveability with respect to an optimal gear

shift strategy is addressed systematically by three methods. In Method 1, the driveabil-

ity is considered by proposing an objective function consisting of the fuel consumption

and the weighted inverse of power reserve. In Method 2, the driveability is respected by

imposing an inequality constraint on a constant power reserve level. And in Method 3,

the variable power reserve concept, varied with the vehicle speed, is utilized to respect

an acceptable driveability level. Simulation results show that Methods 1 and 2 improve

the driveability at a cost of a fuel economy reduction in a linear manner. Meanwhile,

Method 3 achieves an optimal tradeoff between the fuel economy and driveability com-

pared with Methods 1 and 2. In other words, if applying the concept of variable power

reserve in the design of a fuel-optimal gear shift strategy, the fuel economy can be

improved without sacrificing the vehicle driveability.

Furthermore, the gear shift strategy based on SDP is capable of handling the vehicle

driveability meanwhile improving the fuel economy on an average sense. However, it

is not able to compete with the variable power reserve concept proposed in Method 3

for an acceleration capability. Conversely, the SDP method is realtime implementable,

which is not held for Method 3. Nonetheless, the variable power reserve concept can

be applied in a realtime gear shift approach, e.g. a predictive gear shift strategy, or an

optimization-based gear shift map extraction.

The design framework proposed in this study can be applied to other powertrain systems

equipped with discrete ratio transmissions to address the driveability in an optimal gear

shift strategy.



44



Chapter 3

Optimal Gear Shift Strategies for
Hybrid Electric Vehicles1

Abstract - This chapter proposes a control algorithm for the Energy Management Strategy
to explore the potential fuel saving of Hybrid Electric Vehicles (HEVs) equipped with an
Automated Manual Transmission. The control algorithm is developed based on a combination
of Dynamic Programming (DP) and Pontryagin’s Minimum Principle (PMP) to optimally
control the discrete gear shift command, in addition to the continuous power split between
the internal combustion engine and electric machine. The proposed algorithm outperforms
the DP algorithm in terms of computational efficiency without loss of accuracy. Simulation
results for the DP-PMP algorithm show that by further optimizing the gear shift strategy,
additional fuel savings of 20.3% and 31.6% can be reached compared to the prescribed gear
shift strategies on the drive cycles NEDC and FTP75, respectively.
Furthermore, with the start-stop functionality available, it is shown that the two-point bound-
ary value problem following from the PMP can not be solved with sufficient accuracy without
loss of optimality. This means that the finding of a constant value for the Lagrange multiplier
while satisfying the battery state-of-energy at the terminal time is not always guaranteed.
Therefore an alternative approach of state-of-energy feedback control to adapt the Lagrange
multiplier is adopted. The obtained results are very close to the globally optimal solution of
the DP algorithm. Simulation results show the relative fuel savings can be up to 26.8% and
36.4% compared to the prescribed gear shift strategies on NEDC and FTP75, respectively.

3.1 Introduction

Design of the Energy Management Strategies (EMSs) for Hybrid Electric Vehicles

(HEVs) to improve vehicle performance, such as fuel economy, driveability, comfort

and emissions has received considerable attentions in literature [126]. Regardless the

1This chapter has been accepted for a journal publication in the form of a paper as [98]: V. Ngo,
T. Hofman, M. Steinbuch, A. Serrarens. Optimal Control of Gear Shift Command for Hybrid Electric
Vehicles. IEEE Transactions on Vehicular Technology, vol. 61, issue 8, 2012.
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powertrain topology, the EMS controls the power flow of the powertrain system to

satisfy the driver’s power request while minimizing a certain cost function over a

drive cycle under system constraints. For example, the control strategy aims at op-

timally choosing the power split between the internal combustion engine and electric

machine in order to minimize fuel consumption. Many control solutions have been

proposed for the EMSs in literature, such as heuristic controllers based on predefined

rules, fuzzy logics, neural networks; optimal controllers based on deterministic Dy-

namic Programming (DP) or optimal control, such as Pontryagin’s Minimum Principle

(PMP) [3, 50,51,63,67,73,118,125–127,134].

For HEVs equipped with discrete ratio transmissions, such as an Automated Manual

Transmission (AMT), the instantaneous operating points of the hybrid driveline are not

only defined by the power split but also defined by the gear position of the transmission.

Therefore, a control algorithm including an optimized gear shift strategy would result

in a fuel economy improvement. In [107], a heuristic gear shift strategy is proposed

by selecting the highest possible gear position capable of delivering the required power

from the engine given a vehicle speed. In [83], the authors use DP to derive optimal

trajectories of the power split and gear shift sequence to minimize the weighted cost

function of fuel consumption and pollution emissions for a hybrid electric truck. In [25],

the authors utilize optimal control to derive the combined optimal torque distribution

and gear position to minimize fuel consumption for a parallel HEV. In this way, the

optimal solution can be computed very fast. However, the control algorithm allows the

transmission to freely shift within the admissible set of gear positions. This shift strategy

is not realistic and unreasonable in terms of the vehicle driveability. The authors in

[156] propose an EMS for a parallel HEV to optimize the torque distribution and gear

shift separately. Given the optimal torque distribution, pre-defined for minimizing the

powertrain equivalent specific fuel consumption, the gear shift strategy is designed to

maximize the powertrain efficiency. By doing so, the authors acknowledge the designed

EMS to be suboptimal despite a claim of significant fuel economy improvement.

Nevertheless, none of the mentioned research papers has discussed a systematic method

to optimize the gear shift strategy for HEVs in order to address its potential fuel saving

compared to the case of a standard gear shift strategy. Moreover, the constraints on the

gear shift command, affecting to the vehicle driveability [98], are not taken into account

in synthesizing the control algorithm. Another issue related to the shift strategy is

how fast such a control algorithm can compute the optimal solution when comparing

with the DP. Therefore, in this study, a framework of designing the optimal control

algorithm for the gear shift problem and analyzing its contribution to the fuel economy

of a parallel HEV is presented. Firstly, DP is used to obtain the globally optimal

solution of the gear shift position and power split despite the fact that it requires a

heavy computation. Secondly, a control algorithm based on a combination of DP and

PMP is proposed to achieve fast computation meanwhile attaining the globally optimal
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solution. This so-called DP-PMP control algorithm is a novel method for the gear shift

problem of HEVs equipped with discrete ratio transmissions. It is seen as a suitable

alternative applied for a realtime implementable control algorithm, such as a model

predictive control algorithm.

Furthermore, HEVs can utilize a start-stop functionality to stop and re-start the engine

during the driving mission. This functionality enables further fuel consumption reduc-

tion by turning off the engine when needed. When the drive power request is beyond

the electric machine capacity, the engine is assumed to be re-started immediately and

supplies propulsive power to the wheels. Incorporating the start-stop functionality into

the synthesis of an optimal control algorithm can be found in published studies, for

example see [3, 63, 67, 118, 134]. The PMP method is commonly chosen for the control

algorithm to achieve the global optimal solution with fast computation. However, in the

mentioned research works, there are two points which have not been addressed fully and

sufficiently: i) the gear shift problem is not taken into account; ii) the constant Lagrange

multiplier (or the costate or the equivalent factor between the fuel energy cost and the

battery energy cost) is assumed to exist which is not always correct. Therefore, the gear

shift control problem will be extended to the hybrid powertrain including the start-stop

functionality to explore the potential fuel saving. The DP-PMP control algorithm is

still applied to achieve the solution at fast computing manner. The followed two-point

boundary value problem from PMP will be addressed explicitly in terms of the start-

stop functionality (through the engine on-off state variable). Consequently, the design

rule for finding the (constant) Lagrange multiplier to satisfy the battery state-of-energy

at the terminal time will be achieved.

This chapter is organized as follows. The powertrain modeling and dynamics are given

in Section 3.2. The optimal gear shift strategy for the HEV without the start-stop

functionality is designed in Section 3.3. Meanwhile the optimal gear shift strategy for

the HEV with the start-stop functionality is proposed in Section 3.4. Simulation results

and discussions are given in Section 3.5. And finally, conclusions are given in Section

3.6.

3.2 Powertrain Modeling and Dynamics

The hybrid powertrain topology is shown in Figure 3.1. The main parameters of the

powertrain components are given in Table 3.1. Aiming at deriving an EMS, the quasi-

static models of the powertrain components are used and simulated with a fixed time

step of one second. The system dynamics faster than 1Hz are ignored [42]. The

clutch system is considered as a discrete switch to connect and disconnect the engine

immediately to and from the driveline. Its dynamics and limited power losses during a

gear shift or an engine start are ignored. Notice of the slippage loss of clutch at vehicle
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launch is also not taken into account. However, analysis of the effect of these losses to

the control strategy can be found in Chapter 6.

Figure 3.1: A parallel hybrid electric vehicle topology, (AMT: Automated Man-
ual Transmission; M: Electric machine).

Table 3.1: Prototype HEV specifications.

Item Description/Quantity

Engine
type: diesel,
maximum torque of 200Nm,
maximum power of 68kW.

Electric machine
maximum torque of 40Nm,
maximum power of 6kW.

Battery Lithium-ion, capacity of 6Ah, 110V.

Transmission
6-speed automated manual transmission,
rg = [3.817, 2.053, 1.302, 0.959, 0.744, 0.614].

Vehicle mass 1320kg.

3.2.1 Powertrain Model

• Engine: the engine fuel consumption model used in this study is based on the

static fuel rate map as shown in Figure 3.2. For a certain engine speed ωe(k), the

fuel mass flow ṁf (k) is approximated as an affine piece-wise second order function

of the power as expressed in (3.1),

ṁf (k) ≈ a0(k)P 2
e (k) + a1(k)Pe(k) + a2(k). (3.1)

in which the coefficients a0(k), a1(k) and a2(k) are functions of the engine speed.

If assume during braking, the engine is switched off and decoupled from the drive-



3.2 Powertrain Modeling and Dynamics 49

line, then the engine braking is neglected. Therefore, the constraints on the engine

speed ωe(k) power Pe(k) are as follows,

ωe,min ≤ ωe(k) ≤ ωe,max, (3.2a)

0 ≤ Pe(k) ≤ Pe,max
(
ωe(k)

)
. (3.2b)
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Figure 3.2: Engine fuel consumption model.

• Electric machine: the machine efficiency η is assumed to be constant under

normal operating state in both normal bidirectional conversion. Therefore, the

power flow in motoring and generating modes is expressed as,

Pm(k) = ηPelec(k) in motoring, (3.3a)

Pm(k) =
1

η
Pelec(k) in generating. (3.3b)

The constraints on the speed ωm(k) and power Pm(k) are,

0 ≤ ωm(k) ≤ ωm,max, (3.4a)

Pm,min
(
ωm(k)

)
≤ Pm(k) ≤ Pm,max

(
ωm(k)

)
. (3.4b)

• Battery system: in this study, the battery energy capacity is chosen properly

such that its state of energy never exceeds its bounds for increasing lifetime and

reliable operation. This means that es(k) is assumed to be in a nominal range

[Es,min, Es,max]. In addition, the battery operating temperature is assumed to

be constant under tight control. Therefore, a center battery energy flow depicted

in Figure 3.3 is chosen to model the nominal battery efficiency. The battery

electrical power Pelec(k) is approximated as a quadratic function of the battery

chemical power Ps(k),

Pelec(k) ≈ b0P
2
s (k) + b1Ps(k) + b2. (3.5)

The constraints imposing on the battery system,

Ps,min ≤ Ps(k) ≤ Ps,max. (3.6)
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Figure 3.3: Battery efficiency model.

• Automated Manual Transmission (AMT): the transmission efficiency η is

assumed to be constant for all gears, the speed and torque relations in both side

of transmission when the clutch closed are,

ωe(k) = ωg(k) = ωw(k)rg(k), (3.7a)

Tw(k) = η rg(k) Tg(k) = η rg(k) Te(k). (3.7b)

wherein: ωw(k) is the wheel rotational speed; Tw(k) is the drive torque at the

wheels; Tg(k) is the transmission input torque; rg(k) denotes the gear ratio. The

final reduction gear ratio is merged into the transmission ratio for a simplification.

The constraints on the gear position of the 6-speed transmission are,

1 ≤ ng(k) ≤ 6. (3.8)

• Power flow model: the power flow equilibrium at the transmission input of the

powertrain is expressed as,

Pe(k) = Pg(k) + Pm(k). (3.9)

3.2.2 Powertrain System Dynamics

The powertrain system consists of the continuous battery state-of-energy es(k), and the

discrete gear position ng(k). Their dynamics are governed by the two corresponding

control variables Ps(k) and ug(k) as,

es(k + 1) = es(k) + Ps(k)∆t, (3.10)

ng(k + 1) = ng(k) + ug(k). (3.11)

Apparently, due to co-existence of the continuous and discrete variables, the powertrain

system is a hybrid dynamical system as well.

Vehicle longitudinal dynamics: the longitudinal motion of the vehicle in discrete

time domain is given by,

ωw(k + 1) = ωw(k) +
1

Jv,eq

(
Tw(k)− Fload(k)Rw

)
∆t, (3.12)
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where Fload is the resistance loads due to rolling and aerodynamic resistances; Jv,eq is

an equivalent vehicle inertia at the wheel,

Jv,eq =
(
(Je + Jc + Jp)r

2
g + Js

)
r2
d +mvR

2
w,

Fload = crmvg cosα +mvg sinα +
1

2
ρaAfcdv

2,

and mv is the vehicle weight; Rw is the wheel radius; Je is the engine inertia; Jc is the

clutch inertia; Jp is the transmission primary inertia; Js is the transmission secondary

inertia; ρa is the air density; Af is the frontal area of vehicle; cd is the aerodynamic

drag coefficient; cr is the rolling friction coefficient; g is the gravity coefficient; v is the

vehicle speed; α is the slope of the road.

3.3 Optimal Gear Shift Strategy without Start-Stop
Functionality

Initially, the start-stop functionality is assumed to be not available. The operating

points of the hybrid powertrain are governed by the power split between the engine

and electric machine, and the gear position. The power split is alternatively controlled

by the continuous engine power which varies in the boundary interval determined by

(3.2b), (3.4b), (3.6) and (3.9). Detail of the power split control is given in Section 3.3.2.

The gear position is controlled by the discrete gear shift command through the gear

shift dynamics expressed by (3.11). The discrete gear shift command ug(k) belongs to

the set {ug,min, · · · ,−1, 0, 1, · · · , ug,max}. Under the constraints (3.11) and (3.8), for a

6-speed AMT, [ug,min, ug,max] = [−5, 5].

From a control point of view, the bounds ug,min and ug,max have effect on the optimality.

However, defining the optimum bounds for the gear shift command ug(k) is out of the

scope of this study. For reasons of an acceptable driveability, the gear shift command

is chosen as,

ug(k) =


−1, downshift,

0, sustaining,

1, upshift,

(3.13)

to avoid a large variation of the engine speed under a certain shift at a certain time step

k. One gear upshift (ug(k) = 1) or downshift (ug(k) = −1) for each time step of one

second is reasonable, because the average shift time for an AMT is typically less than

one second.

Note that the gear shift event will lead to a change of the engine torque due to a changed

engine speed, which may cost additional fuel affecting the optimal control solution. In
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this study, this phenomenon is ignored as well. This effect will be investigated in

Chapter 6.

The optimization problem is formulated as follows.

Problem 3.1. Given a priori drive cycle v(k) with a time length of N , implying that

the vehicle longitudinal dynamics (3.12) is deterministic, find an optimal control law

u∗(k) =
[
P ∗s (k), u∗g(k)

]
, that minimize the cost function of fuel consumption over the

entire drive cycle, defined as,

J =
N−1∑
k=0

ṁf

(
Pe(k), ωe(k), k

)
∆t , (3.14)

subject to the constraints (3.12) - (3.9) and

es(N) = es(0) , (3.15)

ng(N) = ng(0) . (3.16)

In the next section, two optimization solvers for Problem 3.1 will be presented. The

first one is based on DP. The second one is based on a combination of DP and PMP.

3.3.1 Dynamic Programming

DP [11, 14] is well known as a powerful numerical method on optimal state feedback

control to solve a non-linear, non-convex optimization problem with constraints while

obtaining a globally optimal time-variant solution. To apply DP to Problem 3.1, we

need,

• to grid the state variables x(k) =
[
es(k), ng(k)

]
;

• to grid the corresponding control variables u(k) =
[
Ps(k), ug(k)

]
;

• to calculate the instantaneous cost ṁf

(
Pe(k), ωe(k), k

)
∆t for the whole drive cycle;

The states x(k) ∈ X(k), the control inputs u(k) ∈ U(k) are discrete variables both in

time (index k) and value. Exactly, the subset U(k) depends on the states x(k), i.e.

u(k) ∈ U
(
x(k)

)
. Then, the optimal cost-to-go function is defined backwards as the

following steps.

Step k = N :

J ∗N = 0; (3.17)
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Step k, 0 ≤ k < N :

J ∗k
(
x(k)

)
= min

u(k)∈U
(
x(k)
)[ṁf

(
Pe(k), ωe(k), k

)
∆t+ J ∗k+1

(
x(k + 1)

)]
; (3.18)

Solving the above procedure backward until k = 0, the optimal solution u∗(k) is obtained

correspondingly with a specific end constraint on x(N).

3.3.2 Dynamic Programming-Pontryagin’s Minimum Principle

It is noticed that solving Problem 3.1 by discretizing the continuous variables, se(k)

and Ps(k), and using deterministic DP can lead to a computational burden due to the

‘curse of dimensionality’. Applying optimal control theory (PMP method) to Problem

3.1 is possible if a continuously variable ratio model for the AMT can be obtained, such

that the cost function is differentiable with respect to the transmission ratio. Then, the

continuous optimal solution will be derived in a fast computational manner. However,

rounding off the continuous optimal ratio to the corresponding gear ratio for the AMT

will definitely lead to a sub-optimality. Furthermore, respecting the constraints on the

ratio variation speed is another factor affecting the rounded-off solution. Apparently,

the tradeoff between optimality, accuracy and the computational efficiency is seen as

one of the main challenges for the design of a gear shift control algorithm for HEVs.

Respecting the discrete nature of ratio of the AMT, and taking into account the ad-

vantages of the DP and PMP, a control algorithm based on a combination of DP and

PMP is proposed for the gear shift problem of HEVs. The globally optimal solutions

of P ∗s (k) (or P ∗e (k) alternatively) and u∗g(k) are obtained and the computational time

is significantly reduced. The control method consists of: deriving the optimal engine

power based on the PMP in the inner loop, meanwhile the gear position dynamics,

under the mixed-constraints (3.8) and (3.13) is optimally controlled by using DP in the

outer loop. The structure of the DP-PMP control algorithm is illustrated in Figure 3.4.

The optimal control problem is formulated and solved in the form of a power flow based

model for consistency. This algorithm is presented next.

PMP for an optimal power split

Assume at a certain time step k, given the vehicle speed v(k), the required power Pw(k)

at the wheels is computed from (3.12). With a given admissible gear position ng(k),

assume that the constraints on engine speed and electric machine speed, (3.2a) and

(3.4a), are satisfied and Pw(k) can be produced by the powertrain, i.e., by both the

engine and electric machine. The lower and upper bounds of the electric machine power

and battery power can be incorporated with the bounds of engine power to create the
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Figure 3.4: The DP-PMP control algorithm.

new bounds for the control variable Pe(k),

P
′

e,min(k) ≤ Pe(k) ≤ P
′

e,max(k) . (3.19)

The new lower bound and upper bound of the engine power are defined as follows,

P
′

e,min(k) = max{0; Pg(k) + PEM,min(k)} , (3.20)

P
′

e,max(k) = min{Pe,max(k); Pg(k) + PEM,max(k)} , (3.21)

wherein:

PEM,min(k) = max
{
Pm,min(k); η

(
b0P

2
s,min + b1Ps,min + b2

)}
, (3.22)

PEM,max(k) = min
{
ηPm,max(k);

(
b0P

2
s,max + b1Ps,max + b2

)}
. (3.23)

For compact notation, let us denote the engine fuel rate Fr
(
Pe(k), k

)
:=

ṁf

(
Pe(k), ωe(k), k

)
and the chemical battery power Ps

(
Pe(k), k

)
:= Ps(k) as functions

of the engine power.

The optimal control problem is reformulated as follows.

Problem 3.2. Given a prior drive cycle with a time length N , with a given admissible

gear sequence ng(k) along the drive cycle, find an optimal engine power P ∗e (k) that

minimizes the cost function J1 of fuel consumption over the entire drive cycle, defined
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as,

J1 =
N−1∑
k=0

Fr
(
Pe(k), k

)
∆t, (3.24)

subject to constraints:

es(k + 1) = es(k) + Ps
(
Pe(k), k

)
∆t,

P
′

e,min(k) ≤ Pe(k) ≤ P
′

e,max(k).

In this study, the upper and lower bounds of state variable es(k) are ignored by assuming

that the battery capacity is chosen properly such that it never exceeds its bounds. The

Lagrange multiplier is used to take into account the dynamics of battery. This leads to

the Hamiltonian function (3.25) at each time step needs to be minimized, see Appendix

A for the proof.

H
(
Pe(k), λopt, k

)
=
[

Fr
(
Pe(k), k

)
+ λoptPs

(
Pe(k), k

)]
∆t. (3.25)

From the model approximations of engine fuel rate and battery efficiency model,

Fr
(
Pe(k), k

)
and Ps

(
Pe(k), k

)
can be approximated as affine piecewise second-order

functions of engine power at a certain engine speed. Therefore, if the constant opti-

mal Lagrange multiplier λopt is known, the globally instantaneous optimal engine power

P ∗e (k) can be obtained analytically. Therefore, the globally instantaneous equivalent

optimal cost value is defined correspondingly by

Ceq(k) =
[

Fr
(
P ∗e (k), k

)
+ λoptPs

(
P ∗e (k), k

)]
. (3.26)

However, it should be noticed that for the gear shift control problem with constraints

on the battery state-of-energy es(k), a derivation of the optimal solution can be found

in Appendix B. It is observed that when the battery state-of-energy reaches its bounds,

then the Lagrange multiplier changes its value. Between the two consecutive points of

reaching the bounds of the state of energy, the Lagrange multiplier is kept constant.

DP for an optimal gear shift strategy

The PMP proposed in Section 3.3.2 solves only the globally optimal power split along a

drive cycle with any certain gear shift sequence by choosing a proper Lagrange multiplier

λopt, satisfying the constraint (3.15) on the battery energy at the terminal time. This

means that the optimal solution of the power split is independent with the gear position

if λopt is known in advance. Therefore the gear shift sequence can be optimized along

the drive cycle to further improve the fuel economy. Due to the characteristic of discrete

ratio of the AMT, a DP-based control algorithm applied to define the optimal gear shift

strategy is presented as follows.
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Problem 3.3. Given a drive cycle with a time length N , at a certain time step k with

the vehicle speed v(k) and a certain gear position ng(k); suppose that the instantaneous

optimal engine power P ∗e (k) and the instantaneous equivalent optimal cost value Ceq(k)

are obtained by solving Problem 3.2; the control problem is to find an optimal gear shift

command u∗g(k) resulting in a next optimal gear position n∗g(k + 1) that minimizes the

cost function J2 described by,

J2 =
N−1∑
k=0

Ceq(k) =
N−1∑
k=0

[
Fr
(
P ∗e (k), k

)
+ λoptPs

(
P ∗e (k), k

)]
∆t, (3.27)

subject to constraints (3.11), (3.8), (3.13) and (3.16).

The DP algorithm is implemented in the same manner as presented in Section 3.3.1.

The state and control variables are the gear position ng(k) and gear shift command

ug(k), respectively. The instantaneous optimal cost value Ceq(k) is calculated for the

whole drive cycle. Then, the optimal cost-to-go function is defined backwards as the

following steps.

Step k = N :

J ∗2,N = 0; (3.28)

Step k, 0 ≤ k < N :

J ∗2,k
(
ng(k)

)
= min

ug(k)

[
Ceq(k) + J ∗2,k+1

(
ng(k + 1)

)]
; (3.29)

Solving the above procedure backwards until k = 0, the optimal solution u∗g(k) is

obtained correspondingly with a predefined end constraint on ng(N).

The end constraint on battery state-of-energy

The end constraint (3.15) on the battery energy should be respected when finishing the

drive cycle to ensure a fair comparison of fuel economy. This leads to a choice of λopt
resulted from the two-point boundary value problem of the optimal control problem.

Hereinafter, the normalized battery state-of-energy, denoted as SOE(k)

SOE(k) = es(k)/Es,cap,

is chosen to represent the current battery state-of-energy relative to the battery energy

capacity Es,cap. A sensitivity study of the normalized battery state-of-energy at the

terminal time SOE(N) with respect to the Lagrange multiplier λ over the drive cycle

NEDC (see Appendix C) is shown in Figure 3.5. SOE(0) = 0.5 is chosen for this study.
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Figure 3.5: SOE(N) vs. λ of the HEV without start-stop functionality.

We can see that SOE(N) monotonously decreases with λ. At λ > λopt, the powertrain

tends to use more electrical power that leads to a battery discharge. Vice versa, at

λ < λopt, the vehicle tends to generate electrical power that leads to a battery charge.

Therefore a search method (bisection search method) is utilized in this study to find the

optimal Lagrange multiplier λopt to satisfy the end constraint (3.15) at SOE(N) = 0.5.

The search condition is stopped at |∆SOE| = |SOE(N) − SOE(0)| < ξ with ξ is a

predefined positive small number.

3.4 Optimal Gear Shift Strategy with Start-Stop Func-
tionality

One of the advantages of HEVs is the availability of the start-stop functionality to

further reduce the fuel consumption by shutting down the engine whenever feasible.

The start-stop functionality describes the engine on-off state by a state variable se(k),

se(k) =

{
1, engine on,

0, engine off.
(3.30)

with the state dynamics and the constraints on the control variable are correspondingly

given by,

se(k + 1) = se(k) + use(k), (3.31)

use(k) =

{
[0, 1] if se(k) = 0,

[−1, 0] if se(k) = 1.
(3.32)

When the engine is on, the fuel rate at a certain engine speed is defined by (3.1) and

the engine power is larger than zero. When engine is off, the fuel rate is zero and the

engine power is zero. Therefore the fuel rate model of the engine at a certain engine

speed ωe(k) is expressed as

ṁf

(
Pe(k), k

)
=

{
a0P

2
e (k) + a1Pe(k) + a2, if se(k) = 1,

0, if se(k) = 0,
(3.33)
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Figure 3.6: Cost functional L(Pe)
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Figure 3.7: SOE(N) vs. λ of the HEV with start-stop functionality.

or equivalently

ṁf

(
Pe(k), k

)
=

{
a0P

2
e (k) + a1Pe(k) + a2, if 0 < Pe(k) ≤ Pe,max(k),

0, if Pe(k) = 0,
(3.34)

which clearly shows that there is a discontinuous point of fuel rate model at Pe(k) = 0.

3.4.1 Dynamic Programming

Designing the EMS to optimize the gear shift command for the HEV with the start-

stop functionality can be done by using the DP method despite the fact that intensively

computational demand is required due to the presence of one more state variable se(k).

The dynamic system consists of three state variables, x(k) =
[
se(k), es(k), ng(k)

]
,

and three corresponding control variables u(k) =
[
use(k), Ps(k), ug(k)

]
. The same

procedure as in Section 3.3.1 is used to implement the DP-based control algorithm in

simulation.

3.4.2 Dynamic Programming-Pontryagin’s Minimum Principle

The computational burden due to the curse of dimensionality of DP can be reduced

significantly by using the DP-PMP control algorithm as presented in Section 3.3.2.

Utilizing the PMP method in designing the EMS is followed by solving the two-point
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boundary value problem to find an initial value of the Lagrange multiplier such that the

end constraint of the battery state of energy is respected. This issue is analyzed next.

At a certain time step k, assuming that the power demand from the wheels is Pw,

then the admissible range of engine power can be defined as 0 ≤ Pe ≤ Pe,max by using

(3.20)-(3.21). Let L
(
Pe
)

denote the augmented Lagrange cost functional as

L
(
Pe
)

=

{
Fr
(
Pe
)

+ λPs
(
Pe
)

if 0 < Pe ≤ Pe,max,

λPs
(
Pe
)

if Pe = 0,
(3.35)

which is discontinuous at Pe = 0 due to the characteristic of fuel rate model as described

by (3.34). Apparently, L
(
Pe
)

is non-differentiable at Pe = 0. However, the PMP method

is still applicable to define the global optimal solution regardless the discontinuity of

the cost functional. Figure 3.6 gives a demonstration for the augmented cost functional

L
(
Pe
)

at a certain λ. There are two local minima for the cost functional L
(
Pe
)
: one is

at Pe,min1 = 0 and the other is assumed at Pe,min2 ∈ (0, Pe,max]. The minimum one is

chosen by comparing the L
(
Pe,min1

)
and L

(
Pe,min2

)
. It can be either at Pe,min1 = 0 or

at Pe,min2 such that the augmented Lagrange cost functional is global minimum.

Due to the discontinuous characteristic, the optimal solution depends on the value of

Lagrange multiplier λ. There exists a switching point of Lagrange multiplier denoted

as λs whereby L
(
Pe,min1

)
= L

(
Pe,min2

)
occurs. In other words, such a λs does not exist

with respect to the optimal solution. Therefore, for a variation of λ around the point

λs, there is a jump in optimal solution of Pe by an amount of Pe,min2 − Pe,min1, thus

Pe,min2s. As a result, the same consequence holds for the optimal solution of the battery

power Ps which yields a jump in the normalized battery energy SOE.

Figure 3.7 shows the sensitivity of the normalized battery state-of-energy at the terminal

time SOE(N) with respect to the λ over the NEDC. The SOE(N) is discontinuous at

λs. Therefore, a constant optimal Lagrange multiplier λopt does not exist if the end

constraint on the normalized battery state-of-energy SOE(N) = 0.5 is required at the

terminal time.

The DP-PMP control algorithm is used in the same manner as described in Section

3.3.2 for the gear shift control problem. The PMP is used in the inner loop to define

the instantaneous optimal power split. The DP is used in the outer loop to define the

optimal gear position and the engine on-off state from the beginning until the end of

the drive cycle. Due to the non-existence of a constant Lagrange multiplier, to respect

the end constraint on battery state-of-energy (3.15), the costate λ(k) is controlled by

using an integral regulator (I controller) as in (3.36). This leads to the fact that the

obtained solution is not globally optimal.

λ(k + 1) = λ(k) +KI

(
es(k)− es(0)

)
. (3.36)
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Figure 3.8: NEDC cycle (top) and a prescribed gear shift schedule (bottom).
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Figure 3.9: Test 1: DP algorithm for only the power split optimization.

3.5.1 Baseline Vehicles

The drive cycle NEDC is chosen for simulation, see Figure 3.8. This drive cycle is a

standardized emission test cycle in Europe. There is a prescribed gear shift schedule

accompanied along with this cycle to signal the gear shift for vehicles with manual

transmission [42].
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Figure 3.10: Test 2: DP algorithm for the power split and gear shift optimiza-
tion.
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Figure 3.11: Test 3: DP-PMP algorithm for the power split and gear shift
optimization.

One of the purposes of this study is to evaluate the contribution of the gear shift strategy

to a fuel economy improvement of HEVs. Therefore, two baseline vehicles are defined:

1) a baseline-conventional vehicle with the same parameters of the hybrid vehicle except

for the secondary power source; 2) a baseline-HEV is simulated whereby the EMS is

designed by DP to optimize only the power split. The prescribed gear shift schedule
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Figure 3.12: Comparison of Tests 2 and 3.
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Figure 3.13: Test 4: DP algorithm for the power split, gear shift and start-stop
functionality optimization.

(accompanied along with drive cycle) is used to shift gears in both baseline vehicles. The

start-stop functionality is assumed to be not available for the baseline-HEV. This is only

theoretical because the start-stop functionality is always available in HEVs. Simulation

results of the baseline-HEV are shown in Figure 3.9. The battery state-of-energy at

the end of drive cycle satisfies its end constraint. The fuel economy improvement is of

12.2% compared to the baseline-conventional vehicle, see Table 3.2.
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Figure 3.14: Test 5: DP-PMP algorithm for the power split, gear shift and
start-stop functionality optimization.
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Figure 3.15: λ(k) of the DP-PMP algorithm for Test 5.

3.5.2 HEV without the Start-Stop Functionality

Simulation results of two algorithms, the DP and DP-PMP, are illustrated in Figures

3.10 and 3.11, respectively. The gear shift patterns of both approaches are totally

different from the prescribed gear shift schedule. The proposed control algorithms

allow the vehicle to shift to higher gear and earlier which contribute to fuel economy

improvement. Figure 3.12 shows a comparison of the gear position and the battery

state-of-energy of both approaches. The obtained optimal solutions are almost the

same. The state of energy in both cases satisfies the end constraint to ensure the fair

comparisons of fuel economy.

From Table 3.2, we see that fuel economy for both approaches are improved up to 30%

relatively to the case of the baseline conventional vehicle. By optimally shifting the gear,

potential fuel savings can be obtained up to 20.3% compared to the case of baseline-

HEV. There is a small difference in the fuel economy between these two methods. This
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is due to the numerical errors of gridding the control variables in the DP algorithm.

Meanwhile, the DP-PMP algorithm improves the computation efficiency significantly

by a factor of 171 compared with the DP algorithm.

It appears that an optimal gear shift strategy for the hybrid vehicle can improve the

fuel economy substantially, up to 20.3% and 30% compared to the baseline-HEV and

baseline conventional vehicle, respectively. The optimal gear shift strategy owns its fuel

efficiency to: i) much motor assist during acceleration, and ii) lowering the engine speed

during constant speed phase. Furthermore, it should be emphasized that the baseline

gear shift strategy (the prescribed gear shift schedule) is less efficient due to its late-

upshift strategy. During acceleration or cruising (constant speed), the optimal gear shift

strategy triggers the upshift to occur earlier, more frequent and to higher values, which

will allow the engine to operate at low speed region for more fuel efficient. Another

issue contributing to the significant values of fuel economy improvement is a chosen

minimum engine speed. In this study, the minimum engine speed is set at 800[rpm] to

provide theoretical value of fuel saving.

In real-life driving, the minimum engine speed for passenger cars during driving can be

somewhere between 800[rpm]-1200[rpm], which will result in a less fuel saving compared

to the obtained theoretical value. For example, in previous experimental research work

for an AMT conventional vehicle [99], it showed that 11.2% fuel economy improvement

on the ECE cycle (urban part of NEDC) can be realized by using an optimized shifting

strategy. The 11.2% fuel economy improvement is compared with the baseline gear shift

strategy (the prescribed gear shift schedule).

Table 3.2: Comparison of simulation results on NEDC.

Test Algorithms
Fuel Improvement Time
[g] [%] [s]2

0 Baseline-conventional vehicle 468.7 - 1

1
Baseline-HEV: optimizing only the
power split by DP algorithm

411.7 12.2 - 460

2
HEV: optimizing the power split and
gear shift by DP algorithm

328.0 30.0 20.3 1540

3
HEV: optimizing the power split and
gear shift by DP-PMP algorithm

328.1 30.0 20.3 9

4
HEV: optimizing the power split, gear
shift and start-stop functionality by DP
algorithm

300.2 35.9 27.1 3964

5
HEV: optimizing the power split, gear
shift and start-stop functionality by
DP-PMP algorithm

301.3 35.7 26.8 9
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3.5.3 HEV with the Start-Stop Functionality

Figure 3.13 depicts simulation results of the HEV with start-stop functionality when

using the DP algorithm. The start-stop signal indicates the engine is allowed to turn

off during the drive cycle to save fuel. By optimizing further the gear shift, the fuel

economy can be improved: up to 35.9% relative to the baseline conventional vehicle, up

to 27.1% relative to the baseline hybrid vehicle. The battery state-of-energy is different

with that of the hybrid powertrain without start-stop functionality.

Simulation results of the DP-PMP algorithm are shown in Figure 3.14. Despite the fact

of suboptimal method, it still yields the very close results to the case of DP algorithm.

Fuel economy can improved up to 35.7%. However, computational efficiency is reduced

drastically by the factor of 440 which brings realtime implementation of this control

method into a realistic viewpoint.

The Lagrange multiplier λ(k) regulated by a state-feedback controller is depicted in

Figure 3.15. It is observed that when the SOE(k) tends to deplete from the nominal

value (the initial value), the I controller will be more active to decrease the Lagrange

multiplier to enhance charging the battery, which finally results in meeting the battery

end constraint.

Table 3.3: Comparison of simulation results on FTP75

Test Algorithms
Fuel Improvement Time
[g] [%] [s]

0 Baseline-conventional vehicle 836.5 - 2

1
Baseline-HEV: optimizing only the
power split by DP algorithm

745.4 10.9 - 757

2
HEV: optimizing the power split and
gear shift by DP algorithm

509.8 39.1 31.6 3595

3
HEV: optimizing the power split and
gear shift by DP-PMP algorithm

509.6 39.1 31.6 12

4
HEV: optimizing the power split, gear
shift and start-stop functionality by DP
algorithm

472.6 43.5 36.6 4799

5
HEV: optimizing the power split, gear
shift and start-stop functionality by
DP-PMP algorithm

474.3 43.3 36.4 12

2HP EliteBook 8530w, Core 2 Duo, CPU T9600 @ 2.8GHz, RAM 4.0GB
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3.5.4 Simulation Results on FTP75

FTP75, representing a more realistic drive cycle, is also chosen for testing on simulation

platform. The results are shown in Table 3.3. It can be seen from Tests 2 and 4 that,

by optimally shifting gears, potential fuel savings can be achieved up to 31.6% and

36.6% (compared with the baseline HEV) for the HEV without and with the start-

stop functionality, respectively. From Tests 3 and 5, it also shows that the DP-PMP

algorithm improves the same fuel economy with the DP algorithm. Meanwhile the DP-

PMP algorithm reduces computational burden significantly by the factors of 300 and

415 compared with the DP algorithm for the HEV without and with the start-stop

functionality, respectively.

3.6 Conclusions

This chapter presented a control algorithm based on a combination of DP and PMP

for HEVs to further optimize the gear shift command. The proposed control algorithm

reduces the computation time significantly compared with the DP algorithm. It shows

that by further optimally controlling the gear shift command, the potential fuel saving

can be increased significantly.

Applying the DP-PMP control algorithm for the HEV was addressed explicitly in terms

of the start-stop functionality. For the hybrid powertrain without the start-stop func-

tionality, it is found that a unique constant Lagrange multiplier exists such that the end

constraint of the battery state-of-energy is respected, and the globally optimal solution

is guaranteed. For the hybrid powertrain with the start-stop functionality, the constant

Lagrange multiplier for the optimal control problem does not always exist. Therefore,

the obtained results of the proposed control algorithm are suboptimal, despite the fact

that they are very close to the globally optimal results obtained from the DP algorithm.

The DP-PMP control algorithm is considered as a novel control algorithm for the op-

timal gear shift problem of HEVs. From an engineering point of view, the DP-PMP

algorithm can be considered as a globally optimal method applied for HEVs. The algo-

rithm is executed fast enough such that it can be seen as a potential candidate applied

in a realtime implementable control algorithm, such as a model predictive control.



Chapter 4

Gear Shift Map Design Methodology1

Abstract - In this chapter, a design methodology is developed to build the gear shift map for
automotive transmissions used in conventional and hybrid electric vehicles. The methodology
utilizes an optimal gear shift strategy to derive the optimal gear shift patterns over a wide
range of driving profiles. Then, statistical theory is applied to analyze the obtained gear shift
patterns towards a gear shift map. The designed gear shift map improves the fuel economy
and driveability. It is consistent, robust to shift busyness, and realtime implementable. The
design process is flexible and time-efficient such that an applicability to various powertrain
systems configured with discrete ratio transmissions is possible. Validation on a test vehicle
proves the effectiveness of the design methodology.

4.1 Introduction

Gear shift strategy has been proved to be crucial for vehicles to improve the fuel econ-

omy, driveability, etc. A supervisory control algorithm, including an optimal gear shift

strategy, based on optimal control algorithms, such as Dynamic Programming (DP),

Pontryagin’s Minimum Principle (PMP), Dynamic Programming-Pontryagin’s Mini-

mum Principle (DP-PMP), Model Predictive Control (MPC), etc., can guarantee an

optimal operation of the powertrain system over a priori drive cycle. Therefore, the

obtained gear shift strategy is not optimal, consistent and robust for other drive cycles.

Furthermore, disturbances involved with the powertrain system, e.g. driving conditions

and driver behaviors, etc., are not considered and addressed in the algorithm, thus

making the corresponding gear shift strategy hard to be reliably realtime implemented.

Hence, a gear shift strategy based on a static shift map has been widely adopted as a

standard solution for shifting gears online. A static shift map defines the shift points

based on the current vehicle speed and the engine torque (sensing via the acceleration

1This chapter has been prepared for a journal publication in the form as: V. Ngo, T. Hofman, M.
Steinbuch, A. Serrarens. Gear Shift Map Design Methodology for Automotive Transmissions. 2012.
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pedal position, throttle opening, etc.). Design of a gear shift map is traditionally based

on know-how, experience of the calibration engineers and tunings in heuristic maner.

Hence, the gear shift map is consistent and robust after a huge trial-and-error effort.

This so-called experience-based gear shift strategy does not exploit the inherent po-

tential of the powertrain system sufficiently to improve the overall performance of the

vehicle, and thus coming with a lower confidence on optimality with respect to the

fuel economy and driveability. In this research, a gear shift map design methodology

is developed for discrete ratio transmissions used in road vehicles. The methodology

takes advantages of: i) the optimal-based gear shift strategy, and ii) the statistical

theory, to build an optimized gear shift map, which is consistent, robust and realtime

implementable.

In literature, there is a small number of studies addressing about the gear shift map

design methods for conventional vehicles. Besides an essential requirement on fuel

economy improvement, ensuring an acceptable driveability level is also an important

index for the design of a map-based gear shift strategy. The study in [168] analyzes

the influence of different vehicle weights on the gear shift point control. In order to

ensure the driveability, the authors adopt a policy of maintaining the same acceleration

level after shifting, which requires an unchanged throttle position right after shifting.

The most fuel economy points are derived to create a gear shift map. Also focusing

on the driveability, the authors in [55] present an approach based on DP to define

an optimal gear shift sequence. The optimization criterion aims at minimizing the

acceleration time of the vehicle. Meanwhile the authors in [66] also put the driveability

into consideration when designing a gear shift map for an automatic transmission. An

optimization problem for the gear shift and throttle opening strategies is formulated

on a prescribed launch profile with a constant engine power, representing a driveability

constraint. DP is used to obtain the optimal results at different constant engine power

levels, which are then combined to form the gear shift and throttle opening maps. These

two maps will govern the operation of the integrated powertrain. The authors claim

an improved fuel economy for the designed gear shift map meanwhile still meeting a

sufficient driveability level.

Regarding Hybrid Electric Vehicles (HEVs), where a certain driveability level can be

satisfied by an assistance from the secondary power source, the gear shift strategy in

general can aim at further improving the fuel economy. However, there is not much

published research dedicating on the design of a map-based gear shift strategy for dis-

crete ratio transmissions. Due to the availability of the secondary power source, the

gear shift map for HEVs should be composed from the different gear shift strategies in

different driving modes, as discussed in [78]. However that paper does not describe the

design of such a gear shift strategy. In [157], the authors propose a method to design

a gear shift map for an Automated Manual Transmission (AMT). A gear shift problem

is formulated and solved by using static programming to derive the most fuel-economic
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shift points corresponding with a prescribed constant acceleration profile. The method

takes the vehicle speed, engine torque (or mechanical braking torque), and motor torque

into account to form a three-dimension gear shift map, which is designed correspond-

ingly with the driving modes. The authors claim a fuel economy improvement compared

to a traditional shift map of a conventional vehicle. However the optimization prob-

lem is not well formulated in terms of the system constraints to guarantee optimality.

Furthermore, an optimization-based gear shift map extraction for HEVs can be found

in [75, 83]. The authors utilize DP to design an optimal Energy Management Strategy

(EMS) to derive the optimal gear shift solution. Then, a near optimal map-based gear

shift strategy is built by observation and extraction. An improvement of the driveability

for the designed gear shift map compared to an original, intuitive algorithm-based shift

map is claimed by the authors.

Through literature review, it is observed that the gear shift map design methods pro-

posed in the published studies have not taken a wide range of driving scenarios, i.e. the

driving behavior dynamics and road dynamics, into account. For conventional vehicles,

the driveability is not systematically addressed in the gear shift map due to lack of a

driveability-optimal gear shift strategy design method. For HEVs, coupling among the

operating modes and the resulted dominant gear shift pattern(s) have not been analyzed

in order to achieve an overall, consistent, robust and optimized gear shift map over a

wide range of driving scenarios. Furthermore, there is lack of an approach to properly

analyze the optimal gear shift data towards extracting the representative optimal gear

shift lines of the gear shift map. In this study, a gear shift map design methodology

for discrete ratio transmissions used in conventional and hybrid electric vehicles is de-

veloped. Aiming at designing a gear shift map improving both the fuel economy and

driveability, the methodology utilizes an optimal gear shift strategy to derive the opti-

mal gear shift patterns over a wide range of driving profiles. Statistical theory is then

applied to analyse the optimal gear shift patterns, towards extracting the optimal gear

shift lines of the gear shift map. Robustness and consistency of the gear shift map are

considered in the step of statistical analysis and shifting line extraction. The design

methodology is described and demonstrated by applying for the prototype conventional

and hybrid electric vehicles. Experimental validation on a test conventional vehicle, dif-

ferent from the prototype vehicle, is performed to verify the applicability and flexibility

of the design method.

This chapter is organized as follows. The powertrain modeling and dynamics are given

in Section 4.2. An analysis of gear shift contribution to the fuel economy of conventional

and hybrid electric vehicles is given in Section 4.3. Gear shift map design methodology

applied for conventional vehicles is described in Section 4.4. Meanwhile application

of the gear shift map design methodology for HEVs is discussed in Section 4.5. An

experimental validation of the design methodology on a test conventional vehicle is

presented in Section 4.6. And finally, conclusions are given in Section 4.7.
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4.2 Powertrain Modeling and Dynamics

4.2.1 Powertrain Model

The hybrid powertrain topology is shown in Figure 4.1. This study focuses on both

conventional and hybrid electric vehicle, so a conventional powertrain topology can be

realized by removing or deactivating the battery, inverter and electric machine from the

hybrid driveline. The main parameters of the powertrain components are given in Table

4.1.

Figure 4.1: The hybrid powertrain topology, (AMT: Automated Manual Trans-
mission; M: Electric machine).

Table 4.1: Specifications of the prototype vehicle.

Item Description/Quantity

Engine
diesel type,
maximum torque of 200Nm,
maximum power of 68kW.

Electric machine
maximum torque of 40Nm,
maximum power of 6kW.

Battery lithium-ion; capacity of 6Ah, 110V.

Transmission
6-speed automated manual transmission,
rg = [3.817, 2.053, 1.302, 0.959, 0.744, 0.614].

Vehicle mass 1320kg.

Aiming at designing an EMS, the quasi static modeling approach is used to model

the main powertrain components. Hence, a time step ∆t of one second is chosen to

simulate the powertrain system, thus ignoring the system dynamics faster than 1Hz [42].

The clutch is modeled as a boolean switch to connect and to disconnect the engine
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immediately to and from the driveline. Its dynamics and limited power losses during a

gear shift or an engine start are ignored. Notice of the slippage loss of clutch at vehicle

launch is also not taken into account. However, analysis of the effect of these losses to

the control strategy can be found in Chapter 6.

• Start-stop system: the start-stop system can be modeled by a decision variable

se(k) to control the engine on-off state.

se(k) =

{
1 if engine on,

0 if engine off.
(4.1)

• Engine: for a certain engine speed ωe(k), the fuel mass flow ṁf (k) is modeled

as an affine piece-wise second order function of the engine power, as expressed in

(4.2),

ṁf (k) ≈
(
a0(k)P 2

e (k) + a1(k)Pe(k) + a2(k)
)
se(k). (4.2)

in which the coefficients a0(k), a1(k) and a2(k) are functions of the engine speed.

When the engine is off, no fuel is consumed. If assume during braking, the engine is

switched off and decoupled from the driveline, then the engine braking is neglected.

Therefore, the constraints on the speed ωe(k) and the power Pe(k) are as follows,

ωe,min ≤ ωe(k) ≤ ωe,max, (4.3a)

0 ≤ Pe(k) ≤ Pe,max
(
ωe(k)

)
. (4.3b)

• Electric machine: the machine efficiency η is assumed to be constant in a normal

operating state. Therefore, the power flow in motoring and generating modes is

expressed as,

Pm(k) = ηPelec(k) in motoring, (4.4a)

Pm(k) =
1

η
Pelec(k) in generating. (4.4b)

The constraints on the speed ωm(k) and the power Pm(k) are,

0 ≤ ωm(k) ≤ ωm,max, (4.5a)

Pm,min
(
ωm(k)

)
≤ Pm(k) ≤ Pm,max

(
ωm(k)

)
. (4.5b)

• Battery system: the electrical power Pelec(k) is modeled as a quadratic function

of the storage power Ps(k),

Pelec(k) ≈ b0P
2
s (k) + b1Ps(k) + b2. (4.6)
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The constraints on the battery storage power,

Ps,min ≤ Ps(k) ≤ Ps,max. (4.7)

Notice that the battery capacity is chosen properly such that its state never ex-

ceeds the predefined upper and lower bounds for increasing lifetime and reliable

operation. Battery operating temperature is assumed to be under tight control.

• Automated Manual Transmission (AMT): transmission efficiency η is as-

sumed to be constant for all gears. The speed and torque relations in both side

of transmission when the clutch closed are,

ωe(k) = ωg(k) = ωw(k)rg(k), (4.8a)

Tw(k) = η rg(k) Tg(k) = η rg(k) Te(k). (4.8b)

wherein: ωw(k) is the wheel rotational speed; Tw(k) is the drive torque at the

wheels; Tg(k) is the transmission input torque; rg(k) denotes the gear ratio. The

final reduction gear ratio is merged into the transmission ratio for a simplification.

The constraints on the gear position of the 6-speed transmission are,

1 ≤ ng(k) ≤ 6. (4.9)

• Power flow model: the power flow equilibrium at the transmission input of the

powertrain is expressed as,

Pe(k) = Pg(k) + Pm(k). (4.10)

where Pm(k) = 0 if the conventional powertrain is under consideration.

4.2.2 Powertrain System Dynamics

The powertrain dynamic system consist of three state variables: the start-stop state

se(k), battery state-of-energy es(k) and gear position ng(k). Their dynamics are gov-

erned by three corresponding control variables use(k), Ps(k) and ug(k) as,

se(k + 1) = se(k) + use(k), (4.11)

es(k + 1) = es(k) + Ps(k)∆t, (4.12)

ng(k + 1) = ng(k) + ug(k). (4.13)

Vehicle longitudinal dynamics: the discrete longitudinal motion of the vehicle is

given by,

ωw(k + 1) = ωw(k) +
1

Jv,eq

(
Tw(k)− Fload(k)Rw

)
∆t, (4.14)
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where Fload is the resistant loads due to rolling and aerodynamic resistances; Jv,eq is an

equivalent vehicle inertia at the wheels,

Jv,eq =
(
(Je + Jc + Jp)r

2
g + Js

)
r2
d +mvR

2
w,

Fload = crmvg cosα +mvg sinα +
1

2
ρaAfcdv

2,

and mv is the vehicle weight; Rw is the wheel radius; Je is the engine inertia; Jc is the

clutch inertia; Jp is the transmission primary inertia; Js is the transmission secondary

inertia; ρa is the air density; Af is the frontal area of vehicle; cd is the aerodynamic

drag coefficient; cr is the rolling friction coefficient; g is the gravity coefficient; v is the

vehicle speed; α is the slope of the road.

4.3 Analysis of Gear Shift Contribution to Fuel Economy

Under an optimal EMS, the engine tends to operate at low speed and high torque

areas for a fuel economy improvement, see Chapters 2 and 3. A gear shift decision

can only be made if the engine speed at the next gear is above the minimum engine

speed ωe,min(k), as imposed by the inequality constraint (4.3a). This lower bound will

definitely influence a gear shift decision, and thus considerably affect the fuel economy

improvement. Raising this threshold will render the engine to operate at higher speed

than it would do for a lower value, which will result in an inefficient operation state

of the engine. Hence, a design methodology, which is based on the optimal shift data

to analyze and extract the gear shift lines, is influenced by the lower bound of the

engine speed. Therefore, its sensitivity study on fuel economy is necessary within the

framework of developing a gear shift map design methodology.

4.3.1 Conventional Vehicle

For a supervisory control algorithm over a given drive cycle, the gear shift command

is the only control variable for the conventional powertrain system. Hence, an analysis

of the fuel economy improvement is straightforward, which can be done by an optimal

gear shift strategy.

Problem 4.1. Given a drive cycle v(k) with time length N , find an optimal control

law of the gear shift command u∗(k) = u∗g(k) to minimize the cost function of fuel

consumption over the entire drive cycle, defined as,

JCV =
N−1∑
k=0

ṁf (k)∆t, (4.15)

subject to the system dynamics and constraints (4.2), (4.3), (4.8), (4.9), (4.10) and

(4.13),



74 4 Gear Shift Map Design Methodology

1000 1100 1200 1300 1400
0

10

20

30

ω
e,min

 [rpm]

F
ue

l e
co

no
m

y 
[%

]

 

 
NEDC

FTP75

Figure 4.2: Sensitivity study of the fuel economy with respect to ωe,min for a
conventional vehicle.

Problem 4.1 is solved by using DP to achieve a globally optimal solution on a given

drive cycle. A sensitivity study of the fuel economy improvement with respect to the

minimum engine speed ωe,min, as in the constraint (4.3a), is given in Figure 4.2. The

prescribed gear shift schedule accompanied with the drive cycles is chosen as the baseline

strategy. In both cycles, NEDC and FTP75, it shows that the fuel economy decreases

linearly with respect to an increase of the minimum engine speed by an approximated

factor of -2.5%/100rpm. Hence, in the design of a gear shift map, this factor needs to

be taken into account when seeking and evaluating fuel economy improvement.

4.3.2 Hybrid Electric Vehicle

For a HEV, the fuel economy improvement can be achieved not only by an optimal gear

shift strategy but also by hybridization. It is realized by an optimal EMS proposed as

follows,

Problem 4.2. Given a drive cycle v(k) with time length of N , find an optimal control

law u∗(k) =
[
u∗se(k), P ∗s (k), u∗g(k)

]
, which are the optimal control variables for the

start-stop system, battery state-of-energy and gear position respectively, that minimize

the cost function of fuel consumption over the entire drive cycle, defined as,

JHEV =
N−1∑
k=0

ṁf

(
k
)
∆t, (4.16)

subject to the system dynamics and constraints (4.1)-(4.13).

Problem 4.2 is well defined and solved by a control algorithm based on a combination

of Dynamic Programming and Pontryagin’s Minimum Principle [98], as described in

Chapter 3. The control algorithm is computationally efficient and guarantees an optimal

solution.

A sensitivity investigation of the fuel economy improvement with respect to the mini-

mum engine speed is shown in Figure 4.3. The baseline result is obtained by applying
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Figure 4.3: Sensitivity study of the fuel economy with respect to ωe,min for a
HEV.

the prescribed gear shift schedule accompanied with the drive cycles on a corresponding

conventional vehicle. An increase of the minimum engine speed will result in a decrease

of the relative fuel economy with an approximated factor of -1.0%/100rpm. Comparing

to the conventional vehicle, the fuel economy improvement of the hybrid electric vehicle

is less sensitive to the minimum engine speed. Assuming that the start-stop function-

ality in the hybrid powertrain can be done by using the electric machine to crank up

the engine from rest, the corresponding fuel benefit can be appointed to the hybridiza-

tion factor. This implies that there are two factors contributing to the fuel economy

improvement of HEVs: the gear shift and the hybridization. In order to investigate the

share of these two factors in the fuel economy improvement, an algorithm is proposed

for this purpose.

Algorithm 4.1. Given a drive cycle, Problem 4.2 is formulated and solved. Then at

every time step k,

• compute the instantaneous optimal fuel rate ṁ∗f (k);

• given the optimal gear position n∗g(k), compute the required engine power without

hybridization,

Pe,gs(k)
∣∣n∗g(k);

• compute the corresponding fuel rate without hybridization, given n∗g(k) and

Pe,gs(k),

ṁf,gs(k)
∣∣Pe,gs(k), n∗g(k).

Define the fuel consumption for two powertrain systems:

• the hybrid powertrain, mf =
∑N−1

0 ṁ∗f (k)∆t;

• the conventional powertrain utilizing the corresponding optimal gear shift strategy

obtained from the EMS of the hybrid powertrain, mf,gs =
∑N−1

0 ṁf,gs(k)∆t.
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Here mf,base denotes fuel consumption of the baseline vehicle. Then, contributions of

the gear shift and hybridization to the total fuel economy are defined as,

• the fuel economy improvement due to the gear shift: mf,base −mf,gs;

• the fuel economy improvement due to the hybridization: mf,gs −mf ;

• the total fuel economy improvement: mf,base −mf .

Figure 4.4: Contributions of the gear shift and hybridization to the fuel econ-
omy.

Algorithm 4.1 can be graphically explained through a demonstration shown in Figure

4.4. Under a certain power request at the wheels, a corresponding power at the transmis-

sion input can be expressed in the form of a hyperbolic torque-speed curve, the dashed

dotted black line. For the conventional powertrain, if a prescribed gear schedule is used

for shifting, the engine operating point is positioned at the red dot. Hybridization of

the powertrain with an optimal EMS allows i) the engine operating point to move to

the green dot due to an optimal gear shift strategy, ii) a further load balance sharing

(power split) between the engine and electric machine to move the engine operating

point as close to the E-line as possible, see the corresponding battery charged or motor

assist point due to a certain power split strategy. Factors i) and ii) help improving the

hybrid powertrain efficiency compared to the conventional one.

Calculation results of Algorithm 4.1 on NEDC and FTP75 are shown in Figure 4.5.

Therein, the fuel economy improvement of the optimal gear shift strategy for the con-

ventional vehicle, as discussed in Section 4.3.1, is also plotted for reference, see the

marked dotted lines. The dark grey bars indicate contribution of the gear shift; mean-

while the light grey bars indicate contribution of the hybridization. It can be seen that

contribution of the gear shift in the hybrid vehicle is almost equal to the optimal gear

shift strategy for the conventional vehicle. Hence, from an engineering point of view, it

can be inferred that the gear shift factor is independent from the hybridization factor
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Figure 4.5: Contributions of the gear shift and hybridization to the fuel econ-
omy of the HEV. Simulation results on NEDC and FTP75 are shown in (a) and
(b), respectively.

for the HEV. Furthermore, when raising the minimum engine speed, contribution of the

gear shift factor is reduced but the hybridization factor is more active to maintain the

fuel economy level. This helps neutralizing the fuel economy sensitivity to ωe,min for

the hybrid vehicle compared to the conventional vehicle.

4.4 Gear Shift Map Design for Conventional Vehicles

The optimal gear shift strategies for the conventional vehicle, proposed in Chapter

2, are benchmark solutions rather than realtime implementable ones. Despite the fact

that the stochastic-based strategy is realtime implementable, a rigorous implementation

approach is required to deal with the uncertainties and disturbances of the powertrain

system to ensure a robust and fuel-efficient gear shift pattern. Therefore, a map-based

gear shift strategy, which can be implemented directly to the production vehicles and

ensures optimality, appears as a promising solution. This section describes a novel

methodology which is used to generate an optimized gear shift map for conventional

vehicles equipped with discrete ratio transmissions.
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4.4.1 Acquisition of Optimal Gear Shift Data

This is the first step of the design methodology. The fuel optimal gear shift problem,

see Problem 4.1, is formulated and solved to obtain the optimal gear shift points on

various drive cycles. The higher the number of drive cycles used to acquire the optimal

gear shift points, the higher level of optimality the designed gear shift map is. In this

study, the standard test drive cycles in Europe, Japan and United States, e.g. ARB02,

CADC, FTP75, HWFET, Hurk, JN1015, LA92, NEDC, NYCC, and US06, are chosen

to objectively represent the drive profiles of vehicles. Note that the driveability optimal

gear shift problem, see Problem 2.2 in Chapter 2, is applied if a driveability-optimal

gear shift map is required. The optimal shift points, as point-wise functions of the

engine torque and vehicle speed, for all gear upshift patterns are shown in Figure 4.6.

The optimal shift points, hereafter called the shift data, scatter around a specific area

for a certain upshift pattern. With the upshift patterns of 1→ 2, 2→ 3 and 3→ 4, the

scatter areas are less dispersed than that of the upshift patterns of 4 → 5 and 5 → 6.

Nonetheless, an inference of a shift pattern characteristic based on a rigorous analysis

of the corresponding shift data is necessary, such that representative shift lines can be

extracted.
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Figure 4.6: Optimal upshift points of the conventional vehicle, wherein the
x-mark points denote the outliers.
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4.4.2 Analysis of Shift Data

Once the shift data have been collected, an analysis of the shift data based on statistical

theory is performed to infer a shift characteristic behind the representative information.

Furthermore, statistical analysis gives a way to quantify the confidence level we can

have on this inference. Details of statistical theory and analysis method can be found

in the reference books, for example see [85, 113].

Outlier examination

In statistical theory, a sum of the squared error, based on Euclidean distance, is com-

monly used to measure a scatter degree of the shift data. A data that is numerically

distant from the rest is referred as an outlier. So, an outlier can unduly influence the

clusters of the shift data. The resulting cluster centroids may not be as representative

as they otherwise would be, and thus the sum of the squared error will be higher as

well. Because of this, it is often useful to examine the outliers and eliminate them if

necessary.

Problem 4.1 aims at maximizing the fuel economy, thus making the shift data scatter

around the most fuel economy region of the engine. This helps identifying the outliers

easily. Therefore, a visual inspection approach [113] can be used effectively to examine

the shift data and remove the outliers before clustering. As shown in Figures 4.6a-4.6c,

it can be seen that no outlier arises for the gear upshift patterns of 1 → 2, 2 → 3 and

3 → 4. However, for the gear upshift patterns of 4 → 5 and 5 → 6, the outliers can

be the upshifts occurring at a high vehicle speed or at a high required engine torque.

They are located far from the rest of the shift data in the corresponding clusters, see

the x-marks in Figures 4.6d-4.6e.

Cluster analysis method

After removing the outliers, the shift data still have a dispersion degree over the design

space. Hence, clustering the shift data into groups, whose data in each group have a

similar information and are different from other groups, is required to properly define

the correspondingly central tendencies. In statistical theory, there are a number of

different methods that can be used to carry out a cluster analysis. These methods

can be classified as hierarchical and non-hierarchical methods [29], as shortly brief as

follows.

• Hierarchical clustering

Hierarchical clustering technique is the most important category of clustering

methods, wherein an agglomerative technique is used more often for generating
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clusters. The working principle of this technique is to start with individual points

as clusters, then successively merge the two closest clusters until only one cluster

remains. This clustering technique is basically described in Algorithm 4.2.

Algorithm 4.2. Agglomerative clustering method

define the cluster proximity matrix, if necessary;
repeat

- merge the two closest clusters,
- update the cluster proximity matrix to reflect the proximity be-
tween the new clusters and the original clusters,

until only one cluster remains.

• Non-hierarchical clustering

This clustering technique is most often known as a K-means clustering method.

The K-means method defines the data prototype in terms of a centroid, which

is usually a mean of a group of points. The K-means clustering technique is

described by Algorithm 4.3.

Algorithm 4.3. K-means clustering method

select K points as initial centroids;
repeat

- form K clusters by assigning each point to its closest centroid,
- recompute the centroid of each cluster,

until the centroids do not change.

In this study, an effective approach of combining two clustering methods is used to

analyze the shift data [29]. The hierarchical agglomerative method is used to define

the optimum number of clusters. Then the non-hierarchical K-means method is used to

compute the centroid of each cluster. All cluster centroids will form a central tendency

of the gear shift pattern. Figures 4.7a-4.7b show an exemplary cluster analysis for a

gear upshift pattern from 2→ 3. There are seven clusters resulting in seven centroids,

indicated by the blue circled x-marks. The centroids create a basis for building a shift

line by a curve best fitting these points.

Shift line extraction

For a conventional vehicle, a gear shift map consists of the upshift lines and the corre-

sponding downshift lines.

• Upshift: the upshift line is built from the centroids of the corresponding upshift

patterns by a best fitting curve. Figure 4.7c typically depicts an upshift line from

2→ 3.
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Figure 4.7: Exemplary analysis of the shift data of the conventional vehicle:
the shift data of 2→ 3 in (a); cluster analysis in (b); an extraction of the upshift
line in (c), a corresponding downshift line of 3 → 2 in (d).
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Figure 4.8: A gear shift map for the conventional vehicle.

• Downshift: a downshift line is built by considering two cases: i) a normal down-

shift occurs to avoid engine stalling due to a reduction of the vehicle speed; ii)
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a power downshift, called kick-downshift, is required to meet a high torque de-

mand at the wheels, which is not fulfilled by the powertrain at the current gear

position. Taking these two factors into account, a downshift pattern, for example

from 3→ 2, is built, see Figure 4.7d.

Figure 4.7d depicts the upshift pattern 2→ 3, and the corresponding downshift pattern

3→ 2. At a certain engine torque, there always exists a difference in the vehicle speed

at the upshift and downshift lines. This results in a shifting hysteresis phenomenon,

required for a consistent and robust shifting pattern.

4.4.3 Shift Map Verification

Applying the procedure described in Section 4.4.2 for the other shift patterns to extract

the shift lines, a gear shift map is obtained and shown in Figure 4.8. Detail description

of the typical upshift and downshift lines is given in Section 4.6.2. This gear shift map

can be implemented directly in simulation or realtime environment.
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Figure 4.9: Fuel deficiency of the gear shift map compared to the DP-based
optimal shift strategy for the conventional vehicle.

The obtained gear shift map is implemented in a simulation model of the conventional

vehicle to verify a fuel economy improvement. The drive cycles are chosen to consist of

the urban, suburban and highway parts, which represent the typical driving missions for

the vehicle. By comparing with a globally optimal result (DP result), a fuel deficiency

of the gear shift map is realized, as shown in Figure 4.9. Depend on the drive cycles,

the fuel deficiency varies from 0.9% to 3.9%. On average, the gear shift map, which

is consistent, robust and realtime implementable, degrades the fuel economy of 2.3%

compared with a globally optimal gear shift algorithm based on DP.
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4.5 Gear Shift Map Design for Hybrid Electric Vehicles

HEVs, having a secondary power source offer, more operation modes, e.g. engine mode,

assisting mode, charging mode, electrically driving mode and regenerative mode, to im-

prove the fuel economy, driveability, etc., compared to conventional vehicles. Therefore,

a gear shift strategy for HEVs is required to match with all operation modes. This

can be achieved by an advanced EMS to optimally govern the operation of the hybrid

powertrain. The EMS proposed in [98] is computationally efficient and guarantees an

optimal solution. Hence, it is highly suitable for the gear shift design methodology for

HEVs. The obtained optimal gear shift data will ensure an optimality of the gear shift

map, compatible with all operation modes of the hybrid vehicle. The design process is

highly accelerated due to a computationally efficient property of the EMS.

Gear shift map characteristics

• Shift map coordinate: the gear shift map coordinate for a conventional vehicle is

based on the vehicle speed and engine torque. However, for a HEV, the equilibrium

point of the power flow is at the transmission input. Hence it is reasonable to define

a gear shift map coordinate based on the vehicle speed and the transmission input

torque.

• Hybrid mode: this mode in general can be referred to an engine mode or an

assisting mode or a charging mode. Basically, in hybrid mode, the engine primarily

supplies the propulsive power for the vehicle. Hence, the design of gear shift map

in hybrid mode is thus similar to that of a conventional vehicle.

• E mode: this mode refers to a situation of electrically driving the vehicle. The

electric machine is placed in front of the transmission. Therefore, a gear shift

strategy in E mode can expand the operating range for the electric machine with

respect to the vehicle speed range, and thus gaining a fuel benefit.

• Regenerative mode: in this mode the electric machine functions as a generator

to recuperate the vehicle kinetic energy. A gear shift strategy in this mode can

increase the energy conversion efficiency of the generator and thus further con-

tributing for a fuel benefit.

Note that the transition among the operating modes in the HEV is assumed to be well

defined and properly controlled. In addition, this kind of mode shifting is irrelevant to

a gear shift map design, and thus ignored in this study.
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Figure 4.10: Optimal upshift points of the HEV, wherein the x-mark points
denote the outliers.

4.5.1 Gear Shift Map for Hybrid Mode

A gear shift map of hybrid mode is designed similar to that of a conventional vehicle.

Hence, the design process is taken through three steps as follows.

1. Gear shift data acquisition

Applying the optimal EMS, described in Chapter 3, for Problem 4.2, the optimal

gear shift points, as point-wise functions of the vehicle speed and the transmission

input torque, in hybrid mode are obtained. Figure 4.10 shows the corresponding

upshift data.

2. Analysis of the shift data

By using the visual inspection technique [113], the outliers for each upshift pattern,

indicated by x-marks, are removed from the upshift data. The cluster analysis

method, as introduced in the conventional vehicle application, is used to extract

a shifting pattern characteristic. Then the upshift and downshift lines are built

correspondingly. Figure 4.11 illustrates a sequence from the shift data acquisition

to the shift line extraction for the shift patterns of 3→ 4 and 4→ 3.

3. Shift line extraction

Applying the second step for the remained gear shift patterns. The gear shift map
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Figure 4.11: Exemplary analysis of the shift data of the HEV: the shift data
of 3 → 4 in (a); cluster analysis in (b); an extraction of the upshift line in (c),
a corresponding downshift line of 4 → 3 in (d).
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Figure 4.12: A gear shift map for hybrid mode of the HEV.

in hybrid mode is obtained and depicted in Figure 4.12.
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4.5.2 Gear Shift Map for E Mode

A gear shift strategy in E mode helps expanding the electric machine operating range

with respect to the vehicle speed range. The proposed EMS for the HEV does not

derive the optimal gear shift strategy separated from the engine on-off and power split

strategies. Furthermore, the gear shift patterns in all operation modes are coupled

together to create an optimal gear shift strategy for the whole drive cycle.

For a HEV where the engine is the main traction source, E mode occurs if a low drive

power is required. When a high drive power is needed, the vehicle transits to hybrid

mode to meet the high demand traction. In this situation, a gear shift is occurred in

hybrid mode instead of E mode. Therefore the electric machine can take advantage of

the gear shift strategy in hybrid mode to expand its operating range. Apparently, the

relative size of the electric machine, compared to the engine size, is a decisive factor

for a coupling between the gear shift patterns in E mode and hybrid mode. Taking

the mentioned issues into account, the design of gear shift map of E mode should be

considered in the light of the gear shift map of hybrid mode.

Hence, a gear shift map of E mode is built in accordance with a procedure given as

follows.

1. E mode data

Collect the transition data (from E mode to hybrid mode) and the gear shift data

(occurring within E mode). Figure 4.13 shows the obtained data separating in

each gear position. The transition data creates a boundary between E mode and

hybrid mode, indicated by the dashed line. Meanwhile the upshift data is not

rich enough to clearly define the shift patterns within E mode. This implies that

a gear shift in E mode would not further improve the fuel economy rather than

an operation in E mode would do. However, the operating region of the electric

machine, corresponding with each gear position, can yield the possible gear shift

patterns in E mode, indicated by vertical solid lines.

2. Upshift patterns

By comparing with the upshift lines of hybrid mode, there are identical upshift

patterns for E mode. This reveals that hybrid mode dominates E mode. In

other words, an improvement of the combustion efficiency is much more important

than an improvement of the electro-mechanical conversion efficiency of the electric

machine with respect to an optimal gear shift strategy. Therefore, the electric

machine can take advantage of the upshift strategy occurred in hybrid mode to

expand its operating range, thus increasing the portion of the traveled distance in

E mode.

3. Downshift patterns
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The downshift patterns in E mode can be defined as the corresponding upshift

patterns, due to the fact that there is no clutch operation in a shift process in E

mode. However, the downshift patterns of E mode are chosen as the downshift

patterns of hybrid mode to respect a gear shift hysteresis.

4.5.3 Gear Downshift Map for Regenerative Mode

Figure 4.14 shows the obtained downshift data in regenerative mode. For each down-

shift pattern, the corresponding downshift points create an optimal downshift region.

Basically, the downshift line can be extracted by using the cluster analysis technique

applied for the conventional vehicle. However, to approach a downshift pattern robust

to driving uncertainties, e.g. an upshift request induced right after a regenerative down-

shift, a left boundary linear line of each downshift region is defined for a corresponding

downshift pattern, see the circled-mark solid lines.

It can be seen that the downshift lines are not vertical, meaning that a downshift point is

a function of the vehicle speed and the brake torque. A higher a brake torque requires at

the wheels, an earlier a regenerative downshift would occur to exploit the high efficient

region of the electric machine. Crossing points of the downshift lines with the vehicle

speed axis nearly coincide with that of the upshift lines in hybrid mode. This discloses

that the downshift points in regenerative mode occur earlier than that of hybrid mode.

Actually, an earlier downshift in regenerative mode will rapidly raise up the speed of

electric machine, thus avoiding operating at the power limit region (at low speed) and

approach an efficient operating region. Hence, a gear downshift strategy in regenerative

mode can further improve the fuel economy of hybrid vehicles.

4.5.4 Shift Map Verification

A gear shift map of the HEV, consisting of all gear shift maps corresponding with all

operating modes, is constructed as shown in Figure 4.15. As analyzed, the shift map of

E mode is considered as a lower part of hybrid mode shift map (at a low transmission

torque area). Therefore, hybrid mode shift map governs the gear shift when the driving

torque is positive; the shift map of regenerative mode governs the gear downshift when

the driving torque is negative (regenerative braking). When the driving torque is zero,

e.g. the vehicle coasts down smoothly by the aerodynamic drag and rolling friction

resistances, the shift strategy of hybrid mode at zero torque will govern a downshift for

the transmission.

The gear shift map is verified by implementing it in a simulation model of the HEV.

The DP-PMP approach [98] is applied to control the engine start-stop and power split.

Compared to the optimal gear shift strategy, the gear shift map reduces the fuel economy
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Figure 4.13: A gear shift map for E mode.

Figure 4.14: A gear downshift map for regenerative mode.

0 20 40 60 80 100 120
−500

−400

−300

−200

−100

0

100

200

E mode area

Hybrid mode area

Regenerative mode area

T
g [N

m
]

v [km/h]

 

 
1 → 2

2 → 3

3 → 4

4 → 5

5 → 6

2 → 1

3 → 2

4 → 3

5 → 4

6 → 5

2 → 1

3 → 2

4 → 3

5 → 4

6 → 5

Figure 4.15: A gear shift map for the HEV.

from 2.5% to 5.9% on all simulated drive cycles, see Figure 4.16. On average, a fuel

deficiency of 4.1% is obtained in return for a consistent, robust and realtime map-based

gear shift strategy for the HEV.
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Figure 4.16: Fuel deficiency of the gear shift map compared with the DP-PMP
gear shift strategy for the HEV.

4.6 Experimental Validation on Conventional Vehicle

The gear shift map design methodology is applied to produce a gear shift map for a

test conventional vehicle. The test vehicle is different from the prototype vehicle, used

for demonstrating the development of in the design methodology. The test vehicle is

powered by a gasoline engine, meanwhile the prototype vehicle is diesel-based pow-

ered. Two gear shift maps, based on the fuel-optimal and driveability-optimal gear

shift strategies, are produced and tested to verify the fuel economy and driveability

improvements. This helps to validate the applicability of the design methodology on

various vehicle propulsion technologies.

Figure 4.17 shows the test vehicle for which the designed gear shift maps will be im-

plemented for an experimental validation. In the right is the original gear shift map

implemented on the vehicle at production. This map, denoted as a ‘BASE’ map, is used

to obtain the baseline results for a comparative analysis with the designed gear shift

maps. The parameters of the test vehicle are given in Table 4.2. Note that the equipped

6-speed AMT has a powershift module activated for all gear shift patterns among the

first four gears [132], thus avoiding the torque interruption at the corresponding gear

shift.

Table 4.2: Main parameters of the test vehicle.

Item Description/Quantity

Engine
type: gasoline,
maximum torque of 140Nm,
maximum power of 70kW.

Transmission
6-speed PowerShift (PS) AMT,
rg = [3.071, 1.913, 1.258, 0.943, 0.763, 0.643].

Vehicle mass 1120kg.
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Figure 4.17: The test vehicle (left). The gear shift map at production (right),
denoted as ‘BASE’ map.

4.6.1 Gear Shift Map Generation

Two gear shift maps are built for the test vehicle.

• ECO map: this map refers to a gear shift strategy, aiming at improving the fuel

economy. Therefore, the whole procedure introduced in Section 4.4 is applied to

generate ECO map.

• ECOS map: this map refers to a gear shift strategy aiming at improving the fuel

economy meanwhile still satisfying an acceptable driveability level. The method to

address the driveability, based on the variable power reserve concept (see Section

2.3 of Chapter 2), is utilized in the gear shift design methodology to generate

ECOS map.

Figures 4.18 and 4.19 illustrate ECO and ECOS maps, respectively. Note that the

vertical axis of the shift map denotes the accelerator pedal position Ap, ranged 0%-100%,

instead of the engine torque. A conversion from the engine torque to the accelerator

pedal position is done by using two conversion maps: i) the first map describes the

engine torque as a function of the engine speed and throttle position, ii) the second

map describes the throttle position as a function of the accelerator pedal position.

Hence, a gear shift point for the test vehicle is generated based on the vehicle speed and

accelerator pedal position.

4.6.2 Description of Gear Shift Pattern

The gear shift patterns are extracted from ECO and ECOS maps, called ECO and

ECOS shift patterns, and shown in Figure 4.20. It can be seen that ECO shift pattern
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Figure 4.18: ECO map, aiming at a fuel economy improvement.
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Figure 4.19: ECOS map, aiming at improving the fuel economy meanwhile
satisfying an acceptable driveability level.

Figure 4.20: Description of the gearshift patterns in ECO map (left) and ECOS

map (right).
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occurs earlier than ECOS shift pattern with respect to the vehicle speed. Hence, the

engine will operate at lower engine speed region under ECO map compared to ECOS

map. In general, a shift pattern can be divided into three parts: lower, middle and

upper.

• Lower part is an area where the shift patterns are parallel with the Y-axis. It

represents shift conditions for the vehicle independent of the acceleration pedal

input. In this area, a gear shift takes place depending on the current vehicle speed.

Under mild driving situations, e.g. maintaining the vehicle speed, following a

traffic stream, etc., an upshift is triggered when the vehicle speed is larger than

the upshift threshold. Under a coasting down, when the vehicle speed is smaller

than a downshift threshold, a downshift is triggered to sustain the engine speed

above a limit.

• Upper part defines an area where the gearshift patterns are relative steep with

respect to the X-axis. In this area, the driver requests a high or full engine power

to satisfy its driving styles. An upshift can occur if the engine satisfies the power

request and the vehicle speed is higher than a shift threshold. If the power request

is high at the current gear, a kick-downshift is performed such that the engine can

meet this high power request at the lower gear.

• Middle part where the lower and upper parts are linked together. The obtained

gearshift patterns in this area depict an optimal tradeoff among the design objec-

tives, e.g. fuel economy, driveability, etc. It can be seen that the upshift pattern of

ECOS map is less steep than that of ECO map to improve the vehicle performance.

4.6.3 Validation in Simulation Environment

Fuel economy test

ECO and ECOS maps are implemented on a forward facing simulation model of the

test vehicle, built in Matlab/Simulink, to test the fuel economy. Compared to BASE

map, a fuel economy improvement is achieved for both designed gear shift maps on the

drive cycles NEDC and JN1015, see Table 4.3. As expected, ECO map gains more fuel

benefit than ECOS map.

Driveability test

Forward facing simulation results of the relative fuel economy improvement show a

very promising prospect for the gear shift map design methodology in generating the

gear shift map, especially for ECOS map with a considerable improvement of the fuel
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Table 4.3: Simulation results of the relative fuel economy improvement.

Shift Map NEDC JN1015

BASE (manufacturer) - -
ECO 7.3 % 9.9 %
ECOS 4.3 % 3.7 %
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Figure 4.21: Mild acceleration tests.
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Figure 4.22: High acceleration tests.
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economy. In order to evaluate the driveability characteristic of ECOS map, several

acceleration profiles are tested with three gear shift maps.

• Mild acceleration profiles consist of two tests, as shown in Figure 4.21.

For the first test, see Figure 4.21a, ECOS map gives a better acceleration response.

ECO map triggers earlier upshift to higher gear. Therefore, there is a torque

interruption at the shifts 4 → 5 and 5 → 6, which causes a velocity tracking

loss. Meanwhile BASE map reveals a latest upshift compared to the other two.

The PS-AMT maintains at the second gear for a long period, thus bringing the

engine speed to a high revolution. Therefore, at high engine speed, the reduced

maximum engine torque could not continue to accommodate the vehicle with

velocity tracking until an upshift to the third gear occurs.

For the second test, see Figure 4.21b, due to a high power demand, the three maps

require a kick-downshift for the transmission to improve the engine traction capa-

bility by raising the engine speed. However, ECO map triggers a kick-downshift

two times from the sixth gear to the fourth gear, thus resulting in a velocity loss

due to a torque interruption in the PS-AMT. It is observed that when nearly ap-

proaching 80[km/h], ECOS map allows an upshift pattern earlier than BASE map,

thus improving the fuel economy. BASE map keeps the transmission at the third

gear longer, thus bringing the engine speed to a high revolution. Therefore the

reduced maximum torque degrades the vehicle acceleration capability compared

to ECOS map.

• High acceleration profiles consist of two tests, as shown in Figure 4.22.

For the first test, see Figure 4.22a, ECOS and BASE maps result in a nearly

equal velocity response. Meanwhile ECO map reveals a poor driveability followed

by a torque interruption due to a two-gear kick-downshift occurrence, from the

sixth gear to the fourth gear. Right after reaching the setpoint velocity, ECOS

map produces upshifts earlier than BASE map to contribute to a fuel economy

improvement.

For the second test, see Figure 4.22b, ECOS map possesses a good driveability

property compared to the other maps. The results also show an earlier upshift,

at higher rate to higher gear position, is held for ECO map. Meanwhile, ECOS

map is better than BASE map in terms of an upshift trigger.

In summary, the driveability tests reveal that ECOS map is better than BASE map

in fulfilling the vehicle performance. Furthermore, ECOS map yields an earlier upshift

pattern compared to BASE map, thus coming with a considerable gain in the fuel

economy. Meanwhile a superior fuel economy property of ECO map is penalized by a

low driveability capability.
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4.6.4 Experimental Results
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Figure 4.23: Experimental test results on NEDC.

Table 4.4: Experimental results of the relative fuel economy improvement.

Shift Map NEDC JN1015

BASE (manufacturer) - -
ECO 7.4 % 8.7 %
ECOS 4.8 % 3.9 %

Experimental tests of the vehicle are performed on the roller bench for the drive cycles

NEDC and JN1015. The gear position and fuel rate on NEDC, corresponding with the

three gear shift maps, are illustrated in Figure 4.23. ECO map yields a highest upshift

frequency and allows the transmission to go to a highest gear. ECOS map triggers an

upshift earlier and stays longer at the same gear position compared to BASE map. The

relative fuel economy improvement on NEDC and JN1015 are given in Table 4.4. ECO

map possesses a highest fuel economy property compared to the other two. ECOS map

also improves the fuel economy considerably compared to BASE map.
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By comparing the simulation results (in Table 4.3) with the experimental results (in

Table 4.4), the relative fuel economy improvement on NEDC is almost equal together for

both cases. The biggest difference between the simulation and experiment is realized at

ECO map on JN1015, with absolute difference of 1.2%. In general, it can be observed

that there is not much difference of the relative fuel economy improvement between

the two validation approaches. Hence, the match between simulation and experimental

results validates the effectiveness of the gear shift map design methodology.

4.7 Conclusions

In this chapter, a gear shift map design methodology for road vehicles equipped with

discrete ratio transmissions was developed. The fuel economy, driveability, consistency

and robustness of the designed gear shift map are guaranteed by combining an opti-

mal gear shift strategy with a statistical gear shift pattern extraction method in the

design process. The design methodology is model-based, thus giving a flexibility with

changes, modifications of the powertrain specifications, and being time-efficient for the

design process. Therefore, the design methodology is applicable to various powertrain

configurations.

Furthermore, it is found that the minimum operable engine speed considerably affects

to the fuel economy. Due to the hybridization factor, HEVs diminish the sensitivity

of fuel economy to the minimum engine speed compared to conventional vehicles. The

early downshift strategy in regenerative mode of HEVs will boost the energy conversion

efficiency of the electric machine in generation mode, and thus further improving the

fuel economy.



Chapter 5

Integrated Predictive Gear Shift
Strategy1

Abstract - This study focuses on utilizing route information obtained from an onboard navi-
gation system and a Global Positioning System (GPS) in the design of an Energy Management
Strategy (EMS) to improve the fuel economy of Hybrid Electric Vehicles (HEVs). Given a
priori driving profile over a horizon, assumed as an output of the onboard navigation system,
a predictive algorithm is proposed to control the gear shift command, besides the power split
and engine start-stop decision, to further improve the fuel economy. Given route information
over a driving horizon in the form of road characteristics, speed limits, average speed, traveled
distance, etc., a velocity algorithm is proposed to derive a fuel-optimal vehicle speed as a
function of time. The two algorithms supplement each other to create a so-called integrated
predictive gear shift strategy to explore the fuel saving potential of HEVs.

5.1 Benefits of The Preview Route Information

An onboard navigation system combined with a Global Positioning System (GPS) helps

gaining route information, such as road characteristics, speed limits, etc., over a certain

driving horizon, thus making this information available as an extra input to the Energy

Management Strategy (EMS) of Hybrid Electric Vehicles (HEVs). Hence, by exploiting

this route information in the design of an EMS, a further significant fuel economy

improvement can be realized.

Depending on the built-in technology of the onboard navigation system, the obtained

route information can be classified into two categories. In the first category, the route

information is processed to yield a driving profile in terms of the vehicle speed and time

within a certain horizon, which becomes a priori cycle information for the EMS. At this

1This chapter has been prepared for a journal publication in the form as: V. Ngo, T. Hofman, M.
Steinbuch, A. Serrarens. Integrated Predictive Gear Shift Strategy for Hybrid Electric Vehicles. 2012.
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level, the onboard navigation system supplies a velocity setpoint for the vehicle to follow.

In the second category, the route information is not well processed. It is characterized

in the form of the speed limits, average speed, traveling time, etc., within a certain

driving horizon. Corresponding to the first category, a so-called predictive algorithm

is proposed for the EMS to anticipate the gear shift command, besides the power split

and engine start-stop decisions, to further improve the fuel economy. Regarding the

second category, a so-called velocity algorithm is proposed to derive a fuel-optimal

velocity profile over a driving horizon. This algorithm is seen as a promising solution

to be implemented in the onboard navigation system to yield a fuel-optimal velocity

trajectory, which is a priori to the predictive algorithm. The two algorithms supplement

each other for realizing an integrated predictive gear shift strategy achieving the highest

possible fuel economy for HEVs in real-life driving.

In the literature, there is an increasing amount of studies utilizing preview route infor-

mation to improve the fuel economy for HEVs. In [5, 10], the authors assume that the

velocity profile over a preview route segment is available for a formulation of a predictive

power split control problem. Meanwhile in [2], the authors exploit route information

in the form of topographic profiles and average traveling speed to predict a reference

signal for battery state of charge. This predicted battery state of charge is then used

to maximize the recuperated energy despite the constraints on battery state of charge,

thus improving the fuel economy. At another aspect, utilizing route information to pre-

dict the velocity trajectory over a preview route segment has increasingly gained much

attention. A fuzzy-based control algorithm to compute a weighted average velocity over

a look-ahead zone is seen in [111]. Markov chain is also used to model a stochastic

process of the vehicle speed on a specific traveling route [57]. The authors divide this

specific route into a number of intervals and define the vehicle speed at the end of each

interval by a predefined Markov model. The authors in [152] formulate a velocity trajec-

tory optimization problem for a truck application. A simple non-smooth cost function

together with assumptions of constant acceleration and deceleration rates, and speed

limits for every consecutive route segment, are used to derive a velocity profile over

a route segment. Furthermore, in [61], the authors propose a method for building a

velocity profile along the preview route cycle by dividing it into a series of segments.

The speed for each segment is defined from statistical features, e.g. mean, variance,

etc. Accordingly, a path forecasting-based control algorithm is proposed to optimize

the battery charging and discharging for a fuel economy improvement. Nonetheless,

for all mentioned studies, the obtained velocity profile along a preview route cycle or

segment is not optimal in terms of fuel consumption and traveling time.

In this study, firstly, it is assumed that a prediction of the velocity profile over a certain

horizon is available thanks to a GPS-based onboard navigation system. This facilitates

a study of designing a predictive algorithm [96], based on Model Predictive Control

(MPC), to anticipate the gear shift command besides the start-stop decision and power
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split strategy for the HEV. The Dynamic Programming-Pontryagin’s Minimum Princi-

ple (DP-PMP) optimal control solver, described in Chapter 3 [98], is utilized to derive

the optimal solution over a certain horizon. The predictive algorithm is implemented in

a receding horizon manner to reveal a suitable candidate for a realtime implementable

strategy. Subsequently, involving with a definition of a velocity profile over a certain

horizon, another algorithm is proposed for the HEV to derive a fuel-optimal velocity

trajectory satisfying the required traveling time over a preview route segment. This

so-called velocity algorithm [93] is also based on a combination of DP and PMP. PMP

is used to derive an instantaneous optimal power split, meanwhile DP is used to attain

an optimal velocity profile.

This chapter is organized as follows. Powertrain modeling and dynamics are outlined

in Section 5.2. Formulation of a predictive gear shift problem and synthesis of a corre-

sponding algorithm are given in Section 5.3. A velocity profile optimization algorithm

is presented in Section 5.4. Implementation of the velocity algorithm in simulation

environment and discussions are given in Section 5.5. Outlook of an integrated predic-

tive gear shift strategy based on preview route information is addressed in Section 5.6.

Finally, conclusions are given in Section 5.7.

5.2 Powertrain Modeling and Dynamics

The hybrid powertrain topology used in this study is shown in Figure 5.1. The main

parameters of the powertrain are given in Table 5.1.

Figure 5.1: The hybrid powertrain topology, (AMT: Automated Manual Trans-
mission; M: Electric machine).

Aiming at designing an EMS, the quasi static modeling approach is used to model the

main powertrain components. Hence, the time step ∆t is chosen to be equal to one

second to simulate the powertrain system, thus ignoring the system dynamics faster

than 1Hz [42]. The clutch is modeled as a switch to connect and to disconnect the
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Table 5.1: The prototype vehicle specifications.

Item Description/Quantity

Engine
diesel type,
maximum torque of 200Nm,
maximum power of 68kW.

Electric machine
maximum torque of 40Nm,
maximum power of 6kW.

Battery lithium-ion; capacity of 6Ah, 110V.

Transmission
6-speed automated manual transmission,
rg = [3.817, 2.053, 1.302, 0.959, 0.744, 0.614].

Vehicle mass 1320kg.

engine immediately to and from the driveline. Its dynamics and limited power losses

during a gear shift or an engine start are ignored in this chapter. Notice of the slippage

loss of clutch at vehicle launch is also not taken into account. However, analysis of the

effect of these losses to the control strategy can be found in Chapter 6.

5.2.1 Powertrain Modeling

• Start-stop system: the start-stop system can be modeled by a decision variable

se(k) to control the engine on-off state. When the engine is off, no fuel is consumed

by the engine.

se(k) =

{
1 if engine on,

0 if engine off.
(5.1)

• Engine: for a certain engine speed ωe(k), the fuel mass flow ṁf (k) is modeled as

an affine piece-wise second order function of the power as expressed in (5.2),

ṁf (k) ≈
(
a0(k)P 2

e (k) + a1(k)Pe(k) + a2(k)
)
se(k). (5.2)

in which the coefficients a0(k), a1(k) and a2(k) are functions of the engine speed.

If assume during braking, the engine is switched off and decoupled from the drive-

line, then the engine braking is neglected. Therefore, the constraints on the engine

speed ωe(k) power Pe(k) are as follows,

ωe,min ≤ ωe(k) ≤ ωe,max, (5.3a)

0 ≤ Pe(k) ≤ Pe,max
(
ωe(k)

)
. (5.3b)
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• Electric machine: the machine efficiency η is assumed to be constant in a normal

operating state. Therefore, the power flow in motoring and generating modes is

expressed as,

Pm(k) = ηPelec(k) in motoring, (5.4a)

Pm(k) =
1

η
Pelec(k) in generating. (5.4b)

The constraints on the speed ωm(k) and power Pm(k) are,

0 ≤ ωm(k) ≤ ωm,max, (5.5a)

Pm,min
(
ωm(k)

)
≤ Pm(k) ≤ Pm,max

(
ωm(k)

)
. (5.5b)

• Battery system: the electrical power Pelec(k) is modeled as a quadratic function

of the storage power Ps(k),

Pelec(k) ≈ b0P
2
s (k) + b1Ps(k) + b2. (5.6)

The constraints imposing on the battery system,

Ps,min ≤ Ps(k) ≤ Ps,max. (5.7)

Notice that the battery capacity is chosen properly such that its state never ex-

ceeds a predefined lower bound Es,min and a upper bound Es,max for increasing

lifetime and reliable operation. Battery operating temperature is assumed to be

under tight control.

• Automated Manual Transmission (AMT): the transmission efficiency η is

assumed to be constant for all gears. The speed and torque relations in the

driveline when the clutch closed are,

ωe(k) = ωg(k) = ωw(k)rg(k), (5.8a)

Tw(k) = η rg(k) Tg(k) = η rg(k) Te(k). (5.8b)

wherein: ωw(k) is the wheel rotational speed; Tw(k) is a drive torque at the wheels;

Tg(k) is a transmission input torque; rg(k) denotes a gear ratio, depend on the

gear position ng(k). The final reduction gear ratio is merged into the transmission

ratio for a simplification.

The constraints on the gear position of a 6-speed transmission are,

1 ≤ ng(k) ≤ 6. (5.9)

• Power flow model: the power flow equilibrium at the transmission input of the

powertrain is expressed as,

Pe(k) = Pg(k) + Pm(k). (5.10)
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5.2.2 Powertrain System Dynamics

The powertrain dynamic system consists of three state variables: the start-stop se(k),

the battery state-of-energy es(k) and the gear position ng(k). Their dynamics are

governed by three corresponding control variables use(k), Ps(k) and ug(k) as,

se(k + 1) = se(k) + use(k), (5.11)

es(k + 1) = es(k) + Ps(k)∆t, (5.12)

ng(k + 1) = ng(k) + ug(k). (5.13)

Longitudinal dynamics: it represents the motion of the vehicle, given by:

v(k + 1) = v(k) + a(k)∆t; (5.14)

wherein the vehicle acceleration a(k) is calculated by,

a(k) =
1

Jv,eq

(Tw(k)

Rw

− Fload(k)
)
,

where Fload is a resistance load due to rolling and aerodynamic resistances; Jv,eq is an

equivalent vehicle inertia at the wheel,

Jv,eq =
(
(Je + Jc + Jp)r

2
g + Js

)
r2
d +mvR

2
w,

Fload = crmvg cosα +mvg sinα +
1

2
ρaAfcdv

2,

and mv is the vehicle weight; Rw is the wheel radius; Je is the engine inertia; Jc is the

clutch inertia; Jp is the transmission primary inertia; Js is the transmission secondary

inertia; ρa is the air density; Af is the frontal area of vehicle; cd is the aerodynamic

drag coefficient; cr is the rolling friction coefficient; g is the gravity coefficient; v is the

vehicle speed; α is the slope of the road. It should be noted that vehicle wheel slip is

ignored.

5.3 Predictive Algorithm

5.3.1 Model Predictive Control

The Model Predictive Control (MPC) methodology involves solving online an open-loop

finite horizon optimal control problem subject to input, state and/or output constraints.

At each discrete-time instant k, the measured variables and the process model (linear,

nonlinear or hybrid) are used to calculate (predict) a future behavior of the controlled

plant over a specified time horizon, which is usually called the prediction horizon and
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is denoted by Np. This is achieved by considering a future control scenario as the input

sequence applied to the process model, which must be calculated such that certain

desired constraints and objectives are fulfilled. To do that, a cost function is minimized

subject to constraints, yielding an optimal sequence of control inputs over a specified

time horizon, which is usually called control horizon and is denoted by Nc. According to

the receding horizon control principle, only the first element of the computed optimal

sequence of control inputs is then applied to the plant and this sequence of steps is

repeated at the next discrete-time step, for the updated state [148].

5.3.2 Predictive Gear Shift Problem

To apply the MPC principle for a predictive gear shift problem in the HEV, the following

assumptions are made:

• the prediction horizon and the control horizon are assumed to be equal, and is

defined by the length of a preview route segment.

• a velocity profile over the horizon is assumed to be known a priori.

• a certain available drive cycle is utilized as a reference drive profile, which is

assumed to be constructed from consecutive preview route segments of the whole

drive mission.

The predictive gear shift problem based on MPC principle for the prototype HEV is

formulated as follows.

Problem 5.1. Assuming that at current time step k, a prediction of the vehicle speed

ṽ(k) =
[
v̂(k+ 1|k), v̂(k+ 2|k), ..., v̂(k+Nc|k)

]T
is available over a horizon Nc, find an

optimal control law ũ∗(k) =
[
ũ∗se(k), P̃ ∗s (k), ũ∗g(k)

]
, that minimize the fuel cost function

Ĵ(k) accumulated over the entire driving horizon,

Ĵ(k) =
Nc−1∑
i=0

ṁf

(
ŝe(k + i|k), P̂e(k + i|k), ω̂e(k + i|k)

)
∆t, (5.15)

subject to the constraints (5.1) - (5.13) and,

Es,min ≤ ês(k +Nc|k) ≤ Es,max, (5.16)

wherein

ês(k +Nc|k) = es(k) +
Nc−1∑
i=0

P̂s(k + i|k)∆t (5.17)

denotes the prediction of battery state-of-energy at the end of horizon;

ũ∗se(k), P̃ ∗s (k) and ũ∗g(k) denote the vectors of predictive optimal control sequences over

the horizon Nc at a time step k.
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Problem 5.1 is solved by utilizing the Dynamic Programming-Pontryagin’s Minimum

Principle (DP-PMP) control approach [98]. This control approach, described in Chapter

3, appears to be a suitable candidate for solving the predictive gear shift problem due

to its optimality and computational efficiency on a given drive cycle. To summarize this

method, PMP is used in the inner loop to solve the instantaneous optimal solution of

the engine power at every time step with a certain given gear position and engine on-off

state. DP is used in the outer loop to solve the optimal gear position and engine on-off

state for the whole drive cycle.

Figure 5.2: MPC-based realtime implementable control algorithm.

Implementation of the predictive gear shift strategy is shown in Figure 5.2. With a

prediction over a horizon Nc of the vehicle speed ṽ(k) =
[
v̂(k + 1|k), ..., v̂(k +Nc|k)

]T
is available at any time step k, the future optimal sequences of the gear shift com-

mand as well as the power split and the engine on-off decision are obtained by solving

Problem 5.1. The receding horizon control strategy utilizes only the first elements of

ũ∗g(k|k), P̃ ∗s (k|k) and ũ∗se(k|k) of the defined optimal trajectories to apply to the hybrid

powertrain system for updated state; for the next step k + 1, the whole optimization

process is repeated using the updated prediction of route horizon. The Lagrange mul-

tiplier λ(k) is kept constant during the optimization process over the horizon Nc. Due

to a slow dynamics of the battery state-of-energy, an Integral (I) controller is chosen to

adapt λ(k) at every time step with respect to a reference input of the battery state-of-

energy [73,98,150].

5.3.3 Simulation Results

For a comparison purpose, two more control strategies proposed for the gear shift prob-

lem based on DP and DP-PMP methods are simulated. These two approaches are not

discussed here, so the details are referred to [98], as described in Chapter 3.

The battery state-of-energy on both NEDC and FTP75 are shown in Figure 5.3. The
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Figure 5.3: Battery state-of-energy es(k) on NEDC and FTP75
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Figure 5.4: Relative fuel difference [%] and calculation time [s] vs. the control
horizon Nc are shown in (a) and (b), respectively.

coefficient of the integral controller is properly tuned such that the battery state-of-

energy at the end of drive cycle is equal to its initial value to ensure fair comparisons

among the control approaches. The DP results (the solid lines) almost overlap the results

of the DP-PMP method (the dashed lines), which renders the DP-PMP almost globally

optimal from an engineering point of view. For the predictive gear shift strategy, two

cases of Nc = 1 and Nc = 5 are chosen for demonstration. For the case of Nc = 1 (the

dashed-dotted lines), es(k) is more different from the globally optimal result. Meanwhile
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for the case of Nc = 5 (the dotted lines), it is very close to the globally optimal result.

The MPC-based approach tends to use as much electric energy as possible to minimize

the fuel cost function over the driving horizon. This results in a more depletion of

SOE corresponding with a shorter horizon. The online-updated Lagrange multiplier

will allow the EMS to bring the battery state-of-energy back to its initial value at the

end of the drive mission.

Figure 5.4a depicts simulation results of the relative fuel difference vs. the control hori-

zon Nc on both NEDC and FTP75. The relative fuel difference is derived by comparing

to the fuel consumption of the predictive gear shift strategy with that of a globally

optimal strategy based on DP. With Nc = 1 (one time step ahead), the maximum rela-

tive fuel difference is 2% on the NEDC. It shows that with Nc ≥ 2, the predictive gear

shift strategy achieves a fuel consumption level almost close to the globally optimal

solution. This reveals that the MPC-based controller can use only the vehicle model

and accelerator pedal position to estimate the next vehicle speed in order to achieve a

significant fuel economy improvement. Moreover, a prediction of the vehicle speed over

a short horizon, for example with a horizon of 5s, is realistic with the current technology

of the onboard navigation firmware. This shows the possibility of implementing such a

controller in realtime without requirement of knowing (a large part of) the drive cycle

a priori.

Figure 5.4b indicates an increased calculation time vs. an increased control horizon Nc

for the predictive gear shift strategy. Nevertheless, the calculation time for all surveyed

cases of Nc is smaller than the time length of the driving profiles. Especially, with a

very short control horizon, e.g. Nc ≤ 10, the fuel consumption is steadily close to the

global optimal solution meanwhile the computation time is very small compared to the

length of the drive profiles. This reveals that the MPC-based gear shift strategy is seen

as a realtime implementable control algorithm from an execution time point of view.

5.4 Velocity Algorithm

Based on the onboard navigation system in combination with the GPS, the obtained

route information is given in the form of a route segment length L, a minimum allowable

speed vmin and a maximum allowable speed vmax. The objective is to propose an

algorithm to derive a fuel-optimal velocity profile over a preview route segment, such

that the vehicle can finish this preview route segment at a given traveling time Nc in

the most fuel efficient way.
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5.4.1 Travel Requirements on a Preview Route Segment

Given the route information, the constraints imposed on the vehicle longitudinal dy-

namics is,

amin ≤ a(k) ≤ amax, (5.18a)

vmin ≤ v(k) ≤ vmax. (5.18b)

wherein amin stands for the highest deceleration rate due to safety condition, and amax
represents for the highest acceleration rate due to the powertrain traction capacity and

friction traction.

The traveled distance of the vehicle is defined as,

s(k + 1) = s(k) + v(k)∆t+
a(k)

2
∆t2,

wherein a(k) is assumed to be constant in the time interval k → k + 1. The end

constraint on traveled distance at the end of horizon is defined as,

s(Nc) = L. (5.19)

5.4.2 Optimal Velocity Problem

For an optimal velocity problem, the hybrid powertrain system are determined

by four state variables v(k), se(k), ng(k), es(k) which are controlled by

a(k), use(k), ug(k), Ps(k), respectively. The powertrain system consists of two contin-

uous and two discrete state variables which make the optimal velocity problem really

challenging for the design of a corresponding solver in terms of the optimality and

computational efficiency. By discretizing all the continuous state and corresponding

control variables and applying Dynamic Programming, the globally optimal solution

can be obtained. Apparently, for the powertrain dynamic system with four state vari-

ables, the ‘curse of dimensionality’ is still a remained issue for the DP algorithm whose

requirements on computational accuracy and efficiency are highly contradictory.

Inspired by the novel control algorithm for the hybrid dynamical system [98], described

in Chapter 3, the concept of combining DP and PMP is utilized to synthesize the solver

for the optimal velocity problem. However, aiming at demonstrating the generation of

an optimal velocity profile over a driving horizon, the engine start-stop and gear shift

strategies are excluded in the problem formulation to reduce the system dimension,

and thus reducing the computational burden for the DP-PMP algorithm. The engine

is assumed to stop and re-start immediately matching with driving conditions, e.g.

electrically driving at low vehicle speed or low power demand, regenerative braking,

engine stop idling, etc. A fuel-efficient gear shift map, discussed in Chapter 4, is applied
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to shift gears. Therefore, it will render the obtained solution of the corresponding

velocity algorithm suboptimal.

The optimal velocity algorithm is formulated as follows.

Problem 5.2. Given a driving horizon length L with a required traveling time not

longer than Nc, find an optimal control law u∗(k) = [a∗(k), P ∗e (k)], which are the

vehicle acceleration and engine power sequences over the time horizon Nc, that govern

the vehicle to finish the driving horizon in the most fuel economy way, or equivalently

minimize the fuel cost function,

J =
N−1∑
k=0

ṁf (k)∆t (5.20)

subject to the constraints (5.2)-(5.8), (5.10), (5.12), (5.14), (5.18) and (5.19).

Problem 5.2 is separated into two problems. The PMP is utilized in the first problem

to define an instantaneous optimal power split between the engine and electric machine.

The DP is applied in the second problem to define an optimal acceleration sequence

over the whole driving horizon.

PMP for optimal power split

Problem 5.3. At a certain time step k, under a certain engine on-off state se(k) and

gear position ng(k), given a possible vehicle speed from vi(k) to vj(k+1), find an optimal

control law of engine power P ∗e (k) that minimizes the instantaneous fuel cost function,

J1(k) = ṁf (k)∆t, (5.21)

subject to the dynamics and constraints described in (5.2)-(5.8),(5.10).

Assuming with a given admissible gear position ng(k) at any time step k, the constraints

on engine speed and electric machine speed, (5.3a) and (5.5a), are satisfied and the

required power at the wheel Pw(k) can be produced by the powertrain, i.e., by both

the engine and electric machine. The constraints on the electric machine and battery

power (5.5b), (5.7) can be incorporated with the constraints of the engine power (5.3b)

to create the new bounds for the control variable Pe(k), as follows,

P
′

e min(k) ≤ Pe(k) ≤ P
′

e max(k). (5.22)

The fuel rate (5.2) and battery efficiency model (5.6) can be approximated as affine

piecewise second-order functions of engine power at a certain engine speed, and thus

denoted as Fr
(
Pe(k), k

)
:= ṁf (k) and Ps

(
Pe(k), k

)
:= Ps(k) for compact notations.
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Applying the PMP method, the objective is to find an instantaneous optimal engine

power P ∗e (k) > 0 that minimizes an equivalent fuel cost functional Ceq(k),

Ceq(k) =
[
Fr
(
Pe(k), k

)
+ λ(k) · Ps

(
Pe(k), k

)]
·∆t, (5.23)

Therefore, if the Lagrange multiplier λ(k) is known, the globally instantaneous optimal

engine power P ∗e (k) can be obtained analytically. The globally instantaneous equivalent

optimal cost value is defined correspondingly by

C∗eq(k) =
[
Fr
(
P ∗e (k), k

)
+ λ(k) · Ps

(
P ∗e (k), k

)]
·∆t. (5.24)

DP for optimal acceleration sequence

Problem 5.4. Find an optimal acceleration profile a∗(k), resulting in an optimal ve-

locity profile v∗(k), along the driving horizon that minimizes the cost functional,

J2 =
N−1∑
k=0

C∗eq(k) (5.25)

subject to constraints: (5.12), (5.14), (5.18) and (5.19).

The implementation of the DP algorithm is performed by discretizing the state variable

v(k) and the corresponding control variable a(k), and then calculating the cost func-

tional J2 for the whole driving profile. The optimal cost-to-go path is solved backwards

as the following steps.

• Step k = Nc:

J ∗2 (Nc) = 0. (5.26)

• Step k, 0 ≤ k < N :

J ∗2
(
vi(k), k

)
= min

aij(k)

[
C∗eq(k) + J ∗2

(
vj(k + 1), k + 1

)]
. (5.27)

Solving the above procedure backward until k = 0, the optimal solutions of a∗(k) and

v∗(k) are obtained correspondingly with a specific end value of v(Nc).

5.5 Implementation of the Velocity Algorithm

5.5.1 Discretization of Vehicle Longitudinal Dynamics

To apply DP for Problem 5.4, the control variable for the vehicle dynamics is required

to be discretized. From the constraint (5.18a), the deceleration and acceleration grid
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vectors are defined with a grid step δa as,

Adec = {amin, amin + δa, . . . , −δa}, (5.28)

Aacc = {δa, . . . , amax − δa, amax}. (5.29)

For any pair of adec ∈ Adec and aacc ∈ Aacc, the grid space agrid of control variable a(k)

is formed

agrid = {adec, adec − δa, . . . , 0, . . . , aacc − δa, aacc}, (5.30)

If we define δv = δa∆t, taking into account the velocity constraint (5.18b), the grid

space of velocity vgrid is thus in the form,

vgrid = {vmin, vmin + δv, . . . , vmax − δv, vmax}. (5.31)

Furthermore, the velocity grid vgrid(k) at any time step k is reduced further by recon-

structing the minimum speed vmin(k) and maximum speed vmax(k) as follows,

vmin(k) = max
{
vmin(k − 1) + amin∆t, 0

}
, (5.32)

vmax(k) = min
{
vmax(k − 1) + amax∆t, vmax

}
. (5.33)

5.5.2 Decoupling of Velocity Algorithm

Due to a coupling of the vehicle acceleration and drive power demand, solving Problem

5.2 by separating it into Problems 5.3 and 5.4, and solving them by the PMP and DP

respectively, does not guarantee a globally optimal solution.

The vehicle acceleration determines the drive power demand, which influences the power

split and thus directly affecting the fuel consumption in (5.21). Meanwhile the vehicle

acceleration influences the longitudinal dynamics, as in (5.14). Therefore, to ensure

an optimality when decoupling Problem 5.2, an equivalent factor, denoting a rate of

change of the vehicle acceleration a(k) with respect to a change of the instantaneous

equivalent fuel cost functional C∗eq(k), must be defined. Furthermore, to satisfy the end

constraint on traveled distance (5.19), it requires the solver to know the rate of change

of the instantaneous equivalent fuel cost functional C∗eq(k) with respect to a change of

the vehicle speed v(k).

An alternative technique is introduced to deal with this coupling in the DP algorithm.

The lower and upper bounds on agrid are varied by changing the values of adec and

aacc. Then, construct a boundary region of the feasible traveled distance profiles along

the preview route segment, such that any traveled profile falling within this region will

meet the constraints (5.18) and (5.19). The upper bound is constructed based on the
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fastest traveling situation. Vice verse, the lower bound is based on the slowest traveling

situation. This region forms a state space where the DP algorithm can find an optimal

acceleration sequence. Figure 5.5 shows a boundary region of the feasible traveled

distance profiles along for a certain set of {adec, aacc}. An optimal traveled distance is

indicated by s∗(k).

Figure 5.5: Boundary region for the feasible traveled distance profile. s∗(k)
indicates the optimal traveled distance profile.

By repeating this procedure with another pair of lower and upper bounds on agrid, the

final optimal solution is defined at the pair giving the smallest value of fuel consumption.

An implementation of the proposed control algorithm is graphically given in Figure 5.6.

5.5.3 Driving Horizon

An arbitrary driving horizon, describing a final part of urban driving cycle in Europe

(ECE), see the profile v1 in Figure 5.8, is chosen for simulation and clarification. This

route has a length of 626m and required time of traveling of 71s. Aiming at demon-

strating a fuel economy improvement of the velocity algorithm, the end constraint on

battery state-of-energy (5.34) should be respected when finishing the driving horizon

for a fair comparison,

es(Nc) = es(0), (5.34)

which can be achieved by an integral controller as in (5.35) to online adapt the Lagrange

multiplier λ(k),

λ(k + 1) = λ(k) +KI

(
es(k)− es(0)

)
. (5.35)



112 5 Integrated Predictive Gear Shift Strategy

BEGIN

- Choosing:   adec  Adec   ;    aacc   Aacc ;

- Forming: agrid = {adec, …, adec-a, 0, …, aacc-a, aacc }

Upper bound and lower bound 

of traveled distance are proper?

Dynamic

Programming
Start DP:   k = NC;    J2

*
(NC) = 0;  

k>0 ?
Yes

For  every possible driving situation from speed vi(k) to speed vj(k+1), under a 

engine on-off state se(k) and a gear position ng(k),

End For

k = k-1;

    ;1),1()(min),( *
2

*

)(

*
2  kkvJkCkkvJ j

eq
ka

i

ij

Yes

- Saving the optimal control variables;

- Computing and saving the fuel consumption;

Another pair of 

{adec, aacc } exists?

Selecting the smallest fuel consumption 

and the corresponding optimal solutions!

Yes

No

No

No

 -  Pontryagin’s Minimum Principle to define the optimal engine power Pe
*
(k);

 -  Calculate the instantaneous equivalent optimal cost C
*
eq(k);

Figure 5.6: Structural implementation of the velocity algorithm.

5.5.4 Simulation Results

Sensitivity investigation of the fuel consumption with respect to a variation of

{adec, aacc} is depicted in Figure 5.7. It shows that the smallest fuel consumption

is realized approximately at aacc ≈ 1.5m/s2 for all surveyed values of adec.

Figure 5.8 shows the simulation results of the traveled distance profiles (to sub-figure)

and the velocity profiles (bottom sub-figure). The optimal traveled distance sopt and

velocity vopt profiles are indicated by the circled-mark thick solid lines. Simulation

results of the other three arbitrary driving profiles, denoted as v1, v2, v3, are also given

for a comparison. Note that these three driving profiles are not the results of the velocity

algorithm. The traveled distance requirement on the given driving segment is satisfied
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Figure 5.7: Sensitivity study of the fuel consumption with respect to a variation
of {adec, aacc}.
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Figure 5.8: Comparison of the optimal driving profile (circled-mark thick solid
line) with other three profiles along the given route segment.

by the four driving profiles (top sub-figure). The optimal velocity profile possesses a

moderate acceleration and the smallest deceleration. Its deceleration phase lasts longer

than the other three to take advantage of regenerative braking.

As given in Table 5.2, the fuel economy of the driving profile v1 is 11.5% lower compared

with that of the optimal profile vopt. Meanwhile, for the other two arbitrary driving

profiles v2 and v3, a severe reduction in fuel economy is 15.1% and 16.5%, respectively.

The end constraint of the battery state-of-energy is guaranteed by the condition |∆es| =
|es(Nc)−es(0)|/es(0)∗100 < 1%. Although, the optimal velocity problem is partly solved

using a surface response model to find an optimal setting for the bounds on agrid, and

creates a suboptimal solution, it shows a significant fuel economy improvement.
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Table 5.2: Fuel consumption of four driving profiles along the route segment.

Profile |∆es| [%] Fuel [g] Fuel economy [%]

vopt 0.5 14.14 baseline
v1 (ECE) 0.6 15.76 -11.5

v2 0.6 16.28 -15.1
v3 0.8 16.48 -16.6

5.6 Integrated Predictive Gear Shift Strategy

A concept of an integrated predictive gear shift strategy for the transmission equipped

in a HEV is created by i) embedding the velocity algorithm on an onboard navigation

system, ii) implementing the predictive algorithm for a corresponding EMS. Output

of the onboard navigation system is a prediction of the velocity profile over a driving

horizon. This prediction information is put into the EMS based on the predictive

algorithm controlling the gear shift besides the engine on-off decision and power split

strategy. Figure 5.9 graphically demonstrates this concept. Validated by a fuel economy

improvement for each separated algorithm, the concept is proved to work in principle.

Figure 5.9: Schematic diagram of the concept of integrated predictive gear shift
strategy.
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5.7 Conclusions

In this study, a concept of integrated predictive gear shift strategy for the transmission

equipped in a HEV was demonstrated and validated in simulation environment. Despite

the fact of being not globally optimal, the velocity algorithm significantly improves the

fuel economy for the HEV by proposing an optimized velocity profile for the vehicle to

follow. The predictive algorithm successfully utilizes a short preview horizon to realize a

fuel economy improvement very close to that of the globally optimal control algorithm.

Future work should focus on implementing the velocity algorithm on a preview route

segment with a relatively short horizon, e.g. an acceleration phase, a cruise phase or

a deceleration phase, etc., to analyze the effect of the horizon length on the optimal

solution. Upgrading the velocity algorithm such that it is able to handle with a free

final state of the vehicle speed and battery state-of-energy (at the end of each driving

horizon) is also required. This makes the upgraded velocity algorithm applicable for a

certain driving mission consisting of consecutive fuel-optimal driving segments, while

still achieving a desired finishing time.
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Chapter 6

Effect of Gear Shift and Engine Start
Losses1

Abstract - In this study, the energetic loss models involved with gear shift and engine start in
a parallel Hybrid Electric Vehicle (HEV) equipped with an Automated Manual Transmission
(AMT) will be introduced. An optimal control algorithm for the start-stop, power split
and gear shift problem based on the Dynamic Programming-Pontryagin’s Minimum Principle
control approach is utilized to evaluate the effect of the gear shift and engine start losses
on the optimal solution. Furthermore, with preview route information available, a Model
Predictive Control (MPC) algorithm is applied to investigate an achievable fuel saving with
respect to the prediction horizon. Under the influence of the gear shift loss, simulation results
of a passenger HEV disclose a superior fuel efficient property of the powershift-AMT over the
AMT. It also shows that by reducing the interruption time in the gear shift process as much
as possible, the AMT vehicle can reduce the fuel consumption noticeably compared to the
PS-AMT vehicle. The study also reveals a minimum prediction length of 5s required for the
design of a MPC-based realtime implementable controller to get the possible maximum fuel
economy under the impact of the engine start loss.

6.1 Introduction

Design of the Energy Management Strategies (EMSs) for Hybrid Electric Vehicles

(HEVs) in general aims at optimally choosing the power split between the internal

combustion engine and electric machine to improve the fuel economy, for example

see, [3, 25, 50, 63, 67, 73, 83, 96, 98, 107, 118, 125, 126, 134, 156]. For HEVs equipped with

discrete ratio transmissions, e.g. an Automated Manual Transmission (AMT), the oper-

ating points of the hybrid powertrain are not only defined by the power split but also by

1This chapter has been prepared for a journal publication in the form as: V. Ngo, T. Hofman, M.
Steinbuch, A. Serrarens. Effect of Gear Shift and Engine Start Losses on Control Strategies for Hybrid
Electric Vehicles. 2012.
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the start-stop state and gear position. Hence, by further optimizing the start-stop and

gear shift strategies, the fuel economy is improved substantially compared to the EMSs

optimizing only the power split. Consequently, the controller allows i) the transmission

to shift up earlier with higher frequency and to higher values, and ii) the engine to stop

and restart more frequently, for a fuel benefit [3,25,63,67,83,96,98,107,118,125,134,156].

At a gear shift or engine start event, an amount of energy related to clutch slippage,

vehicle velocity loss during shifting, and engine cranking, is lost. So, it is worthwhile to

concern these losses when the number of shifts and starts is at a considerable amount

for a certain drive cycle. However, none of the mentioned published papers has been

addressing the relevant gear shift and engine start losses, and thus analyzing their effect

on the control strategies and fuel consumption. Therefore, this study will focus on these

challenges.

Regarding to the gear shift, a shift decision will encounter a change of the engine rotating

dynamics, a possible clutch operation loss and a consequent vehicle velocity loss due to

an interrupted tractive torque. Hence, compensation for the gear shift loss might cost

additional fuel. For a decision of restarting the engine, apart from the tractive torque

required at the wheels, an extra torque from the electric machine is needed for cranking

up the engine from stand still and compensating the friction loss in the clutch. This

would consume an amount of electric energy which sometime later can cost fuel for

recharging. Engine combustion takeover after the cranking phase for each engine start

process should also be considered. In summary, on highly dynamic drive cycles with

frequent stop-go patterns, the number of gear shifts and engine restarts will increase.

Hence, the fuel consumption might increase.

Therefore, this study will bring the aforementioned aspects, regarding to the losses of

shifting gears and restarting engine, into the EMS [98] to analyze their influence on

the fuel economy. It’s worthwhile to mention that the proposed EMS for a parallel

HEV equipped with an AMT, optimally control not only the power split but also the

engine start-stop and gear shift. The control algorithm based on a combination of Dy-

namic Programming (DP) and Pontryagin’s Minimum Principle (PMP) guarantees an

optimality and is computationally efficient. First of all, a sensitivity study of the fuel

economy with respect to the gear shift command is conducted towards a gear shift hys-

teresis strategy implementation to get rid of the shift busyness and hunt. A gear shift

loss model capturing the main shifting characteristics is introduced and incorporated

in the EMS for a fuel economy evaluation. Then, a sensitivity study with respect to

the interruption time of tractive torque during a gear shift process reveals a perception

of a fuel-efficient advantage of the powershift transmissions (Dual Clutch Transmis-

sion (DCT), PowerShift-AMT (PS-AMT) [132], etc.) compared to non-powershift ones

(Manual Transmission (MT), AMT). In addition, an engine start loss model correspond-

ing to the prototype HEV is built and embedded in the EMS design to reflect its effect

on fuel consumption. Moreover, Model Predictive Control (MPC) for the HEV appears
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to be a possible candidate for a realtime implementation when using preview route in-

formation [96]. Therefore, the impact of the prediction horizon length on the achievable

fuel saving of the HEV with the engine start loss modeled will be investigated for this

realtime implementable control algorithm.

The content of this research work is organized as follows. The hybrid powertrain model

is given in Section 6.2. The optimal control problem for the engine start-stop decision,

power split and gear shift strategies is formulated in Section 6.3. Gear shift loss model

and its influence on the fuel economy will be discussed in Section 6.4. Engine start loss

model and the related optimal control problem are addressed in Section 6.5. Prediction

horizon length sensitivity study on the fuel economy resulted from the corresponding

predictive control algorithm under the impact of engine start loss is given in Section

6.6. Finally, conclusions are given in Section 6.7.

6.2 Hybrid Powertrain Model

Aiming at deriving an EMS, the quasi-static models of the powertrain components are

used and simulated with a time step of one second. The system dynamics faster than

1Hz are ignored [42]. The clutch system is considered as a discrete switch to connect

and to disconnect the engine immediately to and from the driveline. The energy losses

during the clutching process of the gear shift and engine start are addressed explicitly

in Sections 6.4 and 6.5, respectively.

Figure 6.1: A parallel hybrid electric vehicle topology, (AMT: Automated Man-
ual Transmission; M: Electric machine).

The start-stop system can be modeled by using a discrete state variable se(k) to repre-

sent the engine on-off state,

se(k) =

{
1 if engine on,

0 if engine off.
(6.1)

We ignore the engine drag torque during deceleration phase due to a disconnection of
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the engine from the driveline and the engine is shut down. For a certain engine speed

ωe(k), the fuel consumption model is approximated as an affine piece-wise second order

function of the engine power Pe(k). The fit coefficients a0, a1, and a2 are dependent on

the engine speed,

ṁf

(
Pe(k), k

)
≈
(
a0P

2
e (k) + a1Pe(k) + a2

)
se(k). (6.2)

The electric machine efficiency ηm is assumed to be constant. Therefore the power Pm(k)

flowing in and out of the electric machine in motoring mode and generating mode is

expressed as follows,

Pm(k) = ηm Pelec(k) (if motoring);

Pm(k) =
1

ηm
Pelec(k) (generating).

(6.3)

We assume the battery state-of-energy es(k) to be in a nominal range [Es,min, Es,max]

such that its effect to the battery efficiency model can be ignored. Hence, the electrical

power Pelec(k) can be approximated as a quadratic function of the chemical power Ps(k)

as,

Pelec(k) ≈ b0P
2
s (k) + b1Ps(k) + b2. (6.4)

The gearbox efficiency model is assumed to be constant η for all gears. The torque and

speed relations in the driveline (the clutch is closed) are given by,

Tw(k) = Tg(k) rg(k) η, (6.5)

ωw(k) =
ωm(k)

rg(k)
, ωm(k) = ωg(k), (6.6)

where Tw(k) is the transferred torque at the wheels (assumed equal to output torque

of the transmission); Tg(k) is the input torque of the transmission; rg
(
ng(k)

)
denotes

the discrete gear ratio depending on the gear position ng(k); ωw(k) is the wheel speed;

ωm(k) is the electric machine speed and ωg(k) is the transmission input speed.

At any time step k, the power flow equilibrium in the parallel hybrid powertrain topology

is expressed as,

Pe(k) = Pg(k) + Pm(k), (6.7)

with Pg(k) is the power flow at the transmission input.

The vehicle longitudinal motion dynamics in discrete time domain is given by,

ωw(k + 1) = ωw(k) +
1

Jv,eq

(
Tw(k)− Fload(k)Rw

)
∆t, (6.8)
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where Fload is the resistance loads due to rolling and aerodynamic resistances; Jv,eq is

an equivalent vehicle inertia at the wheel,

Jv,eq =
(
(Je + Jc + Jp)r

2
g + Js

)
r2
d +mvR

2
w,

Fload = crmvg cosα +mvg sinα +
1

2
ρaAfcdv

2,

and mv is the vehicle weight; Rw is the wheel radius; Je is the engine inertia; Jc is the

clutch inertia; Jp is the transmission primary inertia; Js is the transmission secondary

inertia; ρa is the air density; Af is the frontal area of vehicle; cd is the aerodynamic

drag coefficient; cr is the rolling friction coefficient; g is the gravity coefficient; v is the

vehicle speed; α is the slope of the road.

6.3 Hybrid Powertrain Control Algorithm

6.3.1 Optimal Control Problem Formulation

Problem 6.1. Given a drive cycle v(k) with a time length of N , implying that the

vehicle longitudinal dynamics (6.8) is deterministic, find an optimal control law u∗(k) =[
u∗se(k), P ∗s (k), u∗g(k)

]
, which are the optimal control variables for the start-stop system,

battery state-of-energy, and gear shift, respectively, that minimize the fuel cost function

described by,

J =
N−1∑
k=0

ṁf

(
Pe(k), ωe(k), k

)
∆t, (6.9)

subject to:

1. the hybrid powertrain dynamics,

se(k + 1) = se(k) + use(k), (6.10)

es(k + 1) = es(k) + Ps(k)∆t, (6.11)

ng(k + 1) = ng(k) + ug(k), (6.12)

2. the constraints on the speeds of the drivetrain components,

ωe,min ≤ ωe(k) ≤ ωe,max, (6.13a)

0 ≤ ωm(k) ≤ ωm,max, (6.13b)
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3. the constraints on the engine power Pe(k), electric machine power Pm(k) and

battery power Ps(k) are,

0 ≤ Pe(k) ≤ Pe,max
(
ωe(k)

)
, (6.14a)

Pm,min
(
ωm(k)

)
≤ Pm(k) ≤ Pm,max

(
ωm(k)

)
, (6.14b)

Ps,min ≤ Ps(k) ≤ Ps,max, (6.14c)

4. the constraints on the system states, which are the engine start-stop state and gear

position,

0 ≤ se(k) ≤ 1, (6.15)

1 ≤ ng(k) ≤ 6, (6.16)

here, note that the constraints on the engine on-off state are described by (6.1).

5. the end constraint of the battery state-of-energy,

es(N) = es(0) +
N−1∑
k=0

Ps(k)∆t = es(0), (6.17)

6. the constraints on the control variables,

use(k) =

{
[0, 1] if se(k) = 0,

[−1, 0] if se(k) = 1;
(6.18)

ug(k) ∈
{
ug,min, · · · ,−1, 0, 1, · · · , ug,max

}
, (6.19)

wherein ∆t is the time step of the discrete system; ug,min and ug,max are the lower and

upper bounds for the gear shift command ug(k).

In this study, the upper and lower bounds of the state variable es(k) are ignored by

an assumption that the battery capacity Es,cap is chosen properly such that es(k) never

exceeds its bounds for increasing the battery lifetime and reliable operation. Battery

operating temperature is assumed to be under tight control.

Dynamic Programming-Pontryagin’s Minimum Principle (DP-PMP) control approach,

described in Chapter 3, appears to be a suitable candidate to solve the formulated

optimal control problem. For further details of this approach, interested readers are

referred to [98]. In summary, PMP is used in the inner loop to solve the instantaneous

optimal solution of the battery power (or the engine power alternatively) at every time

step with a certain gear position and engine on-off state. DP is used in the outer loop

to solve the optimal gear position and the engine on-off state for the whole drive cycle.
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6.3.2 Gear Shift Command Sensitivity

From (6.12), the bounds of the gear shift command ug(k) determine the dynamic behav-

ior of the next gear position ng(k+ 1), which eventually affects the fuel economy. From

(6.19), ug,min and ug,max are varied to investigate a sensitivity of the optimal solution

with respect to the gear shift dynamics. With a 6-speed transmission, the upper bound

and the lower bound on ug(k) are 5 and -5 respectively which leads to five main cases

of consideration as in (6.20),[
ug,min
ug,max

]
∈
{[
−1
1

]
,

[
−2
2

]
,

[
−3
3

]
,

[
−4
4

]
,

[
−5
5

]}
. (6.20)

The drive cycles chosen for testing the control algorithm are NEDC, FTP75, LA92 and

CADC to represent real-life driving scenarios (see, Appendix C). Simulation results

of the fuel consumption for the case [ug,min; ug,max] = [−1; 1] are shown in Table

6.1. Compared to this case, the relative fuel economy of the other cases mentioned in

(6.20) is very small (≈ 0%). This means that increasing the bounds on the gear shift

command does not affect the fuel economy. In other words, choosing ug(k) ∈ {−1, 0, 1}
is the optimum gear shift command in terms of the fuel economy and the engine speed

variation reduction during shifting.

Table 6.1: Fuel consumption with the gear shift command bound
[ug,min; ug,max] = [−1; 1].

Cycle NEDC FTP75 LA92 CADC

Fuel [g] 300.5 480.3 530.8 1873.9

Depicted in Figure 6.2 are the results of the gear position, engine on-off state and battery

state-of-energy on the NEDC. They are almost the same for five cases of [ug,min; ug,max],

described in (6.20), which further demonstrates the robustness of the controlled power-

train system with respect to the uncertainty of the gear shift command bounds.

6.3.3 Gear Shift Hysteresis

The proposed control strategy allows the transmission to shift as much as possible with

a maximum shift frequency equal to the frequency of the discrete powertrain system for

fuel savings. Actually, vehicles equipped with an AMT can only shift the transmission

under the respect of so-called shift hysteresis to prevent the gear hunting, i.e. shifting up

and down at two consecutive time steps, and avoid losing the driveability. This practical
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Figure 6.2: Simulation results on the NEDC for five cases of the gear shift
command bounds [ug,min; ug,max].

issue can be implemented into the EMS by imposing a constraint of not changing gear

within nhys time steps after each previous shifting, described by a general shift condition,

general shift condition

uhys = ug(k − nhys) + · · ·+ ug(k − 1);

if uhys == 0
ug(k) ∈ {−1, 0, 1},

else
ug(k) = 0,

end

This means that a gear shift decision can be only made when a hysteresis time nhys is

respected. The powertrain dynamic system for control will increase in dimension by an

order of nhys−1. Therefore, nhys > 1 will make the control system more complicated and

affect to the computation load of the control algorithm. Hence, in this study nhys = 1

is adopted for a reasonable compromise, which leads to a simplified shift hysteresis

condition as in (6.21),

ug(k − 1)ug(k) = 0. (6.21)

Simulation results are given in Table 6.2. The relative difference of the shift hysteresis

case compared to the baseline is indicated in the parenthesis. It depicts that the shift

hysteresis strategy reduces the number of shifts significantly, meanwhile the fuel econ-
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Table 6.2: Simulation results corresponding with a study on the gear shift
hysteresis. Relative difference is indicated in the parenthesis

Cycle
Baseline Shift hysteresis

Fuel [g] No. shift Fuel [g] No. shift

NEDC 300.5 73 301.8 (0.4%) 71 (-2.7%)

FTP75 480.3 423 481.5 (0.3%) 197 (-53.4%)

LA92 530.8 358 531.8 (0.2%) 179 (-50%)

CADC 1873.9 651 1876.2 (0.1%) 244 (-62.5%)

omy impact is small. The obtained results reveal an essential role of the shift hysteresis

in removing the unnecessary shifts not affecting the fuel economy considerably.

6.4 Gear Shift Loss Model and Control Problem

The gear shift process of an AMT-based vehicle includes three chronological phases:

1) disengaging the clutch and lowering the engine torque; 2) shifting to the expected

gear; and 3) engaging the clutch while increasing the engine torque again. The speed

and torque profiles of both clutch and engine during the shifting process are assumed

to be properly controlled in every phase to ensure quick shifting, more comfort and and

less friction losses, etc. [39, 132]. The energetic loss model involved with the gear shift

process is described next.

6.4.1 Gear Shift Loss Model

A decision of shifting gears is meaningful when the vehicle is in acceleration or cruising

modes, wherein the engine is used as a primary mover to meet the required positive

drive torque at the wheels. The transmission can: i) shift up to accommodate the

engine speed to the changing vehicle speed and improve the fuel economy, or ii) even

shift down, called kick-downshift, if a higher acceleration or driving uphill is required.

During electrically driving mode (the electric machine is used to solely propel the ve-

hicle) or deceleration mode (the electric machine operates as a generator to recuperate

the kinetic energy), the hybrid powertrain with a start-stop functionality can turn the

engine off and disconnect it from the driveline. The clutch is opened. Apparently, there

is no slippage phenomena in clutch which leads to no energy loss involved. The gear
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shift during these driving modes can be assumed to occur immediately.

In summary, only upshift and kick-downshift events are considered for modeling the

gear shift loss which is described next.

Upshift

Figure 6.3a demonstrates the simplified uniform profiles of the speed and torque of the

engine and clutch in an upshift process. Three phases of the shifting process occurring in

the interval ∆tshift are indicated. In phases 1 (disengagement) and 3 (engagement), the

engine torque and clutch transferred torque are controlled to have a declined and inclined

patterns to allow a comfort disengagement and engagement, respectively. Hence, there

exists a slippage phenomena at the clutch to transfer the tractive torque to the wheels

during these phases. The speed difference between the engine and clutch during these

phases is small enough, thus assuming to be zero [34,39,132,165]. In phase 2, the clutch

is fully disengaged for shifting gears, and there is an interruption of the tractive torque

which finally results in a velocity loss for an interval ∆tint. Due to the engine drag

torque, the engine speed is assumed to reduce to a synchronization point corresponding

to the clutch speed at the next higher gear. Denoting the engine torque right before

and after shifting is Te, then the engine torque and tractive torque transferred to the

wheels during an upshift process can be modeled as,

• in phases 1, 2 and 3, the corresponding engine torque can be averaged as,

Te,1 =
Te
2
,

Te,2 = 0,

Te,3 =
Te
2

;

(6.22)

• the average tractive torque transferred to the wheels during an upshift process

(due to a clutch slippage in phases 1 and 3),

Te,shift =
Te
2

∆tshift −∆tint
2∆tshift

. (6.23)

Kick-downshift

Figure 6.3b shows the typical profiles of the engine and clutch torque for a kick-downshift

process [34, 39, 132,165]. It also consists of three phases. In phases 1 and 3, the engine

and clutch torque profiles are similar to an upshift. In phase 2, the clutch torque is

zero, meanwhile the engine torque is maintained above zero to increase the engine speed
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(a) (b)

Figure 6.3: Simplified engine and clutch profiles during an upshift process (a),
and a kick-downshift process (b).

up to the synchronization point corresponding to the clutch speed at next lower gear.

Hence the engine torque and tractive torque transferred to the wheels during an upshift

process can be modeled as,

• in phases 1, 2 and 3, the corresponding engine torque can be averaged as,

Te,1 =
Te + Te,2

2
,

Te,2 = Je
ωe,3 − ωe,1

∆tint
,

Te,3 =
Te + Te,2

2
,

(6.24)

where Je is the equivalent inertia on the engine side (seen from the clutch); ωe,1
is the engine speed in phase 1 (right before shifting); ωe,3 is the engine speed in

phase 3 (right after shifting);

• the average tractive torque transferred to the wheels during a kick-downshift pro-

cess (due to a clutch slippage in phases 1 and 3),

Te,shift =
Te + Te,2

2

∆tshift −∆tint
∆tshift

. (6.25)

Note that the engine torque in phase 2 does not constitute the tractive torque, but it

still results in additional fuel consumption.

Velocity tracking loss

As analyzed in the upshift and kick-downshift and demonstrated in Figure 6.3, the

tractive torque is totally lost during phase 2 of the shifting process due to a clutch



128 6 Effect of Gear Shift and Engine Start Losses

opening. During phases 1 and 3, the tractive torque transferred to the wheels is defined

by (6.23) and (6.25). Taking all these tractive torque characteristics into account will

result in a velocity loss for each upshift or kick-downshift event. Therefore, the vehicle

needs to accelerate more, later in the driving mission, in order to compensate for the

loss in each gear shift. This will definitely influence the fuel economy of the vehicle.

Apparently, the length of the power interruption in phase 2, denoted by ∆tint, mainly

decide the effect level of the gear shift loss on the vehicle performance. In reality,

the interruption time ∆tint is varied according to the types of vehicles and the clutch

operation conditions [39,132]. Therefore, a sensitivity study with respect to ∆tint should

be done for a thorough analysis of the gear shift loss effect.

6.4.2 Optimal Control Problem with Gear Shift Loss

The design of EMSs for AMT-based HEVs always assumes the gear shift to occur

instantly, which means that there is no torque interruption at the wheels when shifting

and the vehicle keeps tracking the velocity and acceleration profiles. This is only true

when the transmission possesses a powershift technology, e.g. PS-AMT, DCT, AT, etc.,

to enable the tractive torque to be transferred to the wheels during shifting. As said

for AMTs, the consequence of a gear shift activity is loss of velocity tracking. To arrive

the final destination on time, the vehicle must accelerate more after each gear shift to

compensate for the velocity loss accumulated during shifting.

As shown in Section 6.3.3, the optimal control strategy for the HEV yields many shifts

for fuel economy improvement. Therefore, it’s a fair evaluation to include AMT gear

shift loss model to the fuel-optimal EMS. Note that, as a consequence of the velocity

tracking loss, the vehicle can not exactly follow a given drive cycle, and thus the next

vehicle speed is gear shift dependent. An EMS optimizing further the driving profile

(velocity, traveled time) [93,151] is an appropriate solution for the control problem with

the gear shift loss model involved. Such a control algorithm is complicated and out of

scope of this study. In order to cope with the velocity tracking loss, an appropriate

approach to investigate effect of the gear shift loss on fuel economy and evaluate power-

shift technology is introduced as follows.

PS-AMT : the EMS is designed with no gear shift loss model taken into account. This

means the AMT has a powershift technology to ensure a velocity tracking. The designed

EMS optimizes the engine on-off state, power split and gear shift.

AMT : the hybrid powertrain is equipped with an AMT. The gear shift loss model

is respected during the design process of the EMS. The optimal gear shift strategy

obtained from the PS-AMT is now used as a prescribed one for the AMT. To ensure

the same average speed with the PS-AMT in order to get a fair comparison on the fuel

economy, the next vehicle speed is controlled by an integral regulator. The powertrain
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is simulated in a forward-facing manner and the EMS optimizes the engine on-off state

and power split.

6.4.3 Simulation Results

The gear shift hysteresis strategy is taken into account in the case of the PS-AMT to

avoid any gear shift hunting pattern. Figure 6.4 depicts a zoom-in of one part of the

simulation results on the NEDC. It can be seen that when an upshift occurs, the AMT

vehicle losses velocity tracking, represented by the corresponding flat vehicle speed (the

dotted line). Right after each upshift, the AMT vehicle accelerates higher than the PS-

AMT vehicle to compensate for the velocity tracking loss during the gear shift before.
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Figure 6.4: Zoom-in on the NEDC of the velocity tracking for the PS-AMT vs.
the AMT.

Sensitivity study of the relative fuel difference (by comparing the fuel consumption

of the AMT vehicle with that of the PS-AMT vehicle) with respect to a variation

in interruption time ∆tint over the tested drive cycles is shown in Figure 6.5. The

interruption is varied as,

∆tint ∈ {0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}[s] (6.26)

to reflect the possible interruption time of the actual gear shift activity. Herein ∆tint =

0.3s represents the possible smallest time of actuating the synchronizer for a gear change.

Meanwhile ∆tint = 1s represents the longest interruption time for passenger cars. It

is noticed that the slopes of the torque profiles during disengagement and engagement

phases are unchanged for a comfort reason. In this study, the slope time for each phase

is chosen to equal to 0.2s. The AMT vehicle speed is controlled to finish the drive cycle
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Figure 6.5: Sensitivity study of the fuel difference (comparing the AMT vehicle
with the PS-AMT vehicle) with respect to a variation in interruption time ∆tint.

on time to ensure a fair comparison with the PS-AMT vehicle.

• The results shown in Figure 6.5 reveal that, the longer the interruption time, the

more the AMT vehicle consumes fuel compared to the PS-AMT vehicle. The

results on the drive cycles FTP75, LA92 and CADC, representing real-life driving

missions, demonstrate a superior fuel economy property of the PS-AMT compared

to the AMT. Therefore, reducing the interruption time in the gear shift process

of the AMT would reduce the fuel consumption at a considerable amount.

• On NEDC, the relative fuel difference is very small and even equal to zero at

∆tint = 0.4. This means that the obtained driving profile from the AMT vehicle

is equivalent with the NEDC in terms of fuel consumption. This characteristic

discloses the possibility of further boosting the fuel economy for HEVs by optimiz-

ing the vehicle velocity profile while still satisfying the requirements on traveled

distance and time.

• In an attempt to find the rationale of fuel advantage of the PS-AMT vehicle over

the AMT one, dynamical analysis (mean and standard deviation) of acceleration

characteristics of the drive cycles is conducted and shown in Figure 6.6. It can

be seen that the NEDC is less dynamic, represented by the lowest mean and

standard deviation compared to the other drive cycles. This corresponds with the

lowest relative fuel difference on the NEDC. Meanwhile, the LA92 has the highest

dynamical property, represented by the highest mean and standard deviation.

This is matched with the highest relative fuel difference on the LA92, see Figure

6.5. An analogous correlation between the dynamical property of drive cycle and

the relative fuel difference is also held for FTP75 and CADC. Hence, it can be
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Figure 6.6: Dynamic characteristics (mean and standard deviation (std dev))
of the drive cycles.

concluded that, the more dynamic the drive cycle, the more fuel-efficient the PS-

AMT vehicle (compared to the AMT vehicle). In other words, a drive cycle with

many shifts required, e.g. driving in urban area, is fuel economy potential for the

PS-AMT vehicle.

6.5 Engine Start Loss Model and Control Problem

6.5.1 Engine Start Loss Model

A full parallel HEV can utilize the electric machine, positioned right after the clutch,

to start the engine. By exploiting this advantage, the parallel hybrid powertrain can

eliminate the traditional engine starter. The starting process can be done through two

chronological steps: 1) engaging the clutch to crank the engine from rest to a start-speed

by the torque from electric machine; 2) after reaching the start-speed, the engine will

takeover the combustion process to synchronize its speed with the transmission input

speed before fully engaging the clutch. Consequently, a decision of starting the engine

would consume an amount of electric energy and fuel. Moreover in the first step of

turning the engine speed up to the start-speed, the friction loss occurring in the clutch

is also compensated through the electrical path. For a simplification of modeling the

start loss, the friction loss in the second step can be neglected due to an assumption of

quickly engaging the clutch at the synchronization point.

In the context of designing an EMS, it can be assumed that the whole starting process

occurs in one time step. Any decision to start the engine at any time step k means that,

the engine will be ready to propel the vehicle on the next time step k+ ∆t. The model

of the engine start is graphically displayed in Figure 6.7. Therefore, the loss model can

be described as follows.
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Figure 6.7: Engine start model.

Cranking phase

We assume that cranking phase can last within an average time interval ∆tstart. The

torque required for cranking the engine up to the start-speed ωe,start is the torque trans-

ferred through clutch Tc, defined as,

Tc,crank = Je
ωe,start
∆tstart

+ Te,drag,

⇒ Pc,crank =

∫ ∆tstart
0

Tc,crank ωedt

∆tstart
= Tc,crank

ωe,start
2

,

(6.27)

wherein Te,drag is the engine drag torque.

The transferred torque Tc is obtained by a clutch slippage, thus inducing a friction loss.

Assuming the engine speed at the end of the starting process is the clutch speed ωc, the

clutch friction loss is,

Ec,loss =

∆tstart∫
0

Tc,crank
(
ωc − ωe

)
dt =

∆tstart∫
0

Tc,crank
(
ωc −

ωe,start
∆tstart

· t
)
dt

= Tc,crank
(
ωc −

ωe,start
2

)
∆tstart,

wherein ωc = ωg.

The averaged power loss at the clutch,

Pc,loss =
Ec,loss
∆tstart

= Tc,crank
(
ωc −

ωe,start
2

)
. (6.28)

From (6.27) and (6.28), the total average required power placed at the electric machine

for cranking phase is,

Pm,crank = Pc,crank + Pc,loss. (6.29)
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Synchronization phase

After reaching the start speed ωe,start, the engine takes over the synchronization with

the transmission input speed by combustion. The energy loss can be derived from the

corresponding engine power,

Te,syn = Je
ωc − ωe,start
∆t−∆tstart

,

⇒ Pe,syn = Te,syn
ωc + ωe,start

2
.

(6.30)

It should be noticed that, the electric machine is assumed to operate under a nominal

condition. Therefore even in the case of electrically driving, if an engine start is required,

the surplus power from nominal to peak values of the electric machine can fulfill the

required power (6.29) for the cranking phase.

6.5.2 Simulation Results

Table 6.3: Simulation results corresponding with a study on the engine start
loss and gear shift hysteresis. Relative difference is indicated in the parenthesis

Cycle
Baseline Shift hysteresis, start loss

Fuel [g] No. start Fuel [g] No. start

NEDC 300.5 14 303.8 (0.9%) 14 (0%)

FTP75 480.3 107 489.9 (2%) 85 (-20.6%)

LA92 530.8 99 540.2 (1.8%) 86 (-13.1%)

CADC 1873.9 229 1898.9 (1.3%) 196 (-14.4%)

The engine start loss model is incorporated in the optimal control problem, described

in Section 6.3. The gear shift hysteresis is active to avoid unrealistic shifting patterns.

Simulation results are shown in Table 6.3. It can be seen that, compared to the base-

line vehicle of no engine start loss and no gear shift hysteresis, the maximum relative

fuel difference is 2% on the FTP75; the minimum relative fuel is 0.9% on the NEDC.

Nonetheless, the absolute different fuel on the CADC is the biggest one (25g), corre-

sponding to the largest number of starts. Apparently, the more the engine start, the

more the vehicle lost the fuel economy. It’s also observed that, by including the start

loss model the EMSs reduces the number of starts considerably. Referring back to the



134 6 Effect of Gear Shift and Engine Start Losses

simulation results of the study on gear shift hysteresis shown in Table 6.2, it can be

recognized that, the engine start loss deteriorates the fuel economy more than the gear

shift hysteresis. In summary, the effect of engine start loss can not be ignored in seeking

a fair evaluation of the fuel economy for hybrid vehicles.

6.6 Prediction Horizon Sensitivity Study

Losses involved with a discrete decision of either shifting gears or starting engine have

been considered in the design of an EMS to find out a theoretical value of the fuel saving.

However, knowledge of the whole drive cycle, required for the EMS design, is almost

impossible to obtain in advance. In reality, only a driving profile over a certain horizon

can be known by a prediction technique. Therefore, with a preview route information

available, a predictive control algorithm for hybrid powertrain systems appears to be

a suitable candidate to realize a highest fuel saving as much close as possible to the

theoretical value (see, Chapter 5).

6.6.1 Predictive Control Algorithm

We use a certain available drive cycle as a reference driving profile which is assumed

to be constructed from the consecutive preview route segments of the whole driving

mission. Model Predictive Control (MPC) problem for the prototype parallel HEV is

formulated as follows.

Problem 6.2. Assuming that at current time step k, a prediction of the vehicle speed

ṽ(k) =
[
v̂(k + 1|k), v̂(k + 2|k), ..., v̂(k + Nc|k)

]T
is known over a certain horizon Nc,

find an optimal control law ũ∗(k) =
[
ũ∗se(k), P̃ ∗s (k), ũ∗g(k)

]
, that minimize the fuel cost

functional Ĵ(k) over the entire prediction horizon,

Ĵ(k) =
Nc−1∑
i=0

ṁf

(
ŝe(k + i|k), P̂e(k + i|k), ω̂e(k + i|k)

)
∆t, (6.31)

subject to the constraints (6.10) - (6.19) and,

Es min ≤ ês(k +Nc|k) ≤ Es max, (6.32)

with

ês(k +Nc|k) = es(k) +
Nc−1∑
i=0

P̂s(k + i|k)∆t, (6.33)

wherein: ũ∗se(k), P̃ ∗s (k) and ũ∗g(k) denote the vectors of predictive optimal control se-

quences over the horizon Nc at time step k.
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The MPC problem is solved by using the DP-PMP algorithm, described Chapter 3.

The predictive control approach is implemented in a receding horizon control manner

to realize a real-time implementable algorithm when utilizing the route information.

Only the first element of the defined optimal trajectories of ũ∗se(k), P̃ ∗s (k) and ũ∗g(k) is

applied to the hybrid powertrain system; for the next step k+1, the whole optimization

process is repeated with the updated system states and new prediction of the route

horizon.

The gear shift loss model can not be incorporated in the MPC due to the velocity loss at

each gear shift, resulting in the next vehicle speed to be dependent on the gear position.

Hence, we assume that the PS-AMT is used in the hybrid powertrain. The gear shift

hysteresis and the engine start loss model are respected under the control algorithm.

6.6.2 Simulation Results and Discussions

Sensitivity study of the relative fuel difference with respect to the prediction horizon

Nc is shown in Figure 6.8. The relative fuel difference is obtained by comparing the

result of the MPC approach with that of an optimal approach (based on the DP-

PMP algorithm). The MPC without the gear shift hysteresis and engine start loss

model included (see, the upper plot) indicates that with a short horizon of Nc = 2, the

predictive controller realizes a result very close to the optimal solution. The relative

fuel difference steadily approaches a small value around 0.2% from Nc ≥ 2. However,

for the case of the MPC with the gear shift hysteresis and the engine start loss model

included (see, the lower plot), from the horizons Nc ≥ 4, the relative fuel difference is

steady, ranged from 1% (NEDC) until 3% (FTP75). The obtained results reveal that

at least a prediction horizon of 5s ahead the vehicle is necessary to achieve the most

possible fuel economy. Fortunately a prediction of the velocity profile over a preview

route segment of 5s is almost possible for current technology of the vehicle onboard

navigation system nowadays.

Sensitivity study of the calculation time with respect to the prediction horizon for the

MPC strategy, including the gear shift hysteresis and the engine start loss, is shown in

Figure 6.9. The calculation time is almost linear with the prediction horizon and smaller

than the drive cycle length itself. This brings a realtime implementation possibility to

the MPC-based control algorithm.

6.7 Conclusions

Design of the EMSs for passenger HEVs equipped with discrete ratio transmissions

requires an optimal gear shift strategy for a fuel economy benefit. One gear up or down

per shift is the most optimum gear shift command in terms of the fuel economy and
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Figure 6.8: Sensitivity result of the relative fuel difference with respect to the
prediction horizon Nc of the MPC approach.
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Figure 6.9: Sensitivity result of the calculation time for the MPC, including
the gear shift hysteresis and engine start loss, with respect to the prediction
horizon Nc.

engine operation comfort. Gear shift hysteresis strategy plays a crucial role in reducing

the shift busyness and hunt in a way not deteriorating the fuel economy.

Regarding the loss involved with the gear shift, it is found by simulation that a per-

ception of a fuel-efficient advantage of powershift transmissions (DCT, PS-AMT) over

non-powershift transmissions (MT, AMT) is realized for passenger HEVs.

Any discrete decision of starting the engine in a parallel HEV will induce an energy loss

which finally affects the optimal solution. This loss can not be ignored in a proper EMS

to ensure a fair evaluation of the fuel economy. The model predictive control algorithm

utilizes the engine start loss model effectively in yielding the possible shortest prediction

horizon (five seconds) such that the highest possible fuel economy level can be realized.

Prospects of future research continued from this study are very diverse. An investigation

of the effect of gear shift and engine start losses on the control strategies for commercial
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vehicles equipped with an AT or a DCT is an example. This helps verifying whether

the fuel benefit of powershift transmissions compared to non-powershift ones is held for

the commercial vehicle class.
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Chapter 7

Structural Analysis of the Control
Design Objectives1

Abstract - In the optimal control design for vehicular propulsion systems, the objective func-
tion describing the design objectives (fuel economy, driveability, comfort, emissions, battery
operation, battery aging, etc.) plays an important role in defining the optimal solution. How-
ever, the definition of the objective function is not often analyzed explicitly and thoroughly.
In this study, a method of objectively analyzing and evaluating the objective function is in-
troduced. The method uses the Singular Value Decomposition (SVD) technique to analyze
the correlations among the design objectives and investigate their sensitivity to an optimal
control algorithm. Accordingly, the dependent design objective(s) will be omitted such that
the objective function can be simplified. This will reduce the complexity of the control design.
The method is then applied to the optimal control design for a conventional vehicle and a hy-
brid electric vehicle. It is found that, instead of introducing an objective function including the
fuel consumption, comfort (the weighted gear shift frequency), and driveability (the weighted
inverse of power reserve), a simplified objective function consisting of the fuel consumption
and comfort can be proposed for the control design, such that the driveability is not sacrificed
noticeably at the obtained optimal solution.

7.1 Introduction

Design of vehicular propulsion systems boils down to choices of topology, technology,

size of the components (in terms of power or energy) and control strategy to achieve

the design objectives, such as fuel economy, driveability, comfort, emissions, battery

operation, battery aging, etc. Regarding the control strategy which governs the oper-

ations of individual components of vehicular propulsion systems at each time instant,

1This chapter has been prepared for a journal publication in the form as: V. Ngo, T. Hofman, M.
Steinbuch, A. Serrarens. Structural Analysis of the Control Design Objectives for Vehicular Propulsion
Systems. 2012.
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optimal control [42, 49] is widely used to achieve the optimal solution with respect to

the specified control design objectives. Therefore, the starting point of formulating a

certain optimal control problem is to define an objective function, which consists of

a single or multiple design objectives. For the case of a multi-objective problem, the

objective function can be created by summing the relevant objectives multiplied by the

corresponding weight factors defining the relative importance. However, defining an ap-

propriate objective function with suitable weight factors for a specific propulsion system

is an ambiguous task. This is due to the fact that there might be strong interdepen-

dencies of the design parameters, unknown sensitivities of the design parameters to the

design objectives, and the possibility of finding multiple sets of weight factors resulting

in an equal overall design performance [49]. Hence, an objective function is appropriate

when it can diminish the interdependent design objective(s), and finally, it can balance

the tradeoff(s) among the design objectives of the design process [49, 91,121,158].

In literature, the objective function is generally defined based upon the powertrain

configurations (conventional, hybrid, etc.), the control strategy, and the subjective rea-

sonings of the designers about relative impacts among the design objectives. In this

research work, a method of objectively analyzing the design objectives for the con-

trol design of vehicular propulsion systems (conventional and hybrid powertrains) is

proposed. The method uses the Singular Value Decomposition (SVD) technique to

analyze: i) the sensitivity of the design objectives with respect to an optimal control

problem, and ii) the correlation among the design objectives. Herein the optimal control

problem also takes the gear shift problem into account. Then, the dependent design

objective(s) will be omitted such that the objective function for the optimal control

problem can be simplified in order to reduce the design complexity.

This study is organized as follows. In Section 7.2, the design objectives for the optimal

control problem of vehicular propulsion systems are reviewed. In Section 7.3, the quasi

static models of the main components of conventional and hybrid powertrain systems

are given. In Section 7.4, a multi-objective optimal control problem is formulated for

the powertrain systems. In Section 7.5, a SVD-based structural analysis method is

introduced. Analysis of the interdependencies among the design objectives is also pre-

sented. Simulation results together with discussion are given in Section 7.6. Finally,

conclusions and future research can be found in Section 7.7.

7.2 Review of Design Objectives

The design objectives for the control design of vehicular propulsion systems can be,

e.g. fuel economy, driveability, comfort, emission, battery operation, battery aging,

etc. Table 7.1 shows the possible design objectives, denoted by DO1 − DO6, and the

corresponding performance metrics.
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• DO1 - fuel economy is evaluated by the amount of fuel consumed over a given

drive cycle.

• DO2 - driveability is a comprehensive terminology for vehicle responsiveness. It

can be determined as the instant power reserve, or the instant torque reserve, or

vehicle acceleration, or velocity tracking of the vehicle, etc.

• DO3 - the main comfort metrics can be listed as jerk, gear shift time or gear shift

frequency, etc.

• DO4 - emission standard have been increasingly tightened due to the environ-

mental problem. Hence, Carbon Dioxide (CO2), mono-Nitrogen Oxides (NOx),

Carbon Monoxide (CO), Particulate Matter (PM) and Hydro Carbons (HC),

etc., can be used as metrics for engine emissions.

• DO5 - regarding hybrid electric vehicles, to ensure the reliable operation of battery,

its state of charge needs to stay within a predefined operating range to avoid any

damage.

• DO6 - battery aging (battery wear) represents the overall reduction of battery life.

Table 7.1: Design objectives and the corresponding metrics.

Design objective Metric

DO1 - Fuel economy fuel consumption.
DO2 - Driveability power reserve, acceleration, velocity tracking.
DO3 - Comfort jerk, shifting time, shifting frequency.
DO4 - Emissions CO2, NOx, CO, PM,HC.
DO5 - Battery operation state of charge.
DO6 - Battery aging effective Ah-throughput.

Table 7.2 shows how an objective function has been composed in literature. The first

column indicates which design objective(s) is (are) utilized in building a certain ob-

jective function. The second column gives a literature overview of objective functions

proposed for Conventional Vehicle (CV); meanwhile the third column indicates the ref-

erences wherein objective functions are proposed for Hybrid Electric Vehicle (HEV).

The objective functions vary according to the types of powertrain configurations, de-

sign method, control algorithms, etc. However fuel economy and driveability are the

most concerned design objectives.
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Table 7.2: Literature review of the design objective composition. CV denotes
Conventional Vehicle; HEV represents Hybrid Electric Vehicle.

Objective composition CV HEV

DO1
[60, 92,105] [8, 41,73,88,136,144,169–171]
[12,48,135] [3, 25,67,76,98,107,126,156,164]

DO1 +DO2 [47, 135] [158]
DO1 +DO3 [133] -
DO1 +DO4 [12, 60] [19,52,53,112,147]
DO1 +DO5 - [4, 69,159,163]
DO1 +DO6 - [128]
DO1 +DO2 +DO3 [92] -
DO1 +DO2 +DO5 - [21]
DO1 +DO4 +DO5 - [56, 81,82,162]
DO1 +DO2 +DO3 +DO5 - [158]
DO1 +DO3 +DO4 +DO5 - [17, 80,83,106,172]

7.3 Powertrain Modeling and Dynamics

The hybrid powertrain topology used in this study is shown in Figure 7.1. This study

focuses on both conventional and hybrid electric vehicle, so a conventional powertrain

topology can be realized by removing the battery, the inverter and the electric machine

from the driveline.

Figure 7.1: The hybrid powertrain topology, (AMT: Automated Manual Trans-
mission; M: Electric machine).

With aiming at deriving the appropriate Energy Management Strategy (EMS), quasi

static models of the main powertrain components are used. The length of time step ∆t

of one second is chosen to simulate the powertrain, hence the dynamics faster than 1Hz

are ignored [42]. The clutch system is considered as a boolean switch to connect and to
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disconnect the engine immediately to and from the driveline. Its dynamics and limited

power losses during a gear shift or an engine start are ignored in this chapter.

7.3.1 Powertrain Modeling

• Start-stop system: the start-stop system can be modeled by a decision variable

se(k) to control the engine on-off state. When the engine is off, no fuel is consumed

by the engine.

se(k) =

{
1 if engine on,

0 if engine off.
(7.1)

• Engine: for a certain engine speed ωe(k), the fuel mass flow ṁf (k) is modeled as

an affine piece-wise second order function of the power as expressed in (7.2),

ṁf (k) ≈
(
a0(k)P 2

e (k) + a1(k)Pe(k) + a2(k)
)
se(k). (7.2)

in which the coefficients a0(k), a1(k) and a2(k) are functions of the engine speed.

When the engine is off, no fuel is consumed. If assume during braking, the engine is

switched off and decoupled from the driveline, then the engine braking is neglected.

Therefore, the constraints on the engine speed ωe(k) power Pe(k) are as follows,

ωe,min ≤ ωe(k) ≤ ωe,max, (7.3a)

0 ≤ Pe(k) ≤ Pe,max
(
ωe(k)

)
. (7.3b)

• Electric machine: the machine efficiency η is assumed to be constant in a normal

operating state. Therefore, the power flow in motoring and generating modes is

expressed as,

Pm(k) = ηPelec(k) in motoring, (7.4a)

Pm(k) =
1

η
Pelec(k) in generating. (7.4b)

The constraints on the speed ωm(k) and power Pm(k) are,

0 ≤ ωm(k) ≤ ωm,max, (7.5a)

Pm,min
(
ωm(k)

)
≤ Pm(k) ≤ Pm,max

(
ωm(k)

)
. (7.5b)

• Battery system: the electrical power Pelec(k) is modeled as a quadratic function

of the storage power Ps(k),

Pelec(k) ≈ b0P
2
s (k) + b1Ps(k) + b2. (7.6)
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The constraints imposing on the battery system,

Ps,min ≤ Ps(k) ≤ Ps,max, (7.7a)

Es,min ≤ es(k) ≤ Es,max. (7.7b)

• Automated Manual Transmission (AMT): the transmission efficiency η is

assumed to be constant for all gears, the speed and torque relations in both side

of transmission are (when clutch is closed),

ωe(k) = ωg(k) = ωw(k)rg(k), (7.8a)

Tw(k) = η rg(k) Tg(k) = η rg(k) Te(k). (7.8b)

wherein: ωw(k) is the wheel rotational speed; Tw(k) is the drive torque at the

wheels; Tg(k) is the transmission input torque; rg(k) denotes the gear ratio. The

final reduction gear ratio is merged into the transmission ratio for a simplification.

The constraints on the gear position of the 6-speed transmission are,

1 ≤ ng(k) ≤ 6. (7.9)

• Power flow model: the power flow equilibrium at the transmission input of the

powertrain is expressed as,

Pe(k) = Pg(k) + Pm(k). (7.10)

where Pm(k) = 0 if the conventional powertrain is considered.

7.3.2 Powertrain System Dynamics

The powertrain dynamic system consists of three state variables: the start-stop se(k),

the battery state-of-energy es(k) and the gear position ng(k). Their dynamics are

governed by three corresponding control variables use(k), Ps(k) and ug(k) as,

se(k + 1) = se(k) + use(k), (7.11)

es(k + 1) = es(k) + Ps(k)∆t, (7.12)

ng(k + 1) = ng(k) + ug(k). (7.13)

Vehicle longitudinal dynamics: the longitudinal motion of the vehicle in discrete

time domain is given by,

ωw(k + 1) = ωw(k) +
1

Jv,eq

(
Tw(k)− Fload(k)Rw

)
∆t, (7.14)
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where Fload is the resistance loads due to rolling and aerodynamic resistances; Jv,eq is

an equivalent vehicle inertia at the wheel,

Jv,eq =
(
(Je + Jc + Jp)r

2
g + Js

)
r2
d +mvR

2
w,

Fload = crmvg cosα +mvg sinα +
1

2
ρaAfcdv

2,

and mv is the vehicle weight; Rw is the wheel radius; Je is the engine inertia; Jc is the

clutch inertia; Jp is the transmission primary inertia; Js is the transmission secondary

inertia; ρa is the air density; Af is the frontal area of vehicle; cd is the aerodynamic

drag coefficient; cr is the rolling friction coefficient; g is the gravity coefficient; v is the

vehicle speed; α is the slope of the road.

7.4 Optimal Control Problem

7.4.1 Vehicular Propulsion Systems

The dynamic behavior of the vehicular propulsion systems for conventional and hybrid

vehicles can be expressed in a generic form by

x(k + 1) = f
(
x(k), u(k), z(k)

)
, (7.15)

Ceq
(
x(k), u(k), z(k)

)
= 0, (7.16)

Cin
(
x(k), u(k), z(k)

)
< 0, (7.17)

wherein x(k) and u(k) are the state variable vector and control variable vector, respec-

tively; z(k) is the disturbance to the powertrain system which is defined by a priori

drive cycle. f is the function describing the dynamics of the system state. Ceq and Cin
are the functions describing the equality and inequality constraints of the systems.

The conventional powertrain system is described by, (7.2)-(7.3),(7.8)-(7.10), (7.13),

(7.14). The state and control variables are,

x(k) =
[
ng(k)

]
,

u(k) =
[
ug(k)

]
.

The hybrid powertrain system is described by (7.1)-(7.14). The state and control vari-

ables are,

x(k) =
[
se(k), es(k), ng(k)

]
,

u(k) =
[
use(k), Ps(k), ug(k)

]
.

From (7.13), the constraints on the discrete gear shift command ug(k) influence the gear

shift dynamics and have effect on the optimality. Under the constraints (7.9), with a
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6-speed AMT, ug(k) belongs to the set {−5, · · · ,−1, 0, 1, · · · , 5}. For reasons of an

acceptable driveability, the gear shift command is chosen as,

ug(k) =


−1 downshift,

0 sustaining,

1 upshift,

(7.18)

to avoid a large variation of the engine speed under a certain shifting at a certain time

step k. One gear upshift (ug(k) = 1) or downshift (ug(k) = −1) for each time step of

one second are reasonably, since the average shifting time for an AMT is typically less

than one second.

7.4.2 Multi-Objective Function
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Figure 7.2: Demonstration of the power reserve in relation with the gear posi-
tion for the hybrid powertrain.

Within the context of design an optimal control problem including the gear shift strat-

egy, the relevant design objectives are required to be well-defined. Figure 7.2 graphically

shows the correlation between the gear position and the power reserve of the hybrid

powertrain. It can be seen that the power reserve is decreased when the transmission

performs an upshift and vice versa. Intuitively, when the controller allows more up-

shifts, the engine operating points will be moved to a region of higher nominal torque

and lower speed, which results in a lower power reserve. Furthermore, the fuel mass flow

is a function of the engine power. Therefore, the engine power reserve has a correlation

with the fuel consumption. It can be seen that changing the operating points by further

optimizing the gear shift would affect the driveability (power reserve) and comfort (shift

frequency or number of shifts) of the hybrid powertrain system. This reasoning holds

also for the conventional powertrain system.
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Therefore, an objective function is proposed by the weighted sum of the fuel consump-

tion, comfort and driveability, as follows,

J =
N−1∑
k=0

L(k) =
N−1∑
k=0

[
ṁf (k) + w1|ug(k)|+ w2

(
∆Pe(k) + ∆Pm(k)

)−1
]
∆t, (7.19)

in which, N is the length of the drive cycle; w1 and w2 are the weight factors; ∆Pe(k) and

∆Pm(k) are the power reserve of the engine and electric machine, respectively; w1|ug(k)|
represents the comfort cost related to the gear shift frequency; w2

(
∆Pe(k)+∆Pm(k)

)−1

stands for the driveability cost related to the power reserve.

7.4.3 Optimal Control Algorithm

Problem 7.1. Given a drive cycle with a time length N , implying that the vehicle

longitudinal dynamics (7.14) is deterministic, find an optimal control law u∗(k) that

minimizes the objective function (7.19):

u∗(k) = arg min
u(k)

J =
N−1∑
k=0

L(k)

subject to the constraints (7.15)-(7.18) and

x(N) = x(0). (7.20)

Dynamic Programming (DP) [14] is well known as a powerful method to solve a non-

linear, non convex optimization problem with mixed constraints while obtaining a glob-

ally optimal time-variant, state feedback solution. To apply DP to the proposed optimal

control problem, we need to

• grid the state variables x(k);

• grid the corresponding control variables u(k);

• calculate L(k) in (7.19) for the whole drive cycle for every grid point;

Then, the optimal cost-to-go function is defined as,

• step k = N :

J ∗N = 0, (7.21)

• step k ∈ [0, 1, . . . , N − 1]:

J ∗k
(
x(k)

)
= min

u(k)

[
L(k) + J ∗k+1

(
x(k + 1)

)]
. (7.22)
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By solving the optimal cost-to-go function backwards until k = 0, the optimal solution

u∗(k) is obtained correspondingly with a specific value for the end constraint x(N).

Reducing the objective function to a simple form so that the weight factors can be

tuned easily meanwhile the control algorithm can achieve the desired performances is

the ultimate goal. In order to do so, we need to study the correlations and dependencies

among the design objectives of the objective function. Then the dependent ones can be

eliminated so that a simplified objective function can be obtained. Clearly, this boils

down to a rank analysis which will be introduced next.

7.5 SVD-based Structural Analysis

SVD is a widely used method in the structural and rank analysis of the dynamic system.

A similar usage of rank conditions using the SVD is to measure the interactions between

the inputs and the outputs of the dynamic system [103, 117, 143]. Furthermore, a

special application of the SVD method is that it can be used to evaluate the system’s

performances by doing the data-based structural analysis [43]. A brief introduction of

the SVD-based structural analysis is given next.

7.5.1 Singular Value Decomposition

Consider a linear algebraic equation as,

Ax = b; A ∈ RN×M . (7.23)

SVD of the matrix A is given

A = UΣV T

wherein:

U =
[
u1, u2, · · ·uN

]
∈ RN×N ,

V =
[
v1, v2, · · · vM

]
∈ RM×M ,

Σ = diag(σi|0) ∈ RN×M .

(7.24)

The column vectors vi of V and ui of U are known as the right input singular vectors

and left output singular vectors of matrix A, respectively. They hold an important

relation:

Avi = σiui . (7.25)

This equation states that each right input singular vector is mapped by the system A

onto the corresponding left output singular vector with the magnification factor being
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the corresponding singular value. From (7.25), if σi = 0, then Avi = 0, i.e., vi forms the

null space of A. Thus any change made in the direction corresponding to the singular

value σi = 0 maps into the zero vector in the output space. In other words, any input

in that direction is not reflected in the output space.

By using (7.24), the solution x to (7.23) is directly obtained as linear combination of

the scaled right input singular vectors,

x =

rank(A)∑
i

uTi · b
σi

vi =

rank(A)∑
i

qivi . (7.26)

Any target vector b can be achieved by a linear combination of the scaled left output

singular vectors as

b =

rank(A)∑
i

σiqiui =

rank(A)∑
i

(uTi · b)ui . (7.27)

7.5.2 Structural Analysis

In the structural analysis of this study, vi is called the input mode vector, and ui is called

the output mode vector. From (7.26) the control input vector x is a linear combination

of the input mode vectors vi multiplied by the corresponding input weight factors qi.

So, the designer can assess the control input distribution pattern through the input

weight factors qi. Similarity, we can use the output mode vectors ui to assess tradeoffs

among the contributions of them to the target vector b as in (7.27).

For example, consider the input weight factor q1 in (7.27) to be much larger than the

other weight factors in the linear combination. Since σ1 is the largest singular value,

q1σ1 is dominant among the coefficients of the linear combination, then the actual target

vector b will be largely dependent on the first output mode vector u1.

The input mode vectors vi and output mode vectors ui obtained from SVD are paired by

the corresponding singular values σi. Thus, truncating any input mode vector vi would

affect the corresponding output mode vector ui, and vice versa. Truncating the output

mode vector ui that is part of the linear combination of the target vector b would degrade

the total performance. If, however, the truncated output mode vector contributes little

to the target vector b, then there would be little performance degradation and it would

be possible to save control effort equal in size to the weighted input mode vector that

is paired with the truncated output mode vector.

Cutting off any input mode vector vi that consumes a large control input, i.e., one with

a large weight factor qi, but contributes little to the total performance of the target

vector b, will reduce the design complexity at a little performance degradation.
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From (7.27), it is clear that the output mode vector ui that lines up more towards the

target vector b will contribute more to b. Therefore, the value of inner product of two

vector ui and b, which is called the collinearity and denoted by coli , (uTi · b), can

be used to measure the performance dependency of the target vector b on each output

mode vector ui. Using this indicator, we can identify which output mode vector ui is

dominant in achieving the target vector b and which output mode vector ui contributes

little. Furthermore, the normalized target vector b should be used to compare the

collinearities for simplicity since they span from 0 to 1.

7.6 Results and Discussions

7.6.1 Application of SVD-based Structural Analysis

The structural analysis for the powertrain systems will be carried out by using the

SVD technique. The analysis is not based on the system model, but is based on data

obtained from simulating the system model governed by the optimal control algorithm,

as described in Section 7.4. The concerned data is the discrete optimal cost values along

the drive cycle.

Objective function analysis: the optimal objective function (7.19) is rewritten as follows.

J∗ =
N−1∑
k=0

L∗(k) =
N−1∑
k=0

[
m∗fe(k) +m∗sh(k) +m∗pr(k)

]
, (7.28)

wherein the asterisk (*) denotes the optimal solution and

m∗fe(k) , ṁ∗f (k)∆t,

m∗sh(k) , w1|u∗g(k)|∆t,

m∗pr(k) , w2

(
∆P ∗e (k) + ∆P ∗m(k)

)−1
∆t.

The discrete optimal cost values of (7.28) are stacked along the discrete time dimension

of the drive cycle to create the linear algebraic equation Ax = b, with

A =


m∗fe(0) m∗sh(0) m∗pr(0)
m∗fe(1) m∗sh(1) m∗pr(1)

...
...

...
m∗fe(N − 1) m∗sh(N − 1) m∗pr(N − 1)

 , b =


L∗(0)
L∗(1)

...
L∗(N − 1)

 ,
x =

[
1 1 1

]T
.

(7.29)

In (7.29), the vector x acts as the control vector imposed on the weighted objectives,

so it is chosen as x = [1 1 1]T to respect the original optimal values of the objectives.
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The target vector b contains the instantaneous optimal values of the objective function

at every time step. SVD-based structural analysis method is applied to study the

sensitivity of the design objectives to the weight factors w1 and w2.

7.6.2 Simulation Results for Conventional Vehicles

The main parameters of a prototype conventional vehicle are given in Table 7.3.

Table 7.3: Main parameters of a prototype conventional vehicle.

Item Description/Quantity

Engine
type: gasoline,
maximum torque of 140Nm,
maximum power of 70kW.

Transmission
6-speed automated manual transmission,
rg = [3.071, 1.913, 1.258, 0.943, 0.763, 0.643].

Vehicle mass 1120kg.

• The NEDC cycle: the weight factors w1 and w2 are chosen as,

w1 ∈ {0.6, 1, 1.5, 2, 3}, (7.30)

w2 ∈ {250, 500, 750, 1000, 1500, 2000}. (7.31)

Computational results of SVD analyses for the input weight factors qi and the

normalized collinearities coli for all combinations of w1 and w2 are shown in Figure

7.3.

In Figure 7.3a, q1 varies from 0.89→ 0.99, q2 varies from 0.72→ 0.94 and q3 varies

from 0.48 → 0.87. By looking at the normalized collinearities in Figure 7.3b, we

can recognize that the values of coli are totally different from each other. col1
approximately varies from 0.90 → 0.99; col2 approximately varies from 0.13 →
0.44 whereas col3 roughly varies from 0.02→ 0.09.

From col2 and col3, it is observed that the maximum contributions of the output

mode vectors u2 and u3 to the target vector b are 19.4% (= 0.442 ∗ 100%) and

0.8% (= 0.092 ∗ 100%) respectively. Meanwhile, the maximum contributions of

input mode vectors v2 and v3 to the control input vector x are almost equivalent

to that of v1 (observed from q1, q2 and q3). This is an important observation on

the fact that the output mode vector u3 pays only a very small contribution to



152 7 Structural Analysis of the Control Design Objectives

0
2

4 0
1000

2000
0

0.5

1

w
2w

1

q 1

0
2

4 0
1000

2000
0

0.5

1

w
2w

1

q 2

0
2

4 0
1000

2000
0

0.5

1

w
2w

1

q 3

(a)

0
2

4 0
1000

2000
0

0.5

1

w
2w

1

co
l 1

0
2

4 0
1000

2000
0

0.5

1

w
2w

1

co
l 2

0
2

4 0
1000

2000
0

0.5

1

w
2w

1

co
l 3

(b)

0
2

4 0
1000

2000
0

0.5

1

w
2w

1

x 1

0
2

4 0
1000

2000
0

0.5

1

w
2w

1

x 3

0
2

4 0
1000

2000
0

0.5

1

w
2w

1

x 3

(c)

Figure 7.3: Results of the conventional powertrain on NEDC: the input weight
factors qi in (a); the collinearities coli in (b); the three directions x1, x2 and x3

of the reconstructed x in (c).

the target vector b. Therefore, truncating the input mode vector v3 will save a

large amount of control effort without seriously degrading the performance.

From the observations and analyses above, we can come up with a design decision

to truncate the input mode vector v3 out of the control input vector x. Therefore,

x can be approximated as,

x ≈ q1 · v1 + q2 · v2 ,
[
x1 x2 x3

]T
. (7.32)

Using the obtained simulation results, the reconstructed control input vector x is

depicted in Figure 7.3c. We can see that x1 varies from 0.84 → 0.96; x2 varies

from 0.8 → 0.96. Meanwhile, x3 varies from 0.02 → 0.18. Or the control input

vector x can be re-designed as,

x ≈
[
1 1 0

]T
. (7.33)

• The FTP75 cycle: the weight factors w1 and w2 are chosen as,

w1 ∈ {1, 2, 3, 4, 5}, (7.34)

w2 ∈ {250, 500, 750, 1000, 1250, 1500}. (7.35)
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Figure 7.4: Results of the conventional powertrain on FTP75: the input weight
factors qi in (a); the collinearities coli in (b); three directions x1, x2 and x3 of
the reconstructed x in (c).

Computational results of SVD analyses for the input weight factors qi and the

normalized collinearities coli are shown in Figure 7.4. By using the same analysis

technique applied on the NEDC cycle, the control input vector x is reconstructed

and depicted in Figure 7.4c. Or the control input vector x can be approximately

re-designed as

x ≈
[
1 1 0

]T
. (7.36)

From (7.33) and (7.36), it can be concluded that the third design objective, i.e. the

power reserve term, can be eliminated from the objective function (7.28) due to its small

contribution to the objective function. In other words, the objective function for the

optimal control problem can be simplified as,

JCV =
N−1∑
k=0

[
ṁf (k) + w1|ug(k)|

]
∆t. (7.37)

Therefore, it would be easy to tune only one weight factor w1 such that the Pareto

optimal solution is achieved to satisfy the expected design objectives.
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7.6.3 Simulation Results for Hybrid Electric Vehicles

Another case study of the SVD-based structural analysis is applied for a prototype

HEV, see Table 7.4 for the main parameters, to investigate the correlations among of

the design objectives. NEDC and FTP75 are still used to test the analysis approach.

Table 7.4: Main parameters of a prototype HEV.

Item Description/Quantity

Engine
diesel type,
maximum torque of 200Nm,
maximum power of 68kW.

Electric machine
maximum torque of 40Nm,
maximum power of 6kW.

Battery lithium-ion; capacity of 6Ah, 110V.

Transmission
6-speed automated manual transmission,
rg = [3.817, 2.053, 1.302, 0.959, 0.744, 0.614].

Vehicle mass 1320kg.

Table 7.5: The weight factors w1 and w2 for the HEV optimal control problem
on NEDC and FTP75.

Cycle w1 w2

NEDC ∈ {1, 2, 3, 4} ∈ 100 ∗ {2, 4, 6, 8, 10}
FTP75 ∈ {2, 6, 10, 14, 20} ∈ 1000 ∗ {1, 3, 5, 8, 10}

The results of SVD analyses on the NEDC and FTP75 are shown in Figure 7.5 and

Figure 7.6 respectively. Using the same analysis technique applied for the conventional

vehicle, it’s still able to achieve the reconstructed control input vector x as depicted

in Figure 7.5c and Figure 7.6c for the NEDC and FTP75 respectively. Notice the

reconstructed control input vector x for the case of FTP75, in which, x1 varies from

0.74 → 1.08; x2 varies from 0.6 → 0.95; and x3 varies from 0.04 → 0.35. In this case

study, x3 is not approximated to zero for the whole ranges of w1 and w2. Therefore, the

three directions are normalized by the ‖x‖2 to evaluate their relative contributions to

the input vector x. The maximum relative contribution of x3 is 10% which is relative

small compared to the contributions of x1 and x2, such that x3 can be ignored from an

engineering point of view. Meaning that, the control input vector x can be re-designed
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Figure 7.5: Results of the hybrid powertrain on NEDC: the input weight factors
qi in (a); the collinearities coli in (b); three directions x1, x2 and x3 of the
reconstructed x in (c).

as follows,

x ≈
[
1 1 0

]T
. (7.38)

So, it is observed that for the optimal control problem of HEVs, the driveability, defined

by the weighted inverse of power reserve, pays a very small contribution to the objective

function. Therefore, the objective function is simplified as,

JHEV =
N−1∑
k=0

[
ṁf (k) + w1|ug(k)|

]
∆t. (7.39)

7.7 Conclusions

A method of objectively analyzing and evaluating the objective function of an optimal

control problem for vehicular propulsion systems was proposed. The method utilizes

the SVD-based structural analysis approach to study the correlations among the design

objectives and investigate their sensitivity to the optimal control algorithm of vehicular

propulsion systems. It helps identifying the possibly dependent design objective(s)

among the originally concerned ones, such that an objective function can be properly
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Figure 7.6: Results of the hybrid powertrain on FTP75: the input weight
factors qi in (a); the collinearity coli in (b); three directions x1, x2 and x3 of the
reconstructed x in (c).

defined in terms of reducing the complexity of the optimal control design. From the

simulation results of the two case-studies, one for conventional vehicle with a gasoline

engine, and the other for hybrid electric vehicle with a diesel engine, it can be concluded

that the driveability (the weighted inverse of power reserve) is the dependent design

objective and has a very small influence on the objective function in defining the optimal

solution. Therefore, the objective function consisting of the fuel economy (the fuel

consumption) and the comfort (the weighted gear shift frequency) can be proposed for

the control design of both powertrain systems.

The proposed method shows itself as an effective method to be able to analyze the ob-

jective function. The proposed method is not limited to a specific powertrain topology.

In principle, it can be extended to other types of vehicle configurations.



Chapter 8

Conclusions and Recommendations

Abstract - In this chapter, the main conclusions following from the previous chapters are
drawn and the recommendations for future research are also given.

8.1 Conclusions

The research presented in this dissertation deals with the gear shift control strategy

for conventional and hybrid electric vehicles equipped with discrete ratio transmissions.

This resulted in the six research objectives (O1 −O6) as presented in Chapter 1.

• O1: define and address the driveability in a fuel-optimal gear shift strategy for

conventional vehicles on drive cycles known a priori.

• O2: design a fuel-optimal control algorithm, including the gear shift strategy, for

the hybrid dynamical system of HEVs on drive cycles known a priori.

• O3: develop an online gear shift strategy for conventional and hybrid electric

vehicles equipped with discrete ratio transmissions. The strategy improves the

fuel economy meanwhile still satisfying an acceptable driveability.

• O4: propose a gear shift strategy for a HEV to further improve the fuel economy by

exploiting the route information from the GPS-based onboard navigation system.

• O5: analyze the effect of the gear shift and engine start losses on the control

strategy and fuel consumption.

• O6: investigate the sensitivity of an optimal gear shift strategy to the relevant

control design objectives, such as fuel economy, driveability, comfort, etc.

157
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The six research objectives were addressed in six research chapters, from Chapter 2 till

Chapter 7, respectively. The first four objectives were fulfilled by developing various

gear shift strategies for automotive transmission. The last two objectives focussed on i)

investigating the effect of the discrete state variable-dependent losses (gear shift, clutch

losses and engine start) on the control strategy, and ii) analyzing the consequences on

the control design objectives (fuel economy, driveability, comfort) with respect to the

optimal gear shift strategy. In summary, the research presented in this dissertation

made a fundamental contribution in the field of the automotive transmission control

design and analysis, with six explicit contributions (C1 −C6):

• C1: various optimal gear shift strategies with respect to the fuel economy and

driveability are proposed for conventional vehicles. A novel concept of variable

power reserve is developed to properly address the driveability, meanwhile guar-

anteeing the highest achievable fuel economy (Chapter 2).

• C2: a novel gear shift control algorithm based on a combination of DP and Pon-

tryagin’s Minimum Principle (PMP) is developed for the hybrid dynamical system

(consisting of continuous and discrete variables) of HEVs. This so-called DP-PMP

algorithm benchmarks the gear shift problem in terms of optimality and compu-

tational efficiency (Chapter 3).

• C3: a gear shift map design methodology aiming at a realtime solution for discrete

ratio transmissions is developed. The methodology exploits the fuel economy and

driveability potential of the optimal gear shift strategies (proposed in Chapters 2

and 3) in order to realize an online gear shift strategy for conventional and hybrid

electric vehicles (Chapter 4).

• C4: a concept of integrated predictive gear shift strategy for HEVs, utilizing

route information to further explore fuel economy potential, is demonstrated in

simulation (Chapter 5).

• C5: an analysis of the effect of gear shift and engine start losses on control strate-

gies for AMT-based HEVs. By taking the gear shift loss into account, this study

reveals a perception of a fuel-efficient advantage of powershift transmissions (DCT,

PS-AMT) over non-powershift transmissions (MT, AMT) applied for passenger

HEVs. Furthermore, the effect of the engine start loss can not be ignored in seek-

ing a fair evaluation of the fuel economy for parallel HEVs. A prediction horizon

of few seconds can help a predictive EMS to realize the highest achievable fuel

economy (Chapter 6).

• C6: a Singular Value Decomposition-based technique is introduced to analyze

the correlation among the design objectives of an optimal gear shift problem for

conventional and hybrid electric vehicles (Chapter 7).
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The main results and conclusions are summarized in the following subsections.

Optimal gear shift strategies for conventional vehicles

In Chapter 2, a systematic approach in order to address the fuel economy and driveabil-

ity in an optimal gear shift strategy for conventional vehicles equipped with an AMT

was proposed.

The fuel-optimal gear shift strategy based on DP benchmarks the fuel economy on

a certain drive cycle. The driveability, defined by the power reserve and represented

for an acceleration capability, is systematically addressed in the fuel-optimal gear shift

problem. The tradeoff between the fuel economy and driveability is investigated by three

methods: i) the weighted inverse of power reserve, ii) the constant power reserve, and iii)

the variable power reserve. The first two methods provide control laws more sensitive

to the design parameters, and the obtained solutions are too conservative on a certain

drive cycle. The third method outperforms the first two methods in terms of the fuel

economy and driveability improvements, which is explained by a variable characteristic

of the power reserve to the vehicle speed such that the gear shift strategy is adapted

accordingly. The advantages of the variable power reserve method is reaffirmed through

a comparative analysis with a Stochastic Dynamic Programming (SDP)-based gear shift

strategy. The SDP algorithm optimizes the gear shift strategy, subject to a stochastic

distribution of the power request, to minimize the expected fuel consumption over an

infinite horizon. Hence the obtained solution intrinsically respects the driveability and

is realtime implementable. The SDP-based strategy nearly results in the same fuel

economy, yet in a lower acceleration capability compared to the results obtained from

the variable power reserve method.

The variable power reserve method possesses a superior character in dealing with the

driveability effectively and adaptively over a wide range of driving profiles, meanwhile

still improving the fuel economy. Hence, it is highly suitable for a realtime application,

e.g. a predictive gear shift strategy, or an optimization-based gear shift map design.

Optimal gear shift strategies for HEVs

For HEVs, a DP-based EMS, including the gear shift strategy, is proved to be only

useful for benchmarking a globally optimal solution, yet requires an intensive compu-

tation. Therefore, the DP-PMP control algorithm is considered as a novel method for

the constrained optimal control problem of the hybrid dynamical system in terms of

optimality and computational efficiency. PMP is used in the inner loop of the control

algorithm to obtain the instantaneous optimal solution for the continuous control vari-

able. Meanwhile, DP is applied in the outer loop of the control algorithm to define the

optimal solution for the discrete control variable(s). The main insights related to the
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application of this novel method for the hybrid powertrain system are given next.

• For the hybrid powertrain without a start-stop functionality, the DP-PMP ap-

proach optimizes the power split and gear shift command. It is found that a

unique constant Lagrange multiplier exists, such that the end constraint of the

battery state-of-energy is respected and a globally optimal solution is guaranteed.

• For the hybrid powertrain with a start-stop functionality, the DP-PMP approach

optimizes the engine start-stop command, power split and gear shift command.

It reveals that finding a constant Lagrange multiplier is not possible for this non-

smooth optimization problem. A battery state-of-energy feedback controller, e.g.

proportional integral controller, is used to adapt the Lagrange multiplier over

time. Therefore the obtained solution is in principle suboptimal, despite the fact

that it is very close to the globally optimal solution based on DP.

From an engineering point of view, the DP-PMP algorithm can be considered as a glob-

ally optimal method applied for HEVs. The algorithm is executed fast enough such that

it can be seen as a potential candidate, which can be used in a realtime implementable

control algorithm, e.g. a predictive gear shift strategy, or an optimization-based gear

shift map design method.

Gear shift map design methodology

Chapter 4 developed a gear shift map design methodology for conventional and hybrid

electric vehicles equipped with discrete ratio transmissions. By applying the two-step

design procedure: i) utilize an optimal gear shift strategy to derive the optimal gear

shift patterns; and ii) use statistical theory to analyse the optimal gear shift patterns

and extract the shift lines; the gear shift map is obtained. Through various application

and validation in both simulation and experimental environments, it is proved that the

obtained gear shift map is acceptably optimized with respect to maximizing the fuel

economy and driveability. Furthermore, the obtained gear shift pattern is guaranteed

to be consistent and robust. More importantly, the design methodology is:

• flexible (easy adaptable) with changes and modifications during the design process;

• time-efficient for the design process;

• applicable to various powertrain configurations with discrete ratio transmissions.

In summary, the design methodology forms a theoretical and quantified way to generate

the commonly used gear shift map for automotive transmissions based on the powertrain

system modeling and control and statistical analysis.
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Integrated predictive gear shift strategy

Chapter 5 presented an integrated predictive gear shift strategy concept for HEVs. It

consists of two algorithms exploiting route information and complementing each other:

i) a predictive algorithm controls the gear shift command, beside the power split and

engine on-off decision by utilizing route information given in the form of a priori ve-

locity profile; ii) the velocity algorithm derives a fuel-optimal velocity trajectory by

utilizing route information given in the form of the road characteristics, speed limits,

and average traveling time, etc. The concept has been demonstrated and validated in

a simulation environment. The velocity algorithm improves the fuel economy consider-

ably by proposing a fuel-optimal velocity trajectory over a certain driving horizon for

the vehicle to follow. The predictive algorithm successfully utilizes a predefined velocity

profile over a certain horizon to realize a fuel economy improvement very close to that

of the globally optimal algorithm.

Hence, the velocity algorithm is seen as a promising solution to be implemented on

the onboard navigation system to yield a velocity profile over a horizon, which is se-

quentially fed to the predictive algorithm implemented on an EMS. The two algorithms

complement each other to create an integrated predictive gear shift strategy realizing

the highest fuel economy potential for HEVs.

Effect of gear shift and engine start losses

In Chapter 6, the energy losses involved with the gear shift and engine start processes of

an AMT-based HEV were modeled and incorporated in the design of an EMS in order

to analyze their influences on the fuel economy, respectively.

Design of the EMSs for passenger HEVs equipped with discrete ratio transmissions

requires an optimal gear shift strategy for a fuel economy benefit. One gear up or down

per shift is the most optimum gear shift command in terms of the fuel economy and

engine operation comfort. Gear shift hysteresis strategy plays a crucial role in reducing

the shift busyness and hunt in a way not deteriorating the fuel economy.

Regarding the loss involved with the gear shift, it is found by simulation that a per-

ception of a fuel-efficient advantage of powershift transmissions (DCT, PS-AMT) over

non-powershift transmissions (MT, AMT) is realized for passenger HEVs.

In relation with the engine start, it is found that the induced energy loss can not be

ignored in a proper design of the EMS to guarantee a fair evaluation on the fuel economy

of parallel HEVs. Furthermore, the model predictive control algorithm utilized the

engine start loss model effectively in yielding the possible shortest prediction horizon of

5s such that the highest fuel economy can be realized.
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Structural analysis of the control design objectives

Chapter 7 discussed a method to analyze the sensitivity of an optimal gear shift strategy

to the control design objectives. The method utilizes the Singular Value Decomposition-

based structural analysis approach to objectively and quantitatively study the possible

correlations among the control design objectives. It is found that the objective function,

originally comprised of the fuel consumption, driveability (the weighted inverse of power

reserve), and comfort (the weighted gear shift frequency), can be simplified to the one

consisting of only the fuel consumption and comfort. The analysis results show that

the driveability is interdependent with the comfort. The SVD-based method is able to

identify the possible dependent control design objective(s). Hence, a design decision to

omit the dependent design objective(s) can be realized. This will allow to build a proper

objective function for the optimal control problem, thus reducing the design complexity.

8.2 Recommendations

In light of the findings of the study presented in this dissertation, directions for future

research are given next.

1. Powertrain component size study

Within the context of designing discrete ratio transmissions for road vehicles pri-

marily powered by internal combustion engines, the gear shift strategy has a vital

position in improving the fuel economy, see Chapters 2 and 3. Furthermore, the

gear number together with the ratios are also a decisive factor in defining the

optimal shift points. The greater the gear number, the better the engine will

exploit its efficiency by adhering to the ideal tractive effort. Nonetheless, the fuel

economy potential comes at a price of a possible high shifting frequency, an in-

crease of weight and size of the gearbox. From a powertrain system design point

of view, there are: i) a possibly strong interdependency among the design param-

eters (the supervisory control strategy and component size), and ii) an unknown

sensitivity of the design parameters to the design objectives (fuel economy and

driveability) [49]. Hence, in pursuit of the advantages offered by an optimal gear

shift strategy, the follow-up research is defined as follows:

• search for an optimum design of the gear number, ratios and ratio coverage for

the transmission used in conventional vehicles to improve the fuel economy

and/or driveability;

• study the optimal power specifications (sizes) of the engine, electric machine

and transmission parameters (the number of gears, step value and ratio cov-

erage) for HEVs to improve the fuel economy.
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2. Gear shift map generation tool

As stated in Chapter 1, a strong segmentation of the vehicle classes has led to a

variety of the transmission technologies and applications. Furthermore, it is nec-

essary to assess the impact of different powertrain systems and the corresponding

control strategies, including the gear shift strategy, on the design objectives at a

very early stage of the development process. Therefore, an optimized gear shift

map in terms of the fuel economy and driveability for automotive transmissions is

highly fitted for the purpose of accelerating the development process and applica-

tion. Motivated by the very positive outcomes and insights of the gear shift map

design methodology, presented in Chapter 4, development of a tool to formally

generate the gear shift map for a given powertrain system is seen as a promising

prospect in terms of practical applicability.

3. Towards preview route-based driving

Recently, the trend in automotive control technology development is to utilize

route information obtained from the GPS-based onboard navigation system in

order to improve the fuel economy [2, 93, 96, 151]. In line with this, Chapter 5

demonstrated an integrated predictive gear shift strategy which also exploits route

information to realize the fuel benefit for HEVs. Ultimately, this trend will result

in autonomous driving, wherein the vehicle can brake, accelerate and steer by its

own to obtain the maximum possible fuel saving, while even improving (lowering)

trip time. This represents an ideal situation where a pre-computed optimal veloc-

ity trajectory is exactly followed by the vehicle, wherein the powertrain system is

governed by an optimal supervisory control algorithm accordingly. However, in

real-life traffic situations, it might not be possible to track the optimal profile due

to the upcoming traffic disturbances. Therefore, driving the vehicle with a preview

route horizon and cooperating (using communication systems) with the vehicle(s)

in front are seen as a solution for this problem. The vehicle will switch from a

velocity tracking mode to a vehicle following mode, thus making the optimal al-

gorithm in former mode is not optimal for later mode. Moreover, implementation

of the control algorithm on a relatively short driving horizon, e.g. an accelera-

tion horizon, a cruise horizon, and a deceleration horizon, etc., is also required

to point out the practical relevance, such as the horizon length, constraints on

the battery state-of-energy, and estimation of the Lagrange multiplier on various

driving profiles, etc. These challenges are recommended for future research.

4. Powershift transmissions vs. non-powershift transmissions

The research in this dissertation has demonstrated by simulation that powershift

transmissions (DCT, PS-AMT) are more fuel-efficient than non-powershift trans-

missions (MT, AMT) applied for passenger HEVs, see Chapter 6. This is proved

by modeling and incorporating the gear shift loss into the design of an optimal
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EMS. From the large margin of relative fuel difference of powershift transmissions

over non-powershift ones, it can set preliminary inferences of:

• a fuel benefit property of the AT over the MT or AMT;

• a fuel benefit of powershift transmissions (AT, DCT, PS-AMT) over non-

powershift transmissions (MT, AMT) applied for commercial vehicles,

wherein the large drivetrain component inertias and reliable operation of

transmissions usually require the interruption time of shifting to be in the

order of 0.5-1.0s and longer.

Apparently, these preliminary inferences are contrary to the fact that, for example

the AT is considered to have a moderate efficiency compared to the MT or AMT.

Therefore, to reinforce the hypothesis, a simulation study for the intended vehicle

classes equipped with powershift transmissions is required. Experimental study is

also needed to prove the hypothesis.



Appendix A

Optimal Power Split Control of HEVs

Problem A.1. Given a drive cycle v(k) with time length N , with a given certain

admissible gear sequence ng(k) along this drive cycle, find an instantaneous optimal

engine power P ∗e (k) that minimizes the cost function of fuel consumption over the entire

drive cycle,

J =
N−1∑
k=0

Fr
(
Pe(k), k

)
∆t, (A.1)

subject to constraints:

es(k + 1) = es(k) + Ps
(
Pe(k), k

)
∆t, (A.2)

P
′

e,min(k) ≤ Pe(k) ≤ P
′

e,max(k). (A.3)

To apply Pontryagin’s minimum principle to solve this optimal control problem, the

constraint on engine power is rewritten as an equality constraint by introducing a pa-

rameter p(k),

P 2
e (k) + A(k) · Pe(k) + B(k) + p2(k) = 0, (A.4)

wherein:

A(k) = −
(
P
′

e,min(k) + P
′

e,max(k)
)
,

B(k) = P
′

e,min(k) · P ′e,max(k).

The augmented cost function J
′

is constructed by using Lagrange multipliers λ(k) and

γ(k) to take into account the constraints, thus giving,

J
′
=

N−1∑
k=0


Fr
(
Pe(k), k)∆t

−λ(k)
(
es(k + 1)− es(k)− Ps

(
Pe(k), k

)
∆t
)

−γ(k)
(
P 2
e (k) + A(k)Pe(k) + B(k) + p2(k)

)
 . (A.5)
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Optimality condition with respect to the constraint on engine power is defined as,

∂J
′

∂p(k)
= 0 ⇔ 2γ(k)p(k) = 0 ⇔

{
γ(k) = 0,

p(k) = 0.
(A.6)

According to (A.6), we have two cases needed to be considered as follows:

• case 1: p(k) = 0,

P ∗e,1(k) ∈ {P ′e,min(k), P
′

e,max(k)}. (A.7)

In this case the optimal engine power is at its bounds, either at the lower bound

or at the upper bound.

• case 2: γ(k) = 0,

the inequalities described by (A.3) are inactive. Therefore, we have the Hamilto-

nian function as,

H
(
Pe(k), λ(k), k

)
=
[

Fr
(
Pe(k), k

)
+ λ(k)Ps

(
Pe(k), k

)]
∆t. (A.8)

According to the Pontryagin’s minimum principle, the necessary optimality con-

ditions are defined by the followings:

λ(k)− λ(k + 1) =
∂H
(
Pe(k), λ(k), k

)
∂es(k)

= 0

⇔ λ(k) , λopt, ∀k ∈ [0, 1, . . . , N − 1],

(A.9)

∂H
(
Pe(k), λ(k), k

)
∂Pe(k)

= 0

⇔
∂Fr
(
Pe(k), k

)
∂Pe(k)

+ λ(k)
∂Ps
(
Pe(k), k

)
∂Pe(k)

= 0.

(A.10)

From approximations of the engine fuel rate (3.1) and the battery efficiency

model (3.5), Fr
(
Pe(k), k

)
and Ps

(
Pe(k), k

)
can be approximated as affine piecewise

second-order functions of the engine power at a certain engine speed [25, 73]. So,

the Hamiltonian function at each time step is continuous and quadratic. There-

fore, there exists such a constant Lagrange multiplier denoted as λopt (see, [149]),

such that the final state of es(N) meets a specifically predefined value. The glob-

ally optimal solution of the engine power P ∗e,2(k) is derived analytically. The

two-point boundary value problem is solved.
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For both cases 1 and 2, by using (A.9), the cost function (A.5) can be rewritten as,

J
′
=

N−1∑
k=0

[
Fr
(
Pe(k), k

)
+ λoptPs

(
Pe(k), k

)]
∆t− λopt

(
es(N)− es(0)

)
∆t. (A.11)

Therefore, the globally instantaneous optimal solution of engine power is defined as,

P ∗e (k) = arg min

Pe(k)∈
{
P ∗e,1(k)

P ∗e,2(k)

}
[

Fr
(
Pe(k), k

)
+ λoptPs

(
Pe(k), k

)]
. (A.12)
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Appendix B

State Constrained Optimal Control of
the Power Split for HEVs

Under optimally controlled, the EMS will drive the battery state-of-energy around its

initial value and ensure its end constraint to be respected. This appendix reformulates

the optimization problem described in Appendix A if the bounds on the battery state-

of-energy are taken into account in the control design.

Problem B.1. Given a drive cycle v(k) with time length of N , with a given certain

admissible gear sequence ng(k) along this drive cycle, find an instantaneous optimal

engine power P ∗e (k) that minimizes the cost function of fuel consumption over the entire

drive cycle,

J =
N−1∑
k=0

Fr
(
Pe(k), k

)
∆t, (B.1)

subject to constraints:

es(k + 1) = es(k) + Ps
(
Pe(k), k

)
∆t, (B.2)

Es,min ≤ es(k) ≤ Es,max, (B.3)

P
′

e,min(k) ≤ Pe(k) ≤ P
′

e,max(k). (B.4)

The constraint on engine power Pe(k) must be rewritten as an equality constraint by

introducing a parameter p(k),

P 2
e (k) + A(k) · Pe(k) + B(k) + p2(k) = 0, (B.5)

wherein:

A(k) = −
(
P
′

e,min(k) + P
′

e,max(k)
)
,

B(k) = P
′

e,min(k) · P ′e,max(k).
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The constraint on battery state of energy es(k) must be rewritten as an equality con-

straint by introducing a parameter q(k),

e2
s(k) + C · es(k) + D + q2(k) = 0, (B.6)

wherein:

C = −
(
Es,min + Es,max

)
,

D = Es,min · Es,max.

The new cost function J
′

is constructed by using Lagrange multipliers λ(k), γ(k) and

β(k) to take into account the constraints, thus giving,

J
′
=

N−1∑
k=0


Fr
(
Pe(k), k)∆t−

−λ(k)
(
es(k + 1)− es(k)− Ps

(
Pe(k), k

)
∆t
)

−γ(k)
(
P 2
e (k) + A(k)Pe(k) + B(k) + p2(k)

)
−β(k)

(
e2
s(k) + C · es(k) + D + q2(k)

)

 . (B.7)

Optimality conditions are defined as,

∂J
′

∂p(k)
= 0⇔ 2γ(k)p(k) = 0⇔

{
p(k) = 0,

γ(k) = 0.
(B.8)

∂J
′

∂q(k)
= 0⇔ 2β(k)q(k) = 0⇔

{
q(k) = 0,

β(k) = 0,
(B.9)

∂J
′

∂es(k)
= 0 ⇔ λ(k + 1) = λ(k)− β(k)

(
2es(k) + C

)
, (B.10)

∂J
′

∂Pe(k)
= 0

⇔
∂Fr
(
Pe(k), k

)
∂Pe(k)

+ λ(k)
∂Ps
(
Pe(k), k

)
∂Pe(k)

− γ(k)
(
2Pe(k) + A(k)

)
= 0,

(B.11)

and the second derivative,

∂2J
′
1

∂P 2
e (k)

≥ 0 ⇔
∂2Fr

(
Pe(k), k

)
∂P 2

e (k)
+ λ(k)

∂2Ps
(
Pe(k), k

)
∂P 2

e (k)
− 2γ(k) ≥ 0. (B.12)

According to (B.8) and (B.9), we have four cases needed to be considered as follows:

• case 1: q(k) = 0 & p(k) = 0,

with condition q(k) = 0 we have,

e∗s,1(k) ∈ {Es,min, Es,max}. (B.13)
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- if e∗s,1(k) = Es,min, from (B.10) we have:

λ(k + 1) = λ(k)− β(k)
(
Es,min − Es,max

)
, (B.14)

es(k + 1) ≥ Es,min ⇔ Ps
(
Pe(k), k

)
≥ 0. (B.15)

- if e∗s,1(k) = Es,max, from (B.10) we have:

λ(k + 1) = λ(k)− β(k)
(
Es,max − Es,min

)
, (B.16)

es(k + 1) ≤ Es,max ⇔ Ps
(
Pe(k), k

)
≤ 0. (B.17)

with condition p(k) = 0, we have the optimal engine power P ∗e,1(k)

P ∗e,1(k) ∈ {P ′e,min(k), P
′

e,max(k)}, (B.18)

and the optimal battery power defined correspondingly with respect to (B.15) and

(B.17).

• case 2: q(k) = 0 & γ(k) = 0,

with condition q(k) = 0 we have still approach the conditions of next values of

λ(k + 1) and Ps
(
Pe(k), k

)
as in (B.14)-(B.17) of case 1.

with condition γ(k) = 0, the engine power Pe(k) is in its boundary. The optimal

engine power P ∗e,2(k) is obtained by solving,

∂Fr
(
Pe(k), k

)
∂Pe(k)

+ λ(k)
∂Ps
(
Pe(k), k

)
∂Pe(k)

= 0,

∂2Fr
(
Pe(k), k

)
∂P 2

e (k)
+ λ(k)

∂2Ps
(
Pe(k), k

)
∂P 2

e (k)
≥ 0,

and the optimal battery power defined correspondingly with respect to conditions

(B.15) and (B.17).

• case 3: β(k) = 0 & p(k) = 0,

for this case, the optimal control problem now returns to problem described in

Appendix A. Therefore the same procedure is applied to define the optimal engine

power P ∗e,3(k) and P ∗e,4(k) correspondingly.

• case 4: β(k) = 0 & γ(k) = 0,

this case is similar to case 3.

For cases 1, 2, 3 and 4, the cost function (B.7) becomes,

J
′
=

N−1∑
k=0

Fr
(
Pe(k), k

)
∆t− λ(k)

(
es(k + 1)−

−es(k)− Ps
(
Pe(k), k

)
∆t
)  , (B.19)
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or

J
′
=

N−1∑
k=0

[
Fr
(
Pe(k), k

)
+ λ(k)Ps

(
Pe(k), k

)]
∆t−

−
N−1∑
k=0

λ(k)
(
es(k + 1)− es(k)

)
∆t.

(B.20)

In (B.20), the first summation term is the augmented Lagrange cost functional which

is continuous at every time step; the second summation term describes the demand

constraint on the state variable. In this study, this demand constraint denotes the

variation of battery state of energy at the beginning and the end of the drive cycle.

Therefore, the globally instantaneous optimal solution of engine power is defined as,

P ∗e (k) = arg min

Pe(k)∈


P ∗e,1(k),

P ∗e,2(k),

P ∗e,3(k),

P ∗e,4(k)



{
Fr
(
Pe(k), k

)
+ λ(k)Ps

(
Pe(k), k

)}
. (B.21)

Apparently, from (B.14) and (B.16) it is observed that when the battery state of energy

reaches its bounds, then the Lagrange multiplier λ(k) changes its value. Between the two

consecutive points of reaching the bounds of the battery state-of-energy, the Lagrange

multiplier λ(k) is kept constant.



Appendix C

Drive Cycles

This appendix shows the standard drive cycles used throughout chapters of this disser-

tation.
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ARB02

Figure C.1: Drive cycle: Air Resources Board No. 2 (ARB02).

Figure C.2: Drive cycle: Common Artemis Driving Cycles (CADC).
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FTP75

Figure C.3: Drive cycle: Federal Test Procedure 75 (FTP75).
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HURK

Figure C.4: Drive cycle: Hurk (in Eindhoven, The Netherlands).
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HWFET

Figure C.5: Drive cycle: Highway Fuel Economy Driving Cycle (HWFET).
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Figure C.6: Drive cycle: Japan 1015 (JN1015).
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LA92

Figure C.7: Drive cycle: Los Angeles 92 (LA92).
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NEDC

Figure C.8: Drive cycle: New European Drive Cycle (NEDC).
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Figure C.9: Drive cycle: New York City Cycle (NYCC).
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Figure C.10: Drive cycle: US06.
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