2,105 research outputs found

    Control of nonlinear systems that are subjected to kinematic inequalities

    Get PDF
    AbstractThis letter deals with the Lagrange equations concerning nonlinear systems which are subjected to a class of kinematic inequalities

    Computational and theoretical aspects of a grain-boundary model at finite deformations

    Get PDF
    A model to describe the role of grain boundaries in the overall response of a polycrystalline material at small length scales subject to finite deformations is presented. Three alternative thermodynamically consistent plastic flow relations on the grain boundary are derived and compared using a series of numerical experiments. The numerical model is obtained by approximating the governing relations using the finite element method. In addition, the infinitesimal and finite deformation theories are compared, and the limitations of the former made clear

    Three-dimensional study for the relative positioning of mechanical elements in mechanisms constituted by parrallel joints with clearances

    Get PDF
    The great evolution of the data-processing tools during the last years allowed for the development of the computer aided design in the field of mechanical structures. Controlling the clearance in joints between parts, is one of the required objectives to provide accurate relative movements and to minimize geometrical errors. For that purpose, a new method of static study allowing for the computation of the equilibrium positions of various elements in spatial mechanisms constituted by parallel joints and subjected to mechanical loadings is proposed. The isostatic study takes into account the presence of the clearance in the mechanism joints. The method is based to the minimization of the potential energy by means of some algorithms of optimization. The results obtained show the effectiveness of the method

    A computational approach for cam size optimization of disc cam-follower mechanisms with translating roller followers

    Get PDF
    The main objective of this work is to present a computational approach for design optimization of disc cam mechanisms with eccentric translating roller followers. For this purpose, the objective function defined here takes into account the three major parameters that influence the final cam size, namely the base circle radius of the cam, the radius of the roller and the offset of the follower. Furthermore, geometric constraints related to the maximum pressure angle and minimum radius of curvature are included to ensure good working conditions of the system. Finally, an application example is presented and used to discuss the main assumptions and procedure adopted throughout this work.Fundação para a CiĂȘncia e a Tecnologia (FCT

    Dissipation-Induced Heteroclinic Orbits in Tippe Tops

    Get PDF
    This paper demonstrates that the conditions for the existence of a dissipation-induced heteroclinic orbit between the inverted and noninverted states of a tippe top are determined by a complex version of the equations for a simple harmonic oscillator: the modified Maxwell–Bloch equations. A standard linear analysis reveals that the modified Maxwell–Bloch equations describe the spectral instability of the noninverted state and Lyapunov stability of the inverted state. Standard nonlinear analysis based on the energy momentum method gives necessary and sufficient conditions for the existence of a dissipation-induced connecting orbit between these relative equilibria

    Constitutive modeling for isotropic materials (HOST)

    Get PDF
    The results of the first year of work on a program to validate unified constitutive models for isotropic materials utilized in high temperature regions of gas turbine engines and to demonstrate their usefulness in computing stress-strain-time-temperature histories in complex three-dimensional structural components. The unified theories combine all inelastic strain-rate components in a single term avoiding, for example, treating plasticity and creep as separate response phenomena. An extensive review of existing unified theories is given and numerical methods for integrating these stiff time-temperature-dependent constitutive equations are discussed. Two particular models, those developed by Bodner and Partom and by Walker, were selected for more detailed development and evaluation against experimental tensile, creep and cyclic strain tests on specimens of a cast nickel base alloy, B19000+Hf. Initial results comparing computed and test results for tensile and cyclic straining for temperature from ambient to 982 C and strain rates from 10(exp-7) 10(exp-3) s(exp-1) are given. Some preliminary date correlations are presented also for highly non-proportional biaxial loading which demonstrate an increase in biaxial cyclic hardening rate over uniaxial or proportional loading conditions. Initial work has begun on the implementation of both constitutive models in the MARC finite element computer code
    • 

    corecore