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1. I N T R O D U C T I O N  

Let  q = ( q l , q 2 , . . . ,  q~)T be  a vec tor  of  genera l ized  coord ina te s  descr ib ing  the  m o t i o n  of  a dy-  

namica l  sys tem,  and  deno te  

P =  - - '  d t ' ' " '  dt = ( P l ' P 2 ' ' ' " P n ) T  

Nonho lonomic  cons t r a in t s  encoun te red  in mechanics  can  usua l ly  be  expressed  in t he  following 

form: 
n 

~ a~(q;t)p~ + b~(q;t) = 0, i = 1 , . . .  ,m, (1) 
j = l  

see, for example ,  [1-4]. Th is  l e t t e r  dea ls  w i th  cont ro l  p rob lems  of  mechan ica l  sys t ems  s u b j e c t e d  

to  k inema t i c  cons t r a in t s  given by  

~(q l , . . . , qn ,P l , . . . ,Pn )  ~0 ,  i = l  . . . .  ,m, (2) 

m < n, where  f i ( q ,  P),  i = 1 , . . . ,  m are  given smoo th  funct ions  o n  s}~2n. This  l e t t e r  is a sequel  

to  [5] where  t he  case of  cons t ra in t s  of  the  form 

f i (q l , . . .  ,qn,Pl, . . .  ,Pn) = 0, i = 1 , . . .  , m ,  (3) 

is cons idered .  
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2. THE L A G R A N G E  EQUATIONS 

Let T(q,  p) denote the kinetic energy and let VT (q, t) denote the potential energy of the system. 
It is assumed here that  

VT(q(t),  t) = V(q(t))  - qT( t )Bu( t ) ,  (4) 

where V(q) is the potential energy due to the conservative forces, u(t) E NP, p _< n, B E Nnxp, 
r a n k B  = p, and - q T ( t ) B u ( t )  is the "potential energy" due to the applied control force u(t). 
Denote £ o  = T - liT, £ = T - V, and define the following functional: 

~tl ~2 J = £ o  (q(t), p(t),  t) dt. (5) 

The following are assumed here. 

1. The functional J given by (5) has an extremum on the set of the (q, p) elements in 
~2n that satisfy inequalities (2). By this, it is tacitly assumed that (q(t), p(t)) satisfy 
inequalities (2) for all t E [tl, t2]. 

2. There is a nonvanishing Jacobian of order m, for instance, 

O(fl,  f 2 , . . . ,  fro) ¢ O, in the domain defined by (2). (6) 
c9(pl,p2,... ,prn) 

By using the Calculus of Variations (see, for example, [6]), the first assumption leads to 

• = -~ \ Opj ] - -~qjJ 5qjdt = O, (7) 

where the variations 5qj, j = 1 , . . . ,  n satisfy 

f i ( q l + S q l , ' ' ' , q n + S q n , P l + S P l , ' ' ' , P n + S P n )  <0,  i = l , . . . , m ,  

5qj(tl) -= 5qj(t2) = O, j = 1 , . . . ,  n. (8) 

Note that  
= (dqj  d 

\ d t  ] = -~bqj, j = 1, . . . .  n. (9) 

Thus, the variations {bqj} are not independent, and one cannot deduce the Euler-Lagrange 
equations from (7). By introducing the Valentine Variables {¢~}~m__ 1 (see [7]), the inequality 
constraints (2) are transformed into the following equality constraints: 

2 Fi(q(t) ,  p(t), ~bi(t)) = f i (q( t ) ,  p(t)) + ¢i (t) = O, i = 1 , . . . ,  m, (10) 

t m where {¢~ ( )}i__1 a r e  real-valued nonnegative continuous functions of time which are determined 
later. Now, the variations {bqj}jn=l and {5¢i}im__l must satisfy the following relations, obtained 
by varying the constraints Fi = 0, i = 1 , . . . ,  m: 

n 

Ofi~ + ~ Ofi d - - o q j  -~pj--~oqj + 2¢i&bi = O, 
j=l  Oqj j=l  

i = l , . . . , m .  (ll) 

By multiplying successively each of these equations by a Lagrange multiplier and then integrating 
from tl to t~, the following equations are obtained: 

n 1 Ai(t) ~ Ofi bqj + E Of~ d ~ ~qj ~oqj + 2e~¢~  at = o, 
j =l j = l  

i = 1 , . . . , ~ .  (12) 
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But 

t t~ ~ Ofi d 

= - -~pjOqj +A~(t)~-'~-~ \Opj]  aqj dt+ 
• 1 j=l 

Also• by using (8), it follows tha t  [ A i ( t ) E j = I  c)p~ °qJlh = o. 
yields 

t2 (13) 

Thus, inserting (13) into (12) 

O=Ci(f i ,Ai ,  ei) = Ai(t) - Ai(t)7~ \OpjJ  dt OpjJ 6qjdt 
j= l  (14) 

+ 2 A~(t)~b~(t)&A(t) dr, i = 1 . . . .  ,m. 
1 

Hence, by subtracting the expression ~ = t  C~(f~,A~,'gaj from (7), the following equation is 
obtained: 

E O (q(t), p(t) ,  t)aqj dt - 2 ki(t)~.i(t)a~.i(t) dt = 0, (15) 
1 j = l  Jr1  i-~l  

Denote 

• where 

d 0£ °~E-g+EAi(t) ~ \OpjJ  - OqjJ E j ( q , p , t )  = ~ ~pj  - Oqj i=1 

m dXi(t) Ofi 
+ ~ et opj (Bu(%, j =l , . . . , ,z .  

i=1 

,116) 

bj = --~d<Opj)/'£'\ oqjO£ (Bu( t ) ) j ,  j = l  . . . . .  n. (17) 

By using the assumption given by (6), it follows that  the following set of differential equations: 

d~Opj +~X~(t) ~ \Opj] - Oq~J +bj =0, j = 1 , . . . , m ,  (18) 
i=1 i=1 

h ~  a solution (Al(t) . . . .  , Am(t). Substituting these {A~}~=I into (15) yields 

r±  Ej(q(t), p(t), t ) %  at  - 2 x , ( t ) ~ ( t ) a m , ( t )  at = o, 
j=rn+l  at~ i=1 

where the variations 5q j, j = ra 
equations (18) and (19) yield the 

(19) 

+ 1,m + 2 , . . . , n ,  &b~, i = 1 , . . . , .m  are independent. Hence, 
following set of equations: 

d 
(Bu(t))j = 

m dA~(t) Of, 
+ E dt Opj ' 

i=1 

A~(t)Vh(t) = O, ~ ( t )  > 0, 

which have to be solved together with 

0£ 0___£_£ + Ai(t) ~ \ Opj / - Oqa J 
-- Oqj i=1 

j = 1 , . . . , n ,  

(20) 

i = 1 . . . .  , m, (21) 

2 f i (q ( t ) ,p ( t ) )  + ~ (t) = 0, i = 1 , . . . , m .  (22) 
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Hence,  equat ions  (20)-(22) cons t i tu te  n + 2m equat ions for the  solution of qj( t ) ,  j = 1 , . . . ,  n; 

Ai(t), i = 1 , . . . , m ;  and  ~ ( t ) ,  i = 1 , . . . ,  m. These  equat ions  are necessary condit ions for the  
funct ional  J ,  (5), to have an e x t r e m u m  on the  set 

{ ( q , p )  E ~2,~ : f i ( q , P )  -< 0, i = 1 , . . . , m } .  (23) 

REMARK 1. T h e  condit ions given above were derived for a case of virtual unilateral constraints ,  

i.e., w i thou t  incorpora t ing  any physical  rule or res t i tu t ion  mapp ing  at  the  contact .  For more  

in format ion  on impac t  problems,  see [8]. 

REMARK 2. Assume  t h a t  for some t ime  interval [t3,t4] C [tl,t2], f l / (q ( t ) ,p ( t ) )  < 0, i = 1 , . . .  ,m .  
Then ,  (22) yields ¢ i ( t )  > 0, i = 1 , . . . , m ,  t E [t3,t4]. Consequently,  (21) yields Ai(t) = 0, 

i = 1 , . . . ,  m,  t E [t3, t4]. Thus,  in this case, equat ions  (20)-(22)  reduce to 

-~ Oqy - ( B u ( t ) ) j ,  j = 1 , . . . ,  n, (24) 

toge the r  wi th  

f i (q ( t ) ,  p ( t ) )  < 0, i = 1 , . . . ,  m,  (25) 

for all t E It3, t4]. 

REMARK 3. Assume  t h a t  for some t ime  interval [t3, t4] C [tl, t2], f / (q ( t ) ,  p ( t ) )  = 0, i = 1 , . . . ,  m. 
Then ,  (22) yields ¢ i ( t )  = 0, i = 1 , . . .  ,m ,  t e [t3,t4]. Consequently,  (21) implies ~-]i~1 A~(t) is 
not  necessari ly  zero. Hence, in this case, equat ions  (20)-(22) reduce to (20) and 

f i ( q ( t ) , p ( t ) ) = O ,  i = l , . . . , m ,  t E [ t 3 , t 4 ] ,  (2~) 

which is the  result  ob ta ined  in [5]. 
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