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Abstract—This letter deals with the Lagrange equations concerning nonlinear systems which are
subjected to a class of kinematic inequalities. © 2000 Elsevier Science Ltd. All rights reserved.
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1. INTRODUCTION

Let q = (q1,42,-..,q2)" be a vector of generalized coordinates describing the motion of a dy-
namical system, and denote

dt’ dt’ " dt

_ (d(h dqo %)T = (prp2,..ripn) T

Nonholonomic constraints encountered in mechanics can usually be expressed in the following
form:

n
Za.,-j(q;t)pj + bi(q;t) =0, i=1,...,m, (1)
i=1

see, for example, [1-4]. This letter deals with control problems of mechanical systems subjected
to kinematic constraints given by

fi(qlv"'vqn,pla""pn)Soy t=1,...,m, (2)

m < n, where f;(q,p), i = 1,...,m are given smooth functions on R2". This letter is a sequel
to [5] where the case of constraints of the form

fi(qu"*aqnvpl""3pn):03 i:]-a---»ma (3)

is considered.
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2. THE LAGRANGE EQUATIONS

Let T'(q, p) denote the kinetic energy and let Vr(q, t) denote the potential energy of the system.
It is assumed here that

Vr(q(t),t) = V(q(t)) ~ q' (t)Bu(?), (4)

where V(q) is the potential energy due to the conservative forces, u(t) € R, p < n, B € R"*P,
rankB = p, and —q ' (t)Bu(t) is the “potential energy” due to the applied control force u(t).
Denote Lo =T — Vp, L =T — V, and define the following functional:

J= / " Lola(t), p(t).b) dt. (5)

ty

The following are assumed here.

1. The functional J given by (5) has an extremum on the set of the (q,p) elements in
2" that satisfy inequalities (2). By this, it is tacitly assumed that (q(t), p(t)) satisfy
inequalities (2) for all t € [t1,t5].

2. There is a nonvanishing Jacobian of order m, for instance,

a(flaf?a"'?fm)
8(p1ap2y~" ’pm) # 0

in the domain defined by (2). (6)

By using the Calculus of Variations (see, for example, [6]), the first assumption leads to

2 2 Td (aco> azo}
— 8g;dt =0, 7
[ xla(m)-% g

where the variations dg;, j = 1,...,n satisfy

filg1 +8q1,- .., qn + 6¢n,p1 + 0p1,. .., pn + pn) <0, i=1,...,m,

(5q]'(t1) =(5qj(t2) —‘:0, ] = 1,...,n. (8)
Note that p p
5])]‘:(5(%) =Zl;5qj', j=1,...,n. (9)

Thus, the variations {dg;} are not independent, and one cannot deduce the Euler-Lagrange
equations from (7). By introducing the Valentine Variables {1;}7%, (see [7]), the inequality
constraints (2) are transformed into the following equality constraints:

Fi(a(®), p(t), %i(t) = filalt),p(t)) +¥7(t) =0, i=1,...,m, (10)

where {¢;(t)}I~, are real-valued nonnegative continuous functions of time which are determined
later. Now, the variations {dg;}7_, and {51[)1 ® , must satisfy the following relations, obtained
by varying the constraints F; = 0 i=1,.

0 ig af; )
f J+E af dt5qj+21/),5¢1—0 i=1,...,m. (11)
i= 10

By multiplying successively each of these equations by a Lagrange multiplier and then integrating
from ¢; to t9, the following equations are obtained:

t2
/t Ai(t) af’a +Z§f’dt6 + 26| dt =0, i=1,...,m. (12)
1 jl
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But
/ Z 5 g dt
2! =1
‘s (13)
B dXi(t) <~ 8f; 2 d [ 0f; "L Bf;
_/t[ z_:a_' a5 + M ;d< )5}dt+{ Zl Sg;|
- = |
Also. by using (8), it follows that {\;(¢)>." ——-’f—5q = 0. Thus, inserting (13) into (12
j=1 9p; Jlt
vields
RN afi ofi dAi(t) Of;
) = i\J 1y Ny /i = — AN
0=atfirev) = [73 gk - aing () - P gy
lt ]:1 (14)
. .
+2 Ai ()i ()6, (¢) dt, i=1,...,m.
t

Hence, by subtracting the expression er;l Ci(fi, Aiy4s) from (7), the following equation is

obtained:
to n to, M
j (0,000, dt ~2 [ 5" A (00050 (15)
ty — iy je=1
.where
d (oL i af; af;
- ()25 Erol5(3) -
( ) o, ’ (16)
+ L — (Bu(t));, j=1 ,N
g 5.~ (Bu(t),
Denote 4 /o or
s = —— —— ——— — ; 7 - e . ’(1
b; p (8pj> aa; (Bu(t)),, i=1,...,n 17)
By using the assumption given by (6), it follows that the following set of differential equations:
dh(t) Of; = d [0f; ofi .
Ailt) |5 ~ b, =0, =1,...,m, 4!
2@ o ; W& \5p) "8 Y J " 18)
has a solution (A1(t),..., Ay (t). Substituting these {};}72, into (15) yields
to to m
[ 3 maop.mm a2 [*3 50w - (19)
t j=mt1 o=t
where the variations dg;, j = m+1,m +2,...,n, 6, 1 = 1,...,m are independent. Hence,
equations (18) and (19) yield the following set of equations:
d (0L oL & 8f1) afi]
Bu(t))j=—(=— ] — i - =
(Bul®); = 5 <3Pj) da; ZZ 2 [ (5191 dq;
m (20)
——d)\i(t) —a—f—’ jg=1 n
g dt ap] ) IR RAL]
A(O)i(t) =0,  ¥(t) >0, i=1,...,m, (21)

which have to be solved together with

fila®),p(t)) +¢Z(t) =0, i=1,...,m. (22)
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Hence, equations (20)-(22) constitute n + 2m equations for the solution of ¢;(t), 7 = 1,...,n;
Ai(t), i = 1,...,m; and ¥;(¢), ¢ = 1,...,m. These equations are necessary conditions for the
functional J, (5), to have an extremum on the set

{(a,p) €R*": fi(q,p) <0, i=1,....,m}. (23)

REMARK 1. The conditions given above were derived for a case of virtual unilateral constraints,
i.e., without incorporating any physical rule or restitution mapping at the contact. For more
information on impact problems, see [8].

REMARK 2. Assume that for some time interval {t3, 4] C [t1,12], fila(t),p(#)) <0,i=1,...,m.
Then, (22) yields ¥;(t) > 0, ¢ = 1,...,m, t € [tz,ts]. Consequently, (21) yields \;(t) = 0,
t=1,...,m, t € [t3,t4]. Thus, in this case, equations {20)—(22) reduce to

d (oL oL .
a (@) —a—qj—(Bu(t))j, ]—1,...,n, (24)
together with
fila(t), p(t)) <0, i=1,...,m, (25)

for all t € [ts, ¢4].

REMARK 3. Assume that for some time interval [t3,t4] C [t1,t2], fi(a(t),p(¢)) =0,i=1,...,m.
Then, (22) yields ;(t) =0, i = 1,...,m, t € [t3,t4]. Consequently, (21) implies Y ;- A2(t) is
not necessarily zero. Hence, in this case, equations (20)—(22) reduce to (20) and

fila(®),p()) =0,  i=1...,m, tE€[t3 1], (26)

which is the result obtained in [5].
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