469 research outputs found

    Control of an articulated wheeled mobile robot in pipes

    Get PDF
    We propose a control method in which an articulated wheeled mobile robot moves inside straight, curved and branched pipes. This control method allows the articulated wheeled mobile robot to inspect a larger area. The articulated wheeled mobile robot comprises pitch and yaw joints is and propelled by active wheels attached to the robot. Via the proposed control method, the robot takes on two different shapes; one prevents the robot from slipping inside straight pipes and the other allows movement in a pipe that curves in any direction. The robot is controlled by a simplified model for the robot\u27s joint angles. The joint angles of the robot are obtained by fitting to a continuous curve along the pipe path. In addition, the angular velocity of the robot\u27s active wheels is determined by a simplified model. The effectiveness of the proposed the control method was demonstrated with a physical implementation of the robot, and the robot was able to move inside straight, curved and branched pipes

    Robotic Search and Rescue through In-Pipe Movement

    Get PDF
    So far, we have been engaged in the research and development of various kinds of robots that could be applied to in-pipe inspections that existing methods (screw-drive type, parallel multi-modular type, and articulated wheeled type) cannot perform. In this chapter, we categorized each in-pipe inspection robot depending on its configuration and structure, which includes the design of the propulsive mechanism, steering mechanism, stretching mechanism, and the locations of the wheel and joint axes. On the basis of this classification and from a developer’s point of view, we also discussed the various kinds of robots that we have developed, along with their advantages and disadvantages

    Unmanned Robotic Systems and Applications

    Get PDF
    This book presents recent studies of unmanned robotic systems and their applications. With its five chapters, the book brings together important contributions from renowned international researchers. Unmanned autonomous robots are ideal candidates for applications such as rescue missions, especially in areas that are difficult to access. Swarm robotics (multiple robots working together) is another exciting application of the unmanned robotics systems, for example, coordinated search by an interconnected group of moving robots for the purpose of finding a source of hazardous emissions. These robots can behave like individuals working in a group without a centralized control

    Hypermobile Robots

    Get PDF

    Design and Motion Planning of a Wheeled Type Pipeline Inspection Robot

    Get PDF
    The most popular method for transporting fluids, and gases is through pipelines. For them to work correctly, regular inspection is necessary. Humans must enter potentially dangerous environments to inspect pipelines. As a result, pipeline robots came into existence. These robots aid in pipeline inspection, protecting numerous people from harm. Despite numerous improvements, pipeline robots still have several limitations. This paper presents the design and motion planning of a wheeled type pipeline inspection robot that can inspect pipelines having an inner diameter between 250 mm to 350 mm. The traditional wheeled robot design has three wheels fixed symmetrically at a 120° angle apart from each other. When maneuvering through a curved pipeline, this robot encounters motion singularity. The proposed robot fixes the wheels at different angles to address this issue, allowing the robot to stay in constant contact with the pipe's surface. Motion analysis is done for the proposed and existing robot design to study their behavior inside the pipeline. The result shows that the proposed robot avoids motion singularity and improves mobility inside pipelines. 3d printing technology aids in the development of the proposed robot. The experimental tests on the developed robot inside a 300 mm-diameter straight and curved pipeline show that the robot avoids motion singularity

    An Overview of Legged Robots

    Get PDF
    The objective of this paper is to present the evolution and the state-of-theart in the area of legged locomotion systems. In a first phase different possibilities for mobile robots are discussed, namely the case of artificial legged locomotion systems, while emphasizing their advantages and limitations. In a second phase an historical overview of the evolution of these systems is presented, bearing in mind several particular cases often considered as milestones on the technological and scientific progress. After this historical timeline, some of the present day systems are examined and their performance is analyzed. In a third phase are pointed out the major areas for research and development that are presently being followed in the construction of legged robots. Finally, some of the problems still unsolved, that remain defying robotics research, are also addressed.N/

    Robot-aided tunnel inspection and maintenance system by vision and proximity sensor integration

    Get PDF
    This article describes an unprecedented alternative to manual procedures for the application of advanced composite materials, such as Fiber Reinforced Polymer (FRP) and epoxy resins. A complete mobile integrated system is presented for the inspection and maintenance of concrete surfaces in tunnels. It allows performance of operations with minimum interference on passing traffic. The core of this system resides in a specially designed light-weight robotic tool, which is sensed and automated for processes. Sensing includes vision and a laser telemeter to assure precise inspection, superficial preparation, and composite application. The designed interconnection flange allows simple and robust attachment of the tool to a robotic arm's tip. The robot&-tool set is to be mounted on a standard articulated lift platform. Therefore, an operator can direct the platform and the robot&-tool set's operations from a control station placed at ground-level, in a wheeled vehicle on which the articulated lift platform is mounted. A graphical Human&-Machine Interface (HMI) has been developed for the system. It allows the operator to identify fissures for the injection of epoxy resin, and weakened surfaces for FRP adhesion. Actual procedures are planned and performed by the system's automatic components.This work has been supported by the CAM Project S2009/DPI-1559/ROBOCITY2030 II, developed by the research team RoboticsLab at the University Carlos III of Madrid
    • …
    corecore