91 research outputs found

    Locomation strategies for amphibious robots-a review

    Get PDF
    In the past two decades, unmanned amphibious robots have proven the most promising and efficient systems ranging from scientific, military, and commercial applications. The applications like monitoring, surveillance, reconnaissance, and military combat operations require platforms to maneuver on challenging, complex, rugged terrains and diverse environments. The recent technological advancements and development in aquatic robotics and mobile robotics have facilitated a more agile, robust, and efficient amphibious robots maneuvering in multiple environments and various terrain profiles. Amphibious robot locomotion inspired by nature, such as amphibians, offers augmented flexibility, improved adaptability, and higher mobility over terrestrial, aquatic, and aerial mediums. In this review, amphibious robots' locomotion mechanism designed and developed previously are consolidated, systematically The review also analyzes the literature on amphibious robot highlighting the limitations, open research areas, recent key development in this research field. Further development and contributions to amphibious robot locomotion, actuation, and control can be utilized to perform specific missions in sophisticated environments, where tasks are unsafe or hardly feasible for the divers or traditional aquatic and terrestrial robots

    Locomotion Analysis of Hexapod Robot

    Get PDF

    SCALER: Versatile Multi-Limbed Robot for Free-Climbing in Extreme Terrains

    Full text link
    This paper presents SCALER, a versatile free-climbing multi-limbed robot that is designed to achieve tightly coupled simultaneous locomotion and dexterous grasping. Although existing quadruped-limbed robots have shown impressive dexterous skills such as object manipulation, it is essential to balance power-intensive locomotion and dexterous grasping capabilities. We design a torso linkage and a parallel-serial limb to meet such conflicting skills that pose unique challenges in the hardware designs. SCALER employs underactuated two-fingered GOAT grippers that can mechanically adapt and offer 7 modes of grasping, enabling SCALER to traverse extreme terrains with multi-modal grasping strategies. We study the whole-body approach, where SCALER uses its body and limbs to generate additional forces for stable grasping with environments, further enhancing versatility. Furthermore, we improve the GOAT gripper actuation speed to realize more dynamic climbing in a closed-loop control fashion. With these proposed technologies, SCALER can traverse vertical, overhang, upside-down, slippery terrains, and bouldering walls with non-convex-shaped climbing holds under the Earth's gravity

    MOTION CONTROL SIMULATION OF A HEXAPOD ROBOT

    Get PDF
    This thesis addresses hexapod robot motion control. Insect morphology and locomotion patterns inform the design of a robotic model, and motion control is achieved via trajectory planning and bio-inspired principles. Additionally, deep learning and multi-agent reinforcement learning are employed to train the robot motion control strategy with leg coordination achieves using a multi-agent deep reinforcement learning framework. The thesis makes the following contributions: First, research on legged robots is synthesized, with a focus on hexapod robot motion control. Insect anatomy analysis informs the hexagonal robot body and three-joint single robotic leg design, which is assembled using SolidWorks. Different gaits are studied and compared, and robot leg kinematics are derived and experimentally verified, culminating in a three-legged gait for motion control. Second, an animal-inspired approach employs a central pattern generator (CPG) control unit based on the Hopf oscillator, facilitating robot motion control in complex environments such as stable walking and climbing. The robot\u27s motion process is quantitatively evaluated in terms of displacement change and body pitch angle. Third, a value function decomposition algorithm, QPLEX, is applied to hexapod robot motion control. The QPLEX architecture treats each leg as a separate agent with local control modules, that are trained using reinforcement learning. QPLEX outperforms decentralized approaches, achieving coordinated rhythmic gaits and increased robustness on uneven terrain. The significant of terrain curriculum learning is assessed, with QPLEX demonstrating superior stability and faster consequence. The foot-end trajectory planning method enables robot motion control through inverse kinematic solutions but has limited generalization capabilities for diverse terrains. The animal-inspired CPG-based method offers a versatile control strategy but is constrained to core aspects. In contrast, the multi-agent deep reinforcement learning-based approach affords adaptable motion strategy adjustments, rendering it a superior control policy. These methods can be combined to develop a customized robot motion control policy for specific scenarios

    Locomotion system for ground mobile robots in uneven and unstructured environments

    Get PDF
    One of the technology domains with the greatest growth rates nowadays is service robots. The extensive use of ground mobile robots in environments that are unstructured or structured for humans is a promising challenge for the coming years, even though Automated Guided Vehicles (AGV) moving on flat and compact grounds are already commercially available and widely utilized to move components and products inside indoor industrial buildings. Agriculture, planetary exploration, military operations, demining, intervention in case of terrorist attacks, surveillance, and reconnaissance in hazardous conditions are important application domains. Due to the fact that it integrates the disciplines of locomotion, vision, cognition, and navigation, the design of a ground mobile robot is extremely interdisciplinary. In terms of mechanics, ground mobile robots, with the exception of those designed for particular surroundings and surfaces (such as slithering or sticky robots), can move on wheels (W), legs (L), tracks (T), or hybrids of these concepts (LW, LT, WT, LWT). In terms of maximum speed, obstacle crossing ability, step/stair climbing ability, slope climbing ability, walking capability on soft terrain, walking capability on uneven terrain, energy efficiency, mechanical complexity, control complexity, and technology readiness, a systematic comparison of these locomotion systems is provided in [1]. Based on the above-mentioned classification, in this thesis, we first introduce a small-scale hybrid locomotion robot for surveillance and inspection, WheTLHLoc, with two tracks, two revolving legs, two active wheels, and two passive omni wheels. The robot can move in several different ways, including using wheels on the flat, compact ground,[1] tracks on soft, yielding terrain, and a combination of tracks, legs, and wheels to navigate obstacles. In particular, static stability and non-slipping characteristics are considered while analyzing the process of climbing steps and stairs. The experimental test on the first prototype has proven the planned climbing maneuver’s efficacy and the WheTLHLoc robot's operational flexibility. Later we present another development of WheTLHLoc and introduce WheTLHLoc 2.0 with newly designed legs, enabling the robot to deal with bigger obstacles. Subsequently, a single-track bio-inspired ground mobile robot's conceptual and embodiment designs are presented. This robot is called SnakeTrack. It is designed for surveillance and inspection activities in unstructured environments with constrained areas. The vertebral column has two end modules and a variable number of vertebrae linked by compliant joints, and the surrounding track is its essential component. Four motors drive the robot: two control the track motion and two regulate the lateral flexion of the vertebral column for steering. The compliant joints enable limited passive torsion and retroflection of the vertebral column, which the robot can use to adapt to uneven terrain and increase traction. Eventually, the new version of SnakeTrack, called 'Porcospino', is introduced with the aim of allowing the robot to move in a wider variety of terrains. The novelty of this thesis lies in the development and presentation of three novel designs of small-scale mobile robots for surveillance and inspection in unstructured environments, and they employ hybrid locomotion systems that allow them to traverse a variety of terrains, including soft, yielding terrain and high obstacles. This thesis contributes to the field of mobile robotics by introducing new design concepts for hybrid locomotion systems that enable robots to navigate challenging environments. The robots presented in this thesis employ modular designs that allow their lengths to be adapted to suit specific tasks, and they are capable of restoring their correct position after falling over, making them highly adaptable and versatile. Furthermore, this thesis presents a detailed analysis of the robots' capabilities, including their step-climbing and motion planning abilities. In this thesis we also discuss possible refinements for the robots' designs to improve their performance and reliability. Overall, this thesis's contributions lie in the design and development of innovative mobile robots that address the challenges of surveillance and inspection in unstructured environments, and the analysis and evaluation of these robots' capabilities. The research presented in this thesis provides a foundation for further work in this field, and it may be of interest to researchers and practitioners in the areas of robotics, automation, and inspection. As a general note, the first robot, WheTLHLoc, is a hybrid locomotion robot capable of combining tracked locomotion on soft terrains, wheeled locomotion on flat and compact grounds, and high obstacle crossing capability. The second robot, SnakeTrack, is a small-size mono-track robot with a modular structure composed of a vertebral column and a single peripherical track revolving around it. The third robot, Porcospino, is an evolution of SnakeTrack and includes flexible spines on the track modules for improved traction on uneven but firm terrains, and refinements of the shape of the track guidance system. This thesis provides detailed descriptions of the design and prototyping of these robots and presents analytical and experimental results to verify their capabilities

    Design and development of a hominid robot with local control in its adaptable feet to enhance locomotion capabilities

    Get PDF
    With increasing mechanization of our daily lives, the expectations and demands in robotic systems increase in the general public and in scientists alike. In recent events such as the Deepwater Horizon''-accident or the nuclear disaster at Fukushima, mobile robotic systems were used, e.g., to support local task forces by gaining visual material to allow an analysis of the situation. Especially the Fukushima example shows that the robotic systems not only have to face a variety of different tasks during operation but also have to deal with different demands regarding the robot's mobility characteristics. To be able to cope with future requirements, it seems necessary to develop kinematically complex systems that feature several different operating modes. That is where this thesis comes in: A robotic system is developed, whose morphology is oriented on chimpanzees and which has the possibility due to its electro-mechanical structure and the degrees of freedom in its arms and legs to walk with different gaits in different postures. For the proposed robot, the chimpanzee was chosen as a model, since these animals show a multitude of different gaits in nature. A quadrupedal gait like crawl allows the robot to traverse safely and stable over rough terrain. A change into the humanoid, bipedal posture enables the robot to move in man-made environments. The structures, which are necessary to ensure an effective and stable locomotion in these two poses, e.g., the feet, are presented in more detail within the thesis. This includes the biological model and an abstraction to allow a technical implementation. In addition, biological spines are analyzed and the development of an active, artificial spine for the robotic system is described. These additional degrees of freedom can increase the robot's locomotion and manipulation capabilities and even allow to show movements, which are not possible without a spine. Unfortunately, the benefits of using an artificial spine in robotic systems are nowadays still neglected, due to the increased complexity of system design and control. To be able to control such a kinematically complex system, a multitude of sensors is installed within the robot's structures. By placing evaluation electronics close by, a local and decentralized preprocessing is realized. Due to this preprocessing is it possible to realize behaviors on the lowest level of robot control: in this thesis it is exemplarily demonstrated by a local controller in the robot's lower leg. In addition to the development and evaluation of robot's structures, the functionality of the overall system is analyzed in different environments. This includes the presentation of detailed data to show the advantages and disadvantages of the local controller. The robot can change its posture independently from a quadrupedal into a bipedal stance and the other way around without external assistance. Once the robot stands upright, it is to investigate to what extent the quadrupedal walking pattern and control structures (like the local controller) have to be modified to contribute to the bipedal walking as well

    Adaptive quadruped locomotion: learning to detect and avoid an obstacle

    Get PDF
    Dissertação de mestrado em Engenharia de InformáticaAutonomy and adaptability are key features in the design and construction of a robotic system capable of carrying out tasks in an unstructured and not predefined environment. Such features are generally observed in animals, biological systems that usually serve as an inspiration models to the design of robotic systems. The autonomy and adaptability of these biological systems partially arises from their ability to learn. Animals learn to move and control their own body when young, they learn to survive, to hunt and avoid undesirable situations, from their progenitors. There has been an increasing interest in defining a way to endow these abilities into the design and creation of robotic systems. This dissertation proposes a mechanism that seeks to create a learning module to a quadruped robot controller that enables it to both, detect and avoid an obstacle in its path. The detection is based on a Forward Internal Model (FIM) trained online to create expectations about the robot’s perceptive information. This information is acquired by a set of range sensors that scan the ground in front of the robot in order to detect the obstacle. In order to avoid stepping on the obstacle, the obstacle detections are used to create a map of responses that will change the locomotion according to what is necessary. The map is built and tuned every time the robot fails to step over the obstacle and defines how the robot should act to avoid these situations in the future. Both learning tasks are carried out online and kept active after the robot has learned, enabling the robot to adapt to possible new situations. The proposed architecture was inspired on [14, 17], but applied here to a quadruped robot with different sensors and specific sensor configuration. Also, the mechanism is coupled with the robot’s locomotion generator based in Central Pattern Generators (CPG)s presented in [22]. In order to achieve its goal, the controller send commands to the CPG so that the necessary changes in the locomotion are applied. Results showed the success in both learning tasks. The robot was able to detect the obstacle, and change its locomotion with the acquired information at collision time.Autonomia e capacidade de adaptação são características chave na criação de sistemas robóticos capazes de levar a cabo diversas tarefas em ambientes não especificamente preparados nem configurados para tal. Estas características são comuns nos animais, sistemas biológicos que muitas vezes servem de modelo e inspiração para desenhar e construir sistemas robóticos. A autonomia e adaptabilidade destes sistemas advém parcialmente da sua capacidade de aprender. Quando ainda jovens, os animais aprendem a controlar o seu corpo e a movimentar-se, muitos mamíferos aprendem a caçar e a sobreviver com os seus progenitores. Ultimamente tem havido um crescente interesse em como aplicar estas características no desenho e criação de sistemas robóticos. Nesta dissertação é proposto um mecanismo que permita que um robô quadrúpede seja capaz de detectar e evitar um obstáculo no seu caminho. A detecção é baseada num Forward Internal Model (FIM) que aprende a prever os valores dos sensores de percepção do robô, os quais procuram detectar obstáculos no seu caminho. Por forma a evitar os obstáculos, os sinais de detecção dos obstáculos são usados na criação de um mapa que permitirá ao robô alterar a sua locomoção mediante o que é necessário. Este mapa é construído à medida que o robô falha e tropeça no obstáculo. Nesse momento, o mapa é definido para que tal situação seja evitada no futuro. Ambos os processos de aprendizagem são levados a cabo em tempo de execução e mantêm esse processo activo por forma a possibilitar a readaptação a eventuais novas situações. Este mecanismo foi inspirado nos trabalhos [14, 17], mas aplicados aqui a um quadrúpede com uma configuração de sensores diferente e específica. O mecanismo será interligado ao gerador da locomoção, baseado em Control Pattern Generator (CPG) proposto em [22]. Por forma a atingir o objectivo final, o controlador irá enviar comandos para o CPG a fim da locomoção ser alterada como necessário. Os resultados obtidos mostram o sucesso em ambos os processos de aprendizagem. O robô é capaz de detectar o obstáculo e alterar a sua locomção de acordo com a informação adquirida nos momentos de colisão com o mesmo, conseguindo efectivamente passar por cima do obstáculo sem nenhum tipo de colisão
    corecore