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Abstract

This thesis addresses hexapod robot motion control. Insect morphology and locomo-

tion patterns inform the design of a robotic model, and motion control is achieved

via trajectory planning and bio-inspired principles. Additionally, deep learning and

multi-agent reinforcement learning are employed to train the robot motion control

strategy with leg coordination achieves using a multi-agent deep reinforcement learn-

ing framework. The thesis makes the following contributions:

First, research on legged robots is synthesized, with a focus on hexapod robot

motion control. Insect anatomy analysis informs the hexagonal robot body and three-

joint single robotic leg design, which is assembled using SolidWorks. Different gaits

are studied and compared, and robot leg kinematics are derived and experimentally

verified, culminating in a three-legged gait for motion control.

Second, an animal-inspired approach employs a central pattern generator (CPG)

control unit based on the Hopf oscillator, facilitating robot motion control in complex

environments such as stable walking and climbing. The robot’s motion process is

quantitatively evaluated in terms of displacement change and body pitch angle.

Third, a value function decomposition algorithm, QPLEX, is applied to hexapod

robot motion control. The QPLEX architecture treats each leg as a separate agent

with local control modules,that are trained using reinforcement learning. QPLEX

outperforms decentralized approaches, achieving coordinated rhythmic gaits and in-

creased robustness on uneven terrain. The significant of terrain curriculum learning
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is assessed, with QPLEX demonstrating superior stability and faster consequence.

The foot-end trajectory planning method enables robot motion control through

inverse kinematic solutions but has limited generalization capabilities for diverse ter-

rains. The animal-inspired CPG-based method offers a versatile control strategy

but is constrained to core aspects. In contrast, the multi-agent deep reinforcement

learning-based approach affords adaptable motion strategy adjustments, rendering it

a superior control policy. These methods can be combined to develop a customized

robot motion control policy for specific scenarios.

iii



Preface

The author, Weishu Zhan, originally developed this thesis. The research was carried

out at the Dartmouth Dynamics & Controls Lab.

Acknowledgements

During my master’s journey and the initiation of my research, I am deeply grateful for

the invaluable guidance and support provided by my advisor, colleagues, and friends.

I want to express my heartfelt gratitude to my advisor, Professor Laura Ray, for

her exceptional guidance and unwavering support during my two years at Dartmouth.

I vividly recall the excitement when Professor Ray welcomed me into her group.

As I embarked on my first project, I gained invaluable knowledge. Subsequently, I

collaborated with other talented individuals on various projects, with Professor Ray

consistently supporting and assisting. I am grateful for her introduction to robotics

and practical advice throughout my research. Her meticulous approach to research

has profoundly influenced and inspired me to pursue excellence. And I would like

to express my deepest gratitude to Professor Balkcom for his invaluable mentorship

throughout my involvement in the soft robotics project. His expertise, guidance, and

unwavering support have shaped my research and fostered my growth as a scholar

in this fascinating field. Furthermore, I am incredibly grateful to Professor Phan for

his exceptional, enriching and rewarding course. His profound knowledge, engaging

iv



teaching style, and insightful advice have significantly contributed to my academic

development and fueled my passion for the subject. I am truly honoured to have had

the opportunity to learn from and work with these distinguished educators.

My time at Dartmouth College has been an unforgettable journey, and I am

grateful for the friendships and connections I have made along the way. To my friends,

thank you for your unwavering support, understanding, and shared memories.

I really enjoyed my life in Hanover, it’s a beautiful little town. I can swim in the

school gym in the hot summer, enjoy the beautiful forest in the fall, and ski in the

winter.

Thanks so much for meeting Dartmouth!

Finally, I would like to express my profound appreciation to my family and my

partner, whose love, support, and encouragement have been my foundation. Your

belief in me has been my guiding light through the challenges and triumphs of this

journey.

Thank you, once again, to all the amazing people who make my life better.

v



Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

1 Introduction 1

1.1 Background and Significance . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Research Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Research Status of Hexapod . . . . . . . . . . . . . . . . . . . . . . 5

1.3.1 Behavior-Based Motion Control Methods . . . . . . . . . . . . 5

1.3.2 A motion control method for a central pattern generator . . . 6

1.3.3 Motion control method based on deep reinforcement learning 7

1.4 Main Topic of Research . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Kinematics Analysis 11

2.1 Structure Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Swing Leg Structure Position Analysis . . . . . . . . . . . . . . . . . 14

2.2.1 Single Leg Analysis . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.2 Single leg forward kinematics MATLAB simulation . . . . . . 17

2.2.3 Inverse Kinematics Analysis . . . . . . . . . . . . . . . . . . . 18

2.2.4 Single leg inverse kinematics MATLAB solution . . . . . . . . 19

2.3 Gait Planning and Simulation . . . . . . . . . . . . . . . . . . . . . . 20

2.3.1 Gait parameter determination . . . . . . . . . . . . . . . . . . 20

vi



2.3.2 Trajectory Planning Base on the Typical Gait . . . . . . . . . 22

2.4 Trajectory planning for the hexapod robot . . . . . . . . . . . . . . . 29

2.4.1 Single leg foot trajectory analysis . . . . . . . . . . . . . . . . 30

2.4.2 Single-leg foot-end trajectory planning . . . . . . . . . . . . . 31

2.5 Verification of gait planning . . . . . . . . . . . . . . . . . . . . . . . 38

2.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3 CPG-based Motion Gait Control 44

3.1 Principle of CPG control model . . . . . . . . . . . . . . . . . . . . . 45

3.2 Artificial CPG model . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2.1 Hopf oscillator model . . . . . . . . . . . . . . . . . . . . . . . 47

3.3 CPG network model improvement . . . . . . . . . . . . . . . . . . . . 50

3.3.1 Single-leg joint mapping function . . . . . . . . . . . . . . . . 51

3.3.2 CPG Ring Coupling Network . . . . . . . . . . . . . . . . . . 52

3.3.3 CPG Control Program Improvement . . . . . . . . . . . . . . 57

3.3.4 Simulation experiment verification . . . . . . . . . . . . . . . 62

3.4 Simulation and experiment results . . . . . . . . . . . . . . . . . . . . 63

3.4.1 Transition motion from flat to slope . . . . . . . . . . . . . . 63

3.4.2 Slope motion . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.4.3 Uneven terrain motion . . . . . . . . . . . . . . . . . . . . . . 69

3.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4 Multi-agent Deep Reinforcement Learning-based Motion Control for

Hexapod Robots 73

4.1 Introduction to Reinforcement Learning . . . . . . . . . . . . . . . . 73

4.1.1 Q-Learning algorithm . . . . . . . . . . . . . . . . . . . . . . 77

4.1.2 Policy-based reinforcement learning algorithms . . . . . . . . 79

vii



4.1.3 Actor–Critic Methods . . . . . . . . . . . . . . . . . . . . . . 80

4.2 Introduction to deep learning . . . . . . . . . . . . . . . . . . . . . . 83

4.2.1 Deep reinforcement learning is used for robot motion control . 88

4.3 Introduction to MARL . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.3.1 MARL based on value factorization . . . . . . . . . . . . . . . 93

4.3.2 MARL is used for robot motion control . . . . . . . . . . . . . 95

4.4 MARL using QPLEX . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.4.1 The hexapod platform . . . . . . . . . . . . . . . . . . . . . . 98

4.4.2 Reset Condition . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.4.3 Reward function definition . . . . . . . . . . . . . . . . . . . . 99

4.4.4 QPLEX architecture in the hexapod robot . . . . . . . . . . . 101

4.4.5 Terrain curriculum learning . . . . . . . . . . . . . . . . . . . 104

4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.5.1 Performance of Locomotion Architectures and Reward Func-

tion Impact on Rhythmic Gaits on Flat Terrain . . . . . . . . 106

4.5.2 Comparison of Learning . . . . . . . . . . . . . . . . . . . . . 107

4.5.3 Generalization to Uneven Terrain . . . . . . . . . . . . . . . . 108

4.5.4 Importance of the terrain curriculum learning . . . . . . . . . 112

4.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5 Conclusion and Future Work 118

5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Reference 122

viii



Chapter 1

Introduction

Section 1.1

Background and Significance

Throughout humanity’s quest for knowledge and exploration of uncharted territories,

numerous formidable and elusive domains have emerged, including disaster relief and

interstellar exploration [1]. Supported by a confluence of academic institutions, med-

ical and military departments, and interdisciplinary research, machine learning has

made significant strides. Concomitant with the swift advancement of human tech-

nology, diverse robotic forms have been devised to address these challenges. Among

these, legged robots have garnered considerable interest due to their robust weight-

bearing capacity, exceptional stability, and adaptability to a variety of unstructured

terrains, underscoring the paramount importance of researching legged locomotion.

Legged robots’ research primarily encompasses humanoid bipedal machines and multi-

limbed robots, with the latter category further subdivided into quadrupeds, hexapods,

and octopods. Hexapod robots, inspired by the innate attributes of six-legged insects,

possess distinct advantages over their four- and eight-legged counterparts, including

a more streamlined structure, enhanced stability through redundant legs, and com-
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1.1 Background and Significance Introduction

paratively straightforward motion control strategies [2].

In the realm of hexapod robot motion control, numerous scholars have achieved

groundbreaking progress in areas such as structural design, gait planning, central pat-

tern generation, and reinforcement learning. Reinforcement learning (RL) constitutes

a crucial paradigm within machine learning, wherein the objective is to ascertain an

optimal strategy that yields the maximum cumulative expected return through the

training of an agent. The agent’s responsibility is to optimize its policy for action-

taking in order to maximize the cumulative expected return [3].

The deep reinforcement learning (DRL) model has been effectively translated to

real-world applications, including the DRL-TRPO algorithm, among others. How-

ever, manual reward assignment remains extraordinarily arbitrary and convoluted,

rendering replication virtually unattainable.when DRL is used to train a hexapod

robot to walk on flat terrain, the outcomes on uneven terrain and varying inclines

remain unpredictable [4]. Attaining a streamlined, reliable motion control strategy

characterized by heightened flexibility, stability, and adaptability constitutes the crux

of the hexapod robot motion control challenge.

This study commences with an examination of robot structural design, followed

by gait planning, biomimetic motion control, and machine learning methodologies

to facilitate the motion control of hexapod robots [5]. The efficacy of each motion

control strategy is substantiated through simulation. By establishing diverse ter-

rain configurations, the merits and drawbacks of each motion control strategy are

meticulously analyzed and contrasted.
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1.2 Research Status Introduction

Section 1.2

Research Status

During the 1980s, the Massachusetts Institute of Technology pioneered the develop-

ment of Genghis [6], an advanced hexapod robot designed for extraterrestrial explo-

ration. As depicted in Fig 1.1, the apparatus employs a feedback motor to drive

the servo, facilitating real-time adjustments in joint torque. The robot amalgamates

components that gauge current values, thereby optimizing movement across intricate

terrain. Owing to technological advancements and perpetual progress, a myriad of

sophisticated walking robots have emerged, including NASA’s hexapod robot ATH-

LETE [7], showcased in Fig 1.2. This formidable, 13-foot machine is capable of remote

maneuvering, jumping, and even dancing. Designed to transport cumbersome objects

and traverse slopes with substantial inclines, ATHLETE’s six omnidirectional loads

harmoniously collaborate to ensure seamless motion.

Fig 1.3 illustrates SILO-6, a hexapod robot devised by the Spanish Institute of

Dynamics. Principally composed of sensors, a manipulator, and a positioner, the

robot and its controller are partitioned into five distinct sections. The manipulator is

specifically engineered to carry a mine detector and a positioning system, encompass-

ing an electromagnetic compass, a GPS antenna, and a Wi-Fi antenna, all of which

are remotely governed by a computer [8].

Lauron, a creation of the University of Karlsruhe in Germany, utilizes a behavior-

based, flexible control system [9], as exhibited in Fig 1.4. Exceptionally adept at

adapting to unfamiliar circumstances, Lauron is equipped with a panoramic camera

on its rear, furnishing operators with a comprehensive overview of both the robot and

its surroundings. Capable of autonomously gathering environmental data and devis-

ing a path towards a predetermined objective, Lauron can effortlessly circumnavigate
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1.2 Research Status Introduction

any obstacles deemed excessively tall.

Figure 1.1: Genghis robot Figure 1.2: ATHLETE robot

Figure 1.3: SILO-6 robot Figure 1.4: LAURON-III robot

In recent years, robotics research has developed rapidly. Spot/Spot mini, a

quadruped robot dog developed by Boston Dynamics, as shown in Figure 1.5, weighs

30kg and can balance dynamically in uncertain surroundings with payloads of up to

14kg. Spot can achieve 3-axis attitude movement and 3-axis position complete con-

trol. Spot has a 3D vision system for simultaneous localization and mapping (SLAM),

providing depth information, enabling the robot its surroundings, and avoiding ob-

stacles.Spot’s built-in computers are fully dedicated to robot to assess locomotion and

navigation. The robot is remotely controlled by human operators while also navigat-

ing and performing some tasks autonomously.It can cruise over loose gravel, grass,

curbs, and stairs, and reasonably coordinate the movements of the limbs [10].

Based on the review, it is clear that the last decade has moved the area of legged
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1.3 Research Status of Hexapod Introduction

robots to a new level, and at the same time, has opened a new research area for

fundamental and topics with new opportunities. However, the traditional gait curve

of the cycloid, which is employed to adjust Step Length Ratio(SLR) rate, cannot

perfectly solve the slip problems associated with automatically adapt the angle of

foot-end attack and leads to static friction forces within a large bound.

Figure 1.5: Spot

Section 1.3

Research Status of Hexapod

Since 1968, Mcghee and Frank [11] have pointed out the fluctuating gait of quadruped

robots. An increasing number of people are focused on hexapod robots.

Research usually uses fixed gait methods, such as three-legged gait, quadrupedal

gait, fluctuating gait, and so on.

Due to its high degree of freedom and high structural redundancy, the control

process of hexapod robots is complicated. The control methods of hexapod robots

can be roughly divided into the following types as described here.

1.3.1. Behavior-Based Motion Control Methods

Drawing from German scientist Cruse’s investigations on stick insects, six fundamen-

tal principles of leg movement have been posited [12, 13]. A controller premised on
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1.3 Research Status of Hexapod Introduction

the ”control-reflection” concept is designed to devise distinct motion actions for the

robot initially. Each action comprises an array of sensor inputs and corresponding ac-

tuator outputs. Upon gathering sensor data, analysis and processing ensue to propel

the robot toward executing the appropriate action. Nonetheless, robots adhering to

this approach, exemplified by Brooks’ ”Genghis” struggle to develop a comprehensive

action repertoire that accurately represents all terrain environments. The intricate

and mutable nature of terrains renders the robot’s generalization capabilities on un-

structured ground rather inadequate.

1.3.2. A motion control method for a central pattern generator

This motion control method performs robot motion control by simulating the bio-

logical central nervous system, and the central pattern generator performs rhythmic

motion control by generating periodic oscillating signals. CPG has three neurons: in-

hibition, excitation, and terminal inhibition. The neurons inhibit each other through

the network structure, and phase interlocks are created to output signals that control

the movement of the organism. The central mode generator can be coupled with ex-

ternal input, and various modal outputs can be achieved by adjusting the parameters

of the oscillating signal [14, 15].

Venkataraman [16] first studied the role of the central pattern generator in control,

and added a delay in the input and output of the control system to achieve a simple

gait.

Barron-Zambrano et al. [17] proposed a CPG-based control strategy, which can

adjust the motion speed according to visual information and manage the smooth gait

transition in the hexapod robot.

Yu et al. [18] realized three gait switching of a hexapod robot by adjusting the

model parameters of the central pattern generator (CPG). The rhythmic gait can

realize the movement of regular terrain, but cannot adapt to rough terrain.

6
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1.3.3. Motion control method based on deep reinforcement learning

This motion control method combines the perception ability of deep learning and the

decision-making evaluation ability of reinforcement learning. Through the robot’s

perception of the environment, the training generates an adaptive motion control

method to improve the generalization ability of the robot control strategy in different

environments.

Vassilios et al. [19] use the accessibility evaluation criterion to replace the physical

simulation to build the Markov decision process. They plan the trajectory of the robot

in the high-dimensional continuous state-action space, control the robot shutdown to

follow the trajectory, and finally, the robot realizes the stable motion in different

environments.

Huaqiao Fu et al. [20] take the uneven plum-blossom piles used in the experimental

environment, preset random start, and target fields. Using a deep reinforcement

learning algorithm for training and learning that obtain the motion control strategy

of the hexapod robot in the plum blossom pile environment. They realize the DDPG

algorithm with a priority replay mechanism to speed up the training process.

Teymur Azayev [21] presents a scalable two-layer architecture for hexapod lo-

comotion through complex terrain without the use of exteroceptive sensors. Their

approach assumes that the target complex terrain can be modeled decomposed into

N discrete terrain distributions that capture the individual difficulties of the target

terrain. Expert strategies (physical motion controllers) modeled by Artificial Neu-

ral Networks were trained to use deep reinforcement learning independently in these

individual scenarios. These strategies are then automatically multiplexed when rea-

soning with a recursive neural network terrain classifier. The architecture provide

adaptive gaits appropriate to the current terrain based on state history, as well as

evaluating the robustness and actuator properties of the strategies by varying various

7



1.4 Main Topic of Research Introduction

parameters, such as contact, friction.

But there are still some shortcomings, such as having to combine trained experts

through a multiplexer strategy. Another disadvantage is the need to manually pro-

gram a terrain distribution generator.

In this thesis, we will improve on these two problems by exploring the appropriate

looping architecture and training algorithms to train a looping strategy that is as

effective as possible on all terrains.

Section 1.4

Main Topic of Research

This thesis commences with an examination and exposition of the current state of

legged robotics, followed by the design of a robot body structure inspired by insects.

The gait characteristics of the robot are then delineated. Approaching the subject

from a gait planning perspective, the thesis analyzes and designs robot motion con-

trol methodologies. Subsequently, by emulating the rhythmic movement traits of

animals, a robot motion control approach is devised through the lens of central pat-

tern generation. Lastly, by delving into multi-agent reinforcement learning(MARL),

an intelligent system premised on the QPLEX architecture is established. Within a

simulation environment, the intelligent system undergoes training through continu-

ous interaction with the robot, culminating in end-to-end robot motion control. The

principal contents of this thesis are organized as follows:

Chapter two. The hexapod robot’s body structure, employed in subsequent sim-

ulations, is devised by emulating the anatomical composition of insects. By investi-

gating the nuances of insect locomotion, the gait classifications of the hexapod robot

are segregated, and the motion trajectory of the robot’s leg extremities is analyzed

8



1.4 Main Topic of Research Introduction

and delineated. A toe motion trajectory planning method is designed, followed by an

examination of the relationship between the robot leg displacement and joint rotation

angle from the perspective of hexapod robot kinematics. The forward and inverse

kinematic solutions for the robot legs are derived. Ultimately, robot motion control

is achieved by integrating the trajectory planning of the robot leg extremities and the

inverse kinematic solution for the robot legs.

Chapter three. Initially, we outline the animal motion control methodology and

emulate its core module. Subsequently, a Hopf oscillator-based robotic motion control

unit is designed and refined for hexapod robots. This enhanced oscillator facilitates

diverse gait movements using a CPG oscillator unit. By constructing a CPG network

and devising a joint mapping function, we actualize motion control for the hexapod

robot.

Chapter four. We investigate a sophisticated robotic motion control technique

utilizing deep reinforcement learning (DRL). We initially present the theoretical un-

derpinnings of MARL, encompassing mathematical models of reinforcement learning,

prevalent algorithms, and deep learning architectures inspired by human neural net-

works. Subsequently, we establish pertinent state values, action values, and reward

functions for hexapod robot control via the DRL system. A module is devised in

a simulated environment to ascertain these values and functions, followed by the

construction of an intelligent system based on QPLEX. Robotic motion control is

actualized through training and learning, incorporating an early termination scheme

to expedite learning by preemptively concluding the current round when the robot

encounters precarious learning states, thereby enhancing efficiency. We subsequently

compare QPLEX to a fully-decentralized structure to assess the controllers’ adapt-

ability in uneven terrain conditions. Lastly, the significance of terrain path learning

9



1.4 Main Topic of Research Introduction

is evaluated.

Chapter five. The robot motion planning methods are analyzed and compared re-

garding robot foot trajectory planning, CPG rhythm control, and deep reinforcement

learning.

10



Chapter 2

Kinematics Analysis

In this chapter, we construct a hexapod robotic model, emulating the intricate archi-

tecture of insects and the framework of a standard hexapod automaton. This model

serves as a foundation for ensuing simulation explorations. A comprehensive exam-

ination of the robot’s ambulatory patterns and appendage dynamics is conducted.

Moreover, the overarching locomotive control mechanisms are considered and sub-

stantiated through the lens of robotic extremity trajectory following.

Section 2.1

Structure Introduction

The hexapod’s mechanical configuration is inspired by bionics. The primary focus of

the body design is centered on selecting the six legs and determining their relative

positions while fully considering the robot’s leg stability and coordination during

motion.The structure design of the hexapod robot body geometry is presented in Fig

2.1. The robot’s body is rectangular in shape, with a length of 2 meters and a width

of 0.5 meters. The legs are attached to the body at 135-degree angles from each of

the four corners, with the leg connection measuring 0.5 meters in length. The body

is bifurcated into two layers at the top and bottom, with a height of 0.5 meters. The

11



2.1 Structure Introduction Kinematics Analysis

hexapod robot’s 3D model was constructed using 3D modeling software, as illustrated

in Fig 2.2.

Figure 2.1: Fuselage sketch Figure 2.2: Fuselage structure

The bionic-inspired mechanical framework of this hexapod emphasizes the strate-

gic selection of six appendages and the determination of their relative positioning.

This consideration ensures the robot’s legged stability and coordination during loco-

motion. As depicted in Fig 2.1, the hexapod robot’s geometric configuration consists

of a rectangular top-down view of the chassis, from which the sextet of limbs extends.

With dimensions of 2 meters in length and 0.5 meters in width, the robot’s body

exhibits 135-degree angles between its four corner-mounted legs and the chassis, each

leg featuring a 0.5-meter connecting segment. Comprising dual layers—upper and

lower—the body’s height measures 0.5 meters. Utilizing 3D modeling software, the

hexapod robot’s three-dimensional body structure is illustrated in Fig 2.2.

12



2.1 Structure Introduction Kinematics Analysis

Figure 2.3: Single leg sketch Figure 2.4: Single leg

Upon completing the design of the hexapod robot’s body and individual leg struc-

ture, six iterations of the leg assembly are affixed to the chassis’, culminating in the

robot’s comprehensive assembly. The assembled robot is depicted in Fig 2.5 and Fig

2.6.

Figure 2.5: Hexapod robot structure Figure 2.6: Hexapod robot three view

This study accomplishes the comprehensive design of the hexapod robot’s struc-

tural model using SolidWorks. A SolidWorks and Matlab/Simulink plugin achieve

integration with the Simulink simulation environment. This simulated environment

facilitates subsequent motion control simulations for the robot.

13



2.2 Swing Leg Structure Position Analysis Kinematics Analysis

Section 2.2

Swing Leg Structure Position Analysis

During the walking process, the leg belongs to a tandem structure. We need to identify

the relationship between the steering motor’s angle and each leg end’s position.

2.2.1. Single Leg Analysis

As previously stated, the hexapod robot’s body structure design is inspired by the

animal form, with the motion process derived from the animal locomotion process.

Consequently, adopting a motion control design that emulates the animal locomotion

process is a viable approach. Initially, a locomotion trajectory is planned for the

robot, followed by the identification of the robot’s six footfall points using gait plan-

ning techniques. Subsequently, the relationship between the robot’s toe displacement

and leg joint angles is determined through kinematic analysis, ultimately enabling

robotic motion control. The leg kinematic analysis can be conducted based on the

robot’s leg articulations, as the position of the proximal joint near the robot’s body

is predetermined. Thus, the leg kinematic analysis can reference the robot’s leg joint

coordinates.

The kinematic analysis of the robot leg can be interpreted in two directions: The

first is to solve the leg toe coordinates in the body coordinate system with known

leg joint angles and body position information. This is the inverse kinematic solution

of the robot. The robot kinematic solution is modeled by the D-H method, and the

steps are as follows:

(1) Establish the coordinate system of each joint with the robot geometry.

(2) Determine the transformation parameters between the coordinate systems, in-

cluding link length, angle, etc.

(3) Determine the transformation matrix between the coordinate systems.

14
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(4) Multiply the transformation matrices of all coordinate systems in (3) to obtain

the transformation matrix from the toe of the leg.

(5) Finally, find the robot leg kinematic solution.

For the single-legged kinematic forward and inverse solutions of the robot to be

analyzed, the coordinate system of each joint is first established according to the

above steps as shown in Figure 2.7. The transformation relationships between the

coordinates are shown in Table 2.1 below.

θi di ai αi

L1 θ1 d1=0 a1=0.52 α1=90

L2 θ2 d2=0 a2=0.66 α2=0

L3 θ3 d3=0 a3=1.34 α3=0

Table 2.1: Single leg D-H Parameter table

In the table, θi is the angle between the i - 1 coordinate system and the x-axis of

the i coordinate system. di is the distance between the i - 1 coordinate system and

the x-axis of the i coordinate system. ai is the distance between the i - 1 coordinate

system and the z-axis of the i coordinate system. α1 is the angle between the i - 1

coordinate system and the z-axis of the i-coordinate system.

According to step 3 of the D-H method, the transformation matrices between

coordinate systems are as follows: first, four basic transformation matrices are deter-

mined, including translation matrix 2.1, z-axis rotation matrix 2.2 , y-axis rotation

matrix 2.3, x-axis rotation matrix 2.4

Trans(a, b, c) =



0 0 0 a

0 1 0 b

0 0 1 c

0 0 0 1


(2.1)
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Figure 2.7: Robot single leg coordinate system

Rz(θ) =



cos θ − sin θ 0 0

sin θ cos θ 0 0

0 0 1 0

0 0 0 1


(2.2)

Ry(θ) =



cos θ 0 sin θ 0

0 1 0 0

− sin θ 0 cos θ 0

0 0 0 1


(2.3)

Rx(θ) =



1 0 0 0

0 cos θ − sin θ 0

0 sin θ cos θ 0

0 0 0 1


(2.4)
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According to the D-H method, the transformation matrix between the coordinates

are as follows:

i−1
i T = Rz(θ)Trans(0, 0, di)Trans(ai, 0, 0)Rx(αi) (2.5)

0
1T = Rz(θ)Trans(0, 0, d1)Trans(a1, 0, 0)Rx(α1) (2.6)

1
2T = Rz(θ)Trans(0, 0, d2)Trans(a2, 0, 0)Rx(α2) (2.7)

2
3T = Rz(θ)Trans(0, 0, d3)Trans(a3, 0, 0)Rx(α3) (2.8)

Finally, the position transformation matrix of the single-legged foot end of the

robot is obtained as:
0
3T =0

1 T
1
2 T

2
3 T (2.9)

Forward kinematics Solution: If P=(x,y,z,1) is the coordinate of the foot end in

some joint coordinate system, then according to the previous transformation relation:P =0
1

T 1
2 T

2
3 T (0, 0, 0, 1)

T brought into the previous equation then:

x = a1 cos θ1 + a2 cos θ1 cos θ2 + a3 cos θ1 cos θ2 cos θ3 − a3 cos θ1 sin θ2 sin θ3

y = a1 sin θ1 + a2 sin θ1 cos θ2 + a3 sin θ1 cos θ2 cos θ3 − a3 sin θ1 sin θ2 sin θ3

z = a1 sin θ2 + a2 sin θ2 cos θ3 + a3 cos θ2 sin θ13

2.2.2. Single leg forward kinematics MATLAB simulation

The Robotics Toolbox in MATLAB provides the forward kinematics simulation func-

tion Fkine () to establish the single-leg model of the hexapod robot, and the joint angle

can be given to obtain the end pose. By presetting the value of joint Angle(θ1θ2θ3)

is :[π
6

π
6
−π

4
],[−π

4
π
4

−5π
12

],[−π
4

π
12

−2π
3

],[- π
12

π
4
−π

2
].According to the preceding, the If

we set the coordinates of the head of each standard coordinate system according to

P0P1P2P3, we can find
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P0 = {0, 0, 0, 1}

P1 =
0
1T{0, 0, 0, 1}T

P2 =
0
1T

1
2 T{0, 0, 0, 1}T

P3 =
0
1T

1
2 T

2
3 T{0, 0, 0, 1}T

Then we can calculate the coordinates of the origin of those mentioned above in the

joint coordinate system, using P0P1, P1P2 and P2P3 as the coordinates of the two

ends of the connecting rod, and build a simple model by Matlab, as shown in Figure

2.8(a)(b)(c)(d), respectively.

Figure 2.8: Single-leg forward kinematics simulation results

From Figure 2.8, it can be seen that the angle is the same as the preset angle,

which proves that the robot positive kinematics solution is correct.

2.2.3. Inverse Kinematics Analysis

A transformation
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0
1T

−1P =1
2 T

2
3 T (0, 0, 0, 1)

T (2.10)

0
1T

−11
2T

−1P =2
3 T (0, 0, 0, 1)

T (2.11)

The kinematic inverse solution equation is obtained as:

θ1 = arctan(
y

x
) (2.12)

θ3 = arccos
M2 + z2 − a22 − a23

2a2a3
(2.13)

θ2 = (
za3 cos θ3 + za2 −Ma3 sin θ3

M2 + z2
) (2.14)

M = −a1 + x cos θ1 + y sin θ1

2.2.4. Single leg inverse kinematics MATLAB solution

The aforementioned derivation demonstrates that determining the inverse solution

for the robot’s kinematic equations constitutes a nonlinear problem. Two approaches

can address this issue: the closed-form solution method and the numerical solution

method. The MATLAB Robotics Toolbox offers the function ikunc() to solve the

inverse kinematics problem using the numerical solution method. Employing the

optimization method, this function conducts the inverse kinematics computation by

providing the position transformation matrix, and subsequently deriving the angle of

each joint in the individual leg.
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Given the coordinates of the single-leg foot end (0.4, 0, 0),(0.566, -0.3098, 0) θ1θ2θ3

is obtained according to the equation above, and then the coordinate origin of each

joint is determined, and then the model is built by Matlab Figure 2.9, from which

it can be seen that the coordinates of the single-leg end are the same as the preset

coordinates, indicating that the robot above inverse kinematics solution is correct.

Figure 2.9: Single-leg inverse kinematics simulation results

Section 2.3

Gait Planning and Simulation

Drawing from the research presented in the article [22], it is evident that the in-

teraction among the hexapod insect’s six legs exhibits a specific pattern during the

locomotion process. This systematic walking process is referred to as a robotic motion

gait.

2.3.1. Gait parameter determination

The robot’s leg moves in regular periodic motions when it is walking. This regu-

larity of robot motion gait is quantitatively analyzed through the determination of

gait parameters to distinguish different gait patterns. For the robot legs, its motion
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process is mainly divided into swing state and support phase, and the two processes

alternately complete the whole motion process. One condition is the swing phase.

This phase includes leg lift up, forward swing and fall down on the ground [23]. The

other state is the support phase, which means the leg contacts the ground, the leg

loads the robot capacity and swings back, the legs support the robot until the swing

phase and lift up off of the ground. Defining β was a parameter to describe the ratio

of time spent in one motion cycle by the single-leg support phase of the robot give:

β =
tsupport

T
= 1− tswing

T
(2.15)

where tsupport is the robot single-leg support phase duration, tsupport is the robot single-

leg swing phase duration, T is the robot is the duration of one motion cycle of the

robot, T = tsupport + tswing.

The distance of translation of the centre of gravity of the multi-legged robot during

a complete gait cycle T as Stride length, is denoted by λ.

The distance the foot end of the walking leg moves relative to the robot body

during the support phase as the stroke, is denoted by R. For regular gait, the stroke

R is related to the step length λ as follows:

R = βλ (2.16)

The robot occupancy factor is defined as δ. It is intuitively clear that the more

legs the robot has simultaneously in the support phase then the more stable the robot

is, thus:

δ = n ∗ β (2.17)

where n is the number of robot legs, which is 6 for a hexapod robot.

The robot forward velocity is defined as v, and let the robot motion step length
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is s. Then

v =
s

tsupport
(2.18)

Combing 2.15 and 2.18, then

v =
s

tswing

(
1

β
− 1) (2.19)

Given that the robot’s motion stride length s remains constant, a smaller β results

in a faster yet less stable hexapod robot, while a larger β corresponds to longer stand-

ing legs and increased stability, which aligns with intuition. Consequently, robotic

motion control necessitates a decision regarding the balance between stability and

speed, highlighting the presence of a trade-off between these two factors.

2.3.2. Trajectory Planning Base on the Typical Gait

The investigation revealed that hexapod insects exhibit three prevalent gait patterns,

specifically tripod, quadruped, and fluctuating gaits. Commencing from the robot’s

top-left corner, the six legs are sequentially arranged as (L1, L2, L3, L4, L5, L6).

Tripod gait.

The tripod gait divides the robot’s six legs into two groups: Group A (L1, L4, L5)

and Group B (L2, L3, L6). Each leg within the same group shares an identical motion

process, and the two groups of legs exhibit interlocking phases. While one group is in

the swing phase, the other is in the support phase. As one group transitions from the

support phase to the swing phase, the other group simultaneously moves from the

swing phase to the support phase, and the two groups alternate their movement. The

robot’s motion is achieved through the continuous and repeated alternating movement

of these two leg sets. According to the previously defined parameters, the robot

employs a tripod gait with β set at 0.5.
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Assume the hexapod robot advances with a step of λ, Figure 2.10 illustrates the

process of executing the hexapod robot’s tripod gait. It also presents the positional

changes of each joint in the robot’s top view, following the subsequent sequence of

actions:

a) The hexapod robot is in its initial position, with both Group A and Group B’s

walking legs in the support phase.

b) Group A’s walking legs remain in the support phase, facilitating the robot

body’s parallel translation by λ
2

relative to the support surface, while Group B’s

walking legs enter the swing phase.

c) Group B’s walking legs transition to the support phase upon making contact

with the ground.

d) Group B’s walking legs, now in the support phase, enable the robot body to

translate λ
2

parallel to the support surface, while Group A’s walking legs shift to the

swing phase.

In Fig 2.10d), the first set of walking legs transitions to the support phase, re-

turning the hexapod robot to its initial position. The hexapod robot’s first and

second walking leg groups repeatedly cycle through the sequence of actions from Fig-

ure 2.10a) to Figure 2.10d), ultimately achieving a tripod gait with a stride length

(s) and advancing in a straight line.
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Figure 2.10: Diagram of tripod gait(three-legged gait)

Figure 2.11: Schematic diagram of tripod

gait robot translation

Figure 2.12: Tripod gait phase diagram

Quadrupedal gait.

The quadrupedal gait organizes the robot’s six legs into three groups: Group A (L1,

R2), Group B (L2, R1), and Group C (L3, R1). When one group’s legs are in the

swing phase, the remaining two groups’ legs occupy the support phase, with all three

groups interlocking. The three leg sets alternate movement to complete the robot’s

motion, with a β value of 0.67 for the quadrupedal gait. The planned and executed
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quadrupedal gait is depicted in Figure 2.13, following the specific action sequence

outlined below:

a) The hexapod robot is in its initial position, with the walking legs of Groups A,

B, and C all in the support phase.

b) As Group A’s walking leg is raised, the walking legs of Groups B and C serve

as support phases, allowing the robot’s body to move forward, parallel to the support

surface by λ
3
.

c) Group A’s walking leg transitions to the support phase after traversing a dis-

tance R forward.

d) With Group B’s walking leg raised, the robot’s body is supported by the walking

legs of Groups A and C in the support phase, advancing parallel to the support surface

by λ
3
.

e) Group B’s walking leg, having spanned a distance R forward, shifts to the

support phase.

f) As Group C’s walking leg is raised, the robot’s body is supported by the walking

legs of Groups A and B in the support phase, progressing parallel to the support

surface by λ
3
.

Figure 2.13: Quadrupedal gait diagram
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The states illustrated in Figure 2.13c) and 2.13e) persist for only an instant, which

can be disregarded. Consequently, during the gait cycle T, only four walking legs are

in the support phase at any given moment. Figure 2.15 displays the phase diagram

for a single gait cycle T of the quadrupedal gait. As per Figure 2.15, the time spent

in the support phase and swing phase for any walking leg during the gait cycle T is
2T
3

and T
3
, respectively.

Figure 2.14: Quadrupedal gait robot

translation diagram

Figure 2.15: Quadrupedal gait phase di-

agram

Fluctuating gait.

In the fluctuating gait, the six legs of the robot are grouped individually. As the

first leg transitions from the swing phase to the support phase, the subsequent leg

shifts from the support phase to the swing phase. The six legs move independently

and sequentially, repeatedly completing the robot’s motion process. The fluctuat-

ing gait motion has a β value of 0.83. Figure 2.17 portrays the hexapod robot’s

implementation of the fluctuating gait, following the sequence of actions below:

a) The hexapod robot is in its initial position, with all walking legs in the support

phase.

b) Leg 1 transitions from the support phase to the swing phase, while the re-

maining five legs support the body as it moves forward, allowing the body’s center of

gravity to translate λ
6

parallel to the support surface.
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c) Leg 1 steps forward by 5λ
6

and lands in the support phase.

d) Leg 6 shifts from the support phase to the swing phase, while the remaining

five legs support the body as it moves forward, enabling the body’s center of gravity

to translate λ
6

parallel to the support surface.

e) Leg 6 steps forward by 2λ
3

and lands in the support phase.

f) Leg 4 moves from the support phase to the swing phase, while the remaining

five legs support the body as it advances, allowing the body’s center of gravity to

translate λ
6

parallel to the support surface.

g) Leg 4 steps forward by λ
2

and lands in the support phase.

h) Leg 2 transitions from the support phase to the swing phase, while the re-

maining five legs support the body as it moves forward, enabling the body’s center

of gravity to translate λ
6

parallel to the support surface.

i) Leg 2 steps forward by λ
3

and lands in the support phase.

j) Leg 5 moves from the support phase to the swing phase, while the remaining

five legs support the body as it advances, allowing the body’s center of gravity to

translate λ
6

parallel to the support surface.

k) Leg 5 steps forward by λ
6

and lands in the support phase.

m) Leg 3 shifts from the support phase to the swing phase, while the remaining

five legs support the body as it moves forward, allowing the body’s center of gravity

to translate λ
6

parallel to the support surface.

Figure 2.18 displays the phase diagram of a single gait cycle T for the fluctuating

gait. As shown in Figure 2.18, during gait cycle T, any walking leg’s support and

swing phases occupy 5T
6

and T
6
, respectively.
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Figure 2.16: Diagram of fluctuating gait

Figure 2.17: Fluctuating gait robot

translation diagram

Figure 2.18: Fluctuating gait phase dia-

gram

During the robot’s motion, the phase difference between the legs determines the

gait in which the robot moves and the robot’s legs are lifted and dropped in sequence
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according to the established phase to achieve motion.The three gait patterns are com-

pared visually in the following table 2.2.Different gait patterns are adjusted in the

different terrain environment. Three-legged gait suitable for flat ground, and when

the ground is more rugged, the quadrupedal gait or the fluctuating gait is adjusted.

Type β δ v

Tripod gait 0.5 3 Fast

Quadrupedal gait 0.67 4 Median

Fluctuating gait 0.83 5 Slow

Table 2.2: Gait comparison table

Section 2.4

Trajectory planning for the hexapod robot

In the aforementioned work, the mechanical structure of the robot has been designed,

and the prevalent gait patterns of the hexapod robot have been analyzed. The support

and swing phases of the robot’s legs form the foundation of its motion. The swing

phase dictates the stride length when the robot walks forward and the elevation of the

lifted leg, ensuring the foot end can surmount obstacles and swing towards the target

point. Numerous researchers have proposed various trajectory planning methods,

including the circular arc model, elliptical trajectory, cubic curve fitting, polynomial

interpolation, and curve fitting. This section accomplishes the foot-end trajectory

planning of the robot when walking in a straight line on structured ground, which

will be utilized in subsequent robot motion control analysis.
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2.4.1. Single leg foot trajectory analysis

To ensure efficient and stable movement for the single-leg robot, the foot-end tra-

jectory should be carefully planned, taking into consideration the support and swing

phases of the leg. As illustrated in Figure 2.19, during the support phase, the body

moves forward, and the foot-end trajectory is a straight line. The foot-end moves

backward relative to the body. In the swing phase, the foot-end trajectory forms a

semi-circular curve as the single leg moves forward.

When the single leg is in the swing phase, it is slowly raised until it reaches its

highest point, with the angle between the robot’s coxa and body being zero. The

single leg then continues to move forward, with leg extension occurring. Throughout

the robot’s walking process, the foot-end repeatedly follows this trajectory to ensure

the robot’s forward motion.

To accurately achieve foot placement while clearing obstacles, the foot-end tra-

jectory should meet the following criteria:

a) The robot should have minimal shaking and fluctuation during the leg-lifting

process, ensuring smooth motion.

b) The hexapod robot’s joints should not experience significant impact when the

leg is lifted during the swing phase or when it lands.

c) The hexapod robot’s swing leg should be capable of rapid lifting and landing,

with continuous speed and acceleration at each joint, avoiding abrupt changes or

sharp points.

By adhering to these criteria, the robot’s foot-end trajectory can be optimized

for efficient and stable movement, making it well-suited for various environments and

terrains.
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Figure 2.19: Single-leg foot end trajectory

2.4.2. Single-leg foot-end trajectory planning

Circular cycloid trajectory planning.

Figure 2.19 illustrates the devised trajectory, as delineated by the robotic hip coordi-

nate system H, encompassing three salient components: initial point coordinates, tar-

geted landing point coordinates, and leg elevation height. Notably, the leg elevation

height can be modulated in various scenarios, exhibiting adaptability in accordance

with terrain characteristics. The targeted landing point coordinates of the swing

trajectory significantly influence the stride length, consequently affecting the robot’s

locomotion velocity and terrain adaptability proficiency. To ensure the formulated

swing trajectory remains responsive to the robot’s traveling speed, Raibert’s method-

ology is employed in computing the horizontal coordinates of the desired landing

point.
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
xf =

1

2
ẋTst− kvx(ẋd − ẋ)

zf =
1

2
żTst− kvx(żd − ż)

(2.20)

ẋ and ż are the lateral and forward velocities of the robot body during the leg

lift transient,Tst is the duration of the support phase, kvx and kvz are the velocity

difference gain coefficients, and ẋd and zd are the desired motion velocities of the

robot during the leg lift transient. Ts can be set as a constant (fixed step motion).

When Ts becomes stable, the expected landing point coordinates calculated by using

Equation 2.20 will change with the change of the robot’s real-time speed, i.e., the

larger the speed, the larger the step, the smaller the speed, the smaller the step. The

speed is zero when the robot is stepping in place.

After determining the three characteristic points of the trajectory, the coordinates

of all points of the swing trajectory can be planned based on the interpolation method.

More intermediate points can be flexibly added to the swing trajectory so that the

swing trajectory can be planned for special terrain.

The quantitative planning of the robot’s single-legged foot-end trajectory is exe-

cuted by establishing a mathematical model representing the single-legged foot-end

trajectory, defined as:


xsw = (xf − x10)

(φ−sinφ)
2π

+ x10

zsw = (zf − z10)
(φ−sinφ)

2π
+ z10

ysw = ∆hd
(1−cosφ)

2
+ y10

(2.21)

Here, ∆hd denotes the desired leg elevation height (peak height of the curve arc),

and:

φ =
2πt

TSW

Where Tsw signifies the swing phase duration (for a trot gait with ρ = 0.5, Tsw =
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Tst = 0.5T , representing the gait period), and t ∈ [0, Tsw] corresponds to the real-time

duration of the swing motion, resetting to 0 with each leg elevation.

Assume a robot motion step length of 20 and leg elevation height of 10. Taking

a three-legged gait as an example, the robot’s single leg alternates between support

and swing phases for 1 second each. As illustrated in Figure 2.20, the planned robot

single-leg foot-end trajectory aligns with the trajectory established by qualitative

analysis, confirming the applicability of this planning method for subsequent robot

motion control on structured ground.

Figure 2.20: Cycloidal trajectory

Rectangular cycloid trajectory planning.

To maintain a consistent distance between the robot’s swinging leg and the ground

during the swinging motion, a rectangular cycloidal trajectory planning method is

employed, enabling the hexapod robot to accomplish leg elevation and stride without

foot-end visual sensors or precise terrain information. This approach facilitates the

avoidance of collisions with ground-based obstacles during the swinging foot’s motion,

which could otherwise compromise the robot’s balance and result in a fall.

As depicted in Figure 2.21, the swinging foot’s trajectory can be segmented into
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three distinct phases: initial vertical elevation, subsequent forward horizontal swing,

and concluding vertical descent. Assume the time required for the robot leg to com-

plete the elevation, swing, and descent is denoted by TS, encompassing one full cycle

of trajectory planning. To ensure a smooth leg elevation without destabilizing the

robot due to excessively rapid or sluggish motion, the duration allocated for the ver-

tical elevation, forward horizontal motion, and vertical descent of the robot’s foot

endpoint is set to Ts

3
. Implementing this cycloidal trajectory planning approach af-

fords sufficient time for each process to be executed, mitigating factors contributing

to robot instability and enhancing practical applicability.

Figure 2.21: Foot endpoint swing trajectory diagram

a) Vertical elevation process of foot endpoints

During this phase of foot endpoint vertical elevation, the endpoint ascends uni-

formly along the Z-direction to a height of h. This strategy ensures the foot endpoint

maintains a specific distance from the ground while swinging forward horizontally

and clears obstacles on the ground without collisions. Throughout this vertical as-

cent process, the robot’s foot endpoint exclusively moves in the Z-direction. The first
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stage of the foot endpoint trajectory can be mathematically expressed as Equation

2.22.


x1(t) = 0

y1(t) = 0, t ∈
[
0, Ts

3

]
z1(t) =

3ℏ
Ts

· t

(2.22)

b) Forward swing of the foot endpoint

In this stage of the forward swing of the foot endpoint, the distance between

the target point and the starting point of the robot trajectory planning process is

assumed to be L in the X-direction, and the distance in the Y-direction is also L.

The foot end point swings forward to the end point of the trajectory planning (target

landing point) along the direction directly above. The mathematical expression of the

trajectory of the foot-end point at this stage can be obtained, as shown in Equation

2.23.


x2(t) =

3Lx

Ts
·
(
t− Ts

3

)
y2(t) =

3Ly

Ts
·
(
t− Ts

3

)
, t ∈

[
Ts

3
, 2Ts

3

]
z2(t) = 0

(2.23)

c) Vertical drop phase

In the vertical drop phase, the robot’s foot endpoint only moves downward at

a uniform speed in the Z direction. When the desired drop point is lower than the

starting height in the Z direction, the foot endpoint can continue to fall until it touches

the ground.


x3(t) = Lx

y3(t) = Ly , t ∈
[
2Ts

3
, Ts

]
z3(t) =

3h
Ts

·
(
t− 2Ts

3

) (2.24)
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Combining 2.22, 2.23, and 2.24, the equation for planning the trajectory of a

rectangular pendulum with a foot endpoint is

x(t) =


x1, t ∈

[
0, Ts

3

]
x2, t ∈

[
Ts

3
, 2Ts

3

]
x3, t ∈

[
2Ts

3
, Ts

]

y(t) =


y1, t ∈

[
0, Ts

3

]
y2, t ∈

[
Ts

3
, 2Ts

3

]
y3, t ∈

[
2Ts

3
, Ts

]

z(t) =


z1, t ∈

[
0, Ts

3

]
z2, t ∈

[
Ts

3
, 2Ts

3

]
z3, t ∈

[
2Ts

3
, Ts

]
Using the kinematic functions in MATLAB, the foot endpoint coordinate system

is first translated upward by 400 mm in the direction of Z. Then, the foot endpoint

coordinate system is translated forward by 200 mm in the direction of X and finally

falls again in the direction of Z. According to the rectangular cycloid of the foot

endpoint relative to the foot base coordinate system shown in Equation 2.22, 2.23,

2.24, and the inverse kinematic transformation equation, the desired motion trajectory

and the actual tracking trajectory of the foot endpoint relative to the single-leg base

coordinate system can be obtained as shown in Figure 2.23, Figure 2.24.
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Figure 2.22: Single-leg initial position Figure 2.23: Single-leg Expected trajec-

tory

Figure 2.24: Foot endpoint trajectory tracking

From simulation results, it can be seen that, firstly, the end of the swing foot

quickly moves from the initial position to the desired position. Then, the swing foot

moves strictly vertically upward along the direction of Z and horizontally along the

direction of X to achieve the desired effect.
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Section 2.5

Verification of gait planning

In this section, the sweeping motion of the robot is experimentally verified. First,

we take a three-legged gait as an example. The robot’s six legs are divided into

two groups, and the robot’s single-leg motion differs by half a cycle between the two

groups, meaning that when one group of legs is in the support phase, the other group

of legs is in the swing phase. The kinematic inverse solution is then employed to solve

the robot’s single-leg motion trajectory inverse kinematics. The foot-end trajectory

planning module and the inverse robot kinematics solution module are constructed

in MATLAB using Simulink. The final calculated three-joint angles of the robot are

depicted in Figure 2.25.

Figure 2.25: Robot foot joint coordinate

system

Figure 2.26: Robot single leg three joint

angle

From the Figure 2.26, it can be seen that from 0 to 2s, the Coxa joint angle of

the robot’s single leg changes from positive to negative, while the femoral and tibial

joint angles remain unchanged, and the robot’s single leg is in the support phase at

this time; from 2 to 4s, the coxa joint angle changes from negative to positive, and
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the tibial joint angle undergoes a change from positive to negative to positive, which

is precisely in line with the change in the angle of the three joints of the single leg

when the robot is in the swing phase. In general, the robot’s single-leg three-joint

angle changes smoothly, and the transition between the support and swing phases is

smooth. The period of angle change of the robot’s single leg is 4s, and the support

phase and swing phase each take 2s, so the angle change described in the Figure 2.26

can be directly used in the control model of the robot moving with a three-legged

gait.

In the simulation environment, the gait planning module of the hexapod robot,

the single-leg kinematics solution module of the robot, and the angle magnitude gain

module are built in turn. The final solved angular values are input to the 18 joints

of the hexapod robot to implement the robot’s walking on the structured ground.

Figure 2.27 and 2.28 show the simulation model built in Matlab/Simulink.

Figure 2.27: Robot motion control model file
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2.5 Verification of gait planning Kinematics Analysis

Figure 2.28: Simulation of movement

Utilizing the robot motion control model defined above, the robot’s advancement

from point A to point B can be visualized in the simulation environment. A quantita-

tive analysis of the moving process is provided below, with the x-direction representing

the robot’s forward direction and the z-direction representing the robot’s vertical di-

rection. If the robot moves along a straight line as pre-planned, the displacement

in the x-direction continuously increases, and if the robot motion is stable, the dis-

placement in the z-direction remains constant. Figure 2.29 quantitatively depicts the

displacement variation of the hexapod robot in the simulation environment.
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2.5 Verification of gait planning Kinematics Analysis

Figure 2.29: Robot X and Z motion displacement variation

From the graph, it can be seen that the displacement of the robot in the x-axis

direction increases continuously from 0, and the curve is smooth without abrupt

changes, indicating that the robot advances steadily along the positive direction of

the x-axis.The displacement of the robot in the z-axis direction remains constant at

0, and the curve also remains smooth without sudden changes, indicating that the

robot’s body height remains stable and does not jump or crouch.

Figure 2.30: Robot body pitch angle variation

Figure 2.30 shows the change of the pitch angle of the robot body: from the figure;
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it can be seen that the pitch angle of the robot body varies from -0.5rad to 0.2rad,

indicating that the change of the pitch angle of the robot body is small during the

motion of the robot. The robot body is stable without overturning.Combining the

robot displacement variation and the body pitch angle variation shows that the gait

above planning of the hexapod robot is valid, and the robot’s kinematic solution is

correct.

Section 2.6

Chapter Summary

In this chapter, the robot body and leg structures are designed for the simulation

study, drawing inspiration from insect observations, and the overall hexapod robot

body model is ultimately constructed using SolidWorks. Kinematic equations are

solved to obtain the robot’s kinematic equations, and kinematic solutions are ver-

ified. Inverse kinematic solutions are combined with single leg trajectory planning

and inverse kinematic solutions to determine the angle changes of individual legs. By

examining insect motion, hexapod robot movement is quantitatively categorized into

three-legged gait, quadrupedal gait, and fluctuating gait, with various gait patterns

compared in terms of speed and stability. Subsequently, single-legged swing phase

planning for the hexapod robot is analyzed, and critical points for foot-end trajec-

tory planning are identified. Based on this, a rectangular cycloid trajectory planning

method is employed to examine motion characteristics and provide a mathematical

description of the entire process. The foot endpoint swing process is simulated in

MATLAB using the robot toolbox. Lastly, the comprehensive motion control mod-

ule for the hexapod robot body is established by incorporating the three-legged gait

characteristics, demonstrating the effectiveness of gait planning in controlling hexa-

pod robot movement from the perspective of robot motion displacement and body
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pitch angle.
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Chapter 3

CPG-based Motion Gait Control

The problem of controlling motion is where neuroscience and robotics can be well in-

tegrated. How to generate high-dimensional rhythmic output signals while accepting

only simple, low-dimensional input signals is essential in the motion control of robots.

The Central pattern generators (CPGs) model was introduced to solve this problem.

Among the motion control methods for hexapod robots, bionic motion control

is a very common motion control category, in which the motion control of CPG

can generate its own oscillation signal, its motion control modes are numerous, it is

easy to be regulated by high-level control signals due to its good coupling, and its

structure is also relatively simple, which is in general very suitable for the motion

control of hexapod robots.Among the motion control methods for hexapod robots,

bionic motion control is a general motion control category in which the motion control

of CPG can generate its oscillation signal. Its motion control modes are numerous;

high-level control signals easily regulate it due to its good coupling. Its structure

is also relatively simple, generally very suitable for the motion control of hexapod

robots.This chapter illustrates the feasibility of CPG for motion control of hexapod

robots from the perspective of imitating animal rhythmic motion control.Starting

from a standard oscillator, we construct a CPG control unit, analyze the oscillator
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parameters, and finally realize the pivot mode generator to control the motion of the

hexapod robot.

Section 3.1

Principle of CPG control model

The central pattern generator (CPG) is a neural network capable of generating co-

ordinated patterns of rhythmic activity without any rhythmic input from sensory

feedback or higher control centres. Delcomyn (1980) [24] describes them as the basis

of many rhythmic behaviours in invertebrates and vertebrates. Research has con-

firmed that this output rhythm does not require sensory information, and CPGs can

be found in many organisms. Although sensory feedback is not required to produce

rhythm, it plays a crucial role in shaping rhythmic patterns, which are fundamental to

maintaining the coordination of CPGs and body movements. For example, a person

on a treadmill is guided by the treadmill to stroll or run fast [25]. Experiments have

shown a tight coupling between CPG and sensory feedback, i.e., their effect depends

on the time within the exercise cycle [26].

In some animal experiments, it was found that low levels of stimulation can cause

high-frequency movements. It indicates that the CPG is a complex circuit that can

generate complex motor behaviour and achieve significant movement changes while

receiving simple input signals. So from the control point of view, the CPGs model

implements some internal model, which only needs to accept the command to control

the motion to achieve the change of motion [27]. In summary, the vertebrate motor

system is organized in this way: the spinal CPG is responsible for generating basic

rhythmic patterns, while the advanced centers (motor cortex, cerebellum and basal

ganglia) are responsible for modulating these patterns according to environmental

conditions.In contrast, the structure of the motor control system in higher animals is
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3.2 Artificial CPG model CPG-based Motion Gait Control

very complex, and the different motor forms result from a combination of advanced

center, low-level center and effectors acting together as shown in Figure 3.1.

Figure 3.1: Animal motion control system

Section 3.2

Artificial CPG model

In the field of robot motion control, many kinds of CPG oscillating cell models exist,

which are classified into two main categories: neuron-based models and nonlinear

oscillator-based models. The most common of the first category is the Matsuoka

neuronal oscillator model, where many parameters exist in the model. The equations

have high dimensionality, strong coupling, nonlinearity, etc. The parameters have

no apparent physical meaning, which has a compound influence on the oscillator’s

performance and increases the parameter adjustment and model. The complexity of

parameter adjustment and model characterization is increased. The second model
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type is Van der Pol (VDP) relaxation oscillator, Kuramoto phase oscillator, Hopf

harmonic oscillator [28], etc. These models have relatively fewer parameters and

relatively independent effects on the oscillator performance, and the parameters are

easy to adjust, which is more suitable for controlling robot motion.

3.2.1. Hopf oscillator model

In several CPG oscillators models, the neuron oscillators such as Kimura have strong

coupling and complicated forms. On the contrary, Hopf has a simple form,and its

oscillator parameters correspond one-to-one with amplitude, phase, and frequency,

and have no influence on each other. At the same time, it also has a stable limit

cycle, which is suitable for the gait planning of multi-foot robots. Therefore, we

adopt the Hopf oscillator as the basic oscillatory unit of the CPG network.

The Hopf oscillator is a nonlinear oscillator with fewer parameters, unlike the

Matsuoka neuron oscillator, where each parameter individually affects the oscillator

performance, and its mathematical model is


dx
dt

= α (µ− x2 − y2) x− ωy

dy
dt

= α (µ− x2 − y2) x+ ωx
(3.1)

where x, y are the output values of the oscillator, α is the convergence weight, µ is the

squared oscillator amplitude, and ω is the oscillator frequency.√µ is the amplitude,

and ω is the period. x and y are two state variables of the Hopf oscillator.

By setting x = r cos θ, y = r sin θ, and θ = ωt, equation 3.1 can be transformed

into

 ṙ = α (µ− r2) r

θ̇ = ω
(3.2)

From Figure 3.2, we can see that the Hopf oscillator model has a stable limit ring
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of radius µ in the state space except for the unstable equilibrium point (0, 0). Except

for the unstable equilibrium point (0, 0), the state variables x and y can converge to

this limit ring by taking any initial values, which means that the Hopf oscillator can

reach the limit ring from any state.

Figure 3.2: Schematic diagram of limit and equilibrium points as µ change

Figure 3.3, which shows the phase plane diagram of the Hopf oscillator output

signal x and y at different initial values, shows that the Hopf limit loop is stable

regardless of the initial value except for the singularity (0, 0).

Figure 3.3: Output signal x vs. y phase plane diagram

In this thesis, the oscillator is used to control the motion of the hexapod robot.

Its output signal controls its joint rotation angle. The rising part of the output
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signal corresponds to the swing phase of the hexapod robot gait. The falling part

corresponds to the support phase. As seen in Figure 3.4(x=0.5,y=0), the duration of

the rising and falling part of the output curve is the same, i.e., the duration of the

swing and support phases of the hexapod robot gait is the same. Furthermore, such

an output curve can only be used as a control signal for the three-legged gait. In

practical situations, hexapod robots usually use multiple motion gaits, and the swing

time is not necessarily the same as the support time.

In order to adjust the oscillation time and support time, this thesis improves the

Hopf oscillator model by adding the occupation factor β and the oscillator frequency

ω to the mathematical expression of the oscillator,the equation is

 ω = ωstance
e−by +1

+
ωswing
eby +1

ωstance = 1−β
β
ωswing

(3.3)

where: ωstance is the support phase frequency; ωswing is the swing phase frequency;

b is the larger constant, which determines the conversion speed of ω between ωstance

and ωswing ; β is the occupation factor, when β = 1 /2, the swing time is the same as

the support time, and changing the value of β can adjust the swing time and support

time. With β = 2 /3, b = 100, and ωswing = π, the output curve of the oscillator

state variable x is obtained, as shown in Figure 3.5. The swing time is different from

the support time with a ratio of 1:2, which indicates that the above improvement has

achieved its purpose.
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Figure 3.4: Output curves of the

Hopf oscillator

Figure 3.5: Output curve of x after β

changed

In this paper, the effect of changing the parameters of the Hopf oscillator model

on its output is analyzed by single-parameter analysis. The results of the parameter

tuning are shown in Table 3.1.

Table 3.1: Parameter tuning results of the Hopf oscillator
Parameters Value

α 100

µ 1

β ∈ (0, 1)

ωswing π

b 100

Section 3.3

CPG network model improvement

Six coxa joints are controlled using a CPG network for a hexapod robot with 18

degrees of freedom of motion. The femur and tibia joints are controlled by trans-

forming the control signals using mapping functions. The ring-type CPG network

50



3.3 CPG network model improvementCPG-based Motion Gait Control

is constructed using a graph theory approach with a directed weighted graph. One

oscillator is used to control one coxa joint, and each oscillator is the vertex of the

directed weighted graph, and they are connected in a fully symmetric way in Figure

3.6.

Figure 3.6: CPG control network topology of the hexapod robot

3.3.1. Single-leg joint mapping function

Since the output signal of the oscillator cannot be used as the joint control signal

directly, this paper adopts the method of the mapping function to transform the

output of the model so that the output is transformed into the joint rotation angle

control quantity. Let the angles of the coxa, femur and tibia joints be θ1, θ2, and θ3,

respectively, then the mapping function between them and the output curve of the

oscillator is:
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

θ1 = k0x

θ2 =


k1y y ⩾ 0

k2y y < 0

θ3 = k3θ2

(3.4)

k0 is the mapping coefficient of the coxa joint; k1 and k2 are the mapping coeffi-

cients of the femur joint; k3 is the mapping coefficient of the tibia joint, which is used

to adjust the amplitude of the joint control signal.We set k0 = 0.3, k1 = 0.18, k2 =

0, k3 = −0.12, and the control signals of each joint are shown in Figure 3.7.

Figure 3.7: Control signals for each joint

3.3.2. CPG Ring Coupling Network

The oscillators that control the robot’s single leg are coupled and continuously out-

put joint angle control signals, which enables the hexapod robot to use various gait

patterns for movement. In this section, the ring coupling network topology is used to

describe the phase coupling relationship between the output signals of each oscillator

model, and its mathematical model is
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
ẋi = α (µ− x2

i − y2i ) xi − ωiyi

ẏi = α (µ− x2
i − y2i ) yi + ωixi + λ (yj cos θji − xj sin θji)

ωi = ωstance /
(
e−byi + 1

)
+ ωswing /

(
ebyi + 1

) (3.5)

λ is the coupling strength parameter between two oscillators, and λ affects the artic-

ulation between the waveform in the rising and falling parts of the output curve. λ

should not be too large to cause the system to produce dither. We take λ = 0.6, θji

is the phase difference between oscillators i and j, θji = θi− θj; the other parameters

are defined in the same way as equation 3.2 and 3.3.

The following is an example of a three-legged, four-legged, and five-legged gait with

a ring coupling network to illustrate each leg’s phase difference when the hexapod

robot walks with different gaits. When a hexapod robot walks with a three-legged

gait, its legs are divided into legs 1, 3, 5 and legs 2, 4, 6, the three legs of the same

group are in the same phase, and the two legs that are not in the same group are

in 180° phase. The ring-shaped coupling network is shown in Figure 3.8(a); When

walking with a quadrupedal gait, the legs are divided into three groups: legs 1 and 4,

legs 3 and 6, and legs 2 and 5. The two legs of the same group have the same phase,

and the two legs of adjacent groups differ in phase by 120°, and the circular coupling

network is shown in Figure 3.8(b); When walking with a fluctuating gait, each leg

enters the swing phase in the order of leg 1→leg 6→leg 2→leg 5→leg 3→leg 4, with

a phase difference of 60° between adjacent legs, and its circular coupling network is

shown in Figure 3.8(c).
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(a) Three-legged gait

(b) Quadrupedal gait

(c) Fluctuating gait

Figure 3.8: CPG ring-coupling network of typical gaits of the hexapod robot

The occupation coefficients are β = 1/2, 2/3, 5/6 for the three-legged gait, quadrupedal

gait, and fluctuating gait. The remaining parameters are set according to the param-

eter calibration results. The output curve of each leg oscillator can be obtained when

the hexapod robot walks with three gaits, respectively, as shown in Figure 3.9. As

seen in Figure 9, using a ring coupling network ultimately results in a stable phase
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difference in the output curve of each oscillator. However, the coupling time is longer

for both quadrupedal and fluctuating gaits, with the quadrupedal gait taking about

6 s before the phase difference stabilizes and the quintupled gait taking even longer,

with the phase difference stabilizing after 28 s. This requires a specific delay time

to be set when performing control to ensure that the hexapod robot can walk with

a stable gait. This output signal is not suitable for the gait control of the hexapod

robot. In addition, when the hexapod robot moves with a quadruped or fluctuat-

ing gait, the equilibrium position of the angle change curve is not necessarily on the

zero line. However, it may be located above or below the zero line. Therefore, the

previously designed scheme needs to be improved to meet the multiple gait control

requirements of the hexapod robot.
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(a) Three-legged gait

(b) Quadrupedal gait

(c) Fluctuating gait

Figure 3.9: Output curves of each oscillator of typical gaits of the hexapod robot
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3.3.3. CPG Control Program Improvement

The CPG control scheme designed earlier is to adjust the balance position of the

oscillator output curve so that it can be used as a coxa control signal when the

hexapod robot walks with a quadrupedal gait or a fluctuating gait improved in this

paper.Introduce the external feedback quantities feed 1 and feed 2 are introduced in

equation 3.1 as

 ẋ = α
[
µ− (x− feed 1)

2 − (y − feed 2)
2] (x− feed 1)− ω (y − feed 2)

ẏ = α
[
µ− (x− feed 1)

2 − (y − feed 2)
2] (y − feed 2) + ω (x− feed 1)

(3.6)

Set the occupation factor is set at β = 1 /2, the external feedback amount is set

at feed 1 = 0.5, feed 2 = 0.5 and feed 1 = 0.5, feed 2 = -0.5 respectively. The output

curves of the oscillator model can be obtained by setting the remaining parameters

according to the parameter tuning results. From Figure 3.10, it can be seen that

when the external feedback is positive, the output curve is located above the zero

line; When the external feedback amount is negative, the output curve of the balance

position is below the zero line, and the change of the balance position concerning

the zero line is equal to the value of the external feedback. The other parameter

characteristics of the oscillator are not affected by the change in external feedback.

Therefore, the value of the external feedback can be adjusted to change the balance

position of the oscillator output curve.
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(a) feed 1=0.5,feed 2=0.5

(b) feed 1=0.5,feed 2=-0.5

Figure 3.10: Output curves of the oscillator when feed 1 and feed 2 take different

values

In essence, we calibrate external feedback levels to yield an apt control signal for

the hexapod robot’s coxa joint rotation angle during ambulation with quadrupedal or

undulating gaits. Concurrently, to generate a consistent and uninterrupted phase dis-

parity among each oscillator’s output curves initially, this study presents an approach

that adjusts the oscillator model state variable’s initial value, utilizing a circular cou-
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pling network. By modifying the inaugural value of every oscillator state variable,

the output curve can exhibit distinct phase variations at the outset, with the optimal

initial value ascertainable through iterative experimentation. Discovering the ideal

initial value via trial and error enables each oscillator’s output curve to manifest the

requisite phase discrepancy for the gait’s inception. Consequently, the hexapod robot

commences locomotion with a stable stride.

For the three-legged gait, the equilibrium position of the coxa joint turning angle

change curve of each leg is on the zero line; For quadrupedal gait, the equilibrium

position of the coxa angle change curve for legs 1 and 4 is above the zero line, the

equilibrium position of the coxa angle change curve for legs 3 and 6 is on the zero

line, and the equilibrium position of the coxa angle change curve for legs 2 and 5 is

below the zero line;For the fluctuating gait, the equilibrium position of the hip angle

change curve for legs 1, 2, and 6 is above the zero line, and the equilibrium position

of the hip angle change curve for legs 3, 4, and 5 is below the zero line. The values of

the external feedback and the initial values of the state variables of each leg oscillator

for the hexapod robot with each walking gait are shown in Tables 3.2 and 3.3.

Table 3.2: External feedback of each oscillator and initial values of the state variables

in the three-legged gait
Parameters feed 1 feed 2 x0 y0 Parameters feed 1 feed 2 x0 y0

leg1 0 0 0 −0.1 leg4 0 0 0 0.1

leg2 0 0 0 0.1 leg5 0 0 0 −0.1

leg3 0 0 0 −0.1 leg6 0 0 0 0.1
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Table 3.3: External feedback of each oscillator and initial values of the state variables

in the quadrupedal gait
Parameters feed 1 feed 2 x0 y0 Parameters feed 1 feed 2 x0 y0

leg1 0.9 0 0.1 0 leg4 0.9 0 0.1 0

leg2 −0.9 0 −0.1 0 leg5 −0.9 0 −0.1 0

leg3 0 0 0 0.1 leg6 0 0 0 0.1

The output curves of each leg oscillator for the hexapod robot walking with three-

legged gait, quadruped gait and fluctuating gait are obtained according to the previous

CPG ring coupling network settings, as shown in Figures. 3.11(a) to (b), respectively
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(a) Three-legged gait

(b) Quadrupedal gait

Figure 3.11: Improved output curves of each oscillator of typical gaits of the hexapod

robot

The improved CPG network model can output a signal with a stable phase dif-

ference from the beginning, and the balance position of the output curve can be

adjusted so that the output curve can be ideally used as the coxa control signal for

each walking gait of the hexapod robot. It can be shown that the improved CPG

control scheme is practical and feasible, and the output curve of the improved CPG
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network model can be used to control various motion gaits of the hexapod robot.

3.3.4. Simulation experiment verification

Take the example of a three-legged gait.The control curves for each joint of the hexa-

pod robot with three-legged gait motion are shown in Figure 3.12. The output curves

of the CPG network model all enter into stable oscillations quickly. The phase dif-

ference of different groups of legs is 180°, which is consistent with the tripod gait

characteristics. The control curve of each joint of a single leg also satisfies the motion

phase relationship of each joint.

Figure 3.12: Joint’s control curves of the three-legged gait

The control curves of each joint of the hexapod robot with quadrupedal gait

motion are shown in Figure 3.13 shows. According to the swing order, the phase

difference of different groups of legs is 120°, which is consistent with the quadrupedal

gait characteristics, and the control curve of each joint of a single leg also satisfies

the same The phase relationship of the motion of each joint of the same leg.
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Figure 3.13: Joint’s control curves of the quadrupedal gait

Section 3.4

Simulation and experiment results

3.4.1. Transition motion from flat to slope

Using the motion control block diagram shown in Figure 3.14 to simulate the tran-

sition motion from flat to 20◦ slope, information such as joint signal and foot force

during simulation can be exported via Simulink Simscape Multibody. By measur-

ing the rise and fall of the pitch angle of the body, a smooth gait transition can be

achieved.
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Figure 3.14: Transition motion control block diagram

With a tripod gait based on the Hopf and Hopf with feedback models separately,

the slope motion of a hexapod robot is simulated. Figure 3.15 shows the static force

of the hexapod robot on the slope, which must meet the mechanical balance.


∑n

i FXi = 0∑n
i FY i − FG sin θp = 0∑n
i FZi − FG cos θp = 0

(3.7)

where n is the number of foot support for the current movement of the hexapod

robot, θp is the slope angle of the slope, FG is the gravity at the center of mass of

the body, FXi, FY i, and FZi are the forces in the three-axis direction of the i th foot

support leg of the hexapod in the centroid coordinate system.

All of the supporting feet of the hexapod robot’s legs must exert sufficient friction

force.

Ff = µ

(
2∑
i

FiZ

)
≥ µ

√√√√( 2∑
i

FiX

)2

+

(
2∑
i

FiY

)2

(3.8)

where µ is the coefficient of friction determined by the slop and the legs of the hexapod

robot.

Combining equation 3.7 into equation 3.8, we can obtain the following equation.

θp ≤ arctan(µ) (3.9)

The coefficient of static friction in our set simulation environment is 0.3. We
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choose a slope of 20° for the simulation. The three-joint signal of the single leg can

be obtained during the simulation of both states because the walking posture of the

hexapod robot will show the front high and back low, which leads to uneven force on

the foot end and affects the stability of the slope movement of the hexapod robot.

In order to improve the stability of the side slope motion, it is necessary to change

the pitch angle of the body. The body pitch angle can be adjusted by switching the

gait to change the support leg’s joint angle to improve the slope motion’s stability.

From the Table 2.2, we can conclude that the quadrupedal gait is more stable than

the tripodal gait, so we decided to use the tripodal gait to move on flat ground and

the quadrupedal gait to move on slopes. Screenshots of the simulation are shown in

Figure 3.16.

Figure 3.15: Static schematic diagram of a hexapod robot on a slope
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(a) 0 s

(b) 10 s

(c) 16 s

(d) 22 s

(e) 30 s

(f) 38 s

(g) 45 s

Figure 3.16: Simulation screenshot of hexapod robot’s motion from flat to 20° slope:

(a) 0 s, (b) 10 s, (c) 16 s, (d) 22 s, (e) 30 s, (f) 38 s, (g) 45 s.
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3.4.2. Slope motion

Pitch angle of hexapod robot while climbing 20° slope is shown in Figure 3.17. Base

on the Hopf model, the hexapod robot’s pitch angle ranges from 18.5° to 22.5°, which

is almost parallel to the slope.When the pitch angle of the hexapod robot is greater

than or equal to 20°, the support leg’s joint angle signal is adjusted to switch the gait

and the pitch angle is reduced to between 7.1° and 7.5°.

(a) pitch angle based on Hopf model

(b) pitch angle based on Hopf model with the gait change

Figure 3.17: Pitch angle of hexapod robot’s motion of climbing 20° slope: (a) pitch

angle based on Hopf model and (b) pitch angle based on Hopf model with the gait

change.
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The following is an analysis of the CPG network built on a Hopf oscillator to

control the robot’s motion in Figure 3.18 .We can see that the robot displacement

fluctuates from 0 to 7s in the z-axis direction, indicating that the robot is jumping

and squatting during the motion; from 7 to 38s, the z-axis direction remains con-

stant, indicating that the robot is moving on the flat ground; after 38s, the robot

displacement changes from 0 to 1.5 in the z-axis direction, which is due to the robot

switching from flat ground to slope motion.

The displacement of the robot in the y-axis direction changes from 0 to 0.1, and

then the y-axis direction changes from 0.1 to 5.1. This is because, in the simulation

environment. Initially the robot performed squatting, resulting in small displacement

fluctuation changes at the beginning. However, the displacement change curve of the

robot in each section of the y-axis is straight, indicating that the robot still moves in

a straight line in the simulation environment.

Figure 3.18: Hopf oscillator controls robot motion
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3.4.3. Uneven terrain motion

The simulation screenshots of hexapod robot’s motion on uneven terrain are shown in

Figure 3.19. Based on the Hopf model, the center-of-mass projection point deviates

from the center of the supporting field, the foot–end force distribution is uneven, and

the hexapod robot has severe skidding during its movement and becomes immobile

on slopes. Based on Hopf with gait change, the hexapod robot’s attitude is adjusted,

which stabilizes the centroid projection point in the center of the supporting area and

improves the foot–end force condition, allowing it to traverse uneven terrain. The

robot is in the initial state when t = 0. Between t = 20s 30s, the robot traverses the

uneven terrain, and when t > 30s, the robot enters the uneven terrain. In addition,

at t = 45s, the robot completes traversing the uneven terrain in motion, indicating

successful uneven terrain movement.
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(a) 0 s

(b) 20 s

(c) 30 s

(d) 40 s

(e) 45 s

Figure 3.19: Uneven terrain motion

The following is a quantitative analysis of the robot’s state during robot motion.
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As shown in Figure 3.20, the pitch angle of the robot is constant from 0 to 20s, and

after 28s, the robot starts to move in the uneven terrain. The pitch angle of the

robot starts to change; although there was a sudden angle change in the middle, the

robot did not roll over during the climbing process.In Figure 3.21, the displacement

of the robot in the x-axis direction keeps increasing, and its displacement in the

z-axis direction remains constant, indicating that the robot has not fallen and has

successfully traversed the uneven terrain.

Figure 3.20: Pitch angle of uneven

terrain

Figure 3.21: Robot displacement change

in uneven terrain

Section 3.5

Chapter Summary

This chapter devises and refines a CPG-centric locomotion control strategy for a hexa-

pod robot, achieving stable regulation of each movement pattern. Simulation findings

indicate: a) The enhanced Hopf oscillator model can modulate swing duration and

support intervals for the hexapod robot’s motion patterns, facilitating adjustments

to the output signal’s duty cycle; b) The single-leg joint mapping function conceived

within this chapter is rational and harmonious with each individual leg joint’s move-
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ment phase relations. The CPG annular coupling network generates control signals

displaying stable phase discrepancies, congruent with respective hexapod robot move-

ment patterns; c) Subsequent to CPG control scheme optimization, the CPG network

yields control signals with consistent phase discrepancies from the outset, enabling

balance position adjustments for the control signal. The control demands of various

hexapod robot motion patterns are accommodated.

The hexapod robot’s transitional motion from level terrain to an inclined sur-

face utilizing a tripod gait was scrutinized, establishing the quantitative association

between the joint angle variable introduced by the robot and its pitch angle. A tran-

sition gait predicated on CPG’s base feedback was devised. A simulation platform

was assembled, performing a transitional motion simulation from level ground to as-

cending a 20° incline. Simulation results validate the transition gait’s practicability,

with the slope gait anchored in the Hopf model accommodating gait modifications.

Uneven terrain was subsequently assessed. Although the terrain was ultimately tra-

versed successfully, there were instances during the simulation where the hexapod

robot slipped, erroneously transitioning to an unsuitable gait while navigating obsta-

cles, resulting in a rollover. To date, no robust CPG-based methodology has been

discovered capable of tackling diverse, demanding terrains.

Our aim is to examine the interplay between yaw angle, roll angle, and the sta-

bility of a hexapod robot’s transitional motion, while incorporating attitude feedback

into the transitional gait planning to further bolster the robot’s transitional motion

stability.
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Chapter 4

Multi-agent Deep Reinforcement

Learning-based Motion Control for

Hexapod Robots

The previous section designed a hexapod robot model imitating a hexapod insect and

analyzed the implementation of the robot from the perspective of foot-end trajectory

planning. The robot motion is interpreted and implemented from the perspective of

CPG. This chapter explores the motion control of a hexapod robot from the perspec-

tive of deep reinforcement learning. The theoretical foundations related to deep re-

inforcement learning are described and followed by experimental verification of robot

motion control based on typical deep reinforcement learning algorithms.

Section 4.1

Introduction to Reinforcement Learning

Reinforcement learning [3] is a type of machine learning which becomes the third

machine learning paradigm, in addition to supervised and unsupervised learning. Re-
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inforcement learning is a computational method for understanding and automating

goal-directed decision-making and learning. It is distinguishable from previous com-

putational approaches by emphasizing an agent’s learning through direct interaction

with its environment without relying on exemplary supervision or exhaustive models

of the environment. It also evaluates the actions selected by the agent, making the

selection of subsequent actions more in line with expectations.

The reinforcement learning problem is a direct framework for the learning problem

of achieving goals from interactions. A Markov decision process can mathematically

describe it. The learner and decision-maker are called the agent. The agent interacts

with the environment, including everything outside the agent. The Markov decision

process means that the future state of the agent is only related to the state and

behavior at the present moment, and all the historical states have no influence. The

Markov decision process consists of the parameters S� A, P, and R. S is the set of

possible states. A indicates the set of actions in state St. P denotes the agent state

transition probability, and R is the reinforcement learning reward function designed

for after a time step, as a partial result of its action, the agent receives a numerical

reward. P (st, at, st+1) is the probability that an intelligent system employing the

action to bring the environment from the original state st to the probability of reaching

the new state st+1. R (st, at, st+1) denotes the reward value obtained by the intelligent

system through the action the reward value obtained by the action at to bring the

environment from the original state st to the new state st+1, where st ∈ S denotes the

external environment state value at time t. at ∈ A means the action value provided

by the agent to the external environment at time t. Figure4.1 diagrams the agent–

environment interaction.
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Figure 4.1: The agent–environment interaction

In reinforcement learning, Policy π:S → A represents the mapping from the state

space to the action space. More specifically, The agent selects the action value when

the state of the external environment is st and executes the action value so that the

external environment arrives at the new state st+1 with probability P. In contrast,

the reward function calculates the current reward value rt. Since the reward value,

rt at any moment, differs from the actual contribution, a discount factor γt is set for

the reward value rt at time t. Then the sum of the rewards of the agent from the

beginning of any moment to the final destination is :

Rt =
T∑

t′=t

γt′rt′ (4.1)

where γt′ ∈ [0, 1], indicating the effect of the subsequent reward value on the cumu-

lative reward. The action-value function for policy π is:

Qπ(s, a) = E[Rt | st = s, at = a] (4.2)

Return Rt depends on states st, st+1, st+2, . . . and actions at, at+1, at+1, . . .. For
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all state-action pairs, if the expected reward from a policy π∗ is greater than or equal

to any other policies, then the policy π∗ is optimal. There may be many optimal

policies, but they have the same state action function:

Q∗(s, a) = max
π

E[Rt | st = s, at = a] (4.3)

For reinforcement learning, as a Markov decision process, its optimal state action

function conforms to the Bellman optimal equation, i.e

Q∗(s, a) = Es′S

[
r + γmax

a′
Q (s′, a′) | s, a

]
(4.4)

The Q-value function is often solved in reinforcement learning by iterating the

Bellman equation:

Qi+1(s, a) = Es′S

[
r + γmax

a′
Qi (s

′, a′) | s, a
]

(4.5)

We find that where Qi → Q∗ when i → ∞.After continuous training iterations, the

state action function will converge so that the optimal policy π∗ = argmaxa∈A Q∗(s, a)

can be obtained. However, the formula to solve the optimal policy often does not

work relative to the situation. The state space is larger through the iterative Bellman

equation to find the Q value function. This method is often too expensive. In order

to solve this problem, the reinforcement learning algorithm often uses a deep neural

network to represent state action value as Q(s, a | θ) ≈ Q∗(s, a), combined with

the reinforcement learning in deep neural networks for large state space has good

application effect.

Reinforcement learning algorithms, as a general term for a class of algorithms,

are rich in content and contain a wide variety of algorithms. Its main algorithms can

be classified as model-based reinforcement learning(MBRL) and model-free reinforce-
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ment learning(MFRL), depending on the level of comprehension of the environment.

From the perspective of policy learning methods, they can be divided into value

function-based reinforcement learning and policy-based reinforcement learning. Ac-

cording to the descriptiveness of the learning goal, it can be divided into forward

reinforcement learning and inverse reinforcement learning.The following explains the

common algorithms from the perspective of policy learning:

4.1.1. Q-Learning algorithm

The use of time-series difference to solve reinforcement learning decision problems

does not require an environment state transformation model but rather updates the

policy by updating the value function. As shown in Figure 4.2, the environment starts

in state st, the action at is selected by the �- greedy algorithm, and after acting at,

it enters the state st+1 and receives the reward R. After that, the next action at+1 is

selected by the greedy algorithm, i.e., the action that maximizes the value function

is selected as a. Then the update can be expressed as
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Figure 4.2: Q-Learning algorithm

Q′ (st, at) = Q (st, at) + µ
(
R + γmax

a
Q (st+1, a)−Q (st, at)

)
(4.6)

where µ is the learning rate, the direction of iteration is determined by the learning

rate in parentheses to the right, and the final iterative goal is

Q (st, at) = E [Rt | st, at] (4.7)

In this case, the action that achieves the maximum reward at any given moment can

be selected based on the Q value as shown in Figure 4.3 for the Q-Learning algorithm.
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Figure 4.3: Q-Learning algorithm diagram

4.1.2. Policy-based reinforcement learning algorithms

Reinforcement learning based on the value function learns through updating the eval-

uation to obtain better execution strategies. However, it cannot handle the situation

when the state space is too large or the action values are continuous. Policy-based

reinforcement learning parameterizes the policy, uses optimization-related methods

to construct an optimization problem with constraints, and then performs a global

search to find the optimal policy. The policy selection can be shown as follows.

π (at | st, θ) (4.8)

where θ is the policy parameter, π is the action selection strategy of the agent under

st. The corresponding probability is calculated for each action of the output, and the

action is then selected by probability to maximize the reward. Define the objective

function as

J(θ) =
∑

dπθ(s)V πθ(s) (4.9)
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where dπθ(s) is the distribution of the Markov chain for states generated by policy

πθ.Optimization of the policy parameters seek the maximum value of the objective

function, using the policy gradient for optimization is a common method. Then

∇θJ(θ) = Eπθ

[
∇θ log πθ(s, a)Q

πθ(θ)(s, a)
]

(4.10)

after obtaining the determined optimization policy parameters, the policy function

can be applied to determine the action value. Policy-based reinforcement learning

algorithms are shown in Figure 4.4.

Figure 4.4: Policy-based reinforcement learning algorithm

4.1.3. Actor–Critic Methods

Actors will follow the critics’ comments and constantly evolve their acting skills to

make them progress better. Actor–critic methods are the natural extension of the

idea of gradient-bandit methods to Temporal-Difference (TD) learning and to the full

reinforcement learning problem. On the one hand, the value function is evaluated,

and on the other hand, the policy itself is updated and verified. That is, the policy

value is estimated through Critic as
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Qw(s, a) ≈ Qπθ(s, a). (4.11)

Learning the Actor-Critic(AC) policy gradient can be divided into two parts:

Actor and Critic. The estimate function is called the critic because it criticizes the

actions done by the actor.The policy structure is called the actor because it is used

to select actions. The policy gradient is

∇θJ(θ) ≈ Eπθ
[∇θ log πθ(s, a)Qw(s, a)]

∆θ = α∇θ log πθ(s, a)Qw(s, a)

(4.12)

Actor-Critic, which combines value-based reinforcement learning and policy-based

reinforcement learning, has been shown in related studies to learn better policies in

a larger action space. The schematic diagram is shown in Figure 4.5.
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Figure 4.5: The actor–critic architecture

The Actor network inputs the environment state values, outputs the action values

to the environment, and provides them to the Critic network as input. The Critic

network inputs reward and state values evaluate the Actor-network output and correct

and update reward. The Critic network inputs reward and state values, evaluate the
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Actor network’s output and corrects and updates the Actor network and its network

parameters to enable the agent to achieve the preset goals.

Section 4.2

Introduction to deep learning

Deep learning is mainly about the representation learning of data [29]. Data features

can be presented in various ways, such as pixel intensity values of an image or as some

edges or different forms of domains [30]. The advantage of deep learning is that it can

be stratified to extract features instead of manual acquisition. Representation learning

mainly aims to find better methods, build better mathematical models, and learn the

representation methods from a large amount of unlabeled data. The foundation of

deep learning is a decentralized representation of machine learning. The decentralized

representation assumes that the data results from the interaction of different sides. It

is further assumed that this side interaction process can be divided into many layers,

representing multiple data abstraction levels, with varying numbers of layers and sizes

of layers. The number of layers and the size of the layers vary, and different levels

of abstraction are used. Deep learning is based on hierarchical abstraction, where

concepts are learned sequentially from higher to lower levels. Deep learning has been

most successful in its application to artificial neural networks. Deep learning models

are often constructed by combining multiple layers of nonlinear arithmetic units,

which use lower-level outputs as higher-level inputs, and in this way, automatically

learn from a large number of samples of training data. Deep conceptual learning

means that it has multilayer perceptrons [31].

Neurons are the most basic structures in neural networks and the basic operational

units of neural networks, which are based on the information propagation mechanism

of neurons in biology. It is now a very common ”M-P neuron model,” as shown in
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Figure 4.6:

Figure 4.6: M-P neurons

The neuron output is:

y = f

(
n∑

i=1

ωixi − θ

)
(4.13)

The function f is the activation function, which can be expressed as a step equa-

tion. When greater than a threshold value, the neuron is activated; otherwise, the

neuron is inhibited. Common activation functions are mainly

(1)The Sigmoid function, which mathematical form

f(z) =
1

1 + e−z
(4.14)

The output is between 0 and 1, regardless of the value of the input. If the output

is less than 0, 0 is output; if the input is much greater than 0, 1 is output.

(2) The tanh function, which takes the mathematical form is:

tanh(x) =
ex − e−x

ex + e−x
(4.15)
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Its value range is [-1,1], which is good when the features are significant and can be

continuously expanded during the training-learning process.

(3) The Relu function, which has the mathematical form of

Re lu(x) = max(0, x) (4.16)

The Relu function can effectively alleviate the gradient disappearance problem

during training. However, it may cause some of the inputs to fall into the hard

saturation zone, and the weights cannot be updated. There are many other activa-

tion functions, each with its advantages and disadvantages. The actual use of these

activation functions can be chosen flexibly according to different scenarios.

As mentioned above, the neurons are weighted to the input and then processed by

the activation function to solve the linear classification problem. However, in practice,

many problems are not linearly separable problems. In order to solve the nonlinear

problems, the neuron layers are stacked together to form a neural network structure,

specifically by adding between the input and output layers. The activation function

needs to process the hidden layer and the output layer. As shown in Figure 4.7, a

shared neural network has a hierarchical structure in which all the neurons in two

adjacent layers are connected, and the neurons in the same layer are not connected.
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Figure 4.7: Artificial Neural Network model

To determine the weights and thresholds of the many connections in a neural

network, researchers have proposed the error backpropagation (BP) algorithm, which

connects multiple layers of neurons to form a neural network.The BP algorithm is

an algorithm that updates the neural network connection weights and thresholds to

reduce the output error of the neural network, assuming that the samples (xk, yk) are

input to the neural network, the sample mean square error is

Ek =
1

2

l∑
j=1

(
ŷki − ŷkj

)2
. (4.17)

then the neural network parameters are adjusted in the direction of

v = v − η
∂Ek

∂v
(4.18)

where η is the learning rate between 0 and 1, which controls the update step in

each iteration, and The parameters are updated using the gradient. In the threshold

update, the current layer’s threshold gradient depends on the next layer. In contrast,

the current layer’s connection weights depend on the threshold gradient of neurons
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in the current layer and the output of neurons in the previous layer.

If a neural network has enough hidden layers, then it can fit any function, but

because of its powerful fitting ability, overfitting often occurs, resulting in a low

error in the training set, but the error is likely to be larger in the test set. There

are currently two approaches to this problem. We divide the training samples into

training and validation sets and use the training set to calculate the gradient, update

the connection weights and thresholds, and use the validation set to estimate the

error. Suppose the error in the training set decreases, but the error in the validation

set increases. In this case, the training is terminated, and the connection weights

and thresholds with the lowest error in the validation set are used. There is also the

regularization method, where a part used to describe the complexity of the network

is added to the error objective function, then the kth training sample’s error can then

be expressed as

E = λ
1

m

m∑
k=1

Ek + (1− λ)
∑
i

v2i (4.19)

where here λ is called the regularization factor, which performs this on the empirical

error and network complexity.

Deep reinforcement learning combines the decision-making capabilities of rein-

forcement learning described above with the representation capabilities of deep learn-

ing for feature extraction, allowing intelligent systems to input information about the

environment and directly output action values that can act on the environment. In

robot motion control, for example, the robot relies on an intelligent system that can di-

rectly input its positional and environmental information and output key action values

for robot motion, such as robot motor drive torque and angle. There are many types

of deep reinforcement learning algorithms. They can be divided into model-based

deep reinforcement learning, model-free deep reinforcement learning, and model-free

87



4.2 Introduction to deep learning
Multi-agent Deep Reinforcement Learning-based Motion Control

for Hexapod Robots

deep reinforcement learning. Among them, model-free deep reinforcement learning

can be divided into value function-based deep reinforcement learning, such as Deep

Q-Network(DQN), and policy-based deep reinforcement learning, such as Proximal

Policy Optimization(PPO) and Deep Deterministic Policy Gradient(DDPG).This the-

sis’s robot motion control needs continuous motion output. Therefore, strategy-based

deep reinforcement learning is selected for robot motion control strategy learning.

4.2.1. Deep reinforcement learning is used for robot motion control

Chapter 2 of this thesis investigates the implementation of motion control of a hexa-

pod robot from the perspective of foot-end trajectory planning. Chapter 3 examines

robot motion control from a bionic perspective. The two previous approaches require

separate modeling of the environment or high-level processing of the environment and

robot pose information to give external inputs. However, the external environment

is complex and variable, the modeling of the environment cannot cover all situations,

and the separation of the control strategy and robot sensors may lead to the high

complexity of the robot control strategy. Deep reinforcement learning-based robot

motion control gives important information, such as joint commands for robot motion

control directly based on external sensor information and positional information to

achieve end-to-end robot motion control.

In 2018, Peng et al. [32]used the reinforcement learning algorithm PPO in a sim-

ulation. Humanoid and cheetah structures were trained in the environment, and

surprising results were achieved. Peng et al. performed the initialization operation

on the reference action of the agent during the agent training so that the agent starts

from the existing strategy and trains the strategy by imitating the position and speed

of the agent joints in the existing strategy. At the same time, new tasks are added

to guarantee that the agent can adapt to the complex external environment when

training the existing strategies. Subsequently, the complex actions are decomposed
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in different stages as the conditions for agent initialization. Objectively, the com-

plex task is decomposed to reduce the learning task difficulty. In order to reduce the

learning cost and improve learning efficiency, Peng et al. have made early termination

of some states in the training process to prevent the robot from entering the wrong

strategy during the training process. Including early termination can make the agent

reduce the trial and error cost in the training process and avoid failure as much as

possible.

Harrnoja et al. [33] proposed the Soft AC algorithm. The algorithm is dedicated

to increasing the information entropy of the strategy itself and thus expanding the

exploration space of the robot control algorithm. The information entropy is used

to measure the information content of the reinforcement learning strategy and con-

sciously increase the information entropy of the strategy. When the information

entropy is high, it indicates that the action strategy is informative, i.e., the strategy

exploration ability is strong.

Section 4.3

Introduction to MARL

Multi-agent reinforcement learning (MARL) [34] is a subfield of RL that focuses on

developing algorithms and techniques for learning in environments where multiple

agents interact with each other. In a multi-agent system, each agent makes decisions

based on its own observations and objectives, as well as the behavior of other agents

in the system. The goal of MARL is to design algorithms that enable agents to learn

how to cooperate or compete with each other in order to achieve a common goal, or

to optimize their own individual objectives while taking into account the behavior of

other agents [35]. MARL is relevant in a wide range of domains, including robotics,

game theory, economics, traffic control, and more. One of the key challenges in

89



4.3 Introduction to MARL
Multi-agent Deep Reinforcement Learning-based Motion Control

for Hexapod Robots

MARL is that the environment in which agents operate is no longer stationary, as

the actions of one agent can affect the environment and therefore the observations

and decisions of other agents. This means that each agent must learn not only its

own optimal policy, but also how to respond to the actions of other agents and how

to adapt its behavior over time. MARL algorithms can be categorized into two main

types: cooperative and competitive. In cooperative MARL, the agents work together

to achieve a common goal, while in competitive MARL, the agents compete with

each other to maximize their own objectives. Some popular algorithms for MARL

include Q-learning, actor-critic, and deep reinforcement learning algorithms such as

deep Q-networks (DQNs) and policy gradient methods. MARL has seen applications

in various domains such as multi-robot coordination, autonomous driving, and game

AI, among others.

Cooperative Multi-Agent Systems (MAS) refer to a group of agents that work

together to achieve a common goal. In cooperative MAS, the agents coordinate their

actions to achieve a shared objective that cannot be accomplished by any individual

agent alone. Cooperative MAS has applications in various domains such as robotics,

transportation, and healthcare. In cooperative MAS, the agents are interdependent,

which means that the actions of each agent affect the state of the environment and the

actions of other agents. This makes learning and coordination between the agents

a challenging problem. Some of the key issues that arise in cooperative MAS are

communication, coordination, and cooperation.

Communication: Agents in a cooperative MAS must communicate with each other

to coordinate their actions. Communication can be explicit or implicit, depending

on the design of the MAS. Explicit communication involves exchanging messages

between agents, while implicit communication involves observing the actions of other

agents.
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Coordination: Coordination refers to the process of ensuring that the actions

of the agents are consistent with the shared objective of the MAS. This requires

agents to have a common understanding of the objective and to take actions that are

complementary to each other.

Cooperation: Cooperation refers to the process of working together to achieve a

shared objective. Cooperation requires agents to act in a way that benefits the group

as a whole, even if it is not in their individual best interest.

Several techniques have been proposed for learning in cooperative MAS, includ-

ing joint action learning, distributed learning, and centralized learning. Joint action

learning involves training a single agent to take actions that are coordinated with

other agents. Distributed learning involves training each agent independently, while

centralized learning involves training a global model that controls the actions of all

agents. In conclusion, cooperative MAS is an important area of research in multi-

agent systems. Developing effective learning and coordination techniques for coop-

erative MAS has the potential to enable more efficient and effective collaboration

between agents in a wide range of domains.

In the multi-agent domain, deep reinforcement learning faces significant challenges

[36] [37]: First, the exponential growth of the action space due to the increase in the

number of agents makes the computation of Q values very difficult; Second, the

different goals and tasks of the agents and their interactions with each other lead

to difficulties in determining the target reward, which has a serious impact on the

convergence of the algorithm; Third, each agent’s exploration will cause changes in

the environment, and will also affect the policy choices of other agents, resulting in a

slow learning rate of the algorithm.

Researchers have proposed multi-agent deep reinforcement learning algorithms

to address the above mentioned problem. These algorithms can be classified into
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association-free, rule-based communication, and value function decomposition-based.

The association-free algorithm [38] extends the single-agent deep reinforcement learn-

ing algorithm to a multi-agent environment where each agent interacts independently

with the environment during training without communication. The rule-based com-

munication algorithm [39] introduces a communication mechanism between agents,

where each agent learns based on the messages other agents communicated during

training. The value function factorization algorithm aims to decompose joint rewards

into a specific combination of individual agent rewards through the imposition of

constraints to achieve global optimality when individual optimality is attained. Dur-

ing training, each agent makes decisions based on local observations and updates

the network using the joint rewards obtained from the value function factorization

algorithm.

The association-free algorithm [40] [41] is relatively simple to implement. How-

ever, due to the lack of communication between agents, the non-smoothness of the

environment can adversely affect the algorithm’s learning rate and efficiency. On the

other hand, the rule-based communication algorithm [42] [43] can establish a better

joint policy, but it requires a larger number of parameters to create a communication

channel and a more complex structural design.

Compared to the first two types of algorithms, the value function factorization

algorithm [44] [45] provides a solution to the exponential growth of action space

by decomposing the joint value function into individual value functions. It also en-

sures algorithm convergence since each agent only selects actions based on its local

observation and solves the difficulty of determining rewards caused by interaction

between agents. Additionally, this algorithm has high learning efficiency, can learn

the best joint policy faster, has a relatively simple structural design, and is highly

scalable [46] [47]. For instance, QMIX [48] uses a monotonicity constraint to decom-
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pose the value function, thereby improving the agent’s performance on challenging

StarCraft 2 micromanagement tasks. QPLEX [18] decomposes the value function

using a duplex duel structure, which enhances the algorithm’s performance in both

online and offline data collection and achieves high sample efficiency.

4.3.1. MARL based on value factorization

Deep reinforcement learning using value decomposition for multiple agents typically

involves two types of value functions: joint action value functions and individual

action value functions. The joint action value function is shared among all the agents

and is used to update the network, while the individual action value function is the

Q-value obtained by each intelligence based on their local observations. This Q-value

guides each intelligence in selecting actions. However, this approach is only suitable

for multi-intelligence reinforcement learning tasks in cooperative environments, as the

joint action value function is shared among all the agents.

Decentralized Partially Observable Markov Decision Process(Dec�POMDP.

Reinforcement learning (RL) solves the fundamental problem of ranking intelligent

decisions in environments with discrete time steps to maximize long-term cumulative

returns and is often formalized as a Markov Decision Process (MDP). The locomotion

of a hexapod robot on an unstructured ground generalizes the single-agent MDP to a

decentralized partially observable semi-Markov decision process (Dec-POMDP) [49]

described by (N,S,A, P,R, Z,O, γ) where

• N is the number of agents

• S is a set of global states and s ∈ S.

• A is the joint action space, defined as A = A1 × A2 × · · · × AN .
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• P is the transition model and P (st+1|st, at) that that denotes the probability

of next state st+1 when all agents select joint action at ∈ A along with state st.

• R is the reward function, which returns one total credit for all agents when they

select at ∈ A in state st.

• Z is the partially observable setting.

• O is the observation functions where each agent i receives an individual partial

observation oi ∈ Z by means of the observation probability function o(oi|, ai).

• γ ∈ [0, 1] is the discount factor.

We use τ to denote the history of joint action-observation. The action observation

history τi is maintained for each agent i, and based on this history, the agent con-

structs its personal policy πi(a|τi). The objective function is to find a joint policy π =

⟨π1, · · · , πn⟩ that maximizes the joint value function Vπ (s) = E[
∑∞

t=0 γ
trt|s0 = s, π]

and joint action-value function Qπ(s, a) = r(s, a) + γEs0 [Vπ (s0))]. The goal is to find

the optimal policies that maximize cumulative reward over time.

Centralized Training and Decentralized Execution (CTDE). Cooperative

multi-agent deep reinforcement learning employs a single joint reward signal to train

the network, which poses a significant challenge to the learning process. Addition-

ally, the coordination problem between agents cannot be effectively addressed by

independent Q-learning or fully centralized learning methods, owing to the partial

observability of the environment.

Independent Q-learning optimizes the reward function by training an independent

Q-learner. In this method, each agent treats the other agents as part of the environ-

ment, so each agent’s policy and reward are influenced not only by the environment

but also by the behavior of other agents, and there is the problem of false reward [50].
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Fully centralized learning [51] merges the individual agents’ action space and state

space into a joint action space and joint state space, resulting in a single-agent prob-

lem. This approach partially addresses the consistency and convergence issues. How-

ever, as the number of agents increases, the action space undergoes an exponential

explosion. Furthermore, in situations where one agent discovers an improved policy,

the other agents may not learn from it unless their exploration positively affects it,

leading to the occurrence of sluggish agents.

Therefore, researchers compromised between these two extreme approaches and

proposed the concept of centralized training and decentralized execution to solve the

problem in multi-agent tasks.

Centralized training: Unconstrained communication between agents during train-

ing, and a joint action value function Q≈ (st, At) is used to learn the algorithm. During

training, the algorithm has access to the action observation history τ and the global

state s of all agents.

Decentralized execution: During execution, communication between agents is re-

stricted to select actions only by computing individual action value functions Qa

(z, at) from their own observation histories τi, without considering the actions of

other agents.

4.3.2. MARL is used for robot motion control

MARL has been used for the control of legged robots in recent years, providing a pow-

erful solution to adapt to new environments and learn from experience. One example

of MARL for legged robots is the work of Hwangbo et al. [4], where a policy network

for a quadruped robot was initially trained in simulation and then transferred to the

real robot for further adaptation. To address the overfitting issue in reinforcement

learning, a hierarchical structure was proposed in [52], which allowed the system to

switch between different subtasks and behaviors, such as obstacle avoidance, wall
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following, and straight walking. Results showed that the approach was effective in

adjusting to severe interventions, such as the loss of a leg. However, this method falls

short of exhibiting a level of adaptivity within a specific behavior as that observed in

organisms with the ability to handle broad variations within a defined context, such

as climbing through an object with sparse and unpredictable support. Guillaume et

al. [53] proposed a MARL algorithm for decentralized control of a hexapod robot

for dynamic walking tasks. The control of the robot was distributed among multiple

agents, such as individual limbs or sensors, to improve adaptability and robustness

in complex and dynamic environments, rather than being centralized in a single con-

trol unit. The task of stabilizing a hexapod robot’s body is challenging due to its

non-linear and highly dimensional nature. The multiple paths for stability make it

difficult for multiple agents to reach agreement and collaborate effectively without

communication, complicating the task further. In contrast, we focus on adaptability,

including improved stability and robustness, enhanced coordination and cooperation

between the legs, and the ability to adapt to changing environments.

Section 4.4

MARL using QPLEX

Our hexapod robot is inspired by the field of MARL to enhance its decision-making

abilities. By incorporating principles from MARL, the hexapod can coordinate its

movements and optimize its actions in real-time for more efficient and effective per-

formance. The decentralized control architecture, which has already been successfully

realized in previous work, shows robustness in dealing with unpredictability and mi-

nor disturbances. However, scaling up to more challenging tasks, such as walking

on uneven terrain or climbing, is difficult as the controllers in previous work are

handcrafted taking inspiration from biology [54].
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We propose a learning-based approach using the MARL QPLEX method to over-

come this challenge. The Q-Learning algorithm and the “DUPLEX” and “DUEL-

ING” components improve coordination and cooperation between the legs, enabling

the hexapod to adapt and improve its behavior over time. Through terrain curriculum

learning, the hexapod can traverse unstructured terrain with steady and fast walking

patterns. Our approach provides a new perspective on hexapod robot control and has

the potential to lead to more efficient solutions for controlling multi-legged robots in

complex environments.An overview of the method, which is derived from the general

QPLEX algorithm presented in [47] is given in Fig.4.8. This section describes each

element of the system.

Figure 4.8: Overview of the presented approach. (A) The overall QPLEX archi-
tecture(a), the agent network(b), and the dueling mixing network(c). (B) Terrain
curriculum learning synthesizes maps with a suitable level of difficulty. (C) Motion
controller frame (after [47]).
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4.4.1. The hexapod platform

The hexapod platform is chosen for this study due to its versatility and stability.

A hexapod robot is statically stable and remains upright with little or no active

control due to redundancy, i.e., six legs, making it ideal for exploring unstructured

terrain. Each leg has three links: the hip, femur, and tibia, with each containing a

motorized joint. These 18 joints are usually actuated using a dedicated servo system.

Our platform model assumes position servos because they have an internal feedback

control loop for low-level control. The joint actuator also needs information about the

current joint motor, e.g., the instantaneous current or torque. On such a platform,

it is likely that unrealistic or impractical leg positions, such as the tibia touching

the hip, can occur. Therefore, limits are placed on joint ranges. We import the

robot model into the Gazebo simulation environment [55] and use ROS to provide

modularity, interoperability, simulation support, and scalability for developing and

testing simulated robots [56]. ROS is run at a fixed rate of 25 Hz to ensure consistency

of sensor data and actuator data.

The robot is programmed to walk in various conditions, including uneven terrain,

slopes, and obstacles. The robot is assumed to be equipped with six inertial mea-

surement units(IMU), encoders on each joint and contact force sensors on each foot

to collect data on its movement and performance during learning trials (Fig.4.9).
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Figure 4.9: This decentralized architecture is used on a hexapod robot and learning

of the six local control modules is driven by a reward signal as in MARL.

4.4.2. Reset Condition

In the context of reinforcement learning for the hexapod robot, it is crucial to reset

the robot to prevent behaviors that violate its mechanical constraints and impact the

sensor data. To achieve this, four conditions are defined for resetting the robot based

on pose angle, body center height, total motion time, and body collision judgment

and constraint. The pose angle constrains the roll angle to ±0.4 rad, pitch angle to

±0.3 rad, and yaw angle to ±0.3 rad. The body center height is defined as the height

range of the center of mass (COM), which is restricted to [0.15, 0.3]. The maximum

learning time for each episode is set to 40 seconds, and the reward is reset to zero if

the body (excluding legs) comes into contact with the ground.

4.4.3. Reward function definition

A hexapod robot moving on unstructured ground aims to produce a rhythmic gait

while satisfying all kinematic and dynamic constraints. The reward function is as
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follows:

rt = rmf + rfl + rft + rcp + rdx (4.20)

Each element of the reward function is provided in Table 4.1. c1, c2, c3, c4, c5, c6 rep-

resents foot contact of front left, middle left, hind left, front right, middle right, hind

right legs respectively. tstance denotes the cumulative length of time that a particular

foot of the robot touches the ground. veld is the desired velocity. θcp represents the

pitch angle of the body. αcp represents the roll angle of the body. dx is the verti-

cal distance of body from x-axis. The role of rmf is to maintain a desired footstep

frequency and keep a consistent and steady pace. rfl enables the hexapod to place

its feet accurately and in a controlled manner, while rft is enables the hexapod to

move its feet smoothly and without sudden changes in trajectory. rcp is designed

to maintain a balanced COM and stable posture, and rdx is designed to encourage

the hexapod to move in a manner that conserves energy and minimizes unnecessary

movement. By combining these various rewards, the overall reward function aims to

provide comprehensive control of the hexapod’s gait and encourage the development

of rhythmic and efficient movement.

In reinforcement learning, the reward function plays a crucial role in guiding

the learning process by providing feedback to the agent. However, designing an

effective reward function can be challenging, particularly in complex environments

like hexapod robot locomotion. The approach described here provides a means to

investigate reward shaping techniques that can be used to achieve alternate gaits,

encourage exploration, or set alternate objectives. For example, if a leg motor fails,

the reward function could be shaped to avoid use of the failed leg. Alternate gaits,

such as jumping or trotting, could be achieved through shaping rmf and rfl. Shaping

the reward function can encourage the robot to minimize energy use.

100



4.4 MARL using QPLEX
Multi-agent Deep Reinforcement Learning-based Motion Control

for Hexapod Robots

Table 4.1: REWARD COMPONENTS

rmf

|3c1 − c2 − c4 − c6|+ |2c2 − c3 − c5|+ |2c3 − c4 − c6|

+ |c4 − c5|+ |c5 − c6| − |2c1 − c3 − c5| − |c3 − c5|

− |2c2 − c4 − c6| − |c4 − c6|

rfl
∑

i∈N |tstance (i)− 0.4|

rft
veld + 1

veld ∥xvel − veld∥+ veld
− 1

veld

rcp
√

θ2cp + α2
cp

rdx |dx|

4.4.4. QPLEX architecture in the hexapod robot

The main contribution of this thesis is that of applying a QPLEX architecture mod-

ified from [47] to hexapod robot MARL as shown in Fig 4.8.A. The robot has six

legs, each with three degrees of freedom, and is designed to navigate complex envi-

ronments. The goal is to coordinate the movements of the six legs to achieve stable

and efficient locomotion.

To apply the QPLEX architecture, the hexapod robot is modelled as a multi-

agent system where each leg is treated as a separate agent; each leg has a local

control module. The state of each leg is represented by its joint angles, velocities,

and ground contact, and the action of each leg is represented by the control signals

applied to its drive system. Each element of the QPLEX architecture is described as

follows:

Individual action-value function: the individual action-value function of each leg

consists of an RNN network (Q network), as in Fig 4.8.A(b) that has three layers:

the input layer (MLP multilayer neural network) → intermediate layer (GRU gated

recurrent neural network) → output layer (MLP multilayer neural network)). The
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inputs to each leg controller are local information from that leg and previous ac-

tion signals. The Q network is trained to estimate the expected cumulative reward

associated with each action.

Duplex Dueling component: The double-sided duel component is used to com-

pose a single action-value function into a joint action-value function to satisfy the

dominance-based individual-global-max(IGM) constraint, as shown in Fig 4.8.(c).

The component consists of a conversion network module and a dual hybrid network

module. The conversion network module converts the individual duel structures con-

ditional on the joint action-observation history. The dual hybrid network module

uses the output of the transformation to generate the value of the joint action-value

function.

Control signal generation: The joint action-value function is used to determine

the control signal for each leg. The control signal is computed by selecting the action

that maximizes the joint action-value function at each time step.

Reinforcement learning: The QPLEX algorithm is trained in a simulated environ-

ment using reinforcement learning. The robot is rewarded for maintaining stability

and moving efficiently. The training process is centralized, and the entire network

is learned end-to-end to minimize temporal difference (TD) loss. QPLEX’s policy

network is based on a centralized training paradigm, where a central critic network

estimates the joint action-value function, and each agent has its own local actor

network that selects its individual action based on its local observation of the envi-

ronment and communication with other agents. A neural network approximates the

learned policy function. The policy networks consist of two hidden layers of 64 units

each with tanh activation functions. After training, the duplex dueling component

is removed, and each leg is controlled using its individual Q-function based on the

local action-observation history. The hexapod robot is tested in various simulated
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environments, and its performance is evaluated by comparing its movements with

those generated by other algorithms.

Figure 4.10: Fully-decentralized MARL method.

The fully-decentralized method is used as a baseline for comparison with the

QPLEX algorithm: for this baseline, each leg of the hexapod robot selects its actions

independently (Fig. 4.10), based on its local observation history, without consid-

ering the actions of other legs. Each leg is equipped with a Q-network which is

optimized using the Proximal Policy Optimization (PPO) [57] algorithm to estimate

the expected cumulative reward associated with each action. The PPO algorithm

is selected due to its successful performance on continuous tasks without intensive

hyperparameter tuning, as well as its relatively low sampling complexity for iden-

tifying usable policies. During the execution, the Q-network of each leg is used to

determine the control signals for the corresponding leg based on the current state

of the leg and its previous hidden state. The fully-decentralized method does not

consider the interactions between the legs and thus may not result in coordinated

movements. However, it is simple to implement and does not require communication

between legs. Our experiments investigate the QPLEX algorithm’s effectiveness in
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improving the coordination and efficiency of hexapod locomotion compared to the

fully-decentralized method. The experiments also examine the role of the reward

function in promoting rhythmic and efficient movement in the hexapod robot.

4.4.5. Terrain curriculum learning

Our method is inspired by Automatic Course Learning (ACL) [58] [59]. In this ap-

proach, robots are trained to learn how to navigate various terrains, starting with

simple and predictable surfaces and gradually increasing in difficulty as it improves.

Our approach also implements a training course that progressively modifies the en-

vironment parameters, and the hexapod robot terrain course learning aims to enable

the robot to navigate over unstructured surfaces successfully. Fig.4.8B and Fig. 4.11

shows the terrains used for our training environments, such as hills, steps, stairs, and

terrain parameters generated by cT ∈ C. We evaluate cT by the traversal ability of

the generated terrain and use importance weights ω to determine the relative priority

given to different tasks in the course to improve learning efficiency.

The training process typically begins by presenting the robot with a series of

simple and predictable terrain types, such as flat surfaces or gentle slopes. The

robot is then trained to navigate these surfaces using its six legs, and the difficulty

is gradually increased by introducing more complex terrain types, such as rough or

uneven surfaces. As the robot encounters new terrain types, it learns through trial

and error to adjust its movements and balance to successfully navigate the terrain.

Feedback from the robot’s sensors and its success or failure in completing a task is

used to update its learning algorithms, allowing it to continuously improve. One

important aspect of terrain curriculum learning for hexapod robots is that it allows

the robot to generalize its experiences from one terrain type to another. For example,

if the robot has learned how to navigate a particular type of rough terrain, it can

apply this knowledge to navigate similar terrain types more efficiently.
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Figure 4.11: The simulated hexapod robot is visualized in different environments.
Panel (a) depicts a walking sequence on flat terrain. Panel (b) illustrates the robot
navigating uneven terrain conditions. Panels (c) and (d) show the robot traversing
stochastic height steps and a stochastic staircase terrain, respectively.

Section 4.5

Results

The present study investigates the performance of hexapod robot motion policies

trained via the proposed value function decomposition algorithm, QPLEX. The trained

policies are evaluated in various simulated environments, and their effectiveness is as-

sessed based on Mean Reward and Standard Deviation measures. To demonstrate the

efficacy of QPLEX in the hexapod robot application, we trained two distinct struc-

tures, one employing QPLEX and the other employing a fully-decentralized approach.

Subsequently, we conducted a comparative analysis of the learning experiments be-
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tween the QPLEX and fully-decentralized structures. Our findings provide insights

into the relative merits of these two structures for the hexapod robot motion control.

4.5.1. Performance of Locomotion Architectures and Reward Function

Impact on Rhythmic Gaits on Flat Terrain

In the first experiment, we study learning to walk on flat terrain and producing a

rhythmic gait. We compare the two architectures. Each is trained 15 times using

random seeds and trained for 5000 epochs of environmental simulation.

To confirm the coordination and symmetry of the gait produced by our approach,

we utilized the gathered foot contact data to derive the foot contact map. Fig.4.12

shows the foot contact pattern for robot speeds greater than 0.7m/s. Both learning

methods can achieve performance in coordination and high-speed walking at a high

rate. Both methods use a trained controller to implement the behavior and evaluate

performance using the average reward of 100 individual episodes. Results reveal

that the proposed QPLEX architecture outperforms the fully-decentralized baseline

approach in achieving walking behavior shown in Fig. 4.11a and the supplemental

video, with a mean reward of 717.4 and the standard deviation is 42.4 for QPLEX

compared to 592.4 and a standard deviation of 86.9 for the baseline approach. The

QPLEX method performs significantly better than the fully-decentralized method.

The average reward for the QPLEX method is significantly higher with Cohen’s D

effect size (i.e., Standard mean difference) of 1.84.

Since the results show some variation, we focus on the best solution generated by

running multiple seeds during the learning process. We compare the best-performing

controllers in both structures and find that the standard deviations are similar in both

cases. However, the distribution seemed larger for the fully- decentralized approach.

Table 4.2 presents the ten best-ranked seeds, with the best-performing approach being

the QPLEX architecture and QPLEX accounting for 80% of the rankings.
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Figure 4.12: Foot contact plots, A dark color indicates that the foot is touching the
ground and a light color indicates that the foot is being lifted.

In summary, as a first result, we found that a QPLEX control architecture pro-

duces high performance and well-coordinated rhythmic gaits. The QPLEX controller

also shows significantly better performance at larger effect sizes.

4.5.2. Comparison of Learning

In this study, the trained architectures underwent 5000 epochs of training. Prelimi-

nary tests revealed that, at this stage, controller performance had reached convergence

for both architectures. This observation supports the notion of an achievable desired

velocity. Herein, we present a analysis of the training performance evolution over

time, illustrated in Fig. 4.13. The average performance of both architectures was

computed during the training process using 15 seeds. Despite the reward signal be-

ing smoothed through averaging, the learning process still exhibited a high degree of

variability as observed in individual runs. A noticeable difference in performance be-

tween the two architectures is evident in Fig. 4.13; the QPLEX architecture achieves

a reward level at after ∼2000 training epochs that is comparable to the steady-state
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Table 4.2: Results of Selecting the 10 Seeds with the Best Average Reward in the
QPLEX and Fully-Decentalized Architectures.

Rank Architecture Mean Reward Standard Deviation
1. QPLEX 814.2 17.7
2. QPLEX 761.5 27.0
3. QPLEX 754.8 14.1
4. QPLEX 753.0 45.9
5. Fully-decentralized 746.8 23.6
6. QPLEX 739.4 16.3
7. QPLEX 739.7 37.9
8. QPLEX 729.7 28.7
9. QPLEX 724.1 15.1
10. Fully-decentralized 699.0 18.3

reward for the fully-decentralized architecture, and the mean reward function is ap-

proximately 21% larger.

4.5.3. Generalization to Uneven Terrain

This study examines the efficacy of diverse trained control architectures when sub-

jected to uneven terrain conditions (see Fig. 4.11(b)). This new problem poses a

challenge to the trained controller and thus provides an opportunity to test its gen-

eralization and robustness. We conducted 100 simulations in which all controllers

trained on flat terrain were tested on the uneven terrain generated by the DeepMind

control suite’s uneven terrain generator [60]. The terrain was implemented as a height

field in the simulations.

The surface smoothness was varied systematically in this study, from a smooth

surface (set at 1.0, the same as in the flat terrain training) to a rockier surface (with

smoothness factors of 0.9, 0.8, and 0.7), until the controller experienced difficulty gen-

erating any further motion. Both architectures displayed a decline in performance on

uneven terrain, as expected (see Fig. 4.14(a)). To further examine this, 15 additional

controllers were trained on uneven terrain with a smoothness of 0.8 for both archi-

tectures (see Fig. 4.14(b)). Comparing the results on uneven terrain, no significant
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Figure 4.13: Comparison of the mean reward during training: The mean performance
of the fifteen QPLEX controllers is depicted in blue, while the average reward for the
baseline fully-decentralized approach is displayed in orange. The standard deviation
is denoted by the shaded areas. The measure of performance is the reward obtained
per episode.

difference is observed between the controllers trained on flat terrain and the special-

ized controllers trained on uneven terrain with smoothness of 0.8. This is observed

by comparing Fig. 4.14a and b at 0.9, 0.8, and 0.7 smoothness factors, respectively.

Finally, the controllers trained on uneven terrain are evaluated on flat terrain, but

they do not reach the level of the performance of the controllers trained on flat terrain,

and there is a significant performance difference. The QPLEX and fully-decentralized

methods showed the same result in this regard. However, the QPLEX architecture

shows lower performance reduction compared to the fully-decentralized architecture

in Fig. 4.14(a)(b). These results show that the scope of information used by the

control architecture is important for generalization of the controller. A global, decen-

tralized architecture is advantageous over the fully-decentralized approach, especially

on challenging terrain, where more sensory information becomes beneficial and im-

portant for behavior. We evaluate performance robustness on uneven terrain. The
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conclusion is further supported by the fact that the QPLEX approach significantly

outperforms the fully-decentralized approach on uneven terrain.
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Figure 4.14: Box plots representing the evaluation of diverse terrain types across two

distinct training conditions: (a) training on flat terrain and evaluation on progres-

sively rough terrain (where smoothness of 1.0 denotes flat terrain, and 0.0 indicates

very rugged terrain), target velocity is set to 2.0 and (b) training on uneven terrain

with a smoothness value of 0.8, followed by evaluation on increasingly uneven terrain.111
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4.5.4. Importance of the terrain curriculum learning

Figure 4.15: Importance of the terrain curriculum.

In the process of training a hexapod robot, it is not feasible to train it directly on

challenging terrain. Instead, similar to the human learning process, the robot must

commence with basic tasks and gradually progress to more complex ones. Specifically,

the hexapod robot undergoes initial training on a flat surface to establish a stable

walking gait, followed by an incremental increase in surface feature size. The initial

step height is set at 1 cm, after which it is raised by increments of 1 cm until reaching

a maximum height of 10 cm. Through the application of the QPLEX technique with

terrain curriculum learning, the hexapod robot can successfully overcome 10 cm stairs

(Fig. 4.11(c)(d)). Likewise, when preparing for movement on unstructured, uneven

terrain, the training process initiates at a minimal height of 1 cm and gradually

advances to higher elevations and greater ground roughness, leading to the creation

of effective policies capable of navigating through various complex terrains.
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Fig. 4.15 evaluates the impact of terrain curriculum learning on QPLEX training.

The actual terrain used for training is shown in Fig. 4.11. As a baseline, we use

QPLEX previously trained on uneven terrain with smoothness = 0.8. QPLEX with

terrain curriculum consistently outperforms QPLEX without terrain curriculum in

terrain testing and is more stable.

Section 4.6

Chapter Summary

In summary, this chapter introduces a sophisticated value function decomposition

algorithm, QPLEX, tailored for hexapod robot motion control. The QPLEX frame-

work is conceived as a multi-agent system, wherein each leg operates as an individual

agent possessing its dedicated control module. Employing reinforcement learning

within a simulated environment, the QPLEX algorithm is trained to attain stable

and efficient locomotion. The research demonstrates that QPLEX surpasses the fully-

decentralized baseline methodology in accomplishing ambulatory behavior, yielding

exceptional performance and harmonious rhythmic gaits. Moreover, the investiga-

tion assesses the adaptability of trained controllers on irregular terrain and reveals

the superior resilience and efficacy of QPLEX compared to the fully-decentralized

approach. Lastly, the significance of terrain curriculum learning is appraised, reveal-

ing that QPLEX, when integrated with terrain curriculum, consistently outshines its

counterpart without terrain curriculum, exhibiting enhanced stability.

Section 4.7

Appendix
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Table 4.3: Detailed results after 5000 epochs of learning. The average reward of
each of the 15 learned controllers of the QPLEX architecture was evaluated in 100
simulation runs after training.

Seed (Architecture) Avg. Reward Std. Dev. (btw. runs)
Seed 1, QPLEX 724 15
Seed 2, QPLEX 647 23
Seed 3, QPLEX 730 29
Seed 4, QPLEX 739 16
Seed 5, QPLEX 814 17
Seed 6, QPLEX 754 14
Seed 7, QPLEX 753 46
Seed 8, QPLEX 739 38
Seed 9, QPLEX 658 19
Seed 10, QPLEX 676 13
Seed 11, QPLEX 697 28
Seed 12, QPLEX 762 27
Seed 13, QPLEX 684 47
Seed 14, QPLEX 700 19
Seed 15, QPLEX 683 18
Mean performance 717
Std. dev. 43
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Table 4.4: Detailed results after 5000 epochs of learning. The average reward of
each of the 15 learned controllers of the Full-decentralized architecture was evaluated
in 100 simulation runs after training.

Seed (Architecture) Avg. Reward Std. Dev. (btw. runs)
Seed 1, Full-decentralized/baseline 523 27
Seed 2, Full-decentralized/baseline 616 22
Seed 3, Full-decentralized/baseline 371 86
Seed 4, Full-decentralized/baseline 613 13
Seed 5, Full-decentralized/baseline 699 18
Seed 6, Full-decentralized/baseline 549 15
Seed 7, Full-decentralized/baseline 612 26
Seed 8, Full-decentralized/baseline 747 24
Seed 9, Full-decentralized/baseline 659 21
Seed 10, Full-decentralized/baseline 603 27
Seed 11, Full-decentralized/baseline 547 17
Seed 12, Full-decentralized/baseline 618 27
Seed 13, Full-decentralized/baseline 526 16
Seed 14, Full-decentralized/baseline 677 15
Seed 15, Full-decentralized/baseline 547 14
Mean performance 592
Std. dev. 86

Table 4.5: Comparison of rewards between the different control architectures during
evaluation. Data was collected during evaluation for 100 episodes for each controller.
Given are average rewards (and standard deviation in brackets) for each group of con-
trollers (each group consisted of fifteen individually trained controllers). There were
two different controller architectures, QPLEX and Fully-decentralized approaches,
and two different training conditions,trained on flat terrain or on uneven terrain
((Smoothness=0.8).followed by evaluation on increasingly uneven terrain.

Condition QPLEX Arch.
Trained on ... Flat Terrain Uneven Terrain

Evaluation on flat terrain (Smoothness=1.0) 717(43) 634(43)
Evaluation on uneven terrain (Smoothness=0.9) 495(54) 586(46)
Evaluation on uneven terrain (Smoothness=0.8) 482(57) 583(36)
Evaluation on uneven terrain (Smoothness=0.7) 458(75) 546(54)

Condition Fully-decentralized Arch.
Trained on ... Flat Terrain Uneven Terrain

Evaluation on flat terrain (Smoothness=1.0) 592(86) 499(54)
Evaluation on uneven terrain (Smoothness=0.9) 441(106) 472(45)
Evaluation on uneven terrain (Smoothness=0.8) 431(110) 469(40)
Evaluation on uneven terrain (Smoothness=0.7) 372(112) 428(67)
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Figure 4.16: Evaluation on different types of terrain:training on flat terrain and evalu-
ation on progressively rough terrain (where smoothness of 1.0 denotes flat terrain,and
0.0 indicates very rugged terrain)In (a) mean return for the two architectures is shown
and how performance decreases for more difficult terrain. Target velocity is set to 2.0
(fast walking). Panel (b) compares mean returns for increasingly uneven terrain for
the different architectures. QPLEX architecture performs highly significant better
compared to fully-decentralized architecture.
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Figure 4.17: Evaluation on different types of terrain:training on uneven terrain with
a smoothness value of 0.8, followed by evaluation on increasingly uneven terrain.In
(a) mean return for the two architectures is shown and how performance decreases for
more difficult terrain. Target velocity is set to 2.0 (fast walking). Panel (b) compares
mean returns for increasingly uneven terrain for the different architectures. QPLEX
architecture performs highly significant better compared to fully-decentralized archi-
tecture.
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Chapter 5

Conclusion and Future Work

Section 5.1

Conclusion

This paper aims to address the issue of motion control for footed robots, specifi-

cally focusing on hexapod robots. These robots possess a high degree of redundancy

and relatively low control policies, making them an appropriate research subject. By

studying insect morphology and movement patterns, a robot model is designed to ver-

ify and study motion control algorithms. Robot motion control is achieved through

trajectory planning, utilizing the study of positive and negative kinematics of hexa-

pod robots. Bionic principles derived from the study of animal rhythmic motion are

applied to implement robot motion control. Furthermore, the theoretical basis of

deep learning and multi-agent reinforcement learning is explored to train the robot

motion control strategy with a multi-agent deep reinforcement learning design. The

key contribution of this paper lies in the successful implementation of robot motion

control.The main work accomplished in this paper is: (1)We summarize the research

on footed robots conducted by multiple universities and enterprises, with a specific

focus on the motion control of hexapod robots. Through an analysis of insect form,
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a hexagonal robot body and a three-joint robot single leg were designed, and a struc-

tured model of the robot was assembled using SolidWorks. The walking gait of the

hexapod robot was classified into three-legged, four-legged, and fluctuating gait, and

various gait patterns were analyzed and compared based on the study of insect mo-

tion. Regardless of the gait, it was observed that the single leg moves in the same

manner on structured ground. By analyzing the single leg foot end trajectory, the leg

tip trajectory of the hexapod robot was planned, and the robot leg kinematic solution

was derived from the perspective of robot kinematics. The robot leg kinematic solu-

tion was experimentally verified, and the robot motion control was completed using a

three-legged gait, including foot end trajectory planning and kinematic solution. The

robot effect was judged and explained from the perspective of displacement change

and body pitch angle change during the robot walking process.

(2)We presents an animal-inspired approach to motion control, utilizing the con-

struction of a CPG control unit based on the Hopf oscillator. The oscillator’s math-

ematical model parameters are analyzed to determine their influence on the output

waveform, and the values of these parameters are optimized for robot motion control.

To simplify the network, the control signals of the tibial and femoral segments of the

robot’s legs are reduced to the output signals after half-wave processing of the base

segment signals. Ultimately, the CPG network is constructed, enabling the robot to

achieve motion control in complex environments such as stable walking and climbing.

The robot’s motion process is further analyzed and quantitatively evaluated in terms

of displacement change and body pitch angle.

(3)We proposes a value function decomposition algorithm, QPLEX, applied to

hexapod robot motion control. The QPLEX architecture is designed as a multi-agent

system, where each leg is treated as a separate agent with its local control mod-

ule. The QPLEX algorithm is trained using reinforcement learning in a simulated
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environment to achieve stable and efficient locomotion. The study shows that the

QPLEX architecture outperforms the fully-decentralized baseline approach in achiev-

ing walking behavior and produces high performance and well-coordinated rhythmic

gaits. Furthermore, the study examines the generalization of the trained controllers

on uneven terrain conditions and shows that the QPLEX architecture is more robust

and performs significantly better than the fully-decentralized approach on uneven

terrain. The importance of terrain curriculum learning is also evaluated, and the

results show that QPLEX with terrain curriculum consistently outperforms QPLEX

without terrain curriculum in terrain testing and is more stable.

The robot motion control approach of foot-end trajectory planning enables robot

motion control through inverse kinematic solution, provided that a determined foot-

end trajectory is available. However, the real-world environment is complex and ever-

changing, making it difficult to plan different trajectories for various types of ground.

Therefore, this motion control method has limited generalization capability for diverse

terrain. In contrast, the animal-inspired central pattern generator-based robot motion

control method relies on rhythmic motion and has a simple and user-friendly control

strategy that can be coupled with high-level control information for more complex

robot motion. However, this method’s control policy is limited to the core aspects

of the approach. In this paper, a robot motion control policy based on multi-agent

deep reinforcement learning input is proposed, using robot pose information to adjust

the policy output robot motion control signal via continuous training. Compared

to the previous two approaches, this method offers more flexible motion strategy

adjustments, making it a more advantageous control policy. The combination of

these three approaches can be used to develop an easy-to-use robot motion control

policy tailored to specific robot motion control scenarios.
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Section 5.2

Future Work

In this paper, all experiments were conducted in a simulation environment, which

allowed us to verify the effectiveness of our proposed methods. However, it should be

noted that the mechanical structure of the robot, including factors such as motor se-

lection and manufacturing process, can significantly impact the actual motion control

performance of the robot. The intelligent system used for training in the simulation

environment employed ideal motors, whereas actual motors can experience power and

delay issues. As a result, the robot motion control policies developed in the simula-

tion environment may not translate directly to the actual robot. Therefore, further

work is needed to bridge the gap between simulation and practical implementation,

including the development of more realistic simulation models and the exploration of

methods for transferring trained policies to real-world robots.
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