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Resumo

Autonomia e capacidade de adaptação são características chave na criação de sistemas
robóticos capazes de levar a cabo diversas tarefas em ambientes não especificamente prepara-
dos nem configurados para tal. Estas características são comuns nos animais, sistemas bi-
ológicos que muitas vezes servem de modelo e inspiração para desenhar e construir sistemas
robóticos. A autonomia e adaptabilidade destes sistemas advém parcialmente da sua capaci-
dade de aprender. Quando ainda jovens, os animais aprendem a controlar o seu corpo e a
movimentar-se, muitos mamíferos aprendem a caçar e a sobreviver com os seus progenitores.

Ultimamente tem havido um crescente interesse em como aplicar estas características
no desenho e criação de sistemas robóticos. Nesta dissertação é proposto um mecanismo
que permita que um robô quadrúpede seja capaz de detectar e evitar um obstáculo no seu
caminho. A detecção é baseada num Forward Internal Model (FIM) que aprende a prever
os valores dos sensores de percepção do robô, os quais procuram detectar obstáculos no seu
caminho. Por forma a evitar os obstáculos, os sinais de detecção dos obstáculos são usados
na criação de um mapa que permitirá ao robô alterar a sua locomoção mediante o que é
necessário. Este mapa é construído à medida que o robô falha e tropeça no obstáculo. Nesse
momento, o mapa é definido para que tal situação seja evitada no futuro. Ambos os processos
de aprendizagem são levados a cabo em tempo de execução e mantêm esse processo activo
por forma a possibilitar a readaptação a eventuais novas situações.

Este mecanismo foi inspirado nos trabalhos [14, 17], mas aplicados aqui a um quadrú-
pede com uma configuração de sensores diferente e específica. O mecanismo será interligado
ao gerador da locomoção, baseado em Control Pattern Generator (CPG) proposto em [22].
Por forma a atingir o objectivo final, o controlador irá enviar comandos para o CPG a fim da
locomoção ser alterada como necessário.

Os resultados obtidos mostram o sucesso em ambos os processos de aprendizagem. O
robô é capaz de detectar o obstáculo e alterar a sua locomção de acordo com a informação
adquirida nos momentos de colisão com o mesmo, conseguindo efectivamente passar por
cima do obstáculo sem nenhum tipo de colisão.

Palavras Chave: Controlador Adaptativo; Autonomia nos Robôs; Locomoção Quadrú-
pede; Aprendizagem de máquina; Forward Internal Model; Inspiração Biológica.
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Abstract

Autonomy and adaptability are key features in the design and construction of a robotic
system capable of carrying out tasks in an unstructured and not predefined environment.
Such features are generally observed in animals, biological systems that usually serve as an
inspiration models to the design of robotic systems. The autonomy and adaptability of these
biological systems partially arises from their ability to learn. Animals learn to move and
control their own body when young, they learn to survive, to hunt and avoid undesirable
situations, from their progenitors.

There has been an increasing interest in defining a way to endow these abilities into
the design and creation of robotic systems. This dissertation proposes a mechanism that
seeks to create a learning module to a quadruped robot controller that enables it to both,
detect and avoid an obstacle in its path. The detection is based on a Forward Internal Model
(FIM) trained online to create expectations about the robot’s perceptive information. This
information is acquired by a set of range sensors that scan the ground in front of the robot in
order to detect the obstacle. In order to avoid stepping on the obstacle, the obstacle detections
are used to create a map of responses that will change the locomotion according to what is
necessary. The map is built and tuned every time the robot fails to step over the obstacle and
defines how the robot should act to avoid these situations in the future. Both learning tasks
are carried out online and kept active after the robot has learned, enabling the robot to adapt
to possible new situations.

The proposed architecture was inspired on [14, 17], but applied here to a quadruped robot
with different sensors and specific sensor configuration. Also, the mechanism is coupled
with the robot’s locomotion generator based in Central Pattern Generators (CPG)s presented
in [22]. In order to achieve its goal, the controller send commands to the CPG so that the
necessary changes in the locomotion are applied.

Results showed the success in both learning tasks. The robot was able to detect the
obstacle, and change its locomotion with the acquired information at collision time.

Keywords: Adaptive robot controller; Autonomy in robotics; Quadruped locomo-
tion; Learning; Forward Internal Model; Biological inspiration.
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Chapter 1

Introduction

The work described in dissertation concerns the adaptive control of a quadruped robot. It
proposes a mechanism that can be coupled to the locomotion’s controller, and endows that
robot with the ability to detect an obstacle and to learn to step over it. In order to address
these goals the proposed solution uses biologically inspired concepts that grant the necessary
features, such as adaptability to changing situations.

Biologic concepts are widely used to address very different problems that also concern
adaptive control of robotic platforms. The following sections will give an insight to these
problems and the type of solutions that can be used to address them. Then, the objectives
and methodologies used to design and build the mechanism are presented.

1.1 Motivation

There has been an increasing interest in creating autonomous mechanical systems, robots,
that can move and perform tasks in an unstructured and not predefined environment. These
characteristics are very natural in animals, biological systems, which often serve as inspira-
tion models to the creation of those machines.

Usually, when the creation of a robotic system is inspired on a biological system, it
means more than mimicking physical properties or limb structure. It also includes the con-
trol structures and methods that make the biological system autonomous. The creation of a
biologically inspired robotic systems might be seen by two perspectives. They can be used
to move and act in the environment, autonomously carrying out hard and uninteresting tasks
or dangerous ones, that can be injurious to human health. Or else, they can be seen as evalu-
ation platforms for the control mechanisms and the physical properties that were thought to
be a part of biological systems.

Autonomy in a robotic system is expected to make a robot capable to adapt to unex-
pected situations without the need for recalibration or without requiring instruments in the

1



2 CHAPTER 1. INTRODUCTION

surrounding environment in order to safely move in it. Usually, these features require more
than a mathematical model of the controller or an environmental geometric representation.
Such approaches, are not suitable to deal with unexpected situations. Also, this type of in-
teraction is not likely to be programable due to its extensibility or complexity in some cases.
So, ideally, at least up to some degree, this type of controller should be able to learn and self
tune according to its and the environment’s properties.

There are several types of problems that can be regarded as dynamical or adaptive con-
trol. Some works are focused on autonomous robotic arm manipulator that seek to build a
visuomotor map. This type of structure defines a relation between visual information and
the robot’s configuration or motor commands. It can be used to autonomously control a
robotic arm to reach a specific point in its workspace, or follow a moving object with its end
effector ([2, 25, 18, 27]). Other works are focused in adaptively control walking machines
such as bipeds, quadrupeds or hexapods. Some locomotion controllers seek to adaptively an
autonomously perform tasks such as overcoming obstacles, moving in rough or uneven ter-
rain, or walking up and down slopes ([11, 9, 14, 20]). Also the control of wheeled or tracked
robots seek to achieve adaptive and autonomous control in order to create autonomous be-
haviors, such as navigation or obstacle avoidance ([29, 19]). Although these problems are
very different, they all share a common goal: building a controller that grants the robot
autonomy and adaptability when interacting with the environment.

In most cases the adaptive controller is required to capture the existing relation between
the sensing of the environment and the robot’s state. This usually means that the robot
needs to define the relation between the sensory information and the motor commands that
somehow will change the environment, or at least the robot’s perception of the environment.
Or else, this relation might be used to define the robot’s actions according to its sensory
information, its state and its goals. The required type of relation might be very hard, or even
impossible in some cases, to achieve by using analytical models or by manual definition.
The high nonlinearity, usually observed in this type of relations, and the high dimensionality
of both side variable spaces, make such type of approach unfeasible. Also, there is not a
complete knowledge about the system, or the environment, which makes it even harder to
manually or analytically define this relation.

Some well known biologically inspired machine learning methods are capable of ac-
quiring highly non linear relation or to gradually adapt the control to necessary conditions.
Therefore, this type of approach can be applied to the creation of autonomous and adap-
tive controllers. The Artificial Neural Networks are models inspired in the animal nervous
system; Reinforcement Learning is a unsupervised learning technique that relies in learn-
ing through reward and penalty; and Genetic Algorithms (GA) are optimization algorithms
based on the Darwin’s evolution theory.
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Ideally this required relation, or part of it, should be acquired autonomously, according
to the required goal. This should happen online through a learning process that adapts the
controller to the environment and to the mechanical system it is controlling.

This document presents a first attempt to create an adaptive controller that will allow a
quadruped robot to detect an obstacle in its path and to learn how to avoid stumbling on
it. The detection of the obstacle relies on self generated expectations for a set of preceptive
sensors that scan flat ground in front of the robot. In order to avoid the obstacle, the robot
builds a map that dictates the necessary alterations to the locomotion according to the ob-
stacle detections. Both tasks are learnt online and keep that state throughout the "life of the
robot".

1.2 Objectives

The mechanism proposed here presents a way of endowing a quadruped robot with learn-
ing capabilities, that will enable it to detect and avoid an obstacle in its way. The robot’s
locomotion is achieved by a bio-inspired architecture that uses CPGs based on dynamical
systems. The mechanism will be applied to that locomotion controller in order to use the
acquired knowledge to adequately parameterize the CPG. This will result on the necessary
alterations to the locomotion that will grant the robot to achieve its goal.

The main tasks concern the detection of the obstacle and the creation of a mapping be-
tween these detections and the required changes to the locomotion. Both the tasks require a
learning process that will be carried out online and is maintained even after conversion. This
allows the controller to adapt to new conditions that might come up.

This work is inspired in Lewis and Simó work in [14, 17], but defined here to a quadruped
robot instead of a biped. Besides, the type of sensory information is different and the
quadruped is not fixed to anything. As it is able to move freely, the controller is also re-
quired to address the stability and steering problem, which in a quadruped robot should not
be so hard.

Follows a list of the objectives that will define the steps to design and build the proposed
mechanism:

• Have a testing environment that grants what is necessary for the mechanism to be
evaluated, including an adequate obstacle.

• Configure the robot’s perceptive and proprioceptive sensors and grant its correct place-
ment and orientation.

• Structure all the information about the robot’s state and its environmental perception
in a way that meets the requirements of the remaining tasks.
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• Achieve the creation of reliable expectations about the robot’s environmental percep-
tion values, exploiting the relation that exists between the usually observed pattern and
the locomotion cycle.

• Filter the difference between the expectations and the acquired values in order to dis-
cern the obstacle detections from the noise, taking into account the reliability of such
expectations.

• Create a mechanism that enables the robot to acquire information during the failed
attempts to step over the obstacle, thus learning how to avoid such situations in the
future.

• Define a way to change the robot’s locomotion parameters in the CPG, according to
the knowledge acquired during the previous encounters.

• Evaluate the performance achieved by the mechanism through several tests. These
tests shall evaluate all the components behavior according to the expected results.
Also, verify the mechanism capability to actually fulfill its goal.

1.3 Methodology

The proposed objectives were tackled into several tasks that seek to fulfill the goals and
guarantee its correctness. Each one is then related to its execution’s details in the remaining
chapters.

The quadruped locomotion architecture based in dynamical systems were created in [22].
This mechanism must be coupled to this locomotion architecture in order to produce the
alterations through an adaptive learning process. The definition of such mechanism was then
divided in the following tasks:

World and robot : Define the environment in which the mechanism will be tested and con-
figure the robot to the mechanism’s implementation. The environment creation must
take into consideration the obstacle properties and the robot’s need to reach the ob-
stacle in a specific way. The robot’s configuration concerns the sensor placement and
orientation, in order to obtain the desired effect, the scanning of the ground in front of
the robot. This task is described in section 4, where the evaluation platforms and their
environments are presented.

Creating previsions : Processing the raw data and define its structure. Also, define a pre-
vision layer capable of generating expectations for the perceptive sensor inputs. The
creation of expectations must consider prevision models that are fit for the purpose
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and that grant the learning capabilities and the adaptability requirements. The learning
should be an ongoing process that allows the robot to continuously adapt to new con-
ditions. Also, it is required that these hypothesis are tolerant to noise and to the actual
detection of obstacles. Chapter 3 presents the implementation details of this tasks.

Filtering the noise : In order to detect the obstacles, it is necessary to eliminate the noise
and discern the obstacle detections from it. This task addresses the definition of such
mechanism, which takes into account the reliability of the created expectations in order
to achieve such goal. This task’s details are also presented in chapter 3.

Learning to avoid the obstacle : Whenever the robot has an encounter with the obstacle,
it tries to step over it. If it fails, it must learn from that situation in order to avoid
it in the future. This requires an iterative learning process, which builds a structure
that dictates what are the necessary changes to the locomotion to avoid the same failed
attempts. The details about this task’s implementation are also presented in the chapter
3.

Changing the locomotion : Define a way to use the acquired knowledge about the changes
to the locomotion to actually change the robot’s locomotion, whenever an obstacle is
detected. Chapter 3 details the definition of this task.

Evaluate the mechanism : Evaluate all the elements that compose the system, comparing
their results to the expected ones. Then evaluate the mechanism’s performance about
the main goals: the obstacle detection and the ability to step over the obstacle avoid-
ing any collisions. Chapter 5 shows these tests and results, describing the achieved
performance according to what was expected.

Similar works and problems : The search for similar problems and solutions gives a deeper
knowledge about the adaptive control and about other possible approaches. So, this
task is carried out in parallel to the remaining ones in order to compare the proposed
methods to different ones. Also to be aware of the several types of problems in adap-
tive control and their solutions. Chapter 2 presents several works that are related to the
one presented here.

1.4 Document Structure

This dissertation is organized as follows. Chapter 1 presents the introduction, where the
theme is introduced and the problem, the objectives and methodology are presented. The
following chapter 2 presents works that relate to this one by goal, type of solution, or prin-
ciples in the solution’s definition. In chapter 3 the proposed mechanism is presented, where
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all the components are defined alongside with their specific goals and purposes. The ap-
plication of the mechanism to the robots and the environment definition are presented in
chapter 4. It includes the robot’s configuration details and the environment creation. Chapter
5 presents the tests and obtained results that evaluate each of the components that compose
the mechanism, as well as the mechanism itself. Finally the conclusions are presented in
chapter 6, where the results are discussed alongside with the objectives and possible future
enhancements.



Chapter 2

Related Work

The main purpose of the presented document, is to design a learning module that can be
couples to a quadruped robot’s locomotion controler and endows it with the ability to detect
and avoid an obstacle in its path. Also, the robot should perform online learning to achieve
both goals. The learning should remain active even after conversion, which enables the
mechanism to adapt to new conditions. The architecture seeks autonomy in the learning and
execution of the required tasks, which means that the robot adapts it self to the environment
in order to achieve its goals.

Although different goals might have different requirements, the principles that drive and
inspire this type of control are widely investigated in several kinds of problems (e.g. robot
legged locomotion and robotic arm control). These principles concern the autonomy in the
robotic system control. Those considered to be more relevant here, are presented next. The
robot should possess a certain level of self-awareness that enables it to expect the self caused
changes in the sensory inputs, which are consequences of self generated movements. There
should exist entrainment between the controller and the mechanical system, which allows the
adequate and optimized control of that mechanical system. Also, the motor actions should
be chosen according to the system’s sensory inputs, configuration state, and goals

This chapter will present several approaches to adaptive control in different types of
problems. The goal is to give an insight of several types of solution and how they are applied
to different kinds of problems. Also, how these solutions relate to this work, by pursuing the
same goal or using similar methods in their solutions.

2.1 Legged Robot Locomotion

A challenging and complex state-of-the-art problem is the realization of real-time robotic
walking control systems. Legged robots involve the coordination of a high number of
degrees-of-freedom. Further, it is an under actuated problem; needs to take advantage of

7
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the robot and environment dynamics; to address balance and steering; gait switching; visu-
ally guided feet placements; and needs to adapt to perturbations and uncertainties. However,
the ability to traverse a wide variety of terrains while walking is basically a requirement for
performing useful tasks in our human centric world.

Adaptable quadruped locomotion

The work of Fukoaka and colleagues presented in [5] proposes a controller based on biologi-
cal concepts that enables a robot to autonomously adapt its locomotion to rough terrain. The
solution uses a neural controller composed of a CPG and reflexes, that grants the required
stability and energy consumption optimization during locomotion. Furthermore, a passive
ankle was designed to enhance the robot’s locomotion and adaptability. Later, this work has
been extended to enable the robot to walk on natural ground [12]. This included a set of new
reflexes to help the robot to deal with the wider range of unexpected situations.

A reflex is used here as a response to a specific situation. It seeks to grant a specific
parameter that is required to assure the robot’s stability and well being. Besides, the CPG is
entrained with sensory feedback to adapt itself to the locomotion and the reflex execution.
These are the key features that create the system’s ability to produce adaptive locomotion in
rough terrains and natural ground.

These proposed solutions present an example of a robust controller that responds to dif-
ferent types of possible disturbances, and adapts the locomotion to a challenging terrain.
Besides, the physical properties of the robot were also defined to enhance the robot’s loco-
motion. On the work proposed in this dissertation, the goals are very specific; the robot is
required to learn how to detect the obstacle and how to avoid it. Therefore, the same type of
approach do not apply. Nevertheless, these studies propose a robust solution to an adaptive
locomotion controller.

Head motion stabilization

Head stabilization during locomotion is a problem that relates to robot legged locomotion,
although it is not explicitly about its control. In order to achieve a stable image acquisition
during quadruped locomotion, [26] proposes a way to stabilize the robot’s head resorting to
CPG and Genetic Algorithms (GA). The goal is to obtain an optimized set of parameters -
offset, frequency and amplitude - to parameterize a CPG used to control head movements.
These movements seek to compensate the robot’s oscillations during locomotion. Thus,
more stable conditions are created to image acquisition, which can enhance several visual
perception dependent tasks.

Although such an approach relies in offline optimization, which differs from the solution
presenter here, the learning seeks the finding of optimized parameterization for the robot’s
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head motion controller. Thus, the adaptation of the controller to the specific mechanical
system it is optimal.

Optimizing quadruped locomotion

In [13] the authors present the results of applying four methods into optimizing quadruped
locomotion. The evaluated methods were: GA; Amoeba algorithm, Hill Climbing and Policy
Gradient algorithm. The testing platform was the AIBO and they sought to achieve optimal
controller parameterization, using the robot’s velocity as tha main optimization target. The
goal is achieved since the obtained results were better than the known hand tuned parameters.

This is another example of offline parameter finding. The controller can be autonomously
defined to better control its mechanical system. This work falls from the presented disserta-
tion scope but defines an usual way to approach optimal entrainment between the mechanical
system and the controller.

Learning to classify possible foot positions

A work presented in [4] proposes an approach that enables a quadruped robot - the LittleDog
- to select collision free foot placement positions on rough terrain. After selecting a set of
random possible choices, the robot uses a classifier to discern those that are collision free
from those that are not. The classifier is trained offline by a supervised learning model - the
authors evaluated both Support Vector Machine (SVM) and Ada-Boost to build the classifier.
After learning, this classifier can be applied to real time reasoning about the possible collision
free foot placements.

This approach concerns a quadruped robot controller that chooses foot placement points
in the environment and generates locomotion according to a Center of Gravity’s (CoG) de-
sired trajectory. The presented work defines a way to improve such a controller to avoid
foot placements that could result in a collision with the environment by using a specifically
trained classifier. The training is executed offline but after it is complete, the robot is aware
of its own limitation and is able to choose the safer foot placements.

This approach ([4]) uses machine learning to enhance a controller to achieve adaptable
locomotion in rough terrain. Despite the offline learning, it is able to perform adaptable and
autonomous locomotion in harsh conditions.

Locomotion over rough terrain

Another interesting approach is presented in [10], where the authors propose a controller that
enables the LittleDog robot to traverse a patch of terrain with a high level roughness. The
performed locomotion is fast and nearly autonomous. That controller does not present any
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specific method for control, it breaks down the problem into smaller ones and addresses each
at a time. However, despite the fact that the most of the processing is done online, knowledge
about the terrain’s spots and an approximation of the best path, needs to be fed to the robot
before each crossing. This considerably reduces the perception problem and provides the
robot enough knowledge and processing time to address the remaining challenges.

This approach achieves remarkable results in controlling a quadruped robot through harsh
conditions. Although it is able to deal with high levels of roughness, it requires a base of a
priori knowledge about the terrain that is going to cross, as well as a pre computed optimal
approximated path. Thus, it does not perform fully autonomous locomotion over rough
environments and it is unable to traverse this type of terrain without a priori knowledge about
it. Nevertheless, the achieved results indicate that a robot can perform fast walking over
terrains with a level of roughness that were thought to be nearly impossible to be traversed
by a walking machine.

Quadruped locomotion with adaptable posture control

The studies presented in[9, 1] define controllers to the walking machine BISAM that seek to
produce adaptive quadruped locomotion.

In [9], the authors present a controller based in coupled neural oscillator, that operates at
three different levels: joint level, intra-leg coordination and inter-leg coordination. Each level
has a neural structure that enables the system to perform stable locomotion. The locomotion
is generated by the interaction of two different levels, intra-leg and joint control, which
then controls the neural oscillators placed at the joint level. The system uses Reinforcement
Learning (RL) to learn the correct sensorimotor interaction that triggers the reflexes, in order
to perform adaptive control. This includes reflexes that grant the robot’s posture and the
adaptation to uneven terrain. The learning tasks were evaluated in simulation of a single leg.

Another controller proposed in [1] uses Center of Gravity (CoG) trajectories and inverse
kinematics in order to implement the locomotion. A posture control similar to the previous
study ([9]) was implemented, resorting to fuzzy rules and RL. The robot learns to trigger
reflexes in order to grant its posture and stable control. This enables it to perform adaptive
locomotion and to surpass unknown obstacles.

Both proposals seek adaptive posture control in order to achieve stable locomotion. The
latter [1] reported results in the control of a robot, which means that the machine was able to
self tune in order to achieve its goal. These approaches define a way to adaptively control a
quadruped robot and to enable it to surpass obstacles. However, this is achieve only by using
a set of predefined responses to a certain range of specific situations. In our case, the goal
is to sense the obstacle and learn how to adapt the locomotion in order to avoid the it. The
robot is not specifically told about what an obstacle is, or how to avoid it. It simply learns to
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avoid undesired situations, the collisions with the obstacle.

General CPG controller for quadruped locomotion

Another work that concerns adaptive quadruped locomotion presented in [30]. The authors
propose a CPG controller capable stably generate all primary quadruped gaits. Also they
present a biometric controller for a generic quadruped robot, that entrains the presented CPG
with several reflex modules. These reflex modules seek to grant the robot’s desired response
to certain situations in order to maintain the robot’s stability and posture.

The proposed work in [30], defines a generic controller that seeks adaptable and stable
locomotion through a CPG and entrained reflexes. Although the concept is relevant in the
field, since it performs autonomous locomotion, it does not address the theme pursued in this
work. The learning processes applied to detect environmental features and to learn how to
avoid undesired situations.

Coupling Locomotion Generations with Sensory Feedback

The integration of continuous sensory information in the locomotion generator, namely a
CPG, is an important concept to adaptive locomotion control. Studies such as [8], propose a
way to entrain the sensory information directly in the CPG controller through their phase. It
observes the phase in the cyclic sensory input and defines the output of a master-oscillator-
base CPG that drives the different joints. This enables the synchronization of the generated
movements in all joints with the perceived cyclical sensory information, in order to achieve
an adaptive locomotion. It allows the generation of locomotion in several types of legged
robots.

Although the achieved level of adaptivity in [8] differs from the one sought here. That
proposed solution presents an important concept that enables legged locomotion closely cou-
pled with the sensory feedback. This feature grants the generated locomotion to adapt to the
robot and to the environment, thus the controller is tuned to the mechanical system it is
controlling and to the environment.

In [24] the authors present a generic way to build a CPG controller based in coupled
oscillators. This controller is designed in a way that can generally be applied to legged
locomotion. Furthermore, they present a systematic way of adding sensory feedback to that
CPG, such that the achieved controller is strongly coupled with the mechanical system it is
controlling.

This type of controller seeks better performance by coupling the CPG with the sensory
feedback. Such feature grants the self tuning of a controller to the environment and the
robot, since it includes performance information - the sensory feedback - in the locomotion
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generation. It defines an interesting way of adequately build controllers to specific mechani-
cal system, taking into account the mechanical system it is controlling and the environment
where it is inserted.

Learning biped locomotion with Reinforcement Learning

In [23] the authors resorted to Reinforcement Learning (RL) in order to acquire biped loco-
motion. They apply an actor-critic RL technique to the neural oscillator based CPG, in order
to learn the locomotion parameters. The learning process seeks to define the weights for the
sensory feedback signals in order to acquired the desired locomotion. The authors call the
designed controller an CPG-actor-critic model.

The proposed controller defines a way to autonomously acquire locomotion by simply
observing its performance through sensory feedback. The fact that the locomotion is ac-
quired autonomously, grants the correctness of the mechanical system control. This is an-
other example of adaptive locomotion generation, which differs from our work that focuses
in learning tasks concerning the detection and avoidance of an obstacle. Nevertheless, the
proposed approach in [23] defines an ideal solution to adaptive locomotion control. However,
the reported results show that the locomotion acquisition by the CPG-actor-critic models re-
quires too much time, which makes it inadequate to real robots.

Defining a neuronal controller

To control a quadruped walking machine, the authors in [21] build an oriented modular
neural controller. The proposed work defines a controller composed of three neural modules:
one responsible for processing the sensory input; another that creates the cyclic locomotion
patterns, and the third to control and regulate the robot’s velocity. The final controller is able
to explore an indoor environment, avoid obstacles and get out of dead-lock situations, such
as getting suck in a corner.

The proposed controller is designed in order to produce a reactive behavior in that specific
robot and environment. It grants the robot the required abilities to achieve its goal. However,
it is not able to answer to situations other than the predefined ones. Thus, the robot is limited
to act according to its design, it cannot adapt to new conditions or situations. This fails the
learning and self tuning to the execution of the tasks. Principles that define our work.

Forward internal model and its biological inspiration

The biological concept of efference copy states that a copy of the generated motor commands
- efference signals - in animals (and robots) can be used to expect the sensory consequences
of such acts [31]. These expectations can help distinguish the sensory input caused by the
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robots movements, an reafference signal, from the ones caused by external factors, exaffer-
ence signals. Later, another study [7] revealed that the efference copies cannot be directly
compared to the afference signals (the complete sensory input information) due to their dif-
ferent dimensionalities. A Forward Internal Model (FIM) was proposed in [32], as a neural
method to "translate" the copies from the motor signals’s configuration space to the space
that describes the sensory inputs.

The discerning of externally caused signals from those generated by the robot, enables
the system to perceive environmental features that might be relevant to the robot’s control.
This concept is used in our work to detect the obstacle. The robot uses an internal model to
create expectations about range sensors readings, that expects flat ground. If an obstacle is
in the robot’s path, this perception will be altered, creating an exafference signal.

Although these studies [31, 7, 32] do not propose an adaptive locomotion controller, they
define rather relevant concepts to build one. Some works concerning these concepts are
presented next.

Using the concept of Forward Internal Model

In [28], the authors used the biologically inspired concepts of FIM and efference copy to
detect changes in the ground’s slope. The detected changes are then used to stabilized a
biped robot locomotion - which movements are restricted to the saggital plane - when the
ground’s slope changes. The presented solution uses an FIM that predicts the expected val-
ues of the accelerometer sensor when the robot moves in a given type of terrain (flat). If
the terrain’s slope changes, the robot senses the difference in the accelerometer and detects
the new slope. Then, according to the detected changes, an active upper body component
changes its configuration, leaning the robot forward or backwards in order to compensate the
changing slope. This mechanical component uses a weight that allows the robot to shift its
center of mass forward or backward.

The detection of slope changes is based in an FIM previously trained to a given type
of ground’s slope. Also, the responses in the upper body component are predefined and
designed offline. Although the type of approach in [28] uses the same concepts as ours,
their solution does not address the online learning of the internal model or the actuator’s
responses. Furthermore, our solution keeps the learning active through time, enabling the
continuous adaptation to new conditions.

The works that inspired the ons presented here

The work presented in this dissertation is partially based on [17], where the authors present a
mechanism that enables a biped robot to change its stride length in order to avoid a detected
obstacle. The necessary changes to the stride length, that will grant the robot to achieve
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its goal, are learned every time the robot steps on the obstacle. Therefore, the robot learns
through experience. The learning is an iterative ongoing process that is only complete when
the robot stops stepping on the obstacle.

In a later work that also inspired ours ([14]), the authors specify the method to detect
the obstacle. Until then they had simply considered an element, which they called Range
Encoder, that detected the obstacle at different distances. The obstacle detection is based
on the concepts internal model and efference copy that is applied to create expectations
about the robot’s visual disparity information. These sensors scan the ground in front of the
robot and its value changes according to the locomotion pattern. When the object is in front
of the robot, it will disrupt the usual activation pattern and the robot will know about its
presence. Furthermore, these obstacle detections are used to update a weight map at time of
collision with the obstacle, so that such situation is avoided in the future. The two tasks are
trained online and are kept active throughout the "life of the robot". This enable continuous
adaptation to possible new conditions.

Later, a similar work [15] presents an approach for detecting obstacles in the robot’s path
using optical flow in stead of disparity. That work did not include the obstacle avoidance
task, it simply focused on the detection using optic flow. However, it relies on the same
principles to perform the detection.

This document presents an architecture that works similarly to these ones, however, the
used robot is a quadruped and the sensor configurations are different. The quadruped loco-
motion offers better stability, nevertheless, in our work the robot it is not thetered, as were
the biped in the mentioned works. This means that it will be necessary to address the robot’s
stability and balance problem.

Learning quadruped locomotion

In [16] the authors define a control model that enables a quadruped robot to quickly learn
a stable locomotion. To achieve this, they use Unit CPG (uCPG), a set of simple reflexes
and adaptive models. The uCPGs are defined by the authors as functional units that together,
control the robot’s movements. The stable locomotion is maintained both by the reflexes and
the adaptive models. Each reflex is triggered by a specific sensor signal and helps stabilize
the robot by granting a required parameter. The adaptive models use forward internal models
to create expectations for sensory input according to the motor commands. Also, it applies
changes to the uCPGs when detects undesired differences in the acquired sensor values.

The presented work in [16] proposes a model for acquiring basic locomotion gait in a
quadruped. It is inspired in the responsive and instinctive gait acquisition in quadrupeds,
such as a foal. Reflexes and adaptive models generate the necessary responses to certain
requirements that grant the robot stable locomotion. This dissertation seeks learning at a
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higher level of abstraction. Nevertheless, the controller proposed in [16] is interesting since
the robot learns autonomously.

2.2 Other Control Problems

The self awareness of a system seems to be a key feature to build an autonomous controller.
Such feature is usually hard, or even impossible, to be user defined or programmed, specially
when there are a high number of degrees of freedom. So, the ideal solution is to have this
map defined by the system, according to its experience.

Visuo-motor Coordination

One common problem of an internal model based solution is a visuo-motor coordination of
a robotic arm. The required model should recognize the visual consequences of the robotic
arm movements. Such problem has been widely studied in the field of robotics and biological
inspired control.

An example of such a system is [25], where the authors present a learning mechanism
through a self-discovery phase. Due to the long time required to learn through a motor-
babbling phase, where the configuration space is too big, the authors developed a mechanism
to reduce the learning time. They created a state confidence mechanism that helps the robot
to perform active learning and search the most relevant parts of the configuration space. The
results show that the learning time was reduced, when compared to simple reinforcement
learning, where there is no rule to active learning.

Another example of this kind of work is presented in [2]. The authors defined a learning
mechanism based on Self Organizing Maps (SOMs) and the biological concept of internal
model. The goal is to enable a robotic arm to reach a three-dimensional point in the robot’s
work space, and to relate those movements to the robotic’s arm internal state and visual
information. The robot creates a relation between the visual sensory information and state
spaces, and the work space in which it can operate.

A different approach is presented in [3], where besides the building of a visuo-motor
map and the dynamical systems used to generate the robotic arm’s movements, the authors
seek to achieve imitative behaviors. The defined approach supports the explicit imitation
of external actors, e.g. humans, and emergent imitative behaviors that mimicked full, multi
staged movements. Both the imitation behaviors are achieved as a side effect of the learnt
visuo-motor map. These behaviors can be used to control the robotic arm simply moving an
arm in the robot’s visual space, i.e. in front of the robot’s camera.

All these works achieved interesting results in the construction of a self aware robotic
manipulator. In addition to the self awareness about generated movements, the solutions
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were also able to generate the motor commands to reach a specific point in the visual space.
Although these works a specific problem, the designed solution relies in principles relevant
for most of the autonomous control problems. This dissertation presents a work based on
these principles, however applied to a different problem.

Autonomous Locomotion

Affordances ([6]) and sensorimotor maps are widely known concepts in robotics and rather
relevant when designing of a robot’s controller. A sensorimotor map defines a self aware
structure that the robot uses to expect sensory alterations according to motor commands, and
the other way around; to define motor commands according to a desired robot state in the
environment, or a perceived environmental features. The latter can also be understood as an
affordance, which defines a possible action according to a perceived situation, an affordable
action.

The authors of [19] propose an adaptive controller that grants these features. Plus, how
the robot - a wheeled robot - can project this model into the feature in order to exploit
affordances and achieve goals. This was applied to robot navigation problem, in which
the robot must know what is where and learn how its internal state and its environmental
perception, are changed by the self generated motor actions. After learning the sensorimotor
map and to recognize affordances, the robot is able to define ways to achieve its goals.

When successfully built, such a controller is able to autonomously act in the environment
and to pursuit goals. However when dealing with unpredictable and dynamic environments,
such control becomes complex and is very hard to define. Our proposed model is applied
to a legged robot and the control problem is restricted to online learning that seeks to detect
and avoid obstacles in the robot’s path.

A different kind of controller is presented in [29], where the author defines a goal seeking
behavior that enable the robot to select actions that will get it one step closer to its desired
sensory state. The controller uses two Self Organizing Maps (SOMs) - associative memories
-, one for creating a continuous representations of the situation space, and another to generate
the actions that will shift the state from the current one, getting the robot one step closer to
its final goal.

As the previous work, this one does not concern a legged locomotion, or limb coordina-
tion problem. Instead it is applied to obstacle avoidance in a wheeled robot. The controller
adapts to the robot and to the world, and learns how to maintain a good performance while
pursuing its goal. Such a controller does not concern the robot’s specific physical properties,
it focuses in the sensors readings. This means that it adapts the robot to the world, indepen-
dently of the robot it self, it simply seeks to fulfill its goal. Although not very applicable to
robot legged locomotion due to its requirements in the close coupling of mechanical system
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and movement control, the goal seeking behavior learning poses an interesting approach to
learning adaptive and autonomous control.



Chapter 3

Mechanism Description

The proposed mechanism defines a quadruped robot controller that is composed of two main
parts. The first one detects an obstacle in the robot’s path and the other uses these detections
to iteratively learn to avoid those obstacles. The detection part uses an internal model to
detect differences in the environment perception that suggest the existence of an obstacle
in front of the robot. The second part creates a map from the obstacle detections to the
necessary changes in the locomotion, that will enable the robot to avoid stepping on the
detected obstacle. This map is built iteratively every time the robot steps on the obstacle.
Both parts perform online learning and maintain that state even after the initial convergence.
This allows the robot to adapt to changes in the perception conditions.

Figure 3.1 shows the mechanism’s architecture, where all the components and sub-
systems are present. The details about the thought solutions and each component are pre-
sented in the following sections.

3.1 Detecting the obstacle

Robot legged locomotion is performed through a series of cyclic movements in the limbs.
The period of this cycle is defined by the duration of one stride. It is expected that the robot’s
proprioceptive and environmental perception information are related to this cycle, since the
generated movements affect several aspects of the robot. This relation is the base for the
obstacle detection task, which is carried out in this first part of the mechanism.

In the proposed work, the robot uses infra-red range sensors to scan the ground in front
of it. As the sensor readings vary with the robot’s movements during the locomotion cycle,
a Forward Internal Model (FIM) is used to create expectations about the those values when
facing flat ground. The expectations are created with relation to the robot’s state in the
locomotion cycle, which is defined by proprioceptive information such as leg joint positions
or robot’s body pitch angle. These values are closely related to the robot locomotion cycle

18
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Figure 3.1: Overall system architecture. FIM stands for Forward Internal Model.

since some of them actually help generate the locomotion (e.g. as the joint information).
When facing an obstacle, the range sensors acquire different values from those expected by
the internal model. This difference denounces the obstacle presence in the robot’s path.

Three layers are used to implement this internal model and to produce the obstacle de-
tections. The raw layer, that processes the information from the sensors; the prevision layer,
which implements the creation of expectation for the range sensors; and the novelty layer,
that filters the noise. Their implementation is detailed next.

Raw Layer

This layer processes the raw data from the robot’s state and the range sensors into a structure
that fits the requirements for the prevision layer and the rest of the mechanism. The raw data
structuring needs to take into account the locomotion cycle. First, the information is divided
into separate strides, and then each one is split into np equal chunks, each one defines a
specific phase of the stride. This division is applied to both the robot’s locomotion state and
the range sensor information.

Dividing the stride into discrete blocks means that there will be several values for each



20 CHAPTER 3. MECHANISM DESCRIPTION

block. In order to solve this problem, the data acquired during the period of time correspon-
dent to one stride phase will be averaged. This is actually useful because it helps filtering
the noise. Since the periods of time for each stride phase are quite small - a fractional part of
one stride - there is hardly any risk of relevant information loss.

During each stride phase j (where j ∈ [1, np]) the state of the robot x j is defined by
nf signals of proprioceptive information - each robot has its own set as described in the
implementation chapter 4. Each one xk (k ∈ [1, nf ]) will defined by the average of the
acquired values during that stride phase’s period. The same process is applied to the values
acquired by each of the range sensors, during the stride phase j: yi j, where i defines the range
sensor (i ∈ [1, ns]).

Figure 3.2: Structure that defines the relation between the distance of the obstacle and moment of the
stride that the obstacle is detected.

The processing of raw data also includes the value normalization, when that applies. The
range sensor values are normalized according to the highest value acquired by a given sensor.
The proprioceptive values normalization depends on each implementation and the type of
proprioceptive sensors. For instance, a binary touch sensor does not require normalization.

For a complete stride we get a matrix structure (figure 3.2) of ns × np elements. Each
matrix cell holds the range sensor value for one stride phase and one of the range sensors. A
cell also can be interpreted as a scanned distance, which depends on the range sensor, during
a specific moment of the stride. This structure is maintained throughout the mechanism as
a reference to space and moment of the stride. It helps the robot to learn and perform the
required tasks.

The output of this layer is produced every stride phase, therefore, for each stride phase j
the layer’s output is given by:

r j = (x j, y j), (3.1)

where x j is the state of the robot during stride phase j; y j is a vector of all the range
sensor readings during that stride phase; and r j is the output for the raw layer.
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Prevision Layer

This layer has two main purposes: to create expectations for each of the cells defined pre-
viously, and to output the difference between the raw values and the expectations for each
cell. The difference defines the cell’s error. This layer holds the Forward Internal Model
(FIM) that creates expectations to the range sensor’s values, taking into account the robot’s
state during the locomotion cycle. When the difference between the expectations and the raw
data is considerable, it is possible that an obstacle has been detected in the robot’s path. The
difference is computed following:

di j = yi j − hi j(x j), (3.2)

where yi j is the acquired value by the range sensor i, during the step phase j; hi j(x j) is
the expectation for that same cell, and di j is the difference between them.

Two approaches were considered and evaluated to create the expectations: the Least
Mean Square (LMS) learning rule and the Newton’s method. The first is a linear regression
model and the second is a maximization/minimization algorithm. The expectations have the
general form of:

hi j(x j) = ωi j0 +

n f�

k=1

ωi jk x jk, (3.3)

where ωi jk is the applied weight to one of the elements of the robot’s locomotion state
xi jk and ω0 is the bias term, which input is always 1. The state of the robot’s elements will
be the inputs, or features, for the internal model. They will be used as locomotion phase
reference in order to produce the expectations about the range sensor values. In machine
learning nomenclature, the range sensors are often called targets. To measure the internal
model’s performance, both models will use the mean square cost function:

Ji j(ωi j) =
1
2

m�

n=1

(hi j(x(n)
j ) − y(n)

i j )2, (3.4)

where Ji j(ωi j) is the cost for computed expectations of cell (i, j) (number of sensor and
stride phase, respectively) according to that cell’s weight vector ωi j. m is the number of
training samples, in our case it means the number of strides. So, the cost is computed by the
square error from all m the training samples. Both approaches seek to find the best weight
vector ωi j, such that the cost Ji j(x j) is minimum. This is done for each cell. The difference
between the proposed approaches is the method used to search the weight vector.

As mentioned before in the beginning of this section, the expectations are created based
on the relation that exists between the range sensor values and the robot’s state during the
locomotion cycle. Both change cyclically with the locomotion. Therefore, each stride phase
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will have similar activations in different strides, both in the robot’s state and the range sensor
values. So, there is a linear relation between them for every stride phase.

Least Mean Square

The LMS learning rule will search the weight vector ωi j that minimizes the cost function
Ji j(x) for each cell (i, j). To search this vector, the LMS updates each weight according to
the steepest descent rule:

ωi jk := ωi jk − µ
∂

∂ωi jk
J(ωi j), (3.5)

where ωi jk is the weight k that belongs to the cell (i, j), and µ is the learning rate. This
algorithm converges to the optimal weight as long as µ is not too big. If so, the method might
fail to converge. We need to get the partial derivatives of J(ωi j) according to a single weight
ωi jk. In order to simplify the calculation, let us consider only one sample n, instead of all m
training examples. Combining the steepest descent rule 3.5 with the cost function 3.4 we get
:

∂

∂ωi jk
J(ωi j) =

∂

∂ωi jk

1
2

(hi j(x j) − yi j)2 (3.6)

= 2
1
2

(hi j(x j) − yi j)
∂

∂ωi jk
(hi j(x j) − yi j) (3.7)

= (hi j(x j) − yi j)
∂

∂ωi jk

� n f�

u=1

ωi jux ju − yi j

�
(3.8)

= (hi j(x j) − yi j)x jk. (3.9)

Where u is a secondary variable that iterates the features (the elements composing the
state of the robot). k defines one of the features, the one used to calculate the weight update
rule, and x jk is the kth feature of the robot’s state. The variable u was used to differentiate
the two ways the features are present in the equations. However, when u = k, they mean the
same. Thus, the partial derivative in the penultimate expression results only in x jk. So, we
get the following weight update rule:

ωi jk := ωi jk + µ(y(n)
i j − hi j(x(n)

j ))x(n)
jk . (3.10)

There are two versions to implement this update rule into an algorithm that finds the
required weight vector. One is the batch, which uses the error from all the training samples to
train each weight in a single learning iteration. The other is the stochastic, that uses the error
computed in each training iteration to update the weights. In our case the learning samples
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are the strides and we do not have access to all of this information apriori. The present
problem requires the system to learn online and to adapt to new, unexpected conditions.
Therefore, it is not feasible to use the batch learning, instead we use the stochastic learning
algorithm.

Choosing the learning rate is critical to guarantee the system’s success. An ideal learning
rate is defined by the following inequality.

0 < µ <
1
λmax
, (3.11)

where λmax is the maximum eigenvalue of the correlational matrix Rx:

Rx = [x jxT
j ] (3.12)

An adaptive method to define the learning rate will be defined further ahead. Next, will
be presented the details about the Newton’s method and its application in the system.

Newton’s Method

The Newton’s method is a minimization/maximization algorithm that searches a function’s
roots, by creating tangent approximations to its curve. It is used here to search the cost
function’s minimum, therefore it is applied to the cost function’s first derivative. Its zeros
match the cost function’s minimums or maximums. Since this cost function is quadratic,
there will be only minimum.

We get the weight update rule:

ωi j := ωi j −
J�i j(ωi j)
J��i j(ωi j)

. (3.13)

Which when the cost function is applied we get :

ωi j := ωi j − H−1
i j ∇ωi j Ji j(ωi j), (3.14)

where H−1
i j is the Hessians matrix’s inverse computed for the cell (i, j) and ∇ωi j Ji j(ωi j)

is the vector with the partial derivatives of that cell’s weight vector ωi j. The entries for the
Hessian matrix are given by:

H(ab)
i j =

∂2Ji j(ωi j)
∂ωi ja∂ωi jb

. (3.15)

Here H(ab)
i j is the entry of indexes a and b to the Hessian matrix of the cell (i, j). The

denominator ∂ωi ja∂ωi jb defines the second degree derivative according to the ath and the bth

entries for the weight vector ωi j.
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Since the cost function is a quadratic, its derivative is a straight line. This means that
the newton’s method will converge almost immediately, absorbing all the features in the raw
data. This includes the obstacle detections, which we want to discern from the remaining
signals and not absorb it as a part of the locomotion pattern - this problem will be adequately
addressed in the next section. In order to smooth the learning process, a learning rate variable
µ will be included in this method. So, we finally get our Newton’s method weight update
rule:

ω := ω − µH−1∇ωJ(ω). (3.16)

Some approaches choose to set µ dynamically in order to optimize the learning process,
making it faster, while granting conversion. Here, a similar approach will be presented that
seeks to answer those same requirements, as well as some specific to this problem. All the
details about such mechanism will be presented in the next section.

Adaptive learning rate

Usually, the goal of an adaptive learning rate is to achieve fast convergence while preventing
the system to diverge. If set too high, the learning rate might prevent the system to converge.
But, in this case, there are some extra requirements, namely:

• Prevent the absorption of the obstacles as part of the locomotion pattern;

• Enable the system to readapt if the locomotion pattern changes.

The prevision layer is required to ignore instantaneous alterations to the raw layer’s usual
pattern, since these alterations usually mean the presence of an obstacle. So, the differences
are supposed to be detected and not absorbed as part of the pattern. On the other hand, the
system is also required to adapt to new conditions that might come up, such as a change in
the locomotion gait. In this case, the prevision layer should detect a consistent alteration to
the pattern which is usually perceived by a persistent error. The prevision layer will adapt the
learning rate every iteration according to these requirements. There are as many predictors
as there are cells, so, each one requires a specific learning rate. The adaptive learning rate µi j

is computed for each cell (i, j) according to:

µi j = ηi j − βi jηi j, (3.17)

where ηi j is the maximum learning rate value for cell (i, j) and βi j is a variable meant
to reflect the confidence on the expectations created for that cell. The value of η to the
Newton’s method was chosen through a trial and error process that seeks the fastest result.
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The LMS cell’s’η is chosen taking into account the inequality 3.11. The confidence βi j

is then responsible to define µi j at every iteration with relation to its maximum value. The
more confident the system is about a given cell’s expectations, the less necessary is to change
its weight vector. So, the lower µi j’s value needs to be. βi j evaluates a given cell’s confidence
according to :

∆βi j = −βi j + α1(1 − ei j)2βi j + α2ε, (3.18)

Where α1 and α2 will serve as weights such that α1+α2 = 1; ε expresses the mechanism’s
experience as a function of the number of learning iterations n - the number of strides -; and
ei j measures the cell (i, j) performance. This performance is measured according to :

ei j =
1
N

N�

u=n−N

d(u)
i j , (3.19)

where u will iterate the last N errors produced by the cell (i j); ei j is computed as the
average of the last N errors produced by a given cell. This value tells the system if that cell’s
error has been systematic, or else if it usually produces good expectations. If ei j has an high
value, most of the last N learning iterations received a much different raw value from what
was expected, which means that possibly the locomotion pattern has changed. But, if an
obstacle detection has occurred during those N learning iterations, a single different value
could not change ei j. Therefore, there is no risk in absorbing that change. The variable ei j

helps the system to answer the mentioned requirements.
The system’s experience is expressed in function of the number of learning iterations n:

ε(n) = e−0.1e−( n
5 −10)
. (3.20)

The experience function is based on the Gompertz function, which behavior matches
our needs. The system’s experience will grow steadily only a while after the beginning of
the learning process, ending in an asymptotic behavior that approaches 1, but never really
reaches it. Since βi j is initially 0, the system will have no confidence in itself until it acquires
some experience, which depends only in the number of learning iterations.

Novelty

The novelty layer receives the difference di j for every cell and will filter them in order to
discern the obstacle detections from the lesser error values. It works similarly to a high pass
filter. The filtering process uses a gain factor variable for each cell gi j which serves as a rep-
utation register. This value serves as an amplification signal if a cell usually produces good
expectations (low error values), or as a reduction signal otherwise. The obstacle detections
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are high values of di j, but the frequency at which these occur is not enough to change gi j.
So, it is granted that if a cell behaves good, it will have a good reputation. This cell output is
given by :

oi j(n) = (gi j(n)di j(n))th, (3.21)

where gi j is the gain factor for the sensor i and step phase j and th is the threshold that
limits the errors. If the computed value is greater than the th, it will be seen as an obstacle
detection. The gain factor variable needs to be updated every iteration in order to maintain a
correct register of that cell’s performance. Generally, this is done according to :

gi j := gi j + Fgi jα
g f , (3.22)

where αg f is a rate that limits how much gi j can be changed in a single iteration and
F is a function that decides how the gain factor should be updated. F can be defined in
many ways as long as its output reflects how the system performed during that iteration. It
will increase or decrease a given cell’s reputation in the interval ]0, g fmax]. Two approaches
were considered to define F: a gaussian curve and the confidence mechanism previously
presented.

Gaussian The Gaussian function’s bell shape (figure 3.3) offers the required behavior. It
is defined as a function of the error, it favors a prediction close to 0 while penalizes others
with higher values. The function is :

F(di j) = −
1
2
+ e−

(µ−di j)
2

2σ2 (3.23)

Where µ = 0 and σ = 0.1. Also, a factor of −1
2 was added so that the function’s output

is within the interval of [−0.5, 0.5]. This limits gi j update to a percentage of its own value,
which prevents the variable to become null.

Confidence As the confidence system purpose fits the requirements of this problem, it was
also considered as a possible candidate. It is applied just as the same way as in the previous
layer.

In the novelty layer’s output, each cell dictates if there was an obstacle detection. As
mentioned before during the raw layer description, the structure formed by all cells is a
relation to the distance and the phase of the stride. Therefore, If one cell holds an obstacle
detection value, the robot will know at what distance and during each moment of the stride
that obstacle was detected. This information is relevant to the second part of the mechanism,
as it will be shown.
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Figure 3.3: Gaussian function’s plot used in novelty layer.

3.2 Learning Mechanism

The obstacle detections occur at a given distance from the obstacle - detected from one of
the sensors - and during a specific moment of the stride. This spatial and temporal relation is
granted by the cell structure defined in the raw layer. When approaching the obstacle, several
cells will be activated, forming an Activation Pattern (AP). An AP defines a way to approach
the obstacle, since the robot can approach it in more than one way, there are several possible
APs.

The goal of this part of the mechanism is to create a map from the activations to changes
in the locomotion. These changes will enable the robot to avoid stepping on the obstacle. The
changes to the stride length will grant the robot to place its paw optimally, before stepping
over the obstacle. The map is built every time the robot fails to clear the obstacle without
touching it. The necessary conditions to the learning take place are the following: the robot
must know how it collided with the obstacle and remember the sensed activation pattern dur-
ing the approach. After enough iterations, the robot will be able to respond to an activation
pattern in order to change its locomotion to achieve its goal. The following sections describe
the components that carry out this task.
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Activation Cells

The activation cells receive the obstacle detections from the novelty layer. Their values will
be used to compute the necessary alterations to the stride length. Each activation cell xact

i j has
its value updated according to:

τact
∂xact

i j

∂t
= −xact

i j + oi j, (3.24)

where the τact defines the update rate for these cells.

Short Term Memory Cells

The Short Term Memory (STM) cells play a major role in the learning process, they are
activated alongside with the activation cells. However, the STM cells’s values are supposed
to last until the robot steps over the obstacle, defining a memory of short duration about the
activation patterns. If the robot collides with the obstacle, it recalls the activation pattern.
But more on that in the next section. The STM cells xS T M

i j are updated following:

τS T M
∂xS T M

i j

∂t
= −xS T M

i j + xact
i j . (3.25)

The convergence rate τS T M has a double meaning, its value grants the correct activation
of the STM cells whenever there are new activations, and gradually decrease the activation
value otherwise. It is defined as follows:

τS T M = 1 +
2

1 + ed , (3.26)

where d = 100(xact
i j − xS T M

i j ). When xact
i j > xS T M

i j , τS T M will converge to 0, and to xact
i j

otherwise. This will grant the required double effect previously mentioned.

Weights and Learning

The weights define the map from the activations to the changes in the stride length. This
component is both the target to the learning iterations, and the memory which dictates how
the robot should react to the obstacle detections. First, the map needs to be built. When the
robot steps on the obstacle it triggers a learning signal δ which defines the type of collision.
Such signal is defined according to:

δ =




1 if paw placement,
−1 if paw extension.

(3.27)
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The triggered δ depends on the phase of the locomotion and the touch sensor that detected
the obstacle. Such details concern the mechanism application to the robot. However, it is
required that each signal reflects the necessary alterations to the locomotion in order to avoid
such situation in the future. When the robot should reduce the stride length, the learning
signal should be δ = −1 - the robot is in the paw extension phase of the step - and when the
stride length should be increased, the learning signal should be and δ = 1 - triggered during
the paw placement phase of the step.

The learning iteration depends on the triggered learning signal and the activation pattern
sensed during the obstacle approaching. The activation pattern is still present in the STM
cells, due to those cell’s ability to remember the activations. So, when the learning signal is
triggered, the weights are updated. The learning rule updates a single weight wi j according
to:

∆wi j(n + 1) = δxS T M
i j (|wi j(n)| + c)αS T M, (3.28)

where αS T M limits how much a weight is changed in a single learning iteration and c
is a small constant that starts the learning process. The factor δxS T M

i j (|wi j(n)| + c) is meant
to reflect how much the given weight contributed to that learning iteration. The higher this
factor is, greater is the need to change wi j, in order to avoid this situation in the future.

After each learning iteration, the weight map is normalized such that ||wj|| = 1, where wj

is the weight vector for each stride phase. Each vector contains all the cells for each sensor
i and one of the stride phases j. The normalization avoids the over saturation of one single
cell and maintains the relevance of each one according to the others.

Stride Length Modulation

This component computes the synapse values si for each stride phase. The computation takes
the activation cells and the weight map into account. It combines the obstacle detections
and the acquired knowledge during the learning process, in order to produce the necessary
alteration to the locomotion.

During each stride phase j, si j is computed according to:

s j =

ns�

i=1

ωi j|xS T M
i j | (3.29)

The system’s output bl is computed according to:

τbl∂bl
∂t

bl j = −bl + s j, (3.30)

where τbl defines the rate of change of bl. This value is then passed on to the system
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to be sent to the CPG. Since the output is in the interval [0, 1], this value might need to be
amplified in order to adequately change the locomotion. But that concerns the mechanism
application to a specific robot.



Chapter 4

Mechanism Application

In this chapter, both the environments used to test the proposed mechanism and the details
about the application of the mechanism to the mentioned platforms, the sony AIBO and the
Bioloid quadruped version, will be presented. The next sections describe relevant informa-
tion about the following items: the sensor configuration in the robot, both the proprioceptive
and the preceptive ones; the specification of how the sensor values are prepared for further
system use; the definition of the step over reflex activation and execution; alteration to the
locomotion; and everything else that seems relevant to include as part of the system config-
uration and mechanism application.

A few details about the evaluation procedure are given now due to their relevance in the
process of the mechanism application to the robots. The evaluation is composed of several
iterations called trials, during which, the robot approaches the obstacle and attempts to step
over it. As a first approach, the controller will focus on making the fore right leg step over
the obstacle. So, the obstacle will be removed after this leg has tried to step over it. In the
end of each trial the robot is placed back at an initial position, at a certain distance from
the obstacle, as if there were several obstacles in a continuous environment. The correct
steering is guaranteed at the beginning of every trial so that the robot reaches the obstacle in
the expected manner.

4.1 AIBO implementation

The first tests were applied to the AIBO robot, it’s locomotion is modeled by a Control
Pattern Generator (CPG) based in dynamical systems presented in [22]. The learning mech-
anism is coupled with this controller in order to change specific parameters, namely the joint
oscillation amplitudes, which will enable the robot to step over the obstacle. This robot has
3 degrees of freedom in each leg, two in the hip; the swing and the flap, and one in the knee.
The flap is not required in the present work since the robot will only walk forward.

31
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The Environment

The environment was defined as a Webots world, it includes the robot, the obstacle and a
gutter, whose purpose is explained next. As it was previously mentioned, a trial comprises
an encounter with the obstacle in a specific way, which includes stepping over the obstacle
with the fore right leg. Therefore, it is necessary to assure that the robot reaches the obstacle
in this required manner. As it was found that this robot has a considerably biased steering
towards the right when moving, a gutter was included in the environment to guarantee that
the robot moves only forward, thus, reaching the obstacle with its right paw.

Figure 4.1: Environment defined for the AIBO robot. The gutter assures the robot to reach the
obstacle in the required manner.

It is expected that the gutter interferes with the robot’s locomotion dynamics and even
with it’s environment perception (the range sensor scanners), which is crucial to the learn-
ing procedures. However, as the system is trained online to deal with the range scanner
inputs and to learn their activation pattern, it is expected that this interference is taken in
consideration in the learning process. After all, the interference with the system happens
cyclically with the locomotion, to both the robots state and it’s perception inputs. Therefore,
this disturbance is accounted for in the learning process instead of disrupting it.
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Sensor Configuration

There are two types of sensory information. Proprioceptive information, which defines the
state of the robot during the locomotion cycle, and the robot’s environment perception. The
last one results from the process of scanning the ground in front of the robot, which seeks
to detect unexpected objects. Also, the robot must know when and how did it touched the
obstacle in order to avoid doing so in the future. Therefore, the environment perception
includes touch sensors applied to the robot’s paws.

In AIBO, the state of the robot during it’s locomotion cycle is defined by the following
items:

• The values for the hip swing joints of all four legs;

• The Touch sensors in the base of each of the robot’s paws;

• And the robot’s body pitch and roll values

All this information is intrinsically related to the robot ’s locomotion cycle, all the values
oscillate according to this periodic state. Hence, they match the requirements named in the
prevision layer.

The normalization process defined in the raw layer input data is applied to the pitch and
roll values only. These angles are normalized to the range of [0, 90] degrees, their neutral
point being defined around 45 degrees. The remaining values to the input are fed to the
prevision layer without further processing.

As for the range sensors scanner, it is composed of five range sensors ns = 5 in the AIBO
robot. Each of which is placed in the robot’s right side of the chest (figure 4.2) (close to the
right fore leg). Together, the sensors scan the ground in front of the robot with an aperture of
40 degrees, each one is placed with an angle of 10 degrees from its neighbors (figure 4.2 c).
The first sensor, the one pointing closer to the robot’s paws, is placed at 30 degrees from the
robot’s coronal plane (figure 4.2 b). So, as the sensors are placed at 14.5 centimeters above
the ground, the scanned length is approximately 23.2 centimeters (figure 4.2 a).

In order to return the range sensors activations, Webots uses a lookup table to compute
the sensors readings according to the actual existing distance an induced noise. Table 4.1
presents the values used in the process. The first column dictates the real existing distance,
the second determines the returning value and the last column shows the applied noise. The
values not specified in the table are computed through linear interpolation.

The robot also receives input from the paw’s interactions with the environment through
the touch sensors. There are three for each paw, one placed in the base (figure 4.5), which
value is included as part of the robot’s state during the locomotion cycle; it also detects the
executed stance phases. Other two are placed at the fore and back sides of each paw (figures
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Figure 4.2: AIBO’s range sensor configuration. These sensors scan the ground in front of the robot.
The distance in (a) is the scanned distance,(b) is the angle of the first sensor ray according to the
robot’s coronal plane, and (c) is the angle between two range sensor’s rays.

Table 4.1: Values acquired from the range sensors (column 2), according to that sensor’s distance to
a surface (column 1) and the applied noise(column 3).

Actual Distance Sensor return
value

Noise

0 100 0
0.1 100 0
0.5 500 0.1
0.9 900 0.2

4.3, 4.4 respectively). Both touch sensors are used to detect collisions with the obstacle
during the step over reflex, their activations will give rise to learning signals according to
the triggered sensor. As described in chapter 3, the paw’s fore touch (figure 4.3) sensor will
trigger the paw extension learning signal δ = −1 so that the stride length is reduced in future
similar situations. If the the back touch sensor (figure 4.4) is activated, the paw placement
learning signal δ = 1 is created in order to increase the stride length in similar situations in
the future.

Step Over Reflex Triggering

In order to clear the obstacle without triggering any learning signal, the robot must place it’s
paw in the optimal spot before executing the step over reflex. These are the ideal conditions
that will enable the robot to avoid the obstacle. The reflex is modeled by increasing the
amplitude for both the hip-swing and knee joints, during the swing phase of that step. The
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Figure 4.3: The visible polygon in the figure defines the fore touch sensor’s bounding box, that is
applied in the fore right paw in the AIBO robot.

Figure 4.4: The back touch sensor is presented in the figure as a polygon in the AIBO’s paw.

Figure 4.5: The polygon under the AIBO’s paw defines the bounding box for the base touch sensor.

reflex is only applied to the leg on which the reflex is being executed, in this case the fore
right leg.

Regardless of the ideal conditions are met or not, the step over reflex is activated at the
correct moment and at a minimum distance from the obstacle. This occurs after a minimum
distance between the robot’s paw and the obstacle is reached, at that moment the reflex is
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activated. When the correct stride phase becomes active, the step over reflex increases the
amplitudes in the CPG and the robot tries to step over the obstacle. If it fails, a learning
signal is triggered as previously described, if not, the system has already learned to avoid the
obstacle under these approaching circumstances.

The minimum distance from the robot’s paw to the obstacle is given by kbl, where bl is
the usually observed stride length, and k is a constant meant to reflect how bigger the reflex
stride is when compared to the normal stride. The constant is set to k = 1.3. bl is measured
and fed to the robot at all times. The robot increases it’s knee amplitude by krk = 50 and
it’s hip-swing amplitude by krs = 50. These values were chosen through a trial and error
process.

Locomotion Adaptation

In order to achieve its goal, the mechanism changes the locomotion by increasing or de-
creasing the stride length at all times. However, this information is in the weight map value
space and needs to be transformed in order to be appropriate to change the CPG and then
the robot locomotion. This is achieved by amplifying the synapse’s output before the CPG
parameterization. The parameters that require changing are the hip-swing amplitudes of all
legs, which will generate different stride lengths.

AIBO Gaits

The locomotion gaits are an important point in the success of this learning mechanism, along-
side with the robotic platform itself. Some locomotion gaits will be now evaluated according
to their stability, in order to choose the best fit to execute and test the proposed mechanism.
It is required that the gait offers a stable locomotion and that the activation pattern of it’s sen-
sors is maintained through time. I.e., the activation patterns verified during the locomotion
cycle are repeated every stride.

Figure 4.6 displays two sets of bars, the full height ones shows the activation of the
touch sensors in each of the paws and the others show the desired stance phases for all legs,
according to the gait being executed. The first one is expected to reflect the stance phase
executed in the specific gait and how well it was executed. By comparing both, one can get
an idea of how well is that gait being executed.

Evaluating the AIBO’s walk gait (duty factor and phase relation, both set to 0.75), a
certain fragmentation is visible in the hind legs touch activation. This is caused by the
bouncing effect of the locomotion at the beginning of the stance phase. Also, a misplaced
activation of the touch sensors according to the expected stance phase is clear, this is the
result of the delay in the actuators when compared to the CPG modulation. Besides these
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Figure 4.6: Activation of the base touch sensors in AIBO (full height plot) during the walk gait, and
the desired stance phases for the same gait (half height plot).

features and the duration of the stance periods, there is a reasonable difference between the
expected stance phases and the touch activation, specially in the hind legs.

In addition to the incorrect execution of this gait, the observed activations are not main-
tained through time. Figure 4.7 shows several similar graphics where the base touch sensor
are compared to the desired stance phases. Each one was acquired in different strides, in
sequence, starting on stride 145 and ending in stride 148. Mainly in the fore and hind left
legs (the two graphics in the center of each image) there is a considerably difference in the
base touch sensor activation. This denotes a different duration and fragmentation of the ex-
ecuted stance phase, which will result in changing perception patterns acquired by the range
sensors. Therefore, this gait does not offer the required stability to the learning mechanism
since the locomotion pattern is not maintained.

Another walk gait was tested with the duty factor set to 0.8 and the phase relation set to
0.75. In this case the activations were maintained and the locomotion granted better stability,
however, the locomotion speed was very low. Figure 4.8 shows the activation pattern for this
gait. Again, we can see the shift caused by the actuators delay and the robot’s locomotion
dynamics, and the difference in the length of the active periods. Still, this does not pose
a problem to the prevision layer, since it is capable of acquiring the range sensor’s activa-
tion pattern during the locomotion cycle, without any specific requirement exept from being
cyclic and maintianed through time.

Although the AIBO’s physical and dynamic properties do not suggest the correct ex-
ecution of a trot gait, it was nevertheless tested in order to evaluate the stability and the
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Figure 4.7: Evaluation of the walk gait in four different strides, from stride 145 to stride 148. Each
one displays the difference between the expected stance phase and the base touch sensors’ activations.

applicability to the learning mechanism. Figure 4.9 shows the results. It is noticeable that
the fore sensors behave closely to what is expected, only biased by the usual shift. However,
the hind legs have much worse activations.

Unlike the normal walk gait, which activations had substantial changes with time, this
gait offered locomotion stability and greater speed. Therefore, this was the chosen gait to
test the mechanism.

4.2 Bioloid Implementation

The second robot used to test the proposed mechanism was the quadruped version of the
Bioloid. This second platform was chosen after the AIBO robot was revealed not to be fit
for the purpose, due to it’s inadequate physical and dynamic properties (big, blunt paws that
made hard for it to clear the obstacle, and the difficulty achieving stable locomotion gaits).

The Bioloid has the same number of degrees of freedom as the AIBO, three for each leg
4.11, the swing and flap in the hip, and the knee. As the robot will only be walking forward
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Figure 4.8: Comparinson between the touch sensors’ activations and the desired stance phases, during
the slow walk gait.

Figure 4.9: AIBO robot trot gait’s results, desired stance phases and acquired base touch sensors
activations.

there will be no need to use the flaps. This robot has thinner and taller legs, which enables it
to better step over obstacles and to easily obtain stable gaits. The locomotion generator is the
same CPG used in the AIBO, only with different settings that better fit this robot physical
and dynamical properties.
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Environment

The environment designed to the Bioloid robot is composed only of the robot and the obsta-
cle. Since the locomotion is stable enough not to steer out of the predefined path (at least
not within the distances being considered), there is no need of a gutter to force the robot’s
movements. So, the robot simply heads for the obstacle (figure 4.10) at each trial.

Figure 4.10: Environment created to the Bioloid’s evaluation.

As the collisions with the obstacle are expected, since it is a part of the learning process,
when a new trial begins, the steering is corrected, granting the desired direction towards the
obstacle.

Sensor Configuration

The sensor inputs in this robot include the range sensor, which scan the ground in front of
the robot, the proprioceptive sensors that define the robot’s state according to the locomotion
cycle, and finally the touch sensors that sense the ground and the obstacle in contact with
the robot’s paws. The sensory inputs are similar to the AIBO’s only it’s configuration and
number is different.

The Bioloid’s state during it’s locomotion cycle is defined by the following components:

• The values for the hip swing joints of all four legs;

• The Touch sensors in the base of each of the robot’s paws;

There are no normalized values in the raw layer to this robot. Both the hip-swing joint
values and the base touch sensors are fed to the prevision layer unnormalized, the only limits
are the physical ones imposed imposed in the robot.
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The range sensors in Bioloid follow the same configuration as in the AIBO. They were
placed in the robot’s right side of the chest, close to te right fore leg. The Bioloid scans the
ground ahead of it with 10 range sensors (ns = 10), which enables it to detect the obstacle
from a greater distance and to start adapting earlier. Also, this offers a higher capacity in the
weight map, which being bigger, it is able to better absorb the detections and the necessary
alterations to the stride length. The first sensor is configured with an angle of 22.5 degrees
from the robot’s coronal plane and each sensor is placed with an aperture of 5 degrees from
each other. The 10 sensors create a total aperture of 67.5 degrees. As the sensors are placed
at 16.4 centimeters above the ground, the total scanned distance is about 32.8 centimeters.

Figure 4.11: Bioloid range sensors’ configuration to scan the ground. The scanned distance (a), the
aperture angle from one sensor to another (b) and the angle between the first sensor and the robot’s
coronal plane (c).

Table 4.2 presents the values used by Webots to compute the range sensor readings.
The first column shows the actual existing distance from the sensor to a surface, the second
column shows the values returned by the sensor and the third defines the noise factor induced
in the sensor readings.

The touch sensors are responsible for triggering the learning signals at time of collision
with the obstacle. They are placed in each paw in the front and in the back. Also, there is a
base sensor placed in the every paw that is used to sense the ground during the stance phase,
or the obstacle during the step over reflex.

The activation of the back sensor 4.13, when the robot is placing it’s paw after stepping
over the obstacle, will result the triggering of a learning signal δ = 1. This will cause the
mechanism to try to avoid this situation in the future by increasing the stride length in the
steps prior to the encounter with the obstacle. In order to trigger the other learning signal
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Table 4.2: This table defines the values acquired from the range sensors in the Bioloid robot (column
2), according to that sensor’s distance to a surface (column 1), and the induced noise(column 3).

Actual Distance Sensor return
value

Noise

0 100 0
0.1 100 0.01
0.5 500 0.1
0.9 900 0.2

Figure 4.12: The polygon defines the touch sensor bounding box, which detects the collisions with
the fore side of the paw.

Figure 4.13: The back side of the paw collisions are detected with the back touch sensor, which
bounding box is visible as a grid polygon.

δ = −1, the fore touch sensor 4.12 is activated, or else, the base sensor (figure 4.14) is
activated during the swing phase of the step over reflex. After the leg has lost contact with
the ground, the base touch sensor becomes inactive, then, it is monitored in order to detect
any activation during the swing phase. If any activation in this sensor occurs during this
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Figure 4.14: The base touch sensor is displayed in the figure as a grid polygon, which defines the
sensor’s bounding box.

period, the sensor will be activated prematurely, before the stance phase when the sensor is
expected to be reactivated. This means that the robot touched the obstacle while trying to
step over it. In this situation the robot will try to avoid repeating such situation by reducing
the stride length in future similar situations.

There can only be one learning signal, a mechanism based on a cool down variable pre-
vents the triggering of this reflex in a row in order to maintain consistency.

Step Over Reflex Triggering

The step over reflex is triggered based on the distance from the paw’s end effector to the
obstacle. This information is fed to the robot at all times. If this distance becomes lower than
the expected length of the step over reflex, this reflex becomes activated. The comparison
is based on the length of a normal stride bl, and a correlation factor k = 1.3, this value was
chosen through a trial and error phase.

In order to model the reflex, the amplitude of both the swing and knee joints is increased
during the swing phase of that stride. The knee amplitude is increased by krk = 60 and the
hip-swing amplitude is increased by krs = 200. The reflex continuous triggering is avoided
through a cool down variable.

Locomotion Adaptation

The alterations in the stride length are defined according to the output from the system and
an amplification factor of kbl = 200. This factor will transform the mechanism’s output
in appropriate values to be passed on to the CPG, as alterations to the amplitude for the
hip-swing joints of all legs. That will cause the stride length to be altered so that the robot
approaches the obstacle in the required manner.
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Bioloid Gaits

Some gaits were tested in the Bioloid platform in order to choose the best fit for the learning
mechanism. The walk gait with the duty factor and the phase relation set to 0.75, a slow
walk gait using a duty factor set to 0.8 and a phase relation of 0.75 and the trot gait, with
both parameters set to 0.5.

Figure 4.15 shows the activation of the touch sensors with relation to the desired stance
phases, during the performed walk gait. It is clear that they do not match, there is a con-
siderable difference between the ideal stance phases and the actual touch sensor activations.
However, the activation are continuous and sufficiently stable. Furthermore, there are no
alteration to this pattern during the executed test, as it happens in the AIBO’s walk gait.
This grants a stable locomotion and perception of the environment through the range scan-
ners. Thus, enabling the learning and the creation of reliable hypothesis and changes to the
locomotion.

Figure 4.15: Bioloid touch sensors’ activations and desired stance phases according to the performed
walk gait.

The fore legs show an activation pattern that closely resembles the desired stance phase,
on the other hand, the hind legs show an activation of a shorter duration than what was
required for this gait.

The slow walk gait 4.16 shows similar results to those of the normal walk gait. The
fore legs have a stance phase similar to the ideal one and the hind legs have an activation of
shorter duration with relation to the expected stance phases.

The stability of this gait is also maintained throughout the execution, the main difference
to the normal walk is the slower speed.
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Figure 4.16: Leg base touch sensors activation and the desired stance phases during the slow walk
gait performed by Bioloid.

The trot gait was also tested 4.17, the fore leg activations show an activation similar to
the desired one, but the hind legs seem to be almost constantly supporting the robot. There is
not any alteration to this pattern through time, however, there was a substantially biasing of
the robot’s steering towards the right, even when crossing short distances. This means that
when applied, the robot steers out of the desired path.

Figure 4.17: Bioloid executing trot gait, figure displays the desired stance phases and the acquired
activations for the legs’ base touch sensors.
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The Bioloid’s locomotion gait to be used in the tests was the normal walk, it was the most
stable and fast gait, therefore the more adequate to the learning mechanism. ïż£



Chapter 5

Results

This chapter presents a series of tests designed and executed in order to evaluate the mecha-
nism’s capabilities in fulfilling the proposed goals. As the complete mechanism is composed
of several elements, each one will be evaluated at a time. Thus, assuring the correct func-
tioning of the complete mechanism. Also, both the considered platforms will give rise to
different tests and results.

As mentioned before, the mechanism is divided in two main parts. The first one focus
on the obstacle detection and the second in learning the required changes to the locomotion.
Each one will be addressed in different sections.

5.1 Detection Mechanism Validation

The first part concerns the detection of obstacles and the mechanism’s capability to adapt to
new conditions in runtime, such as a change in the locomotion gait. All elements will be
evaluated according to their specific goal and to their contribution to the results expected in
this part of the mechanism.

The evaluating points considered during this section are the following: the stride divi-
sion and the relation that exists between the robot’s state and its environmental perception;
the creation of reliable hypothesis and how can they be used to detect the obstacles and to
adapt to new conditions; and finally, the filtering of the undesired noise from the obstacle
detections.

Although both platforms were evaluated according to the defined items, the results are
very similar. So, the mechanism’s evaluation will be mainly presented according to the
Bioloid robot. The results obtained with AIBO will be shown in a resumed version, high-
lighting any difference that might exist between the two applications.

47
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Stride division

This fist part of the mechanism treats the input raw layer from the sensors, both propriocep-
tive and perception sensors, in order to produce the desired structure presented in chapter
3.

The main concern in this process is the clustering of raw, noisy data into discrete and
predefined chunks that divide the stride into np equal parts. This process affects all the
sensors (except the touch sensors used to detect the obstacle collision) and produces a single
value that captures all the relevant information acquired during that period of the stride.
Figure 5.1 shows the input and output of this process in the Bioloid robot.

Figure 5.1: Stride division process, upper graphic shows the raw data, directly from the range sensor
number 7 on Bioloid, and below is shown the data after processing. Stride is divided in 16 np.

It is clear that the raw data from the sensors is very noisy and presents many oscillations.
This could complicate both the learning process in the prevision layer and the novelty layer
filtering. The excessive noise could give rise to false detections, or define a bad reputation
for a very noisy cell.

So, this process smoothens the raw data, making it more reliable, while creating the
required data structure that will be used throughout the mechanism (the division of the range
sensor values in the nphases. Figure 5.2 shows the same process to the AIBO robot.
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Figure 5.2: Aibo’s stride division process with 40 divisions, applied to the range sensor pointing
further away from the robot.

Locomotion cyclic relation

It is important to show the cyclic relation between the perception data and the locomotion
cycle, since this relation is what makes possible for the system to create expectations about
the range sensor values. All the used sensor information, the perception and proprioceptive
data, varies with the robot’s locomotion cycle.

The expectations for the range sensors’ values of each cell are created according the
state of the robot in its locomotion cycle, which is defined by the proprioceptive information
(described in the implementation chapter 3). Figure 5.3 displays this relation in the data.
The upper plot shows the activation of the range sensor 7 during 3 strides and bellow the
fore right hip-swing joint values during the same 3 strides. One can see that there is a cyclic
behavior in both plots and that both oscillate with the same period.

We can find the same relation between the same types of sensor modalities in the AIBO,
figure 5.4. The upper plot shows the activation of the range sensor is the number 5, the
one pointing further away from the robot, and the lower plot shows the values for fore right
hip-swing during that same period.

Prevision capabilities

The prevision capabilities seek to enable the mechanism to detect obstacles and to adapt to
changes in the locomotion pattern. So, two evaluation scenarios were created in order to
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Figure 5.3: The relation that the range sensors and the robot’s state have with the locomotion cycle.
Upper plot shows the range sensor activation from stride 20 to 23 and below the fore right hip-swing
joint value during the same strides.

Figure 5.4: Activation of the fore right hip-swing joint value (lower plot) and the range sensor 5 in
the AIBO robot, during the strides 30 to 33.

evaluate the mechanism’s response to each feature. On the first the robot will encounter
several obstacles in its way, and will move with the previously defined optimal gait. The
other scenario will not include obstacles, instead, the robot will have its locomotion gait
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changed within predefined periods of time.
First, the prevision capabilities for both the Least Mean Square (LMS) and the Newton’s

method, will be evaluated without the adaptive learning rate mechanism presented before.
This will show the behavior of both methods without further enhancement, highlight the
problems that arise by using such type of approach in these situations.

The first mechanism to be evaluated will be the LMS, this learning rule will use a static
learning rate µ defined according to the inequality 3.11. The value is computed at the begin-
ning of every test during the first iterations, according to:

µ =
1

100λmax
, (5.1)

where the maximum eigenvalue λmax is computed according to the correlational matrix
(3.12) of the first 10 acquisitions.

Figure 5.5 shows the performance achieved with this learning rule, using the optimal
constant learning rate. The presented signals include the raw values acquired by the sensors,
the hypothesis created for those values through time and the difference, or error, between
them.

Figure 5.5: Performance of LMS with constant learning rate.

The previsions show that the system quickly converges to the raw data in each iteration.
However, after each peak in the raw layer input, which is caused by an obstacle detection, the
prevision layer simply absorbs those values as if they were a part of the locomotion pattern.
This produces two high error signals instead of one, since the mechanism expects higher
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error values after the obstacle detections.

Figure 5.6: LMS response with a slow constant learning rate behavior, facing several obstacles in its
path.

If the learning rate is set to lower values :

µ =
1

1000λmax
, (5.2)

we get a different behavior, the mechanism slowly converges to the required values.
Figure 5.6 displays such behavior and the mentioned problem is no longer present. However,
there is a substantially slower convergence if the same constant learning rate is applied to the
varying locomotion gaits problem. These results are presented in figure 5.7, the alterations
in the locomotion gait are applied every 30 strides and the results are clearly visible in the
raw data. The robot switches between normal walk, slow walk and trot, and the mechanism
is required to answer these alterations in order to keep producing good expectations.

The second regression model is the Newton’s method, which is a minimization algorithm
applied here to the cost function’s minimization. It usually does not include any learning rate,
therefore it is naturally set to µ = 1.

Figure 5.8 shows the behavior of such algorithm when applied to detecting obstacles. In
these conditions the method is of little use, since the prevision values simply are the same as
the raw, only with a stride’s delay.

In order achieve a smoother convergence, the method’s learning rate was defined to µ =
0.5. Figure 5.9 shows the results for the obstacle detection evaluation scenario under these
circumstances and it is clear that the obstacle detections are still absorbed by the prevision
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Figure 5.7: LMS response without adaptive learning rate behavior facing changes in the locomotion
gait.

Figure 5.8: Newton method’s previsions obtained in Bioloid without learning rate.

layer. In the changing activation pattern scenario the results were not good either, since the
convergence became slower. If we reduce the learning rate even further, we might obtain a
good result in the obstacle detection scenario, but we would get a much worse results in the
changing locomotion pattern scenario (figure 5.10, displays the results when µ = 0.125).
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Figure 5.9: Newton’s method results a static and low learning rate in Bioloid.

Figure 5.10: Newton’s method behavior when facing changes in the locomotion pattern with a slow
learning rate.

A static learning rate does not seem to meet the requirements pointed out before in chap-
ter 3. So, the adaptive learning rate mechanism was defined in order to answer the learning
requirements.
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Adaptive Learning Rate Results

The adaptive learning rate is defined according to a percentage of the optimal value, which
poses a limit to the maximum learning performance. The LMS optimal learning rate is the
one mentioned previously, the one used as static learning rate in the previous section.

The LMS method with the adaptive learning rate was first evaluated in its obstacle detec-
tion capability, figure 5.11 displays the results. The required goal, which was to be tolerant
to the obstacle detection signals, is achieved, since the prevision layer does not absorb any.
It simply keeps creating the usual expectations.

The results in the changing locomotion gait scenario with the adaptive learning rate are
shown in figure 5.12. Again, the required performance was achieved since the robot increases
the learning rate when it detects a persistent error, which denotes a change in the locomotion
pattern. So, it quickly learns the new conditions (within 12 strides).

The optimal learning rate used in the Newton’s method is set to η = 1 in order to attain
a fast converge when the robot has low confidence in its expectations. When applied to the
detection of obstacles, this method shows much better results using an adaptive learning rate
rule, than it had when using a static learning rate. As is shown in figure 5.13, the system
becomes tolerant to point activations and does not change its prevision layer.

When confronted to changes in the activation patterns, the results presented in 5.14 using
the adaptive learning rate show much better results than those obtained with the static learn-
ing rate. The mechanism is capable of performing a fast convergence when so is required,
quickly learning the new activation pattern (within 12 strides).

Both models were enhanced with the the adaptive learning rate mechanism. By using the
confidence level the mechanism is able to evaluate its performance and define the learning
rate according the mechanism’s needs at that moment. The confidence level allows the sys-
tem to take advantage of both the best, optimal learning rate, when there is the need to adapt,
or a nearly null learning rate when the system knows it is performing well. Also, it allows
the system to be tolerant to small and instantaneous errors, responding only when it detects
a persistent error.

Comparing the results obtained with the LMS and the Newton’s method when using the
adaptive learning rate mechanism, both fulfill the required goals with very similar results.
As for the computation complexity, it is higher for the Newton’s method due to its need to
compute both the hessian matrix and the gradient vector, in every iteration (in equation 3.16).
Thus, the most adequate approach is the LMS.
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Figure 5.11: Results obtained in the Bioloid when the prevision layer tries to detect the obstacles.
These were obtained with the LMS using an adaptive learning rate. In a we can see the error, the
expectations and the raw data, b shows the confidence level and c the learning rate value.

Filtering the noise from the Activations

The obstacle detections are no more than differences from the hypothesis created in the
prevision layer and the values acquired from the environment. Noise is inevitable in the
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Figure 5.12: Results of LMS prevision and its ability to deal with changing locomotion patterns,
using an adaptive learning rate in the Biloid platform. In a we have the mechanism’s performance, b
shows the confidence level and c the learning rate.

sensor readings, as well as other undesired features caused by the locomotion pattern (e.g.
small variations). In order to distinguish the obstacle detections from all that information,
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Figure 5.13: Newtons previsions applied to the detection of obstacles obstacle using an adaptive
learning rate in the Bioloid robot. In a the raw, the expectations and the error are presented, b and c
show the confidence and learning rate, respectively

the novelty layer applies a filtering process that includes a reputation variable called gain
factor (g).
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Figure 5.14: Newtons’s method applied to deal with changing locomotion patterns, using an adaptive
learning rate. Applied to the Bioloid robot. The confidence and the learning rate are displayed in b
and c, respectively, and the performance is visible in a, where the error, the expectations and the raw
data are present.
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The confidence level presented before and a gaussian function will be evaluated in its
ability to define a given cell’s reputation. In order to prove the point of such mechanism, the
range sensors will be defined with a noise value higher than usual, namely of 10% for each
entry instead of 1%. Also, during this test the robot will execute several trials that will not
include the stepping over the obstacle, it will only get close enough to detect the obstacle
with all its sensors. At stride number 70 the gait will be changed from walk to trot in order
to create more adverse conditions, thus, adequately evaluating this component.

The used regression model will be the LMS since it was proved to be the most adequate.
Next, both approaches applied to the gain factor update mechanism will be tested. The
gaussian function and the confidence mechanism.

Figure 5.15 presents two plots, the upper one shows the error and the filtered obstacle
detections and bellow, one can see the gain factor variable evolution throughout the test.
Around stride 70, the change in the gait is clear, since the error profile suffers some changes
and some higher error values are generated. Here, the role of the filter is evident. After one
single activation, the gain factor reacts and changes its value drastically, avoiding further
unwanted activations of the novelty layer. Also, the obstacle detections clearly stands out,
while the remaining error is flattened to 0.

Figure 5.15: Results obtained with the gaussian function as feedback mechanism to the gain factor
variable. Upper plot shows the error and the filtered output, the other one shows gain factor evolution.

The results obtained with the confidence mechanism, the one used before to change the
learning rate, are shown in figure 5.16. In this case, the system is able to correctly filter the
lesser noise values and output the correct obstacle detections, however, it was not able to deal
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with the noise generated during the gait alteration. Its reaction was too much delayed and
several undesirable activations were passed on to the system. This consequence is actually
a feature of the confidence mechanism, which was designed to deal with errors, but not to
react until they become persistent and/or too strong. Therefore, its nature dos not apply to
this specific problem, where a quick response to the error detection is required.

Figure 5.16: Results of the error filtering using the confidence mechanism to update the gain factor
variable (presented in the lower plot). The error and the filtered activations are shown in the upper
plot.

AIBO Results in obstacle detection.

The AIBO robot’s results are very similar to those of the Bioloid. This is why the same
detailed evaluation of each state will not be presented for this platform. Instead, a resumed
version is described next.

There is one relevant difference, the Newton’s method achieved a better performance in
AIBO than the LMS, due to its optimal learning rate. The LMS learning rate in the AIBO is
smaller than in the Bioloid. As it is smaller, the optimal convergence speed is slower. The
Newton’s method has the same optimal learning rate in both platforms (η = 1). The optimal
learning rate used in the LMS is defined through the previously described process (equation
5.2), which one is based on the correlational matrix of the range sensors’ values.

Figures 5.17 and 5.18 show the results with the LMS and the Newton’s method, respec-
tively. It is visible that the LMS takes a longer time to converge than the Newton’s method.

The filtered output for the Newton’s method produced with the AIBO robot is presented
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Figure 5.17: Prevision results obtained in the AIBO with the LMS. Shows the expectations, the raw
data and the error (a), the confidence level (b) and the learning rate (c).

in figure 5.19. One can see that the obstacle detections are passed on to the second part of
the mechanism, while the remaining noise is eliminated.
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Figure 5.18: Results obtained with the Newton’s method with the AIBO. It presents in (a) the raw
data, the hypothesis and the error, and in (b) and (c), the confidence level and the learning rate,
respectively.

5.2 Adaptive Locomotion Evaluation

The evaluation of this second part of the mechanism seeks to verify all the components in
their specific goals, as well as the system’s overall goal, which is to learn from experience
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Figure 5.19: AIBO’s performance, filtered error output as obstacle detections (upper plot) and the
gain factor variable evolution.

how to change the locomotion in order to avoid the detected obstacles.
In this section, the main results will concern the Bioloid, since, as it was already pointed

out before, the AIBO physical properties do not match the requirements to the attainment
of the proposed goals. Its blunt and big paws make the stepping over the obstacle much too
difficult, and its best gait, which is the trot, can hardly be properly executed.

Next, the results concerning each of the components of this second part are presented.
Then, the whole mechanism is evaluated in its ultimate goal, to learn to avoid the obstacle
by applying changes in the stride length.

Activation Remains and Learning

The activation remains are an important part of the learning process, since these signals
hold a memory of short duration that enables the robot to remember how did it approach
the obstacle. This is then used to change the weight map when and if a learning signal is
triggered, as it was explained before.

Whenever an obstacle is detected, an activation cell is activated alongside with a Short
Term Memory (STM) cell. The value held by the STM cell is expected to last until a learning
signal is triggered. The expected behavior to the STM cell is achieved through equation 3.28
and its displayed in figure 5.20.

There, despite the initial convergence error, all the activations have its value decayed in
time, as expected.



5.2. ADAPTIVE LOCOMOTION EVALUATION 65

Figure 5.20: Short Term Memory cells behavior when activated.

The learning happens when the learning signal δ is triggered, as explained before, by
changing the weight values according to the learning signal and its correspondent STM cell,
which holds remains of the way the robot approached the obstacle.

Figure 5.21 shows the learning process in one cell. The lower plot presents the weight
value changing according to the learning signals and the upper plot shows the STM values
for the give cell and the triggered learning signals. One can see the amount of remaining
activation at the moment of learning, which will define the weight change at that iteration.

Stride Length Alteration

After learning, when the robot approaches the obstacle, the activated cells will be combined
with the learnt weights in order to produce necessary alterations to the stride length. The
combination of each cell is called a synapse. Figure 5.22 shows the synapse activation for
the given cell on the lower plot, the middle and the upper plot show the weight value and
the activation cells, respectively. The interaction between these values is clear since all
change according to the weight value, also, after the last last weight change all the subsequent
synapses becomes similar.

All activation and weight cells correspondent to a single stride phase - one for each
sensor - are combined together in order to update the variable that changes the CPG bl.
As previously mentioned in chapter 3, this variable might need to be amplified in order to
actually change the CPG, which is required to transform the necessary stride change value,
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Figure 5.21: Weight update (lower plot) according to the Short term memory cells value and the
learning signals (upper plot).

Figure 5.22: The synapses values (lower plot) according to the weight (middle plot) and the activation
cells (upper plot).

computed in the mechanism value space, into a value that can actually change the required
CPG’s parameters, namely, the oscillation’s amplitudes.

Figure 5.23 shows the alterations made to the stride length as system’s output values
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(upper plot) which will be amplified and sent to the CPG. It also shows the measured stride
length at each stride, displaying the system’s response to the applied changes. The upper plot
was not defined as a function of the strides because the changes to the CPG are computed at
every iteration, so, it is computed as a function of time. However, both are scaled to the full
duration of the tests, which allows a correct mach of each moment.

Figure 5.23: Stride length change (lower plot) according to mechanism output signal (upper plot).

The measured stride length plot displays a few features that require a deeper explanation.
There are higher point activations that do not seem to make sense, since the mechanism out-
put bl shown in the upper plot only produces stride length reduction signals. These increases
are generated during the step over reflex activation, when the robot executes an increased
stretch of its leg in order to overcome the obstacle. Also, at the beginning of the learning
process, the robot produces some very low stride lengths, these are caused by collisions with
the obstacle before the step over reflex execution. As the robot collides with the obstacle its
paw will not be able to stretch as much as it would be necessary, thus, the stride length is
reduced. After some learning iterations this is no longer verified, due to the robot’s effort in
avoiding to collide with the obstacle, the collisions become softer until they disappear. This
shows that the mechanism works, since the stride length changes according to the knowledge
acquired by the robot during the learning phase.
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Learning Results

Now that each element has been evaluated in its specific function, the results concerning the
mechanism’s goal will be presented.

In order for the system to be successful, it is required to fail by colliding with the obstacle
during the step over reflex. When the robot approaches an obstacle, some cells are activated,
forming a pattern that identifies that approach phase. The cells are activated according to the
moments of the stride that each of the sensors detected the obstacle. An Activation Pattern
(AP) can be regarded as a label that defines a way to approach the obstacle. Considering the
previously defined trial concept, an AP is directly related to the different distances at which
the robot is placed at the beginning of a trial. Or else, the distance to the next obstacle in the
environment. Varying the distance will change the AP in the robot.

Figure 5.24 presents the results obtained when the robot is placed always at the same
distance from the obstacle, meaning that it will always get the same AP. It is visible that
there were only a few (5) learning iterations, which means that after those iterations, the
robot learned to avoid the obstacle at that distance, when the AP is maintained.

Figure 5.24: The robot test trying to learn to step over an obstacle always at the same distance.

However, if the distance changes, the robot will face different APs. Depending on the
chosen pair of APs, the mechanism behaves differently. Let’s consider a test where the
robot learns to answer to a first AP and that after 10 trial, that position is changed, and the
mechanism is confronted with a different one. Then, the distance to the obstacle is changed
back to the first after another 10 trials and back again after another 10 trials.
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Figure 5.26 shows the results for one these cases. It is visible that the mechanism is
capable of learning to respond to different AP without forgetting any. After learning each
one, it no longer triggered any learning signal.

Figure 5.25: Ability for the system to learn to answer to a second activation patter without forgetting
the first.

Another set of APs is used to execute the same test. In this case, there were required more
than one learning period to learn one of the APs, in order to acquire the required knowledge
and fulfill the goal. This suggested that both APs shared activation cells. I.e., the obstacle
was detected during the same phase of the stride and at the same distance in both the APs.
This seems to require the mechanism to run more iterations in order to achieve the correct
balance between the responses to both the APs.

Since the locomotion is cyclic, and the stride length is nearly always the same, it is
expected that if the robot part from two different distances that are about one stride length
away from each other, the same activation pattern will occur. In order to evaluate such
hypothesis the robot will first learn one AP by encountering the obstacle at a distance d1 = 1,
after 10 trials the distance will be changed to d1 + bl, where bl is the usually observed stride
length 0.07. After another 10 trials, the distance will become d1 − bl.

The results in figure 5.27 confirm this hypothesis, the robot was able to answer the three
different APs only by learning the first. The lower plot reveals the system output variable bl
and it is clear that the result remains similar to all APs.

The full map, which enables the robot to answer all the possible APs, is the expected
goal. As shown before, the APs are repeated if the position that define them are shifted



70 CHAPTER 5. RESULTS

Figure 5.26: Ability for the system to learn to answer to a second activation pattern without forgetting
the first. APs that share activation cells

Figure 5.27: Evaluating the hypothesis of different distances to the obstacle can produce the same
AP, when the distance bewteen them is about one stride length bl.

about multiples of bl. So, if the mechanism achieves the full learning by varying the starting
position within the distance of its stride length bl = 0.07, it should be able to answer to any
AP.
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The first test will vary the starting position within the range [st+ bl, st+ 2bl] (where st is
the base distance from the obstacle), considering 7 possible, uniformly distributed, positions.

Figure 5.28: Learning results with 7 different, uniformly distributed AP. Upper plot shows the trig-
gered learning signals and below, the changes in the system’s output bl.

In figure 5.28 the results show that the mechanism acquired the necessary information to
respond to all the 7 APs, thus, enabling the robot to avoid stumbling on the obstacle.

A second test used the double possible starting positions within the same range. Figure
5.29 displays the resulting activations. In this case, the mechanism was not able to fully learn
the required map. The higher number of APs requires a much harder learning process as the
number of common cells between different APs increases. So, the mechanism needs to find
the balance between them all. This higher number of possible starting positions seems to be
much too high for the system to learn the full map.

These results show that the mechanism is able to learn and to adapt the locomotion ac-
cording to the detected obstacles. However, there is a limit to the number of AP that when
crossed, the mechanism is able to avoid the obstacles, but eventually fails and needs to
readapt. Nevertheless, the robot learns and avoids the obstacles using the acquired infor-
mation, without any specific indication of what is an obstacle.
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Figure 5.29: Results using 14 possible APs. Upper plot shows the triggered learning signals and
below, the changes in the system’s output bl.



Chapter 6

Conclusion and Discussion

The proposed mechanism requires several components in order to achieve its goal. The
correct functioning of each one will determine the system’s success. The previous chapter
presented the results obtained and compared them to what was expected. Each component
acheived the desired goals and, generally, the system fulfilled the required tasks. The robot
was actually able to both detect and learn to avoid the obstacle.

Concerning the obstacle detection, the system achieved the best expectations, it was able
to detect the obstacle and to adaptively learn to do so. The results showed that the forward
internal model defined in the prevision layer obtained good expectation values after some
learning iterations (some strides). This enabled the system to quickly generate reliable error
signals (differences between the created expectations and the raw sensor readings), that when
fed to the novelty layer made possible the correct discerning of obstacle detections among
the noise and the remain error signals. Also, the novelty layer generated the desired behavior.
The used reputation variable enables the system to avoid undesired activations, such as the
ones that arise from changes in the locomotion. Thus, the obstacle detections depend on the
error and the reliability of such error.

Another crucial point to the obstacle detection is the adaptive learning rate mechanism
used to change the internal forward model’s plasticity. It enables the system to differentiate
the errors caused by the obstacle detections from those generated when changes in the loco-
motion occur. Thus, avoiding absorb the obstacle detections as part of the locomotion pattern
and adapting to changes in the locomotion. Although the required behavior was successfully
achieved, future work could further improve the mechanism’s performance. Namely, into re-
ducing the required time to readapt whenever a different pattern is detected. Results showed
that the confidence level is reduced when this situation is detected, however, the confidence
remains high (β > 0.5). So, the optimal learning rate is underused.

The methods used to implement the robot’s perception, namely the detection of the obsta-
cles, offers an important feature to design an adaptable and autonomous robot controller. The

73
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ability to distinguish the self caused perception changes from those that are externally gen-
erated, enables environment’s perception and self awareness about the robot and its move-
ments. Also, this enables the robot to evaluate its performance by comparing the obtained
results to the expected values.

Learning to avoid the obstacle, the second proposed goal for this mechanism, was also
successfully achieved. The robot learns to avoid the obstacle through experience, it tunes
the weight map every time time it fails by colliding with the obstacle. As a consequence, it
learns how should it change the locomotion in order to avoid such situations in the future,
placing its paw optimally before executing the step over reflex.

The presented concept of Activation Pattern (AP) - defined by a set of activated cells
during the obstacle approximation phase - is used to evaluate the different ways the robot
can approach the obstacle. It was shown that when systematically faced with the same AP,
the robot learns to answer it within a few iterations - or trials. Then, the robot was faced
with two activation patterns interchangeably, with a learning period for each one. Here,
we obtained different results when facing different pairs of APs. In some cases it learned
the first, then the second, and the learning iterations stopped, which means that both AP
were acquired by the map without forgetting any. On other cases, it required more than one
learning period to learn one of them. This suggested that, on these cases, the two APs shared
activation cells, i.e., the robot detected the obstacle at the same distance and during the same
phase of the locomotion, when approaching the obstacle in both ways. That required the
system to find a balance between these activation cells, or using different activated cells in
the AP, to save the necessary alterations to the locomotion.

When facing several, randomly chosen, APs, the system’s success seems to depend on
the number of these APs. If the possible APs are only a few (7), the system seems to learn
the full map even if it takes more than 350 learning iterations (trials), however it is able to
acheive a reasonably good performance much earlier. As the number of APs increases - 14
or more -, it becomes harder for the system to fit all the solutions in the same weight map.
This suggests that the number of shared cells is bigger, therefore the balance between all of
them becomes a much complex problem.

Nevertheless, the robot did learn to change its stride length in order to optimally place
its paw before triggering the step over reflex. Also, even though the robot eventually fails to
step over the obstacle when the number of APs is too great, most of the trials are successful.
This shows that the ultimate goal, learning to avoid the obstacles, was achieved. The robot
learns by experience to detect and avoid an obstacle.
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