4,648 research outputs found

    Intelligent active force control of a three-link manipulator using fuzzy logic

    Get PDF
    The paper presents a novel approach to estimate the inertia matrix of a robot arm using a fuzzy logic (FL) mechanism in order to trigger the active force control (AFC) strategy. A comprehensive study is performed on a rigid three-link manipulator subjected to a number of external disturbances. The robustness and effectiveness of the proposed control scheme are investigated considering the trajectory track performance of the robotic arm taking into account the application of external disturbances and that the arm is commanded to describe a reference trajectory given a number of initial and operating conditions. The results show that the FL mechanism used in the study successfully computes appropriate estimated inertia matrix value to execute the control action. The proposed scheme exhibits a high degree of robustness and accuracy as the track error is bounded within an acceptable range of value even under the influence of the introduced disturbances

    Fuzzy logic control of telerobot manipulators

    Get PDF
    Telerobot systems for advanced applications will require manipulators with redundant 'degrees of freedom' (DOF) that are capable of adapting manipulator configurations to avoid obstacles while achieving the user specified goal. Conventional methods for control of manipulators (based on solution of the inverse kinematics) cannot be easily extended to these situations. Fuzzy logic control offers a possible solution to these needs. A current research program at SRI developed a fuzzy logic controller for a redundant, 4 DOF, planar manipulator. The manipulator end point trajectory can be specified by either a computer program (robot mode) or by manual input (teleoperator). The approach used expresses end-point error and the location of manipulator joints as fuzzy variables. Joint motions are determined by a fuzzy rule set without requiring solution of the inverse kinematics. Additional rules for sensor data, obstacle avoidance and preferred manipulator configuration, e.g., 'righty' or 'lefty', are easily accommodated. The procedure used to generate the fuzzy rules can be extended to higher DOF systems

    Summary report: A preliminary investigation into the use of fuzzy logic for the control of redundant manipulators

    Get PDF
    The Rice University Department of Mechanical Engineering and Materials Sciences' Robotics Group designed and built an eight degree of freedom redundant manipulator. Fuzzy logic was proposed as a control scheme for tasks not directly controlled by a human operator. In preliminary work, fuzzy logic control was implemented for a camera tracking system and a six degree of freedom manipulator. Both preliminary systems use real time vision data as input to fuzzy controllers. Related projects include integration of tactile sensing and fuzzy control of a redundant snake-like arm that is under construction

    Controlador híbrido robusto basado en red neuronal fuzzy de intervalo tipo 2 y modo deslizante de alto orden para robots manipuladores

    Get PDF
    Industrial arms should be able to perform their duties in environments where unpredictable conditions and perturbations are present. In this paper, controlling a robotic manipulator is intended under significant external perturbations and parametric uncertainties. Type-2 fuzzy logic is an appropriate choice in the face of uncertain environments, for various reasons, including utilizing fuzzy membership functions. Also, using the neural network (NN) can increase robustness of the controller. Although neural network does not basically need to build its type-2 fuzzy rules, the initial rules based on sliding surface of higher order sliding mode controller (HOSMC) can improve the system's performance. In addition, self-regulation feature of the controller, which is based on the existence of the neural network in the central type-2 fuzzy controller block, increases the robustness of the method even more. Effective performance of the proposed controller (IT2FNN-HOSMC) is shown under various perturbations in numerical simulations.Los brazos industriale deben poder realizar sus tareas en entornos donde existen condiciones y perturbaciones impredecibles. En este artículo, el control de un manipulador robótico está bajo perturbaciones externas significativas e incertidumbres paramétricas. La lógica difusa de tipo 2 es una opción adecuada frente a entornos inciertos, por varias razones, incluida la utilización de funciones de membresía difusas. Además, el uso de la red neuronal (NN) puede aumentar la robustez del controlador. Aunque la red neuronal no necesita básicamente construir sus reglas difusas tipo 2, las reglas iniciales basadas en la superficie deslizante del controlador de modo deslizante de orden superior (HOSMC) pueden mejorar el rendimiento del sistema. Además, la función de autorregulación del controlador, que se basa en la existencia de la red neuronal en el bloque central del controlador difuso tipo 2, aumenta aún más la robustez del método. El rendimiento efectivo del controlador propuesto (IT2FNN-HOSMC) se muestra bajo varias perturbaciones en simulaciones numéricas

    Humanoid robot walking control on inclined planes

    Get PDF
    The humanoid bipedal structure is suitable for a assitive robot functioning in the human environment. However, the bipedal walk is a difficult control problem. Walking just on even floor is not satisfactory for the applicability of a humanoid robot. This paper presents a study on bipedal walk on inclined planes. A Zero Moment Point (ZMP) based reference generation technique is employed. The orientation of the feet is adjusted online by a fuzzy logic system to adapt to different walking surface slopes. This system uses a sampling time larger than the one of the joint space position controllers. The average value of the body pitch angle is used as the inputs to the fuzzy logic system. A foot pitch orientation compensator implemented independently for the two feet complements the fuzyy controller. A 12-degrees-of-freedom (DOF) biped robot model is used in the full-dynamics 3-D simulations. Simulations are carried out on even floor and inclined planes with different slopes. The results indicate that the control method presented is successful in enabling the robot to climb slopes of 8.5 degrees (15 percent grade)

    Grasping and Control Issues in Adaptive End Effectors

    Get PDF
    Research into robotic grasping and manipulation has led to the development of a large number of tendon based end effectors. Many are, however, developed as a research tool, which are limited in application to the laboratory environment. The main reason being that the designs requiring a large number of actuators to be controlled. Due to the space and safety requirements, very few have been developed and commissioned for industrial applications. This paper presents design of a rigid link finger operated by a minimum number of actuators, which may be suitable for a number of adaptive end effectors. The adaptive nature built into the end effector (due to limited number of actuators) presents considerable problems in grasping and control. The paper discusses the issues associated with such designs. The research can be applicable to any adaptive end effectors that are controlled by limited number of actuators and evaluates their suitability in industrial environments
    corecore