
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800



Control of Robotic Systems with Flexible Components  
using Hermite Polynomial-Based Neural Networks 459

Control of Robotic Systems with Flexible Components using Hermite 
Polynomial-Based Neural Networks

Gerasimos G. Rigatos

x 
 

Control of Robotic Systems with  
Flexible Components using Hermite  
Polynomial-Based Neural Networks 

 
Gerasimos G. Rigatos 

Unit of Industrial Automation 
Industrial Systems Institute 

26504, Rion Patras 
Greece 

 
1. Introduction      
 

Flexible-link robots comprise an important class of systems that include lightweight arms 
for assembly, civil infrastructure, bridge/vehicle systems, military applications and large-
scale space structures.  Modelling and vibration control of flexible systems have received a 
great deal of attention in recent years (Kanoh, Tzafestas, et. al., 1986), (Rigatos, 2009), 
(Rigatos, 2006), (Aoustin, Fliess, et al.,1997 ). Conventional approaches to design a control 
system for a flexible-link robot often involve the development of a mathematical model 
describing the robot dynamics, and the application of analytical techniques to this model to 
derive an appropriate control law (Cetinkunt & Yu, 1991), (De Luca & Siciliano, 1993), 
(Arteaga & Siciliano, 2000). Usually, such a mathematical model consists of nonlinear partial 
differential equations, most of which are obtained using some approximation or 
simplification (Kanoh, Tzafestas, et al., 1986), (Rigatos, 2009). The inverse dynamics model-
based control for flexible link robots is based on modal analysis, i.e. on the assumption that 
the deformation of the flexible link can be written as a finite series expansion containing the 
elementary vibration modes (Wang & Gao, 2004). However, this inverse-dynamics model-
based control may result into unsatisfactory performance when an accurate model is 
unavailable, due to parameters uncertainty or truncation of high order vibration modes 
(Lewis, Jagannathan & Yesildirek, 1999). 
In parallel to model-based control for flexible-link robots,  model-free control methods have 
been studied (Rigatos, 2009), (Benosman & LeVey 2004). A number of research papers 
employ model-free approaches for the control of flexible-link robots based on fuzzy logic 
and neural networks. In (Tian & Collins, 2005) control of a flexible manipulator with the use 
of a neuro-fuzzy method is described, where the weighting factor of the fuzzy logic 
controller is adjusted by a dynamic recurrent identification network. The controller works 
without any prior knowledge about the manipulator's dynamics. Control of  the end-
effector's position of a flexible-link manipulator with the use of neural and fuzzy controllers 
has been presented in (Wai & Lee, 2004), (Subudhi & Morris, 2009), (Talebi, Khorasani, et. al, 
1998), (Lin & Lewis, 2002), (Guterrez, Lewis & Lowe, 1998). In (Wai & Lee, 2004) an 
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intelligent optimal control for a nonlinear flexible robot arm driven by a permanent-magnet 
synchronous servo motor has been designed using a fuzzy neural network control 
approach. This consists of an optimal controller which minimizes a quadratic performance 
index and a fuzzy neural-network controller that learns the uncertain dynamics of the 
flexible manipulator. In (Talebi, Khorasani, et. al, 1998) a fuzzy controller has been 
developed for a  three-link robot with two rigid links and one flexible fore-arm. This 
controller design is based on fuzzy Lyapunov synthesis where a Lyapunov candidate 
function has been chosen to derive the fuzzy rules. In (Subudhi & Morris, 2003) a neuro-
fuzzy scheme has been proposed for position control of the end effector of a single-link 
flexible robot manipulator. The scale factors of the neuro-fuzzy controller are adapted on-
line using a neural network which is trained with an improved back-propagation algorithm.  
In (Caswara & Ubenhauen, 2002) two different neuro-fuzzy feed-forward controllers have 
been proposed to compensate for the nonlinearities of a flexible manipulator. In (Renno, 
2007) the dynamics of a flexible link has been modeled using modal analysis and then an 
inverse dynamics fuzzy controller has been employed to obtain tracking and deflection 
control. In (Shi & Trabia, 2006) a fuzzy logic controller has been applied to a flexible-link 
manipulator. In this distributed fuzzy logic controller the two velocity variables which have 
higher importance have been grouped together as the inputs to a velocity fuzzy controller 
while the two displacement variables which have lower importance degrees have been used 
as inputs to a displacement fuzzy logic controller. In (Hui, Fuchun & Zenghi, 2002) adaptive 
control for a flexible-link manipulator has been achieved using a neuro-fuzzy time-delay 
controller. In (Nguyen & Morris, 2007) a genetic algorithm has been used to improve the 
performance of a fuzzy controller designed to compensate for the links' flexibility and the 
joints' flexibility of a robotic manipulator.  
In this paper, a neural controller using orthogonal wavelet basis functions is first proposed 
for the control of the flexible-link robot. The neural controller operates in parallel to a PD 
controller the gains of which are calculated assuming rigid link dynamics. Neural networks 
with wavelet basis functions, also known as 'wavelet networks', were first introduced in 
(Zhang & Benveniste, 1993) aiming at giving to feed-forward neural networks multi-
resolution analysis features and at providing neural models with good approximation 
features while using a small number of tunable parameters. Wavelet neural networks can be 
classified into orthogonal and non-orthogonal. In orthogonal wavelet networks an 
orthonormal basis is generated, using the wavelet function. However, in order to create the 
orthonormal basis the wavelet function has to satisfy restrictions. The training of the 
orthonormal wavelet network is fast and its expansion is easy. On the other hand, the non-
orthogonal wavelet network uses the so-called wavelet frame. The family of the wavelet 
functions that constitute a frame are such that the energy of the resulting wavelet 
coefficients lies within a certain bounded range of the energy of the original signal 
(Addison, 2002). Controllers based on Haar orthogonal wavelets have been used in vibration 
control problems (Karimi & Lohmann, 2006).  
Next, a neural network with Gauss-Hermite polynomial basis functions is considered for the 
control of flexible-link manipulators. This neural model employs Gauss-Hermite basis 
functions which are localized both in space and frequency, as which, as wavelet basis 
functions, allow for better approximation of the multi-frequency characteristics of vibrating 
structures (Cannon & Slotine, 1995), (Krzyzak & Sasiadek, 1991), (Lin, 2006), (Sureshbabu & 
Farell, 1999). Gauss-Hermite basis functions have also some interesting properties 

 

(Refregier, 2003), (Rigatos & Tzafestas, 2006): (i) they remain almost unchanged by the 
Fourier transform, which means that the weights of the associated neural network 
demonstrate the energy which is distributed to the various eigenmodes of the vibrating 
structure. This in turn enables to define thresholds for truncating the basis functions 
expansion and to design a neural controller with a small number of adaptable parameters, 
(ii) unlike wavelet basis functions the Gauss-Hermite basis functions have a clear physical 
meaning since they represent the solutions  of differential equations describing stochastic 
oscillators and each neuron can be regarded as the frequency filter of the respective 
vibration eigenfrequency.  
The structure of the chapter is as follows: In Section 2 the dynamic model of flexible-link 
robots is analyzed. In Section 3 a neural control scheme for flexible link robots is introduced.  
In Section 4 wavelet basis functions are proposed to implement the neural controller for the 
flexible-link manipulator. In Section 5 Hermite-polynomial basis functions are used to 
implement the neural controller which stabilizes the flexible-link robot dynamics. In Section 
6 simulation experiments are presented. Finally in Section 7 concluding remarks are stated.   

 
2. Dynamic model of flexible-link robots 
 

A common approach in modelling of flexible-link robots is based on the Euler-Bernoulli 
model (Talebi, Khorasani, et. al, 1998) , (Wang & Gao, 2004). This model consists of 
nonlinear partial differential equations, which are obtained using some approximation or 
simplification. In case of a single-link flexible manipulator the basic variables of this model 
are ),( txw  which is the deformation of the flexible link, and )(t  which is the joint's angle. 
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analytically the above partial differential equations, modal analysis can be used which 
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where index ],...,2,1[ eni  denotes the normal modes of vibration of the flexible link. Using 
modal analysis a dynamical model of finite-dimensions is derived for the flexible link robot. 
Without loss of generality assume a 2-link flexible robot (Fig. 1) and that only the first two 
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vibration modes of each link are significant ( 2en ). 1 is a point on the first link with 
reference to which the deformation vector is measured. Similarly, 2 is a point on the 
second link with reference to which the associated deformation vector is measured. In that 
case the dynamic model of the robot becomes (Wang & Gao, 2004), (Lewis, Jagannathan & 
Yelsidirek, 1999): 
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Fig. 1. A 2-DOF flexible-link robot 

 
3. Neural control for flexible-link robots 
 

3.1 Neural network-based control of flexible manipulators 
Adaptive neural network control of robotic manipulators has been extensively studied 
(Lewis, Jagannathan & Yelsidirek, 1999), (Ge, Lee & Harris, 1998). Following (Tian, Wang & 
Mao, 2004) a method of neural adaptive control for flexible-link robots will be proposed. 

 

Eq. (4) represents the dynamics of the flexible-link manipulator. It actually refers to a 
nonlinear transformation (mapping) from inputs (torques )(tT  generated by the motors) to 
outputs (motion of the joints). This nonlinear model can be written in the general form: 
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Consequently, the inverse dynamics of the flexible-link manipulator, is a relation that 
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is given by 

),,,,()( 1 
 vvGtT                                                           (6) 

 
The dynamic model and its inverse are time dependent. If the inverse dynamic model of Eq. 
(6) can be explicitly calculated then a suitable control law for the flexible-link robot is 
available.   
However, this model is not usually available and the system dynamics has to be adaptively 
identified. A neural network model can be used to effectively approximate the inverse 

dynamical model of Eq. (6). Variables , ,  
 

 can be measured while variables ,v v


 are 
non-measurable. Thus, the inverse dynamics of the manipulator can be decomposed into 
n sub-models given in the following form: 

 









































),,(

...
),,(

),,(

),,()(

1

1
2

1
1

1









ng

g

g

GtT                                                            (7) 

 

where each nig i ,...,2,1,1    defines the inverse dynamics of the corresponding joint, while 
n  is the number of joints of the manipulator.  

A neural network can be employed to approximate each sub-model 1
ig of the flexible 

robot's inverse dynamics. Therefore, the inverse dynamics of the overall system can be 

represented by a neural network ),,,( wN
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Fig. 1. A 2-DOF flexible-link robot 
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Thus a measure of the output error can be considered to be 
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which reflects the discrepancy between the actual inverse dynamics of the manipulator and 
its neural network approximation. To this end, the following cost function is defined for 
each joint 
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0 . The weights update algorithm is derived from the minimization of the cost function 
)(tEi over the weight space of the corresponding NN model. 

 
3.2 Feed-forward neural networks for flexible-link robot control 
The NN-based control for the flexible-link robots, which is depicted in Fig. 2, can be 
substantiated with the use of feed-forward neural networks (Rigatos, 2009).  Feed-forward 
neural networks (FNN) serve as powerful computational tools, in a diversity of applications 
including function approximation, classification and pattern recognition. When equipped 
with procedures for learning from measurement data they can generate models of unknown 
systems. Feed-forward neural networks are the most popular neural architectures due to 
their structural flexibility, good representational capabilities, and availability of a large 
number of training algorithms.  
The idea of function approximation with the use of feed-forward neural networks (FNN) 

comes from generalized Fourier series. It is known that any function )(x  in a 2L space can 
be expanded in a generalized Fourier series in a given orthonormal basis, i.e. 
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Fig. 3. (b) Neural network with Hermite basis functions 
 
The root mean square error in the approximation of function )(x  by the FNN is given by 
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networks have been studied. The objective of all these algorithms is to find numerical values 
for the network's weights so as to minimize the mean square error RMSE of Eq. (21). The 
algorithms are usually based on first and second order gradient techniques. These 
algorithms belong to: i) batch-mode learning, where to perform parameters update the 
outputs of a large training set are accumulated and the mean square error is calculated 
(back-propagation algorithm, Gauss-Newton method, Levenberg-Marquardt method, etc.), 
ii) pattern-mode learning, in which training examples are run in cycles and the parameters 
update is carried out each time a new training pattern becomes available (Extended Kalman 
Filter algorithm). 
Unlike conventional FNN with sigmoidal or Gaussian basis functions, Hermite polynomial-
based FNN remain closer to Fourier series expansions by employing activation functions 
which satisfy the property of orthogonality (Zuo, Zhu and Cai, 2009).  Other basis functions 

 

with the property of orthogonality  are Hermite, Legendre, Chebyshev, and Volterra 
polynomials (Refregier, 2003), (Rigatos & Tzafestas, 2006), (Yang & Cheng, 1996).  

 
4. Neural control using wavelet basis functions 
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It will be shown that a continuous time signal )(xf  can be expressed as a series expansion 
of discrete wavelet basis functions. The discrete wavelet has the form (Addison, 2002) 
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The wavelet transform of a continuous signal )(xf  using discrete wavelets of the form of 
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which can be also expressed as the inner product  nmnm fT ,, , . For the discrete 

wavelet transform, the values nmT ,  are known as wavelet coefficients. To determine how 
good the representation of a signal is in the wavelet space one can use the theory of wavelet 
frames. The family of wavelet functions that constitute a frame are such that the energy of 
the resulting wavelet coefficients lies within a certain bounded range of the energy of the 
original signal 
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where nmT ,  are the discrete wavelet coefficients, A and B  are the frame bounds, and E  is 
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good the representation of a signal is in the wavelet space one can use the theory of wavelet 
frames. The family of wavelet functions that constitute a frame are such that the energy of 
the resulting wavelet coefficients lies within a certain bounded range of the energy of the 
original signal 
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where nmT ,  are the discrete wavelet coefficients, A and B  are the frame bounds, and E  is 

the energy of the signal given by 22 ||)(|||)(| xfdtxfE  



. The values of the frame 

bounds depend on the parameters 0a  and 0b chosen for the analysis and the wavelet 
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function used. If BA  the frame is known as tight and has a simple reconstruction formula 
given by the infinite series 
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A tight frame with 1 BA  is redundant, with A  being a measure of the redundancy. 
When 1 BA the wavelet family defined by the frame forms an orthonormal basis. Even 
if BA   a reconstruction formula of )(xf can be obtained in the form: 
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where )(' xf is the reconstruction which differs from the original signal )(xf by an error 
which depends on the values of the frame bounds. The error becomes acceptably small for 
practical purposes when the ratio AB / is near unity. The closer this ratio is to unity, the 
tighter the frame.   

 
4.2 Dyadic grid scaling and orthonormal wavelet transforms 
The dyadic grid is the simplest and most efficient discretization for practical purposes and is 
used for the construction of an orthonormal wavelet basis. Substituting 20 a and 

10 b into Eq. (23) the dyadic grid wavelet can be written as 
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or more compactly 
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Discrete dyadic grid wavelets are commonly chosen to be orthonormal. These wavelets are 
both orthogonal to each other and normalized to have unit energy. This is expressed as 
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Thus, the products of each wavelet with all others in the same dyadic system are zero. This 
also means that the information stored in a wavelet coefficient nmT ,  is not repeated 
elsewhere and allows for the complete regeneration of the original signal without 
redundancy. In addition to being orthogonal, orthonormal wavelets are normalized to have 

unit energy. This can be seen from Eq. (30), as using 'mm  and  'nn  the integral gives 

 

the energy of the wavelet function equal to unity. Orthonormal wavelets have frame bounds 
1 BA and the corresponding wavelet family is an orthonormal basis. An orthonormal 

basis has components which, in addition to being able to completely define the signal, are 
perpendicular to each other.   
Using the dyadic grid wavelet of Eq. (28) the discrete wavelet transform is defined as 
 

dxxxfT nmnm )()( ,, 



                                                     (31) 

 
By choosing an orthonormal wavelet basis )(, xnm one can reconstruct the original signal 

)(xf  in terms of the wavelet coefficients mnT  using the inverse discrete wavelet transform: 
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Moreover, the energy of the signal can be expressed as 
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4.3 The scaling function and the multi-resolution representation 
Orthonormal dyadic discrete wavelets are associated with ‘scaling functions’ and their 
dilation equations (Addison, 2002), (Mallat, 1999). The scaling function is associated with the 
smoothing of the signal and has the same form as the wavelet 
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The scaling functions have the property 
 


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where )()(0,0 xx    is sometimes referred as the mother scaling function or mother 
wavelet. The scaling function is orthogonal to translations of itself, but not to dilations of 
itself. The scaling function can be convolved with the signal to produce approximation 
coefficients as follows: 
 


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where )(' xf is the reconstruction which differs from the original signal )(xf by an error 
which depends on the values of the frame bounds. The error becomes acceptably small for 
practical purposes when the ratio AB / is near unity. The closer this ratio is to unity, the 
tighter the frame.   

 
4.2 Dyadic grid scaling and orthonormal wavelet transforms 
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Thus, the products of each wavelet with all others in the same dyadic system are zero. This 
also means that the information stored in a wavelet coefficient nmT ,  is not repeated 
elsewhere and allows for the complete regeneration of the original signal without 
redundancy. In addition to being orthogonal, orthonormal wavelets are normalized to have 

unit energy. This can be seen from Eq. (30), as using 'mm  and  'nn  the integral gives 

 

the energy of the wavelet function equal to unity. Orthonormal wavelets have frame bounds 
1 BA and the corresponding wavelet family is an orthonormal basis. An orthonormal 

basis has components which, in addition to being able to completely define the signal, are 
perpendicular to each other.   
Using the dyadic grid wavelet of Eq. (28) the discrete wavelet transform is defined as 
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By choosing an orthonormal wavelet basis )(, xnm one can reconstruct the original signal 

)(xf  in terms of the wavelet coefficients mnT  using the inverse discrete wavelet transform: 
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Moreover, the energy of the signal can be expressed as 
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4.3 The scaling function and the multi-resolution representation 
Orthonormal dyadic discrete wavelets are associated with ‘scaling functions’ and their 
dilation equations (Addison, 2002), (Mallat, 1999). The scaling function is associated with the 
smoothing of the signal and has the same form as the wavelet 
 

)2(2)( 2/2/
, nxx mm
nm                                                 (34) 

 
The scaling functions have the property 
 





1)(0,0 dxx                                                              (35) 

 
where )()(0,0 xx    is sometimes referred as the mother scaling function or mother 
wavelet. The scaling function is orthogonal to translations of itself, but not to dilations of 
itself. The scaling function can be convolved with the signal to produce approximation 
coefficients as follows: 
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One can represent a signal )(xf  using a combined series expansion using both the 
approximation coefficicents and the wavelet (detail) coefficients as follows: 
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It can be seen from this equation that the original continuous signal is expressed as a 
combination of an approximation of itself, at arbitrary scale index 0m  added to a succession 
of signal details form scales 0m  down to negative infinity. The signal detail at scale m  is 
defined as 
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and hence one can write Eq. (37) 
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From this equation it can be shown that 
 

)()()(1 xdxfxf mmm                                                        (40) 
 
which shows that if one adds the signal detail at an arbitrary scale (index m ) to the 
approximation at that scale he gets the signal approximation at an increased resolution (at a 
smaller scale index 1m ). This is the so-called multi-resolution representation.  

 
4.4 Examples of orthonormal wavelets 
Wavelet functions can be further analyzed in terms of ‘scaling functions’. The scaling 
equation (or dilation equation) describes the scaling function )(t in terms of contracted and 
shifted versions of itself as follows (Addison, 2002), (Mallat, 1999): 
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where )2( kx  is a contracted version of )(x shifted along the x axis by an integer step 
k and factored by an associated scaling coefficient kc . The coefficients of the scaling 
equation should satisfy the condition 
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This also shows that the sum of the squares of the scaling coefficients is equal to 2.  The 
same coefficients are used in reverse with alternate signs to produce the associated wavelet 
equation 
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k                                                      (44) 

 
This construction ensures that the wavelets and their corresponding scaling functions are 
orthogonal. For wavelets of compact support, which have a finite number of scaling 
coefficients kN the following wavelet function is defined 
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This ordering of scaling coefficients used in the wavelet equation allows for our wavelets 
and their corresponding scaling equations to have support over the same interval ],0[ 1kN . 
Often the reconfigured coefficients used for the wavelet function are written more 
compactly as 

kN
k

k kcb  1)1(                                                          (46) 

 
where the sum of all coefficients kb is zero. Using this reordering of the coefficients Eq. (45) 
can be written as 
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From the previous equations and examining the wavelet at scale index 1m one can see 
that for arbitrary integer values of m  the following holds 
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which may be written more compactly as 
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One can represent a signal )(xf  using a combined series expansion using both the 
approximation coefficicents and the wavelet (detail) coefficients as follows: 
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That is the scaling function at an arbitrary scale is composed of a sequence of shifted 
functions at the next smaller scale each factored by their respective scaling coefficients. 
Similarly, for the wavelet function one obtains 

  
k

knmknm xbx )(
2

1)( 2,,1                                              (50) 

 
4.5 The Haar wavelet 
The Haar wavelet is the simplest example of an orthonormal wavelet (see Fig. 4 and Fig. 5). 
Its scaling equation contains only two nonzero scaling coefficients and is given by 
 

)12()2()(  xxx                                                        (51) 
 

that is, its scaling coefficients are 110  cc . These values can be obtained from Eq. (42) 
and Eq. (43). The solution of the Haar scaling equation is the single block pulse defined as 
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Using this scaling function, the Haar wavelet equation is 
 

)12()2()(  xxx                                                        (53) 
 
The Haar wavelet is finally found to be  (see Fig. 4 and Fig. 5) 
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 x

x
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The mother wavelet for the Haar wavelet system )()( 0,0 xx    is formed from two 
dilated unit block pulses sitting next to each other on the time axis, with one of them 
inverted. From the mother wavelet one can construct the Haar system of wavelets on a 
dyadic grid )(, xnm . 
 

 

 
Fig. 4 (i) The Haar scaling function in terms of shifted and dilated versions of itself, (ii) The 
Haar wavelet in terms of shifted and dilated versions of the scaling function. 
 

 
Fig. 5. (i) Three consecutive scales shown from the Haar wavelet family specified on a dyadic 
grid, e.g. from the bottom )(, xnm , )(,1 xnm , )(,2 xnm , (ii) Three Haar wavelets at three 
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That is the scaling function at an arbitrary scale is composed of a sequence of shifted 
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The mother wavelet for the Haar wavelet system )()( 0,0 xx    is formed from two 
dilated unit block pulses sitting next to each other on the time axis, with one of them 
inverted. From the mother wavelet one can construct the Haar system of wavelets on a 
dyadic grid )(, xnm . 
 

 

 
Fig. 4 (i) The Haar scaling function in terms of shifted and dilated versions of itself, (ii) The 
Haar wavelet in terms of shifted and dilated versions of the scaling function. 
 

 
Fig. 5. (i) Three consecutive scales shown from the Haar wavelet family specified on a dyadic 
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consecutive scales on a dyadic grid, iii) Three Haar wavelets at different scales. In this case, the 
Haar wavelets are not defined on a dyadic grid and are hence not orthogonal to each other. 

 
5. Neural Networks using Hermite activation functions  
 

5.1 The Gauss-Hermite series expansion 
Next, as orthogonal basis functions of the feed-forward neural network Hermite 
polynomials are considered. These are the spatial components )(xX k of the solution of 
Schrödinger's differential equation and describe a stochastic oscillation: 
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where )(xH k  are the Hermite orthogonal functions (see Fig. 6(a) and Fig. 6(b)). The 
Hermite functions )(xH k  are the eigenstates of the quantum harmonic oscillator. The 
general relation for the Hermite polynomials is 
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According to Eq. (56) the first five Hermite polynomials are: 1)(0 xH , 

xxH 2)(1  , 24)( 2
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3  , 124816)( 24
4  xxxH . 
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Fig. 6(a). First five one-dimensional 
Hermite polynomial basis functions 

Fig. 6(b). Analytical represenation of the 1D-
Hermite polynomial basis function 

 
Hermite polynomials are orthogonal, i.e. it holds 
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Using now, Eq. (57), the following basis functions can be defined (Refregier, 2003): 
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where )(xH k is the associated Hermite polynomial. From Eq. (57), the orthogonality of 
basis functions of Eq. (58) can be deduced, which means 
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Moreover, to succeed multi-resolution analysis Hermite basis functions of Eq. (58) are 
multiplied with the scale coefficient a . Thus the following basis functions are derived 
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which also satisfy orthogonality condition 
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Any function Rxxf    )( can be written as a weighted sum of the above orthogonal basis 
functions, i.e. 
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where coefficients kc are calculated using the orthogonality condition 
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Assuming now that instead of infinite terms in the expansion of Eq. (62), M  terms are 
maintained, then an approximation of )(xf  is succeeded.  The expansion of )(xf  using Eq. 
(62) is a Gauss-Hermite series. Eq. (62) is a form of Fourier expansion for )(xf . Eq. (62) can 
be considered as the Fourier transform of )(xf subject only to a scale change. Indeed, the 
Fourier transform of )(xf  is given by 
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where )(xH k  are the Hermite orthogonal functions (see Fig. 6(a) and Fig. 6(b)). The 
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Fig. 6(b). Analytical represenation of the 1D-
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The Fourier transform of the basis function )(xk of Eq. (58) satisfies (Refregier, 2003) 
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which means that the Fourier transform of Eq. (62) is the same as the initial function , subject 
only to a change of scale. The structure of a a feed-forward neural network with Hermite 
basis functions is  depicted in Fig. 3(b).  
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The choice of an appropriate scale coefficient a  and maximum order maxk  is of practical 
interest. The coefficients kc are given by 
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Indicative basis functions ),(2 axB , ),(6 axB , ),(9 axB , ),(11 axB and 

),(13 axB , ),(15 axB  of a 2D feed-forward neural network with Hermite basis functions  are 
depicted in Fig. 7, Fig. 8 and Fig. 9. 
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Fig. 9(a). 2D Hermite polynomial basis 
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6. Simulation tests 
 

The 2-DOF flexible link robot of Fig. 1 is considered. The robot is planar and consists of two 
flexible links of length mL 45.01  and mL 45.02  , respectively. The dynamic model of 
the robot is given by Eq. (4). The elements of the inertia matrix M  are: 
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The damping matrix was taken to be }06.0 ,03.0 ,08.0 ,04.0{diagD  while the stiffness 
matrix was selected as }06.0 ,03.0 ,04.0 ,02.0{K . Initially only a PD controller is used. 
The selection of the gain matrices pK  and dK  determines the transient response of the 

closed loop system. The following controller gains have been considered: 
}2.0 ,2.0{diagK p  and }1.0 ,1.0{diagKd  . The desirable joints positions are 

radd 11  and radd 4.12  . Moreover, it is considered that an additive disturbance 

torque appears on each joint. The disturbance  is given by )cos(3.0)( ttd i  . The simulation 
diagram of Fig. 9(a) shows the evolution in time of the angles of the robot's joints 1 and 2 , 
respectively, when only a PD controller is used in the loop and the flexibility of the link is 
not taken into account int the controller's design. In Fig. 9(b) the evolution in time of the 
vibration modes of the first link 11v , 12v  and of the second link 21v  and 22v , respectively, 
is presented.  It can be seen that vibrations around the desirable joint positions cannot be 
eliminated.  
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Fig. 9(a). (a) Diagrams of the angles 1  and 

2 , and of the angular velocities 1  and 2  
of  the joints of the flexible link manipulator  
when only a PD controller is used 

Fig. 9(b). Diagrams of the vibration modes 
the two flexible links of the robotic 
manipulator when only a PD controller is 
used 
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Fig. 10(a).  Diagrams of the  angles 1 and 2 , 
and of the angular velocities 1  and 2 of the 
flexible-link robot when a wavelet-based NN 
controller is used  to suppress vibrations. 

Fig. 10(b). Diagrams of the robot's joint 
angles 1 and 2 , and of the angular 
velocities 1  and 2 of the flexible-link 
robot when a Hermite polynomial-based 
NN controller is used  to suppress 
vibrations. 

 
Next, a control loop with a NN which uses the Haar orthogonal wavelet functions of 
subsection 4.5 is considered. The neural controller is a single layer NN with wavelet basis 
functions, as shown in Fig. 3(b), and it is linear with respect to the output weights.  
Fig. 10(a) presents the evolution in time of the joint angles of the robot when NN with 
wavelet basis functions are used for suppressing the vibrations of the flexible links. Fig. 
10(b) shows the variation in time of the joint angles of the robot 1  and 2 , respectively, 
when the neural controller uses Gauss-Hermite basis functions. 
Finally, simulation diagrams are presented showing how the proposed neural controllers 
succeed the suppression of the vibration modes of the flexible links. Fig. 11 (a) shows the 
evolution in time of the vibration modes 11v  and 12v  of the first link, as well as of the 
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respectively, when only a PD controller is used in the loop and the flexibility of the link is 
not taken into account int the controller's design. In Fig. 9(b) the evolution in time of the 
vibration modes of the first link 11v , 12v  and of the second link 21v  and 22v , respectively, 
is presented.  It can be seen that vibrations around the desirable joint positions cannot be 
eliminated.  
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Fig. 9(a). (a) Diagrams of the angles 1  and 

2 , and of the angular velocities 1  and 2  
of  the joints of the flexible link manipulator  
when only a PD controller is used 

Fig. 9(b). Diagrams of the vibration modes 
the two flexible links of the robotic 
manipulator when only a PD controller is 
used 
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Fig. 10(a).  Diagrams of the  angles 1 and 2 , 
and of the angular velocities 1  and 2 of the 
flexible-link robot when a wavelet-based NN 
controller is used  to suppress vibrations. 

Fig. 10(b). Diagrams of the robot's joint 
angles 1 and 2 , and of the angular 
velocities 1  and 2 of the flexible-link 
robot when a Hermite polynomial-based 
NN controller is used  to suppress 
vibrations. 

 
Next, a control loop with a NN which uses the Haar orthogonal wavelet functions of 
subsection 4.5 is considered. The neural controller is a single layer NN with wavelet basis 
functions, as shown in Fig. 3(b), and it is linear with respect to the output weights.  
Fig. 10(a) presents the evolution in time of the joint angles of the robot when NN with 
wavelet basis functions are used for suppressing the vibrations of the flexible links. Fig. 
10(b) shows the variation in time of the joint angles of the robot 1  and 2 , respectively, 
when the neural controller uses Gauss-Hermite basis functions. 
Finally, simulation diagrams are presented showing how the proposed neural controllers 
succeed the suppression of the vibration modes of the flexible links. Fig. 11 (a) shows the 
evolution in time of the vibration modes 11v  and 12v  of the first link, as well as of the 
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vibration modes 21v and 22v  of the second link, when the neural controller uses wavelet 
basis functions. Similarly, Fig. 11 (b) shows the variation in time of the vibration modes 11v , 

12v  of the first link and 21v , 22v of the second link, respectively, when the neural controller 
uses Gauss-Hermite basis functions.  
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Fig. 11(a).  Diagrams of the vibration modes 
of the two flexilbe links of the robotic 
manipulator, when a wavelet-based NN 
controller is used  to suppress vibrations 

Fig. 11(b). Diagrams of the vibration modes 
of the two flexilbe links of the robotic 
manipulator, when a Hermite polynomial-
based NN controller is used  to suppress 
vibrations 

 
From the simulation experiments it can be observed, that using a neural controller with 
basis functions which are localized both in space and frequency allows better approximation 
of the multi-frequency characteristics of the vibrating robot links. The angles of the robot's 

joints converge to the desirable set-points d
1  and d

2  , while fast and efficient suppression 

of the vibration modes 11v , 12v  and 21v , 22v  is also succeeded.   Finally, in the above 
simulation experiments it was observed that the control signal (torque) generated by the 
neural controller with Hermite basis functions was smoother than the control signal of the 
neural controller which employs Haar wavelet basis functions. 
Comparing the Gauss-Hermite basis functions to the Haar wavelet basis functions one can 
note the following: (i) both are basis functions which are local in space and spatial 
frequency. This allows better approximation of the multi-frequency characteristics of 
vibrating structures, such as the flexible-link robot, (ii) both satisfy the orthogonality 
property which helps to locally improve the accuracy of approximation of the unknown 
system dynamics. This means that the neural controller can be dynamically expanded by 
adding new basis functions which are orthogonal to the existing ones, while the coefficients 
of the new basis functions can be computed independently of the existing coefficients (iii) 
unlike wavelet basis functions, the Gauss-Hermite basis functions have a clear physical 
meaning, since they represent the solutions of differential equations of stochastic oscillators 
and each neuron can be regarded as the frequency filter of the respective vibration 
eigenfrequency, (iv) unlike the Haar wavelet basis functions, the Gauss-Hermite basis 
functions remain almost unchanged by the Fourier transform, which means that the weights 

 

of the associated neural network demonstrate the energy which is distributed in the various 
eigenmodes of the vibrating structure. This in turn allows to define thresholds for truncating 
the expansion and using neural controller with a small number of nodes and weight 
coefficients. 

 
7. Conclusions 
 

Neural networks with Gauss-Hermite polynomial basis functions have been proposed for 
the control of flexible-link manipulators.  The Gauss-Hermite basis functions are local in 
both space and spatial frequency. Locality in spatial frequency allows the representation to 
be adaptively tuned to the variations of the local bandwidth of the  system dynamics. 
Moreover,adding new basis functions helps to locally improve the accuracy of 
approximation of the unknown system dynamics. Since the new basis functions are 
orthogonal to the existing ones, the new NN weights can be computed independently of the 
existing weights.  Comparing to Haar wavelet basis functions which are also orthogonal, the 
Gauss-Hermite basis functions have some interesting properties: (i) they remain almost 
unchanged by the Fourier transform, which means that the weights of the associated neural 
network demonstrate the energy which is distributed to the various eigenmodes of the 
vibrating structure, (ii) unlike wavelet basis functions the Gauss-Hermite basis functions 
have a clear physical meaning since they represent the solutions  of differential equations of 
stochastic oscillators and each neuron can be regarded as the frequency filter of the 
respective vibration eigenfrequency.  
The proposed neural controller operates in parallel to a PD controller the gains of which 
have been selected assuming rigid-link robot dynamics. The performance of the control 
scheme has been tested through simulation experiments. Comparison to a neural controller 
with  Haar orthogonal wavelet functions has been provided.  The simulation tests showed 
that using a neural controller with basis functions which are localized both in space and 
frequency allows for better approximation of the multi-frequency characteristics of the 
vibrating robot links.   
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vibration modes 21v and 22v  of the second link, when the neural controller uses wavelet 
basis functions. Similarly, Fig. 11 (b) shows the variation in time of the vibration modes 11v , 

12v  of the first link and 21v , 22v of the second link, respectively, when the neural controller 
uses Gauss-Hermite basis functions.  
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Fig. 11(a).  Diagrams of the vibration modes 
of the two flexilbe links of the robotic 
manipulator, when a wavelet-based NN 
controller is used  to suppress vibrations 

Fig. 11(b). Diagrams of the vibration modes 
of the two flexilbe links of the robotic 
manipulator, when a Hermite polynomial-
based NN controller is used  to suppress 
vibrations 
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vibrating structures, such as the flexible-link robot, (ii) both satisfy the orthogonality 
property which helps to locally improve the accuracy of approximation of the unknown 
system dynamics. This means that the neural controller can be dynamically expanded by 
adding new basis functions which are orthogonal to the existing ones, while the coefficients 
of the new basis functions can be computed independently of the existing coefficients (iii) 
unlike wavelet basis functions, the Gauss-Hermite basis functions have a clear physical 
meaning, since they represent the solutions of differential equations of stochastic oscillators 
and each neuron can be regarded as the frequency filter of the respective vibration 
eigenfrequency, (iv) unlike the Haar wavelet basis functions, the Gauss-Hermite basis 
functions remain almost unchanged by the Fourier transform, which means that the weights 

 

of the associated neural network demonstrate the energy which is distributed in the various 
eigenmodes of the vibrating structure. This in turn allows to define thresholds for truncating 
the expansion and using neural controller with a small number of nodes and weight 
coefficients. 
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Neural networks with Gauss-Hermite polynomial basis functions have been proposed for 
the control of flexible-link manipulators.  The Gauss-Hermite basis functions are local in 
both space and spatial frequency. Locality in spatial frequency allows the representation to 
be adaptively tuned to the variations of the local bandwidth of the  system dynamics. 
Moreover,adding new basis functions helps to locally improve the accuracy of 
approximation of the unknown system dynamics. Since the new basis functions are 
orthogonal to the existing ones, the new NN weights can be computed independently of the 
existing weights.  Comparing to Haar wavelet basis functions which are also orthogonal, the 
Gauss-Hermite basis functions have some interesting properties: (i) they remain almost 
unchanged by the Fourier transform, which means that the weights of the associated neural 
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respective vibration eigenfrequency.  
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have been selected assuming rigid-link robot dynamics. The performance of the control 
scheme has been tested through simulation experiments. Comparison to a neural controller 
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that using a neural controller with basis functions which are localized both in space and 
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