1,914 research outputs found

    Modeling and enhanced control of hybrid full bridge–half bridge MMCs for HVDC grid studies

    Get PDF
    Modular multilevel converters (MMCs) are expected to play an important role in future high voltage direct current (HVDC) grids. Moreover, advanced MMC topologies may include various submodule (SM) types. In this sense, the modeling of MMCs is paramount for HVDC grid studies. Detailed models of MMCs are cumbersome for electromagnetic transient (EMT) programs due to the high number of components and large simulation times. For this reason, simplified models that reduce the computation times while reproducing the dynamics of the MMCs are needed. However, up to now, the models already developed do not consider hybrid MMCs, which consist of different types of SMs. In this paper, a procedure to simulate MMCs having different SM topologies is proposed. First, the structure of hybrid MMCs and the modeling method is presented. Next, an enhanced procedure to compute the number of SMs to be inserted that takes into account the different behavior of full-bridge SMs (FB-SMs) and half-bridge submodules (HB-SMs) is proposed in order to improve the steady-state and dynamic response of hybrid MMCs. Finally, the MMC model and its control are validated by means of detailed PSCAD simulations for both steady-state and transients conditions (AC and DC faults)

    Modular multilevel converter losses model for HVdc applications

    Get PDF
    Multi-terminal high voltage dc (HVdc) grids can eventually became a feasible solution to transport energy to remote and/ or distant areas and its exploitation depend, among other things, on the performance of the converter terminals. Therefore, to optimize the power transmission strategy along such a grid, it is necessary to recognize the efficiency of all the converters in all points of operation, namely with the different load conditions. In this vision, the aim of this work is to provide the methodology to model the modular multilevel converter (MMC) efficiency by means of a mathematical expression that can describe, over a broad range of active and reactive power flow combinations, the power losses generated by the semiconductors. According to the presented methodology, a polynomial-based model with a reduced number of coefficients is deducted, in such a way that can be directly used for optimal power flow (OPF) studies. The accuracy of the proposed model is characterized by an absolute relative error, at the worst scenario, approximately equal to 3%.Postprint (author's final draft

    Active power losses distribution methods for the modular multilevel converter

    Get PDF
    Modular Converters such as the MMC have become the new standard in VSC-HVDC applications. Their modularity has brought many industrial advantages but also increased the complexity of their operation. This paper looks at how a range of techniques may alter the balance of power losses between the IGBT modules. These techniques are based on circulating currents at the (i) fundamental frequency and (ii) second harmonic and (iii) DC voltage offset on the converter voltage waveform. Finally, conclusions on the effectiveness and potential drawbacks of these techniques are discussed

    Reduced dynamic model of the alternate arm converter

    Get PDF

    Controlled transition full-bridge hybrid multilevel converter with chain-links of full-bridge cells

    Get PDF
    This paper proposes a controlled transition full-bridge (CTFB) hybrid multilevel converter (HMC) for medium and high voltage applications. It employs a full-bridge cell chain-link (FB-CL) between the two legs in each phase to generate multilevel bipolar output voltage. The CTFB-HMC has twice dc voltage utilization or power density of conventional converters due to the bipolar capability of its full-bridge configuration. Hence, for the same power rating and same voltage level number, its total cells per phase are quarter that in modular multilevel converter (MMC), which reduces the hardware installation volume. Also, in the proposed converter, the total device number in the conduction paths is the same as in the half-bridge MMC, leading to low conduction losses. The FB-CL current of the CTFB converter has no dc component, which offers the potential to enhance the transient response. Comparative studies between the CTFB and other multilevel topologies are carried out to clarify its main features. The modulation strategies and parameter sizing of the proposed converter are investigated using a generic case. Simulation and experimental results are used to verify the effectiveness of the proposed approach

    Ageing Mitigation and Loss Control Through Ripple Management in Dynamically Reconfigurable Batteries

    Full text link
    Dynamically reconfigurable batteries merge battery management with output formation in ac and dc batteries, increasing the available charge, power, and life time. However, the combined ripple generated by the load and the internal reconfiguration can degrade the battery. This paper introduces that the frequency range of the ripple matters for degradation and loss. It presents a novel control method that reduces the low-frequency ripple of dynamically reconfigurable battery technology to reduce cell ageing and loss. It furthermore shifts the residual ripple to higher frequencies where the lower impedance reduces heating and the dielectric capacitance of electrodes and electrolyte shunt the current around the electrochemical reactions.Comment: 8 pages, 8 figure

    Impact of submodule faults on the performance of modular multilevel converters

    Get PDF
    Modular multilevel converter (MMC) is well suited for high-power and medium-voltage applications. However, its performance is adversely affected by asymmetry that might be introduced by the failure of a limited number of submodules (SMs) or even by severe deviations in the values of SM capacitors and arm inductors, particularly when the number of SMs per arm is relatively low. Although a safe-failed operation is easily achieved through the incorporation of redundant SMs, the SMs' faults make MMC arms present unequal impedances, which leads to undesirable internal dynamics because of unequal power distribution between the arms. The severity of these undesirable dynamics varies with the implementation of auxiliary controllers that regulate the MMC internal dynamics. This paper studied the impact of SMs failure on the MMC internal dynamics performance, considering two implementations of internal dynamics control, including a direct control method for suppressing the fundamental component that may arise in the dc-link current. Performances of the presented and widely-appreciated conventional methods for regulating MMC internal dynamics were assessed under normal and SM fault conditions, using detailed time-domain simulations and considering both active and reactive power applications. The effectiveness of control methods is also verified by the experiment. Related trade-offs of the control methods are presented, whereas it is found that the adverse impact of SMs failure on MMC ac and dc side performances could be minimized with appropriate control countermeasures

    Novel enhanced modular multilevel converter for high-voltage direct current transmission systems

    Get PDF
    This paper proposes an enhanced modular multilevel converter as an alternative to the conventional half-bridge modular multilevel converter that employs a reduced number of medium-voltage cells, with the aim of improving waveforms quality in its AC and DC sides. Each enhanced modular multilevel converter arm consists of high-voltage and low-voltage chain-links. The enhanced modular multilevel converter uses the high-voltage chain-links based on medium-voltage half-bridge cells to synthesize the fundamental voltage using nearest level modulation. Although the low-voltage chain-links filter out the voltage harmonics from the voltage generated by the high-voltage chain-links, which are rough and stepped approximations of the fundamental voltage, the enhanced modular multilevel converter uses the nested multilevel concept to dramatically increase the number of voltage levels per phase compared to half-bridge modular multilevel converter. The aforementioned improvements are achieved at the cost of a small increase in semiconductor losses. Detailed simulations conducted in EMPT-RV and experimental results confirm the validity of the proposed converter

    High-frequency operation of a DC/AC/DC system for HVDC applications

    Get PDF
    Voltage ratings for HVdc point-to-point connections are not standardized and tend to depend on the latest available cable technology. DC/DC conversion at HV is required for interconnection of such HVdc schemes as well as to interface dc wind farms. Modular multilevel voltage source converters (VSCs), such as the modular multilevel converter (MMC) or the alternate arm converter (AAC), have been shown to incur significantly lower switching losses than previous two- or three-level VSCs. This paper presents a dc/ac/dc system using a transformer coupling two modular multilevel VSCs. In such a system, the capacitors occupy a large fraction of the volume of the cells but a significant reduction in volume can be achieved by raising the ac frequency. Using high frequency can also bring benefits to other passive components such as the transformer but also results in higher switching losses due to the higher number of waveform steps per second. This leads to a tradeoff between volume and losses which has been explored in this study and verified by simulation results with a transistor level model of 30-MW case study. The outcome of the study shows that a frequency of 350 Hz provides a significant improvement in volume but also a penalty in losses compared to 50 Hz

    Dimensioning and Modulation Index Selection for the Hybrid Modular Multilevel Converter

    Get PDF
    The Hybrid MMC, comprising a mixture of fullbridge and half-bridge sub-modules, provides tolerance to DC faults without compromising the efficiency of the converter to a large extent. The inclusion of full-bridges creates a new freedom over the choice of ratio of AC to DC voltage at which the converter is operated, with resulting impact on the converter’s internal voltage, current and energy deviation waveforms, all of which impact the design of the converter. A design method accounting for this, and allowing the required level of derating of nominal sub-module voltage and up-rating of stack voltage capability to ensure correct operation at the extremes of the operating envelope is presented. A mechanism is identified for balancing the peak voltage that the full-bridge and halfbridge sub-modules experience over a cycle. Comparisons are made between converters designed to block DC side faults and converters that also add STATCOM capability. Results indicate that operating at a modulation index of 1.2 gives a good compromise between reduced power losses and additional required sub-modules and semiconductor devices in the converter. The design method is verified against simulation results and the operation of the converter at the proposed modulation index is demonstrated at laboratory-scale
    • …
    corecore