2,652 research outputs found

    Design and Modeling of 9 Degrees of Freedom Redundant Robotic Manipulator

    Get PDF
    In disaster areas, robot manipulators are used to rescue and clearance of sites. Because of the damaged area, they encounter disturbances like obstacles, and limited workspace to explore the area and to achieve the location of the victims. Increasing the degrees of freedom is required to boost the adaptability of manipulators to avoid disturbances, and to obtain the fast desired position and precise movements of the end-effector. These robot manipulators offer a reliable way to handle the barrier challenges since they can search in places that humans can't reach. In this research paper, the 9-DOF robotic manipulator is designed, and an analytical model is developed to examine the system’s behavior in different scenarios. The kinematic and dynamic representation of the proposed model is analyzed to obtain the translation or rotation, and joint torques to achieve the expected position, velocity, and acceleration respectively. The number of degrees may be raised to avoid disturbances, and to obtain the fast desired position and precise movements of the end-effector. The simulation of developed models is performed to ensure the adaptable movement of the manipulators working in distinct configurations and controlling their motion thoroughly and effectively. In the proposed configuration the joints can easily be moved to achieve the desired position of the end-effector and the results are satisfactory. The simulation results show that the redundant manipulator achieves the victim location with various configurations of the manipulator. Results reveal the effectiveness and efficacy of the proposed system

    Nonlinear Control Techniques for Robot Manipulators

    Get PDF
    This Masters thesis describes the design and implementation of control strategies for the following topics of research: i) Whole Arm Grasping Control for Redundant Robot Manipulators, ii) Neural Network Grasping Controller for Continuum Robots and, iii) Coordination Control for Haptic and Teleoperator Systems. An approach to whole arm grasping of objects using redundant robot manipulators is presented. A kinematic control which facilitates the encoding of both the end-effector position, as well as body self-motion positioning information as a desired trajectory signal for the manipulator joints is developed. An approach is presented to whole arm grasping control for continuum robots. The grasping controller is developed in two stages; high level path planning for the grasping objective, and a low level joint controller using a neural network feedforward component to compensate for dynamic uncertainties. Lastly, two controllers are developed for nonlinear haptic and teleoperator systems for coordination of the master and slave systems

    Aerial Manipulation: A Literature Review

    Get PDF
    Aerial manipulation aims at combining the versatil- ity and the agility of some aerial platforms with the manipulation capabilities of robotic arms. This letter tries to collect the results reached by the research community so far within the field of aerial manipulation, especially from the technological and control point of view. A brief literature review of general aerial robotics and space manipulation is carried out as well

    Control of Nonlinear Mechatronic Systems

    Get PDF
    This dissertation is divided into four self-contained chapters. In Chapter 1, an adaptive nonlinear tracking controller for kinematically redundant robot manipulators is presented. Past research efforts have focused on the end-effector tracking control of redundant robots because of their increased dexterity over their non-redundant counterparts. This work utilizes an adaptive full-state feedback quaternion based controller developed in [1] and focuses on the design of a general sub-task controller. This sub-task controller does not affect the position and orientation tracking control objectives, but instead projects a preference on the configuration of the manipulator based on sub-task objectives such as the following: singularity avoidance, joint limit avoidance, bounding the impact forces, and bounding the potential energy. In Chapter 2, two controllers are developed for nonlinear haptic and teleoperator systems for coordination of the master and slave systems. The first controller is proven to yield a semi-global asymptotic result in the presence of parametric uncertainty in the master and the slave dynamic models provided the user and the environmental input forces are measurable. The second controller yields a global asymptotic result despite unmeasurable user and environmental input forces provided the dynamic models of the master and slave systems are known. These controllers rely on a transformation and a flexible target system to allow the master system\u27s impedance to be easily adjusted so that it matches a desired target system. This work also offers a structure to encode a velocity field assist mechanism to provide the user help in controlling the slave system in completing a pre-defined contour following task. For each controller, Lyapunov-based techniques are used to prove that both controllers provide passive coordination of the haptic/teleoperator system when the velocity field assist mechanism is disabled. When the velocity field assist mechanism is enabled, the analysis proves the coordination of the haptic/teleoperator system. Simulation results are presented for both controllers. In Chapter 3, two controllers are developed for flat multi-input/multi-output nonlinear systems. First, a robust adaptive controller is proposed and proven to yield semi-global asymptotic tracking in the presence of additive disturbances and parametric uncertainty. In addition to guaranteeing an asymptotic output tracking result, it is also proven that the parameter estimate vector is driven to a constant vector. In the second part of the chapter, a learning controller is designed and proven to yield a semi-global asymptotic tracking result in the presence of additive disturbances where the desired trajectory is periodic. A continuous nonlinear integral feedback component is utilized in the design of both controllers and Lyapunov-based techniques are used to guarantee that the tracking error is asymptotically driven to zero. Numerical simulation results are presented for both controllers. In Chapter 4, a new dynamic model for continuum robot manipulators is derived. The dynamic model is developed based on the geometric model of extensible continuum robot manipulators with no torsional effects. The development presented in this chapter is an extension of the dynamic model proposed in [2] (by Mochiyama and Suzuki) to include a class of extensible continuum robot manipulators. First, the kinetic energy of a slice of the continuum robot is evaluated. Next, the total kinetic energy of the manipulator is obtained by utilizing a limit operation (i.e., sum of the kinetic energy of all the slices). Then, the gravitational potential energy of the manipulator is derived. Next, the elastic potential energy of the manipulator is derived for both bending and extension. Finally, the dynamic model of a planar 3-section extensible continuum robot manipulator is derived by utilizing the Lagrange representation. Numerical simulation results are presented for a planar 3-section extensible continuum robot manipulator

    Sensors Allocation and Observer Design for Discrete Bilateral Teleoperation Systems with Multi-Rate Sampling

    Get PDF
    This study addresses sensor allocation by analyzing exponential stability for discrete-time teleoperation systems. Previous studies mostly concentrate on the continuous-time teleoperation systems and neglect the management of significant practical phenomena, such as data-swap, the effect of sampling rates of samplers, and refresh rates of actuators on the system’s stability. A multi-rate sampling approach is proposed in this study, given the isolation of the master and slave robots in teleoperation systems which may have different hardware restrictions. This architecture collects data through numerous sensors with various sampling rates, assuming that a continuous-time controller stabilizes a linear teleoperation system. The aim is to assign each position and velocity signals to sensors with different sampling rates and divide the state vector between sensors to guarantee the stability of the resulting multi-rate sampled-data teleoperation system. Sufficient Krasovskii-based conditions will be provided to preserve the exponential stability of the system. This problem will be transformed into a mixed-integer program with LMIs (linear matrix inequalities). These conditions are also used to design the observers for the multi-rate teleoperation systems whose estimation errors converge exponentially to the origin. The results are validated by numerical simulations which are useful in designing sensor networks for teleoperation systems

    Control Techniques for Robot Manipulator Systems with Modeling Uncertainties

    Get PDF
    This dissertation describes the design and implementation of various nonlinear control strategies for robot manipulators whose dynamic or kinematic models are uncertain. Chapter 2 describes the development of an adaptive task-space tracking controller for robot manipulators with uncertainty in the kinematic and dynamic models. The controller is developed based on the unit quaternion representation so that singularities associated with the otherwise commonly used three parameter representations are avoided. Experimental results for a planar application of the Barrett whole arm manipulator (WAM) are provided to illustrate the performance of the developed adaptive controller. The controller developed in Chapter 2 requires the assumption that the manipulator models are linearly parameterizable. However there might be scenarios where the structure of the manipulator dynamic model itself is unknown due to difficulty in modeling. One such example is the continuum or hyper-redundant robot manipulator. These manipulators do not have rigid joints, hence, they are difficult to model and this leads to significant challenges in developing high-performance control algorithms. In Chapter 3, a joint level controller for continuum robots is described which utilizes a neural network feedforward component to compensate for dynamic uncertainties. Experimental results are provided to illustrate that the addition of the neural network feedforward component to the controller provides improved tracking performance. While Chapter\u27s 2 and 3 described two different joint controllers for robot manipulators, in Chapter 4 a controller is developed for the specific task of whole arm grasping using a kinematically redundant robot manipulator. The whole arm grasping control problem is broken down into two steps; first, a kinematic level path planner is designed which facilitates the encoding of both the end-effector position as well as the manipulators self-motion positioning information as a desired trajectory for the manipulator joints. Then, the controller described in Chapter 3, which provides asymptotic tracking of the encoded desired joint trajectory in the presence of dynamic uncertainties is utilized. Experimental results using the Barrett Whole Arm Manipulator are presented to demonstrate the validity of the approach

    DSmT Decision-Making Algorithms for Finding Grasping Configurations of Robot Dexterous Hands

    Get PDF
    In this paper, we present a deciding technique for robotic dexterous hand configurations. This algorithm can be used to decide on how to configure a robotic hand so it can grasp objects in different scenarios. Receiving as input, several sensor signals that provide information on the object’s shape, the DSmT decision-making algorithm passes the information through several steps before deciding what hand configuration should be used for a certain object and task

    Boundary Control by Boundary Observer for Hyper-redundant Robots

    Get PDF
    The control problem of a class of hyper-redundant arms with continuum elements, with boundary measuring and control is discussed. First, the dynamic model of the continuum arm is presented. The measuring systems are based on the film sensors that are placed at the terminal sub-regions of the arm. The observers are proposed in order to reconstruct the full state of the arm. A back-stepping method is used to design a boundary control algorithm. Numerical simulations of the arm motion toward an imposed position are presented. An experimental platform shows the effectiveness of the proposed methods

    Decentralized Nonlinear Control of Redundant Upper Limb Exoskeleton with Natural Adaptation Law

    Get PDF
    The aim of this work is to utilize an adaptive decentralized control method called virtual decomposition control (VDC) to control the orientation and position of the end-effector of a 7 degrees of freedom (DoF) right-hand upper-limb exoskeleton. The prevailing adaptive VDC approach requires tuning of 13n adaptation gains along with 26n upper and lower parameter bounds, where n is the number of rigid bodies. Therefore, utilizing the VDC scheme to control high DoF robots like the 7-DoF upper-limb exoskeleton can be an arduous task. In this paper, a new adaptation function, so-called natural adaptation law (NAL), is employed to eliminate these burdens from VDC, which results in reducing all 13n gains to one and removing dependency on upper and lower bounds. In doing so, VDC-based dynamic equations are restructured, and inertial parameter vectors are made compatible with NAL. Then, the NAL adaptation function is exploited to design a new adaptive VDC scheme. This novel adaptive VDC approach ensures physical consistency conditions for estimated parameters with no need for upper and lower bounds. Finally, the asymptotic stability of the algorithm is proved with the virtual stability concept and the accompanying function. The experimental results are utilized to demonstrate the excellent performance of the proposed new adaptive VDC scheme.Comment: Manuscript is published in 2022 IEEE-RAS 21st International Conference on Humanoid Robots (Humanoids
    • …
    corecore