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ABSTRACT

This dissertation describes the design and implementation of various nonlinear

control strategies for robot manipulators whose dynamic or kinematic models are

uncertain. Chapter 2 describes the development of an adaptive task-space tracking

controller for robot manipulators with uncertainty in the kinematic and dynamic

models. The controller is developed based on the unit quaternion representation

so that singularities associated with the otherwise commonly used three parameter

representations are avoided. Experimental results for a planar application of the

Barrett whole arm manipulator (WAM) are provided to illustrate the performance of

the developed adaptive controller.

The controller developed in Chapter 2 requires the assumption that the manipu-

lator models are linearly parameterizable. However there might be scenarios where

the structure of the manipulator dynamic model itself is unknown due to difficulty in

modeling. One such example is the continuum or hyper-redundant robot manipulator.

These manipulators do not have rigid joints, hence, they are difficult to model and

this leads to significant challenges in developing high-performance control algorithms.

In Chapter 3, a joint level controller for continuum robots is described which utilizes

a neural network feedforward component to compensate for dynamic uncertainties.

Experimental results are provided to illustrate that the addition of the neural network

feedforward component to the controller provides improved tracking performance.

While Chapter’s 2 and 3 described two different joint controllers for robot ma-

nipulators, in Chapter 4 a controller is developed for the specific task of whole arm

grasping using a kinematically redundant robot manipulator. The whole arm grasping

control problem is broken down into two steps; first, a kinematic level path planner

is designed which facilitates the encoding of both the end-effector position as well

as the manipulators self-motion positioning information as a desired trajectory for

the manipulator joints. Then, the controller described in Chapter 3, which provides
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asymptotic tracking of the encoded desired joint trajectory in the presence of dy-

namic uncertainties is utilized. Experimental results using the Barrett Whole Arm

Manipulator are presented to demonstrate the validity of the approach.
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CHAPTER 1

INTRODUCTION

Organization

This dissertation is organized into four chapters. Chapter 2 presents the develop-

ment of an adaptive task-space tracking controller for rigid link robot manipulators

with uncertainty in their kinematic and dynamic models. The controller is developed

based on the unit quaternion representation to avoid singularities associated with

other three parameter representations. Also, the controller does not require the mea-

surement of task-space velocities. There might be situations where accurate dynamic

modeling of the manipulator is not possible, in these cases it is difficult to implement

an adaptive controller as in Chapter 2. With this in mind, in Chapter 3, a joint

level neural network tracking controller is presented which can deal with high levels

of uncertainty in the robot dynamic model. The neural network based controller is

applicable to rigid and flexible link manipulators as well as continuum robot manip-

ulators since it does not depend on any specific model of the manipulator. Finally,

in Chapter 4, the task of whole arm grasping using a kinematically redundant robot

manipulator whose dynamic model is unknown and where the contact forces between

the robot and the object are unmeasurable is considered. The whole arm grasping

controller is developed by first designing a high level path planner and then using the

controller developed in Chapter 3 as the joint level tracking controller. The remainder

of this chapter provides an introduction and motivation to study each of the control

problems being considered in this dissertation.

Tracking Control for Robots with Kinematic and Dynamic Uncertainty

The control objective in many robot manipulator applications is to command the

end-effector motion to achieve a desired response. The control inputs are applied to

the manipulator joints, and the desired position and orientation is typically encoded
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in terms of a Cartesian coordinate frame attached to the robot end-effector with re-

spect to the base frame (i.e., the so-called task-space variables). Hence, a mapping

(i.e., the solution of the inverse kinematics) is required to convert the desired task-

space trajectory into a form that can be utilized by the joint space controller. If there

are uncertainties or singularities in the mapping, then this can result in degraded per-

formance or unpredictable responses by the manipulator. Several parametrizations

exist to describe orientation angles in the task-space to joint-space mapping, including

three-parameter representations (e.g., Euler angles, Rodrigues parameters) and the

four-parameter representation given by the unit quaternion. Three-parameter repre-

sentations always exhibit singular orientations (i.e., the orientation Jacobian matrix

in the kinematic equation is singular for some orientations), while the unit quater-

nion represents the end-effector orientation without singularities. By utilizing the

singularity free unit quaternion, the emphasis of chapter 2 is to develop a tracking

controller that compensates for uncertainty throughout the kinematic and dynamic

models. Some previous task-space control formulations based on the unit quaternion

can be found in [1], [2], [3], [4], [5], and the references therein. A quaternion-based re-

solved acceleration controller was presented in [2], and quaternion-based resolved rate

and resolved acceleration task-space controllers were proposed in [5]. Output feed-

back task-space controllers using quaternion feedback were presented in [3] for the

regulation problem and in [1] for the tracking problem. Model-based and adaptive

asymptotic full-state feedback controllers and an output feedback controller based on

a model-based observer were developed in [4] using the quaternion parametrization.

A common assumption in most of the previous robot controllers (including all

of the aforementioned quaternion-based task-space control formulations) is that the

robot kinematics and manipulator Jacobian are assumed to be perfectly known. From

a review of literature, few controllers have been developed that target uncertainty in

the manipulator forward kinematics and Jacobian. For example, in [6], [7], [8], [9],

[10], [11], several approximate Jacobian feedback controllers that exploit a static,
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best-guess estimate of the manipulator Jacobian to achieve task-space regulation

objectives despite parametric uncertainty in the manipulator Jacobian. In [12], a

task-space adaptive controller for set point control of robots with uncertainties in the

gravity regressor matrix and kinematics was developed. In [13], an adaptive regula-

tion controller for robot manipulators with uncertainty in the kinematic and dynamic

models was developed. The result in [13] also accounted for actuator saturation since

the maximum commanded torque could be a priori determined due to the use of

saturated feedback terms in the controller. Recently in [14], an adaptive regulation

controller for rigid-link electrically driven robot manipulators with uncertainty in

kinematics, manipulator dynamics and actuator dynamics was developed.

All of the aforementioned controllers that account for kinematic uncertainty are

based on the three-parameter Euler angle representation. Moreover, all of the previ-

ous results only target the set-point regulation problem. The only results which target

the more general tracking control problem for manipulators with uncertain kinemat-

ics are given in [15], [16], [17]. However, these results are also based on the Euler

angle representation and with the exception of [16] they all require the measurement

of the task-space velocity. In [16], a filtered derivative of the task-space position is

used to generate an approximation of the task-space velocity signal. Hence motivated

by previous work, an adaptive tracking controller is developed in chapter 2 for robot

manipulators with uncertainty in the kinematic and dynamic models. The controller

is developed based on the unit quaternion representation so that singularities asso-

ciated with three parameter representations are avoided. In addition, the developed

controller does not require the measurement of the task-space velocity. The stability

of the controller is proven through a Lyapunov based stability analysis. Experimen-

tal results for a planar application of the Barrett whole arm manipulator (WAM) are

provided to illustrate the performance of the developed controller.
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Neural Network Controller for Continuum Robots

Continuum or hyper-redundant manipulators [18, 19], belong to a special class

of robotic manipulators which are designed to exhibit behavior similar to biological

trunks [20–23], tentacles [24], or snakes [25]. Unlike traditional rigid link robot ma-

nipulators, continuum robot manipulators do not have rigid joints and they have a

large number of degrees of freedom, this enables continuum manipulators to have

some very useful properties. The continuum manipulators can be compliant, ex-

tremely dexterous, flexible, and capable of dynamic adaptive manipulation in highly

unstructured environments. These properties of soft continuum robot manipulators

make them uniquely suited for a large number of applications, including search and

rescue, underwater and space exploration.

The development of high performance model based control algorithms for con-

tinuum manipulators is a challenging problem for several reasons; since the manip-

ulators must be modeled as continuous curves, the kinematic and dynamic models

are difficult to derive, also, the manipulators body is soft and flexible which makes

accurate control difficult to achieve. There have been several different approaches

which researchers have studied for the control of continuum robot manipulators. For

example, Matsuno et al. [26], proposed kinematic control techniques for continuum

manipulators and [27–30] described set-point controllers for continuum manipulators.

In [27], a fuzzy controller was presented and [28] presented an artificial potential

function method for obstacle avoidance for a variable length continuum manipulator.

In [29], an exponentially stable controller for inextensible continuum manipulators

was presented and [30] described sliding mode and impedance control techniques for

hyper-flexible manipulators. There are very few techniques which target the more

general tracking control problem for continuum manipulators with one of the excep-

tions being shape tracking control [31], where the manipulator follows a desired shape

prescribed by a time-varying spatial curve. A trajectory tracking shape controller for

a wheeled snake robot based on the dynamic model and the nonholonomic constraint
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conditions of the robot was presented in [32]. All of the aforementioned control tech-

niques for the tracking control of continuum manipulators require the exact dynamic

model to be known.

The concept of using a neural network based control strategy for joint tracking

control of a conventional robot manipulator is quite well understood. In [33, 34],

and the references therein, neural network controllers were developed for a large

number of robot manipulator models including rigid link manipulators and flexible

joint manipulators. These two results survey in great detail the research that has been

conducted on closed loop neural network control of robotic manipulators. A selection

of some recent results on neural network control of robotic manipulators include [35–

38]. Kim et al. [35], developed an output feedback controller for robot manipulators

with on-line weight adaptation which provided UUB (uniformly ultimately bounded)

tracking. Sun et al. [36] presented a discrete neural network controller for robots with

uncertain dynamics which did not require off-line training, however this controller also

only achieves UUB tracking. Patino et al. [37], developed a neural network based

robust adaptive tracking controller based on static weights which must be trained

off-line. The controller provided global asymptotic stability of the tracking error by

including a signum function in the controller. However, the inclusion of the signum

function in the controller leads to high frequency chattering in the control signals,

as this is undesirable the authors propose substituting the signum function with a

saturation function which leads to a degradation of the tracking performance from

a global asymptotic stability tracking result to a UUB result. In [38], a parametric

adaptive controller that adapts for robot dynamic parameters was coupled with a

neural network to compensate for the unmodeled friction effects. The controller

provided asymptotic stability but required the structure of the robot’s dynamic model

to be known a priori.

From this brief survey of results and in general from control theory, we note that

the more information that a controller has about the plant, the better the track-
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ing result. As has been mentioned previously, the dynamic modeling of extensible

continuum manipulators is difficult and remains an active research topic. All of the

previously mentioned controllers for continuum robot manipulators are either set-

point controllers, or tracking controllers that require an accurate dynamic model of

the manipulator. Hence, these controllers are not suitable for tracking control of

continuum manipulators as they will exhibit diminished performance. This reduced

performance can be a drawback as it does not allow all the capabilities of the con-

tinuum manipulator to be utilized. The problem of continuum robot control thus

represents a significant barrier to progress in this emerging field.

Since a complete accurate dynamic model of the continuum manipulator does not

exist, the main focus of the current work is to develop an efficient tracking controller

for extensible continuum manipulators which can deal with a high level of uncertainty

in the structure of the manipulators dynamic model. The proposed controller which is

based on our preliminary work [39], consists of a neural network feedforward compo-

nent along with a nonlinear feedback component. Specifically, the design of the neural

network component is based on the augmented back propagation algorithm [33], and

it is used to compensate for the nonlinear uncertain dynamics of the continuum robot

manipulator by leveraging the universal approximation properties of the neural net-

work as a feedforward compensator. The feedback component utilized is a continuous

nonlinear controller [40], which does not require any model information. The advan-

tages of the proposed control scheme compared to the previously mentioned works

is that the controller is continuous and asymptotic tracking can be proved without

any prior knowledge of the robot dynamic model. Furthermore, the back propagation

technique enables the neural network weight matrices to be estimated on-line very

quickly based on the tracking error signal and without utilizing any prior training

period. This technique is particularly useful for real time closed loop control as has

been described in [41].
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Whole Arm Grasping Using Redundant Robot Manipulators

Kinematically redundant robot manipulators have the unique ability to perform

grasps using their entire body to wrap around the object. This concept is known as

whole arm manipulation, which refers to the ability of the manipulator to grasp an

object with its entire body (or arm), as compared to fingertip grasping performed

by traditional robotic grippers and hands, and was first described by Salisbury [42].

Whole arm grasping1 can be performed by allowing the robot manipulator to make

contact with the object in a snake or tentacle like manner, using portions of the

manipulator itself to wrap around the object and grasp it. Figure 1.1, shows an

example of whole arm grasping using a rigid link robot manipulator and figure 1.2,

shows whole arm grasping with a continuum robot manipulator. The equivalent

whole hand and whole finger grasping techniques have been studied in [45] and [46],

respectively. Whole arm grasping is also known by the equivalent expressions “power

grasping” ( [47] and [48]) or “enveloping grasping” [49].

The whole arm approach to grasping has a number of useful properties as noted

by [42], [47], [50], and others. The authors of [47] point out that distribution of con-

tact points enables increased load capacity. The ability to use the entire body of the

manipulator for grasping also allows objects of various dimensions to be grasped [42].

These capabilities could be useful for a very diverse set of applications, including,

search and rescue, underwater and space exploration. However, there has been very

little experimental work reported on whole arm grasping with kinematically redun-

dant robot manipulators. Specifically, one of the few results in the literature is given

in [51] where whole arm grasping with a 30 DOF robotic arm was demonstrated.

Recently, Mochiyama et al. [52], proposed an impedance control based approach to

control the shape of the whole manipulator for whole arm grasping.

Traditional robotic grasping control can be broadly classified into two main cate-

gories [53]. The first category, is a geometrical planning based approach which requires

1For an overview of robotic grasping and manipulation, the reader is referred to [43], [44], and
the references therein.
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Figure 1.1 Whole arm grasping with the Barrett WAM manipulator.

Figure 1.2 Whole arm grasping with the OCTARM continuum manipulator.

the object model and the constraint forces to be known a priori (e.g. [50] and [54]).

Here, the grasping contact points are pre-planned and the desired constraint force for

each contact point is assumed to be known. The grasping control system then moves

the hand/arm along a pre-determined trajectory and force feedback (force sensors on

8



the arm or hand) is used to control the interaction forces. The second category for

robot grasping control is the sensory approach, where the object model is unknown

and the grasping controller relies on tactile force-feedback data. In this sensory based

approach, it is often assumed that the arm has a sensory “skin” for force measure-

ments [55]. The arm/hand must either start off close to the object to be grasped,

or with all contact points touching the object. Then, the grasp controller positions

and re-positions the arm to minimize an error function in an attempt to optimize the

grasp configuration [56].

The techniques described above require either that the geometry of the object and

the constraint forces be known a priori [54], or that the contact forces be measurable

using some type of force sensor [50], [55], and [53]. When extending the traditional

approaches (i.e., fingertip grasping) to whole-arm grasping, the previously mentioned

requirements might not be easily met due to the increased number of contact points

and the large number of grasping configurations possible [56]. Motivated by the need

to have a whole arm grasping controller which does not require the constraint forces to

be known a priori while also eliminating the requirement for contact force sensing, a

grasping controller for kinematically redundant robot manipulators is designed which

requires only the object geometry to be known a priori. In addition, the proposed

controller does not require the exact dynamic model for the robot manipulator or

the measurement of contact forces. This paradigm makes the whole arm grasping

technique easily extendable to various manipulator systems.
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CHAPTER 2

TRACKING CONTROL FOR ROBOT MANIPULATORS WITH KINEMATIC

AND DYNAMIC UNCERTAINTY

The control objective in many robot manipulator applications is to command the

end-effector motion to achieve a desired response. To achieve this objective a mapping

is required to relate the joint/link control inputs to the desired Cartesian position and

orientation. If there are uncertainties or singularities in the mapping, then degraded

performance or unpredictable responses by the manipulator are possible. To address

these issues, in this chapter, an adaptive task-space tracking controller is developed

for robot manipulators with uncertainty in the kinematic and dynamic models. The

controller is developed based on the unit quaternion representation so that singular-

ities associated with three parameter representations are avoided. In addition, the

developed controller does not require the measurement of the task-space velocity.

The stability of the controller is proven through a Lyapunov based stability analysis.

Simulation results using a two degree of freedom planar manipulator model are pre-

sented to validate the controllers performance, then experimental results for a planar

application of the Barrett whole arm manipulator (WAM) are provided to illustrate

the performance of the developed controller.

Robot Dynamic and Kinematic Models

A six-link, rigid, revolute robot manipulator can be described by the following

dynamic model [57]:

M(θ)θ̈ + Vm(θ, θ̇)θ̇ + G(θ) + Fd θ̇ = τ (2.1)

In (2.1), θ (t) ∈ R6 is the joint position (It is assumed that the actuated manipulator

joint is rigidly connected to the links, so that the link-space and joint-space are

equivalent. Hence, the words joint and link can be used interchangeably.), M (θ) ∈

R6×6 represents the inertia matrix, Vm(θ, θ̇) ∈ R6×6 is the centripetal-Coriolis matrix,
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G (θ) ∈ R
6 is the gravity vector, Fd ∈ R

6×6 is a constant diagonal matrix which

represents the viscous friction coefficients, and τ (t) ∈ R6 represents the input torque

vector. The dynamic model given in (2.1) has the following properties [57], which are

utilized in the subsequent control design and analysis:

Property 1 The inertia matrix is symmetric and positive-definite, and satisfies the

following inequalities:

m1 ‖x‖
2 ≤ xT M(θ)x ≤ m2 ‖x‖

2 ∀x ∈ R
6 (2.2)

where m1, m2 ∈ R are positive constants and ‖ · ‖ denotes the standard Euclidean

norm.

Property 2 The inertia and centripetal-Coriolis matrices satisfy the following skew-

symmetric relationship:

xT

(

1

2
Ṁ(θ) − Vm(θ, θ̇)

)

x = 0 ∀x ∈ R
6 (2.3)

Property 3 The centripetal-Coriolis matrix satisfies the following skew-symmetric

relationship:

Vm(θ, x)y = Vm(θ, y)x ∀x, y ∈ R
6 (2.4)

Property 4 The norm of the centripetal-Coriolis matrix and the norm of the friction

matrix, can be upper bounded as follows:

‖Vm(θ, x)‖i∞ ≤ ζc ‖x‖ ∀x ∈ R
6, ‖Fd‖ ≤ ζf (2.5)

where ζc, ζf ∈ R are positive constants, and ‖ · ‖i∞ denotes the induced-infinity norm

of a matrix.

Property 5 Parametric uncertainty in M (θ) , Vm(θ, θ̇), G (θ) and Fd, is linearly

parametrizable.
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Figure 2.1 Representation of coordinate frames for the system.

Let E and B be orthogonal coordinate frames attached to the manipulator’s end-

effector and fixed base, respectively. Let I be the coordinate frame used to measure2

the position and orientation of E relative to B, for example I could be the camera

coordinate frame. The position and orientation of E relative to B can be represented

through the following forward kinematic model [3]:

[

p
q

]

=

[

hp (θ)
hq (θ)

]

(2.6)

In (2.6), hp (·) : R6 → R3 denotes an uncertain function that maps θ (t) to the

measurable task-space position coordinates of the end-effector, denoted by p (·) ∈ R
3,

and hq (·) : R6 → R4 denotes an uncertain function that maps θ (t) to the measurable

unit quaternion and is denoted by q (t) ∈ R4. The unit quaternion vector, denoted

by q (t) =
[

qo (t) , qT
v (t)

]T
with qo (t) ∈ R and qv(t) ∈ R3 [58], [59], provides a global

2The task-space position and orientation of E relative to B is assumed to be measurable, as
in [6–17]. For example, a camera system or laser tracking could be utilized.
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non-singular parametrization of the end-effector orientation, and is subject to the

constraint, qT q = 1. Several algorithms exist to determine the orientation of E relative

to B from a rotation matrix that is a function of θ (t). Conversely, a rotation matrix,

denoted by R(q) ∈ SO(3), can be determined from a given q(t) by the formula [3]:

R (q) =
(

q2
o − qT

v qv

)

I3 + 2qvq
T
v + 2qoq

×

v (2.7)

where I3 is the 3×3 identity matrix, and the notation a×, ∀ a = [a1, a2, a3]
T , denotes

the following skew-symmetric matrix:

a× ,





0 −a3 a2

a3 0 −a1

−a2 a1 0



 (2.8)

The time derivative of (2.6) is given by the following expression3:

[

ṗ
q̇

]

=

[

Jp

Jq

]

θ̇ (2.9)

where Jp (θ) : R
6 → R

3×6 and Jq (θ) : R
6 → R

4×6 denote the uncertain position and

orientation Jacobian matrices, respectively, defined as Jp (θ) = ∂hp/∂θ and Jq (θ) =

∂hq/∂θ. To facilitate the subsequent development, (2.9) is expressed as follows:

[

ṗ
ω

]

= J(θ)θ̇ where J (θ) =

[

Jp

BT Jq

]

∈ R
6×6 (2.10)

The expression in (2.10) is obtained by exploiting the fact that q (t) is related to

the angular velocity of the end-effector, denoted by ω (t) ∈ R3, via the following

differential equation:

ω = BT q̇ (2.11)

where the known Jacobian-like matrix B (q) : R4 → R4×3 is defined as follows:

B =
1

2

[

−qT
v

qoI3 − q×v

]

(2.12)

3To simplify the notation, the arguments of some functions in the equations are omitted. However,
all functions are explicitly defined in the text.
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Remark 1 The dynamic and kinematic terms for a general revolute robot manipu-

lator, denoted by M(θ), Vm(θ, θ̇), G(θ) and J(θ), are assumed to depend on θ(t) only

as arguments of trigonometric functions and hence, remain bounded for all possible

θ(t). During the control development, the assumption will be made that if p(t) ∈ L∞,

then θ(t) ∈ L∞ (Note that q(t) is always bounded, since qT q = 1).

Property 6 The kinematic system in (2.10) can be linearly parametrized as follows:

Jθ̇ = Wjφj (2.13)

where Wj(θ, θ̇) ∈ R6×n1 denotes a regression matrix which consists of known and

measurable signals, and φj ∈ Rn1 denotes a vector of n1 unknown constants.

Property 7 There exists upper and lower bounds for the parameter φj such that

J(θ, φj) is always invertible. We will assume that the bounds for each parameter can

be calculated as follows:

φ
ji
≤ φji ≤ φji (2.14)

where, φji ∈ R denotes the ith component of φj ∈ Rn1 and φ
ji
, φji ∈ R denote the ith

components of φ
j
, φj ∈ Rn1, which are defined as follows:

φ
j
=

[

φ
j1

, φ
j2

, · · · , φ
jn1

]T

φj =
[

φj1, φj2, · · · , φjn1

]T

(2.15)

Problem Statement

The objective is to the design the control input τ (t) to ensure end-effector posi-

tion and orientation tracking for the robot model given by (2.1) and (2.10) despite

parametric uncertainty in the kinematic and dynamic models. We will assume that

the only measurable signals are the joint position, joint velocity, and end-effector po-

sition. To mathematically quantify this objective, a desired position and orientation

of the robot end-effector is defined by a desired orthogonal coordinate frame Ed. The

14



vector pd(t) ∈ R
3 denotes the position of the origin of Ed relative to the origin of B,

while the rotation matrix from Ed to B is denoted by Rd(t) ∈ SO(3).

The end-effector position tracking error ep(t) ∈ R3 is defined as:

ep = pd − p (2.16)

where pd(t), ṗd(t), and p̈d(t) are assumed to be known bounded functions of time. If

the orientation of Ed relative to B is specified in terms of a desired unit quaternion

qd(t) =
[

qod(t), qT
vd(t)

]T
∈ R4, with qod (t) ∈ R and qvd (t) ∈ R3. Then similarly

to (2.7), the rotation matrix from Ed to B can be calculated from the desired unit

quaternion qd(t) as follows:

Rd (qd) =
(

q2
od − qT

vdqvd

)

I3 + 2qvdq
T
vd + 2qodq

×

vd (2.17)

where it is assumed that Rd, Ṙd, R̈d ∈ L∞. As in (2.11), the time derivative of qd(t)

is related to the desired angular velocity of the end-effector (i.e., the angular velocity

of Ed relative to B), denoted by ωd(t) ∈ R3, through the known kinematic equation:

q̇d = B(qd)ωd (2.18)

To quantify the difference between the actual and desired end-effector orientations,

we define the rotation matrix R̃ ∈ SO(3) from E to Ed as follows:

R̃ , RT
d R =

(

e2
o − eT

v ev

)

I3 + 2eve
T
v + 2eoe

×

v (2.19)

where eq(t) ,
[

eo(t), eT
v (t)

]T
∈ R4 represents unit quaternion tracking error that

satisfies the constraint:

eT
q eq = e2

o + eT
v ev = 1 (2.20)

The quaternion tracking error eq(t) can be explicitly calculated from q(t) and qd(t)

via quaternion algebra by noticing that the quaternion equivalent of R̃ = RT
d R is the

following quaternion product [5], [59]:

eq = qq∗d (2.21)

15



where q∗d(t) ,
[

qod(t), −qT
vd(t)

]T
∈ R4 is the unit quaternion representing the rotation

matrix RT
d (qd). After using quaternion algebra, the quaternion tracking error can be

derived as follows (see [5] and Theorem 5.3 of [59]):

[

eo

ev

]

=

[

qoqod + qT
v qvd

qodqv − qoqvd + q×v qvd

]

(2.22)

Based on (2.11), (2.18), and (2.22), the unit quaternion error system can be formu-

lated as follows [60]:

[

ėo

ėv

]

=







−
1

2
eT

v ω̃

1

2
(eoI3 − e×v ) ω̃






(2.23)

The angular velocity of E with respect to Ed with coordinates in Ed, denoted by

ω̃(t) ∈ R3, can be calculated from (2.19) as follows [61]:

ω̃ = RT
d (ω − ωd) (2.24)

The end-effector tracking errors are then written using (2.10), (2.16), and (2.24)

as:
[

ėp

ω̃

]

= Λ

([

−ṗd

−ωd

]

+ Jθ̇

)

(2.25)

where Λ ∈ R
6×6 is defined as:

Λ =

[

−I3 03×3

03×3 RT
d

]

(2.26)

where 03×3 represents a 3 × 3 matrix of zeros. Based on the above definitions, the

tracking objective defined in terms of the end-effector position and unit quaternion

error is to design the control input τ (t) such that:

‖ep(t)‖ → 0 and ‖ev(t)‖ → 0 as t → ∞ (2.27)

The orientation tracking objective given in (2.27) can also be stated in terms of eq(t).

Specifically, (2.20) implies that:

0 ≤ ‖ev(t)‖ ≤ 1 and 0 ≤ |eo(t)| ≤ 1 (2.28)
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for all time and if ‖ev(t)‖ → 0 as t → ∞ then eo(t) → 1 as t → ∞. Thus, if

‖ev(t)‖ → 0 as t → ∞ then (2.19) along with the previous statement can be used to

conclude that R̃(t) → I3 as t → ∞, and hence, the orientation tracking objective can

be achieved.

Tracking Error System Development

To facilitate the development of the open-loop error system, an auxiliary variable

η(t) ∈ R6 is defined as follows:

η =
(

ΛĴ
)

−1
[

ṗd + k1ep

−RT
d ωd + k2ev

]

+ θ̇ (2.29)

where k1, k2 ∈ R3×3 are positive, constant, diagonal matrices, and Ĵ(θ, φ̂j) ∈ R6×6 is

an estimated manipulator Jacobian matrix. After adding and subtracting the terms

ΛĴ(θ, φ̂j)θ̇(t) and ΛĴ(θ, φ̂j)η(t) to (2.25) and utilizing (2.26), the following kinematic

error system can be developed:

[

ėp

ω̃

]

= −

[

k1ep

k2ev

]

+ Λ
(

Ĵη + Wjφ̃j

)

(2.30)

where Wj(·) ∈ R
6×n1 was introduced in (2.13) and the parameter estimation error

term φ̃j(t) ∈ Rn1 is defined as:

φ̃j = φj − φ̂j (2.31)

The adaptive estimate φ̂j(t) ∈ R
n1 introduced in (2.31) is designed as follows:

˙̂
φj = proj {y} (2.32)

where the auxiliary term y ∈ Rn1 is defined as:

y = Γ1W
T
j ΛT

[

ep

ev

]

(2.33)

where Γ1 ∈ R
n1×n1 is a constant positive diagonal matrix and the function proj{y}
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is defined as follows:

proj{yi} ,







































yi if φ̂ji > φ
ji

yi if φ̂ji = φ
ji

and yi > 0

0 if φ̂ji = φ
ji

and yi < 0

0 if φ̂ji = φji and yi > 0

yi if φ̂ji = φji and yi ≤ 0

yi if φ̂ji < φji

(2.34)

φ
ji
≤ φ̂ji(0) ≤ φji (2.35)

where yi denotes the ith component of y, and φ̂ji(t) denotes the ith component of φ̂j(t)

(Note that the above projection algorithm ensures that φ
j
≤ φ̂j(t) ≤ φj and hence,

using Property 7 we can observe that the estimated manipulator Jacobian matrix

Ĵ(θ, φ̂j) will always be non-singular. For further details of the projection algorithm

the reader is referred [62]).

To obtain the closed loop error system for η(t), we first take the time derivative

of (2.29) to obtain the following expression:

η̇ =
d

dt

{

(

ΛĴ
)

−1
[

ṗd + k1ep

−RT
d ωd + k2ev

]}

+ θ̈ (2.36)

After pre-multiplying (2.36) by M (θ), substituting (2.1) into the resulting expression

for M (θ) θ̈(t), and utilizing (2.29), the following simplified expression can be obtained:

Mη̇ = −Vmη + τ + Wyφy (2.37)

where Wy(pd, ṗd, p̈d, qd, ωd, ω̇d, p, q, θ, θ̇) ∈ R6×n2 is a regression matrix of known and

measurable quantities, and φy ∈ Rn2 is a vector of n2 unknown constant parameters.

The product Wy (·) φy introduced in (2.37) is defined as:

Wyφy = M
d

dt

{

(

ΛĴ
)

−1
[

ṗd + k1ep

−RT
d ωd + k2ev

]}

+Vm

(

ΛĴ
)

−1
[

ṗd + k1ep

−RT
d ωd + k2ev

]

− G(θ) − Fd θ̇ (2.38)

Based on (2.37) and the subsequent stability analysis, the control input τ (t) is de-

signed as:

τ = −Wyφ̂y − krη −
(

ΛĴ
)T

[

ep

ev

]

(2.39)
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where kr ∈ R
6×6 is a constant positive diagonal matrix and φ̂y(t) ∈ R

n2 denotes an

adaptive estimate which is generated by the following differential expression:

˙̂
φy = Γ2W

T
y η (2.40)

where Γ2 ∈ Rn2×n2 is a positive constant diagonal matrix. After substituting (2.39)

into (2.37), the following closed-loop error system is obtained:

Mη̇ = −Vmη + Wyφ̃y − krη −
(

ΛĴ
)T

[

ep

ev

]

(2.41)

where the adaptive estimation error is defined as:

φ̃y = φy − φ̂y (2.42)

Remark 2 Based on the definition of the quaternion error system in (2.23), the

kinematic error system in (2.30), and the regression matrix in (2.38), we can conclude

that Wy(·) does not require the measurement of the task-space velocity. Further, from

the definition of ep(t), ev(t), and η(t) it is clear that the control input torque τ (t) does

not require measurement of the task space velocity.

Remark 3 Although the development presented in this chapter is for a six degree of

freedom robot manipulator, the control design can be easily extended to include a kine-

matically redundant robot manipulator. The modifications in the control design for

a kinematically redundant robot manipulator would be similar to the work presented

in [60], with the addition that the manipulator Jacobian be uncertain. It is also inter-

esting to note that the null space controller can be designed as in [63] to accomplish

several different subtasks, i.e. the self motion of the kinematically redundant robot

manipulator can be controlled to achieve a secondary control objective.
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Stability Analysis

Theorem 1 Given the robotic system described by (2.1), the control input (2.39)

along with the adaptive laws defined in (2.32) and (2.40) guarantee asymptotic reg-

ulation of the end-effector position error and the unit quaternion error in the sense

that ‖ep (t)‖ → 0 as t → ∞ and ‖ev (t)‖ → 0 as t → ∞, thus completing the position

and orientation tracking objective.

Proof. Let V (t) ∈ R denote the following non-negative scalar function:

V =
1

2
eT

p ep + (1 − e0)
2 + eT

v ev +
1

2
ηT Mη

+
1

2
φ̃

T

j Γ−1
1 φ̃j +

1

2
φ̃

T

y Γ−1
2 φ̃y (2.43)

After taking the time derivative of (2.43) and utilizing (2.23), (2.31) and (2.42), the

following expression is obtained:

V̇ = eT
p ėp + (1 − e0)

(

eT
v ω̃

)

+ eT
v

(

e0I3 − e×v
)

ω̃ +
1

2
ηT Ṁη + ηT Mη̇

−φ̃
T

y Γ−1
2

˙̂
φy − φ̃

T

j Γ−1
1

˙̂
φj (2.44)

Upon further simplification of equation (2.44) by cancelling common terms, and sub-

stituting for Mη̇ from (2.41), the following expression for V̇ (t) can be obtained:

V̇ =
[

eT
p eT

v

]

[

ėp

ω̃

]

− ηT krη − ηT Vmη + ηT Wyφ̃y − ηT
(

ΛĴ
)T

[

ep

ev

]

+
1

2
ηT Ṁη − φ̃

T

j Γ−1
1

˙̂
φj − φ̃

T

y Γ−1
2

˙̂
φy (2.45)

After using Property 3, substituting from (2.30), (2.32), and (2.40) and cancelling

terms, V̇ (t) can be expressed as:

V̇ =
[

eT
p eT

v

]

(

−

[

k1ep

k2ev

]

+ ΛWjφ̃j

)

−ηT krη − φ̃
T

j Γ−1
1 proj{y} (2.46)
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Substituting for y from (2.33) and using the definition of the projection function,

(2.34), the expression for V̇ (t) can be upper bounded as follows:

V̇ ≤ −λmin{k1} ‖ep‖
2 − λmin{k2} ‖ev‖

2 − λmin{kr} ‖η‖
2 (2.47)

where λmin is the minimum Eigenvalue of the matrix.

The expressions in (2.43) and (2.47) can be used to prove that ep(t), ev(t), η(t),

φ̃j(t), φ̃y(t) ∈ L∞ and that ep(t), ev(t), η(t) ∈ L2. Using (2.16) and the assumption

that pd(t) ∈ L∞, it is clear that p(t) ∈ L∞. From (2.31) and (2.42) it can be concluded

that φ̂j(t), φ̂y(t) ∈ L∞. Utilizing Property 7, the definition of η(t) in (2.29) and the

fact that ep(t), ev(t), η(t) ∈ L∞, we can show that θ̇(t) ∈ L∞. Moreover, (2.9), (2.16)

and the fact that J(θ) ∈ L∞ can be used to show that ṗ(t), ėp(t) ∈ L∞. From (2.20),

(2.23), (2.25) and (2.28) we can show that e0(t), ė0(t), ėv(t) ∈ L∞. From the definition

of Wj(·) and Wy(·) in (2.13) and (2.38) respectively and the preceding arguments, it

is clear that Wy(·), Wj(·) ∈ L∞. Utilizing (2.32), (2.33), (2.34) and (2.40), we can

show that
˙̂
φj(t),

˙̂
φy(t) ∈ L∞. The definition of τ (t) in (2.39) can be used to show

that τ (t) ∈ L∞; hence, θ(t), θ̇(t), θ̈ (t) ∈ L∞ and from (2.36) we can conclude that

η̇(t) ∈ L∞. Since ėp(t), ėv(t), η̇(t) ∈ L∞ and ep(t), ev(t), η(t) ∈ L2, Barbalat’s Lemma

[64] can be used to show that, ‖ep(t)‖ → 0, ‖ev(t)‖ → 0, ‖η(t)‖ → 0 as t → ∞.

Simulation Results

To evaluate the performance of the proposed control strategy, the controller was

simulated using the dynamics of a two degree of freedom (d.o.f.) planar robot manipu-

lator. In the simulation the position measurements for the end-effector were obtained

using the known forward kinematics of the manipulator. The simulation was written

in “C++” and hosted on Qmotor [65] in the QNX 6.2.1 real-time operating system.

The Qmotor software was selected to simulate the controller since it provides on-line

parameter tuning and data logging capabilities. Also, the simulation can be per-

formed in real-time in this software environment which significantly reduces the time

required to evaluate the control algorithm. Figures 2.2, 2.3, 2.4, 2.5, and 2.6, show
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the results obtained from the simulation for a circular trajectory in the task space.

It is seen that the tracking error approaches zero as the kinematic and dynamic pa-

rameters converge. Note that the adaptive algorithm presented in this work does not

guarantee that the parameter estimates converge to their true values.
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Figure 2.2 End-effector trajectory tracking error for the simulation.
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Figure 2.3 Kinematic parameter estimates for the simulation.
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Figure 2.4 Dynamic parameter estimates for the simulation.
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Figure 2.5 Control input torque for the simulation.
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Figure 2.6 Actual and desired end-effector trajectory for the simulation.

Experimental Results

The developed controller was implemented on the Barrett whole arm manipula-

tor (WAM). The WAM is a seven degree of freedom (d.o.f.), highly dexterous and

back-drivable robotic manipulator. The objective of the experiment is to verify the

performance of the developed adaptive controller. So to simplify the controller im-

plementation, five joints of the robot were locked at fixed angles and the remaining

links of the manipulator were used as a two d.o.f. planar robot manipulator (refer to

Fig. 2.7). The dynamics of the robot in this planar configuration can be expressed

as [61]:

τ =

[

M11 M12

M21 M22

] [

θ̈1

θ̈2

]

+

[

Vm11 Vm12

Vm21 Vm22

] [

θ̇1

θ̇2

]

+

[

fd1 0
0 fd2

] [

θ̇1

θ̇2

]

(2.48)
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Figure 2.7 Barrett Whole Arm Manipulator.

The elements of the inertia and centripetal-Coriolis matrices are defined as follows:

M11 = m1l
2
c1 + m2l

2
c2 + m2l

2
1 + 2m2l1lc2 cos (θ2)

M12 = m2l
2
c2 + m2l1lc2 cos (θ2)

M21 = M12 M22 = m2l
2
c2

Vm11 = −m2l1lc2 sin (θ2) θ̇2

Vm12 = −m2l1lc2 sin (θ2)
(

θ̇1 + θ̇2

)

Vm21 = m2l1lc2 sin (θ2) θ̇1 Vm22 = 0

where m1, m2 ∈ R denote the mass of the links, l1, l2 ∈ R denote the length of the

links and lc1, lc2 ∈ R denote the distance to the centre of mass. The terms fd1, fd2 ∈ R

in (2.48) denote the uncertain friction coefficients of the manipulator. The vector of
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uncertain constant dynamic parameters φy ∈ R
14 was found to be:

φy =
[m1l1l

2
c1, m1l2l

2
c1, m1l

2
c1, m2l1l

2
c2, m2l2l

2
c2, m2l

2
c2, m2l

3
1,

m2l
2
1, m2l

2
1lc2, m2l1l2lc2, m2l

2
1l2, m2l1lc2, fd1, fd2]

T

The control algorithm was written in “C++” and hosted on an AMD Athlon 1.2

GHz PC operating under QNX 6.2.1. Data logging and on-line gain tuning were

performed using Qmotor 3.0 control software [65]. Data acquisition and control im-

plementation were performed at a frequency of 1.0 kHz using the ServoToGo I/O

board. Joint positions were measured using the optical encoders located at the mo-

tor shaft of each axis. Joint velocity measurements were obtained using a filtered

backwards difference algorithm.

Remark 4 The kinematics of the robotic system are assumed to be unknown. The

task-space variable is assumed to be measured using an external sensor (e.g. a camera

system or laser tracking could be used). To simplify the experiment, the task-space

measurements were simulated by using the known kinematics of the robot (i.e., we

artificially generate the task-space position measurements using the known forward

kinematics). This kinematic information is used only to artificially generate the task-

space signals and is not used to generate any other signals in the control algorithm.

The approximated Jacobian matrix which is used in the control implementation

is defined as follows:

Ĵp =

[

−l̂1 sin (θ1) − l̂2 sin (θ1 + θ2) −l̂2 sin (θ1 + θ2)

l̂1 cos (θ1) + l̂2 cos (θ1 + θ2) l̂2 cos (θ1 + θ2)

]

where Ĵp ∈ R2×2, l̂1 and l̂2 are estimates for the link lengths. The parameter vector

φ̂j ∈ R2 is defined as:

φ̂j =
[

l̂1 l̂2
]T

and the estimates were initialized to l̂1(0) = 0.42 [m] and l̂2(0) = 0.22 [m].

26



The true link lengths are l1 = 0.558 [m] and l2 = 0.291 [m]. We initialized the

link length estimates to 75% of the true value. In cases where there is no information

available about the link lengths, a best-guess could be used as an initial estimate of

the link lengths.

The desired trajectory was defined as:

pd =

[

0.55 + 0.2 cos (2t)
0.25 + 0.2 sin (2t)

]

The initial position of the joints were, θ1(0) = 3.3◦, θ2(0) = 45.1◦, which corresponds

to x(0) = 0.75 [m], y(0) = 0.25 [m] in the task-space. The control gains that yielded

the best tracking performance were as follows:

k1 = diag{2.5, 2.0}, kr = diag{80, 40}

Γ1 = diag{8, 1}, Γ2 = diag{20, 45, 10, 500, 1, 3, 8, 15, 20, 5, 500, 25, 20, 20}

Remark 5 In this planar two degree of freedom example, there was no rotational

error ev(t); hence, the gain k2 is not used.

Fig. 2.8 shows the actual and desired task space trajectories for the last revolution.

Fig. 2.9 shows the position tracking error, it is seen that within 10 seconds the tracking

error converges to approximately ±2 [mm]. Fig. 2.10 and 2.11 show the link length

estimates and the dynamic parameter estimates respectively. From Fig. 2.9, 2.10 and

2.11, it can be clear that the tracking error converges as the kinematic and dynamic

parameters converge. Fig. 2.12 shows the control input torques to the two links of

the Barrett WAM.
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Figure 2.8 Actual and desired end-effector trajectory (only the last revolution is
shown).
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30



0 50 100
−4

−2

0

[k
g
−

m
3
]

φ
y
(1)

0 50 100
−2

0

2
[k

g
−

m
3
]

φ
y
(2)

0 50 100
−1

0

1

[k
g
−

m
2
]

φ
y
(3)

0 50 100
0

10

20

[k
g
−

m
3
]

φ
y
(4)

0 50 100
0

0.5

1

[k
g
−

m
3
]

φ
y
(5)

0 50 100
−2

0

2

[k
g
−

m
2
]

φ
y
(6)

0 50 100
−2

−1

0

[k
g
−

m
3
]

φ
y
(7)

0 50 100
−2

0

2

[k
g
−

m
2
]

φ
y
(8)

0 50 100
−5

0

5
[k

g
−

m
3
]

φ
y
(9)

0 50 100
−2

0

2

[k
g
−

m
3
]

φ
y
(10)

0 50 100
−20

0

20

[k
g
−

m
3
]

φ
y
(11)

0 50 100
−5

0

5

[k
g
−

m
2
]

Time [sec]

φ
y
(12)

0 50 100
−1

0

1

[N
m

−
s
]

Time [sec]

φ
y
(13)

0 50 100
4

6

8

[N
m

−
s
]

Time [sec]

φ
y
(14)

Figure 2.11 Dynamic parameter estimates.
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Figure 2.12 Control input torques.
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CHAPTER 3

A NEURAL NETWORK CONTROLLER FOR CONTINUUM ROBOTS

In this chapter a neural network based tracking controller is developed for a class

of hyper-redundant robot manipulators, also known as “continuum” robot manipu-

lators. The novelty of this work is the development of an efficient tracking controller

for extensible continuum manipulators which can deal with a high level of uncer-

tainty in the structure of the manipulators dynamic model. The proposed controller

consists of a neural network feedforward component along with a nonlinear feedback

component. Specifically, the design of the neural network component is based on

the augmented back propagation algorithm [33], and it is used to compensate for

the nonlinear uncertain dynamics of the continuum robot manipulator by leveraging

the universal approximation properties of the neural network as a feedforward com-

pensator. The feedback component utilized is a continuous nonlinear controller [40],

which does not require any model information. The advantages of the proposed con-

trol scheme compared to the previously mentioned works is that the controller is

continuous and asymptotic tracking can be proved without any prior knowledge of

the robot dynamic model. Furthermore, the back propagation technique enables the

neural network weight matrices to be estimated on-line very quickly based on the

tracking error signal and without utilizing any prior training period. This technique

is particularly useful for real time closed loop control.

This chapter is organized as follows, in the first section, the sensing and actuation

of the OCTARM VI, which is a soft extensible continuum robot manipulator (see

Fig. 3.1), are briefly discussed. Then some of the prior efforts to develop dynamic

models for continuum robot manipulators are discussed and a model for the extensi-

ble continuum manipulator is presented. In the next section the control objective is

explicitly defined and the design of a controller with the neural network feedforward

component is presented. To demonstrate the performance of the proposed controller

with the neural network feedforward component, the controller was tested on the OC-
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TARM. In the experimental results section, the performance of the controller without

the neural network feedforward component is compared with that of the controller

with the neural network feedforward component to illustrate the effectiveness of the

proposed strategy.

Figure 3.1 OCTARM VI continuum manipulator grasping a ball in Clemson
University’s robotics laboratory.

Robot Sensing and Actuation

The OCTARM VI manipulator [19, 24, 66], is a biologically inspired soft contin-

uum manipulator resembling a trunk or tentacle. The OCTARM is significantly more

versatile and adaptable than conventional robotic manipulators, capable of adaptive

and dynamic manipulation in unstructured environments. To provide the desired dex-

terity the OCTARM VI is constructed with high strain extensor air muscles called

McKibben actuators. These actuators are constructed by covering latex tubing with

a double helical weave, plastic mesh sheath [67]. These actuators provide a large

strength to weight ratio and strain which are required for soft continuum manipula-

tors.
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The OCTARM VI (refer to Fig. 3.1) is divided into three sections, with each

section consisting of three McKibben actuators. Each section is capable of two axis

bending and extension hence allowing nine total degrees of freedom for the manipu-

lator. The manipulator is pneumatically actuated through nine pressure regulators

which maintain the pressure in the actuators at a desired value, set using an input

voltage. The pressure regulators provide a linear relationship between the control

voltage and the air pressure. By varying the air pressure to the actuators on a sec-

tion the length and shape of the section can be controlled.

The shape of the manipulator can be inferred in terms of curvatures and extensions

by measuring the length of each of the nine actuators and using the forward kinematics

described in [68]. In this work we are only concerned with developing an efficient low

level controller which regulates the length of each of the actuators on the manipulator

to follow a desired trajectory4.

Robot Dynamic Model

From a review of current literature, it is evident that the theory related to the

dynamic modeling of continuum robot arms is still in its nascence with few published

works available. Some of the previous research includes [69–71], where planar models

of the continuum structure were considered, and [72, 73], where the authors develop

a three dimensional dynamic model for an inextensible (constant length) continuum

manipulator. As such, the complete dynamic modeling of variable length continuum

robot arms remains an open research area. In [72], the developed dynamic model

was shown to satisfy the familiar property that the continuum manipulators inertia

matrix is symmetric and positive definite. With this in mind, in the development

being considered we will assume that the dynamic model of a 9 DOF (degree of

freedom) continuum robot manipulator can be described by the following expression.

M(q)q̈ + N(q, q̇) = u (3.1)

4Note that the desired trajectory for the lengths of each actuator could be specified directly in
terms of the lengths or could be generated using the inverse kinematics described in [68].
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where M(q) ∈ R
9×9 represents the inertia matrix, N(q, q̇) ∈ R

9 represents the re-

maining dynamic terms such as centripetal, Coriolis and frictional forces , u(t) ∈ R9

represents the control input vector, and q(t), q̇(t), q̈(t) ∈ R9 represent the actuator

length, velocity and acceleration respectively.

The subsequent development is based on the following assumptions

Assumption 1 The manipulators position q(t) and velocity q̇(t) are measurable.

Assumption 2 The dynamic terms denoted by M(q) and N(q, q̇) are unknown non-

linear functions of q(t) and q̇(t) which are second order differentiable and satisfy the

following properties

M(·), Ṁ(·), M̈(·) ∈ L∞ if q(t), q̇(t), q̈(t) ∈ L∞ (3.2)

N(·), Ṅ(·), N̈(·) ∈ L∞ if q(t), q̇(t), q̈(t),
...
q (t) ∈ L∞. (3.3)

Assumption 3 The inertia matrix M(q) is symmetric and positive-definite, and sat-

isfies the following inequalities

m1 ‖ξ‖
2 ≤ ξT M(q)ξ ≤ m2 ‖ξ‖

2 ∀ξ ∈ R
9 (3.4)

where m1, m2 ∈ R are positive constants, and ‖·‖ denotes the standard Euclidean

norm.

Control design

As we have mentioned in the previous section, the dynamic modeling of extensible

continuum manipulators remains an open research problem. The main focus of the

control design in this section is to develop an efficient tracking controller which can

deal with the high level of uncertainty in the structure of continuum robot’s dynamic

model. The proposed control strategy consists of a neural network feedforward com-

ponent and a nonlinear feedback component. The feedback component is based on

prior work in [40], this controller is chosen because it leaves a lot of flexibility in the
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design of the neural network feedforward component. The neural network feedforward

component is then designed based on the back propagation algorithm in [33] to meet

the boundedness requirements required by the feedback controller.

Feedback Controller

The control objective is to design a continuous controller which provides asymp-

totic tracking of the actuator lengths and the desired actuator length trajectories in

the sense that

q(t) → qd(t) as t → ∞. (3.5)

To quantify the control objective, an error signal, denoted by e1(t) ∈ R9, is defined

as follows

e1 , qd − q. (3.6)

Furthermore, an auxiliary tracking error signal e2(t) ∈ R9 is defined as follows

e2 , ė1 + λ1e1 (3.7)

where λ1 ∈ R+ is a control gain. For the closed loop error system development, we

define a filtered tracking error signal r(t) ∈ R9 as follows

r , ė2 + λ2e2 (3.8)

where λ2 ∈ R+ is a control gain.

The dynamic model of the continuum robot is highly nonlinear and has an uncer-

tain structure; hence, the strategy developed by Xian et al. [40], can be utilized for

the controller. This controller is chosen because it is continuous, it does not require

the dynamic model of the manipulator to be known and yet it provides semi-global

asymptotic tracking. Specifically, the control objective described in (3.5) can be met

with the following controller [40]

u(t) , (Ks + I)e2(t) − (Ks + I)e2(t0) +

∫ t

t0

f̂(τ)dτ

+

∫ t

t0

(λ2(Ks + I)e2(τ) + βsgn(e2(τ))) dτ (3.9)
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where u(t) ∈ R
9 is the control input defined in (3.1), λ2 ∈ R

+ is a control gain,

Ks, β ∈ R9×9 are positive definite diagonal control gain matrices, f̂(t) ∈ R9 is the

neural network feedforward component, and sgn(·) : R9 7→ R9 denotes the vector

signum function defined as sgn(ξ) = [sgn(ξ1), · · · , sgn(ξ9)]
T ∀ ξ = [ξ1, · · · , ξ9]

T ∈ R
9.

As shown in [40], the controller presented in (3.9), provides semi-global asymptotic

convergence of the actuator length tracking error, (i.e. ‖e1(t)‖ → 0 as t → ∞). For

brevity in this presentation, the stability analysis is omitted, for a complete analysis

of the controller the reader is referred to [40].

Remark 1 The design of the neural network feedforward component, f̂(t), is pre-

sented in the subsequent section. The only restriction imposed on the neural network

component by the selection of the feedback controller in (3.9) is that f̂(t) ∈ L∞, i.e.

the output from the neural network must be bounded.

Neural Network Feedforward Design

The neural network feedforward component f̂(t) ∈ R9 is computed using a two

layer network with 15 neurons. The weights are computed using a modified version

of the back propagation algorithm presented in [33]. Given Remark 1, an important

consideration regarding the design of the neural network feedforward component is

that the output from the neural network must always be bounded (i.e. f̂(t) ∈ L∞).

To this end the neural network component is defined as follows

f̂ = Ŵ T σ̄
(

V̂ T x
)

. (3.10)

where Ŵ (t) ∈ R15×9 and V̂ (t) ∈ R37×15 are estimated weight matrices, and x(t) ∈ R37

is the input vector to the neural network which is selected as

x =
[

1, qT
d , q̇T

d , q̈T
d ,

...
q T

d

]T
(3.11)

where qd(t), q̇d(t), q̈d(t),
...
q d(t) were defined a priori. The vector activation function

σ̄(·) ∈ R15 7→ R15 is defined as follows

σ̄(ω) = [σ(ω1), σ(ω2), · · · , σ(ω15)]
T (3.12)
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where ω = [ω1, ω2, · · · , ω15]
T and σ(s) : R 7→ R is the sigmoid activation function

defined as

σ(s) =
1

1 + exp(−s)
. (3.13)

The gradient of the vector activation function, denoted by σ̄
′

(·) ∈ R15×15 can be

expressed in closed form as follows, [33]

σ̄(ω)
′

= diag{σ̄(ω)} [I − diag{σ̄(ω)}] . (3.14)

If we were to design the weight update laws according to the augmented backpropa-

gation algorithm [33], we would use the following update rules

˙̂
W = −κF ‖r‖ Ŵ − F σ̄

′

(·)V̂ T xrT + F σ̄(·)rT

˙̂
V = −κG ‖r‖ Ŵ + Gx

(

σ̄
′T (·)Ŵr

)T

where κ ∈ R+ is selected to be a small constant, F ∈ R15×15, G ∈ R37×37 are positive

definite gain matrices, x(t) is the input vector defined in (3.11), and r(t) is the filtered

tracking error signal defined in (3.8). Here, the filtered tracking error signal r(t) is

required in the update laws which requires the measurement of the acceleration q̈(t),

and hence, is undesirable. To ensure that the weights generated from these laws

are bounded, and that acceleration measurements are not required, we redefine the

update laws as follows

˙̂
W = −αwŴ + γ1σ̄

(

V̂ T x
)

sat (e2 + ζ)T (3.15)

˙̂
V = −αvV̂ + γ2x

[

σ̄
′

(

V̂ T x
)

Ŵ sat (e2 + ζ)
]T

(3.16)

where αv, αw ∈ R+ are small constants, γ1, γ2 ∈ R+ are control gains which ef-

fect the learning speed, the function sat(ξ) : R9 7→ R9 is defined as sat(ξ) =

[sat(ξ1), · · · , sat(ξ9)]
T ∀ ξ = [ξ1, · · · , ξ9]

T ∈ R9 where sat(ξi) ∈ R ∀ i = 1, · · · , 9 is

the following saturation function

sat(ξi) =







−ξmin if ξi ≤ −ξmin

ξi if ξi > −ξmin or ξi < ξmax

ξmax if ξi ≥ ξmax
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where ξmin, ξmax ∈ R
+ are constants. In (3.15) and (3.16) the auxiliary signal ζ(t) ∈

R9 is an approximation (i.e. a dirty derivative operation) for the signal ė2(t) which

is defined as follows

ζ =
1

ε
(e2 − η) (3.17)

where ε ∈ R+ is a small constant, and the signal η(t) ∈ R9 is updated according to

the following expression

η̇ =
1

ε
(e2 − η). (3.18)

From equations (3.10)-(3.18) and the fact that the input vector to the neural network

is bounded, it is easy to show that the weight matrices Ŵ (t) and V̂ (t) are bounded,

and hence, the output from the neural network, f̂(t), is bounded.

Experimental Results

To verify the performance of the controller with the neural network feedforward

component, the controller was implemented on the OCTARM VI continuum robot

manipulator. In this section, we first provide a description of the control system

for the OCTARM VI continuum robot manipulator, then experimental results are

described which illustrate the effectiveness of the neural network feedforward tracking

controller.

OCTARM Control System

Figure 3.2 shows an overview of the control system of the OCTARM. The con-

trol system consists of a commercial off-the-shelf Pentium III EBX form-factor Single

Board Computer (SBC) with two ServoToGo data acquisition boards which provide

analog and digital I/O. The computer runs the QNX Neutrino real-time operating

system and QMotor 3.0 [65], a real-time control software which facilitates online

parameter tuning and data logging for the implemented control programs. Data ac-

quisition and closed loop control were performed at a frequency of 500 Hz. There are

nine pressure regulators, one for each actuator on the manipulator. The air pressure
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Figure 3.2 Block diagram showing an overview of the OCTARM VI control system.

for each actuator is determined by the neural network controller. The pressure spec-

ified by the controller is converted to a corresponding voltage level (using a linear

relationship between pressure and voltage) and this drives the pressure regulators

which control the air flow to the actuators.

For closed loop control of the OCTARM VI manipulator accurate sensing of the

actuator lengths is essential. To measure the length of each of the nine actuators,

there are nine string encoders arranged around the base of section one (see Fig. 3.3).

The cables from each of the string encoders run the entire length of the actuator they

are assigned to measure. This configuration enables the length of each of the actuators

on the OCTARM VI manipulator to be determined. Since the string encoders have

a relatively low resolution, velocities obtained through differentiation of the position

measurements are noisy; hence, a variable structure velocity observer [40], was utilized

to obtain estimates of the velocity.

Trajectory Tracking Experiment Description

To test the low level controller with the neural network component given in (3.9),

a sinusoidal trajectory was selected for the actuator lengths. Since, the three actua-

tors on a section are 120 degrees apart mechanically, the desired trajectory for each
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Figure 3.3 The OCTARM VI robotic manipulator.

actuator in a section is shifted 120 degrees in phase from the trajectory of the previous

actuator in that section. The trajectory for section one was selected as follows

qd1k = lmin1
+ (1 − exp(−0.5t))l1

+3(1 − exp(−0.5t))sin

(

0.03πt +
2

3
πk

)

where k = 1, 2, 3, qd1 = [qd11, qd12, qd13] ∈ R3 represents the desired trajectory for the

actuators on section one, lmin1
∈ R represents the minimum lengths of the actuators

on section one, and l1 = 8 [cm] is the initial extension of the actuators on section one.

The initial extension was selected to keep the operating pressure close to its nominal

value. For sections two and three, the initial extensions were l2 = 7 [cm], l3 = 5 [cm]

and the frequency of the sinusoidal trajectory for each section was twice that of the

previous section. The minimum and maximum lengths of the sections corresponding

to the minimum pressure (0 psi) and maximum pressure (130 psi) respectively are

physical limitations of the actuators and were found to be lmin1
= 28 [cm], lmin2

=

26.5 [cm], lmin3
= 32.5 [cm], lmax1

= 42 [cm], lmax2
= 44 [cm], lmax3

= 54 [cm].

Control Parameter Tuning

To test the effectiveness of the neural network feedforward component, we com-

pared the performance of the controller in (3.9), with and without the neural network
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component. The performance of the system was first tested without the neural net-

work component. The control gains for the feedback controller were adjusted in such

a manner as to obtain a fast system response while minimizing the overshoot and os-

cillations, since the actuators have very low damping. The control gains which gave

the best performance were as follows

Ks = diag{1, 1, 1, 1, 1, 1, 1, 1, 1}, λ1 = 1, λ2 = 1,

β = diag{1, 1, 1, 1, 1, 1, 0.5, 0.5, 0.5}.

It is interesting to note that when β and f̂(t) in (3.9) are zero, the control law is

essentially a PID controller and hence, the parameters Ks, λ1, λ2, can be tuned in

a conceptually similar manner to a PID controller. However, the addition of the

control gain β into the controller provides a significant improvement in the tracking

performance. Also, the last three elements of the β vector, corresponding to the third

section of the manipulator, are smaller, since the third section requires less control

effort to extend due to its relatively smaller size.

With the feedback controller now tuned, the neural network feedforward was added

to the controller while keeping the gains on the feedback controller the same. The

number of neurons required for the system was determined experimentally by noting

the performance achievable with a given number of neurons and then increasing the

number of neurons until the desired tracking performance level was obtained. Initially

5 neurons were utilized and this was subsequently increased to 15 to get better perfor-

mance. Note that we cannot keep increasing the number of neurons since we require

the control algorithm to be as computationally efficient as possible for it to run in

real-time on the SBC. There was no off-line training period utilized for the neural

network feedforward component, the weight matrices Ŵ (t) and V̂ (t) in the neural

network were initialized to zero. The gains in the neural network weight update law

were adjusted to be as follows

γ1 = 10, γ2 = 500, αw = 0.001, αv = 0.001.
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The constants αw and αv (sometimes called forgetting factors) were kept small to

provide stability to the weight estimation laws. The constants γ1 and γ2 affect the

weight adaptation speed. It was interesting to note that γ2 was required to be much

larger than γ1 to provide stable yet fast convergence of the weights. This is because

the gain γ2 only affects the inner layer of the neural network, whereas γ1 would affect

the output layer. The constant ε must be close to zero and was selected as follows

ε = 0.01.

Experiment Results and Discussion

To provide a means to quantify the performance of the controller for each config-

uration, we computed the following measures

Me ,

∫ t

t0

‖e1(τ)‖2dτ (3.19)

Mu ,

∫ t

t0

‖u(τ)‖2dτ (3.20)

where Mu(t) is a measure of the energy expended by the controller, and Me(t) is a

measure of the magnitude of the tracking error over the period of operation of the

system.

Figures 3.4, 3.5 and 3.6, show the actual and desired length trajectories, tracking

error, and the input pressure, for the controller without the neural network com-

ponent. Figures 3.7, 3.8 and 3.9, show the actual and desired length trajectories,

tracking error, and the input pressure, for the controller with the neural network

feedforward component. It can be seen from Figure 3.8, that the tracking error with

the neural network feedforward component settles out to ±0.3 [cm] in under 5 seconds.

To compare the controller performance with and without the neural network feed-

forward component, the measures (3.19), (3.20), were computed for the two config-

urations. Tables 3.1, 3.2, 3.3, show a comparison of the performance of these two

controller configurations over different time periods of the experimental trajectory. It

can clearly be seen from these tables that although the control input measure remains
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almost the same over the different time periods, the error measure shows a signifi-

cant drop when the neural network feedforward component is introduced. Also, note

that as the neural network feedforward continues to “learn” the performance of the

controller improves. From the tables we note that after 5 seconds there is a 38.66%

improvement, at 10 seconds there is a 66.36% improvement, and after 60 seconds the

performance improvement is 87.82%. Thus we can conclude that improved tracking

performance is achieved by adding the neural network feedforward to the controller.

Table 3.1 Performance measures for the controller with and without the feedforward
component calculated for the first 5 seconds of the experimental trajectory

Without feedforward With feedforward

Me 13.14042 8.06437

Mu 54, 808.85 52, 331.17

Table 3.2 Performance measures for the controller with and without the feedforward
component calculated for the first 10 seconds of the experimental trajectory

Without feedforward With feedforward

Me 27.32518 9.19339

Mu 148, 143.52 138, 589.19

Table 3.3 Performance measures for the controller with and without the feedforward
component calculated for the first 60 seconds of the experimental trajectory

Without feedforward With feedforward

Me 145.51935 17.7180

Mu 1.0463 × 106 1.0301 × 106

The controller described in this chapter has been implemented on the OCTARM

VI control system replacing the original PID controller. The group has adapted

the controller as the default controller for the OCTARM series of robots. It has

been utilized for a number of applications such as whole arm grasping, inspection
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and tunnel navigation where it has shown excellent performance. All of these tasks

were performed by an operator commanding the continuum arm’s motion using a

joystick interface (see [74], for a description of the operator interface). The tunnel

navigation task is one application where the improved tracking performance provided

by the neural network controller significantly reduces the time taken by the operator

to navigate down the tunnel. Through our experimentation we have noted that

the fine motion control possible with the controller is extremely useful for the tasks

mentioned above as it enables all the capabilities of the continuum arm to be explored

and exploited.
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Figure 3.4 Actual and desired length trajectory without neural network component,
solid line represents the actual length trajectory, dashed line represents the desired

length trajectory.
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Figure 3.5 Tracking error without neural network component.

0 50
0

20

40

60

80
Section 1 : Actuator 1

[p
s
i]

0 50
0

20

40

60

80
Section 1 : Actuator 2

[p
s
i]

0 50
0

20

40

60

80

[p
s
i]

Section 1 : Actuator 3

0 50
0

20

40

60
Section 2 : Actuator 1

[p
s
i]

0 50
−50

0

50

100
Section 2 : Actuator 2

[p
s
i]

0 50
−20

0

20

40

60

[p
s
i]

Section 2 : Actuator 3

0 50
0

20

40

60
Section 3 : Actuator 1

[p
s
i]

Time [sec]
0 50

0

20

40

60
Section 3 : Actuator 2

[p
s
i]

Time [sec]
0 50

0

20

40

60

[p
s
i]

Time [sec]

Section 3 : Actuator 3

Figure 3.6 Control pressure without neural network component.
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Figure 3.7 Actual and desired length trajectory with neural network component,
solid line represents the actual length trajectory, dashed line represents the desired

length trajectory.
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Figure 3.8 Tracking error with neural network component.
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Figure 3.9 Control pressure with neural network component.
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CHAPTER 4

WHOLE ARM GRASPING CONTROL FOR REDUNDANT

ROBOT MANIPULATORS

An application which is well suited for kinematically redundant robot manipula-

tors is the utilization of the manipulators body to grasp objects, also known as whole

arm grasping. In this chapter an approach to whole arm grasping of rigid objects us-

ing kinematically redundant robot manipulators is presented. Roughly, the whole arm

grasping objective is achieved by integrating the path planner and the controller such

that two tasks, end-effector positioning and body self-motion positioning, are accom-

plished simultaneously. The end-effector positioning controller forces the end-effector

to follow a path around the object which in turn, forces the robot’s body to wrap

itself around the object to be grasped. The body self-motion positioning controller

“repels” the body of the manipulator away from the object while the end-effector

moves around the object. This control-induced repulsion-like property facilitates ob-

ject avoidance as well as removes the “slack” from the robot body as the robot begins

to move into the grasping position. When all possible slack is removed, the manip-

ulators body makes contact with the object, hence, completing the whole arm grasp

of the object.

The whole arm grasping control problem can thus be broken down into two stages;

first, a kinematic level path planner is designed which facilitates the encoding of

both the end-effector position as well as the manipulators self-motion positioning

information as a desired trajectory for the manipulator joints. The trajectory from

the high level path planner is then filtered to produce an appropriate joint level

trajectory. Then, a joint space controller, which is based on the work in Chapter 3,

is utilized to provide asymptotic tracking of the encoded desired joint trajectory in

the presence of dynamic uncertainties. Experimental results for a planar application

of the whole arm grasping technique using the Barrett whole arm manipulator are

described to illustrate the performance of the controller.
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Manipulator Models

In this section the kinematic and dynamic models for an n-joint (n ≥ 6), revolute,

direct drive robot manipulator are presented. The subsequent development of the

whole arm grasping controller is based on these models.

Kinematic Model

The Denavit-Hartenberg based forward kinematic model for an n-segment redundant

manipulator can be developed as follows

xn = fn(q) (4.1)

where xn(t) ∈ Rp represents the robot end-effector’s task-space vector, q(t) ∈ Rn

denotes the joint position, and fn(q) ∈ Rp denotes the forward kinematics of the

manipulator. The velocity kinematics for the manipulator can be developed as follows

ẋn = Jn(q)q̇(t) (4.2)

where ẋn(t) ∈ Rp represents the task-space velocity, q̇(t) ∈ Rn denotes the joint

velocity, and Jn(q) ,
∂fn(q)

∂q
∈ Rp×n denotes the manipulator Jacobian.

Dynamic Model

The dynamic model for an n-joint (n ≥ 6), revolute, direct drive robot manipulator

is described by the following expression [57]

M(q)q̈ + N(q, q̇) + Fe(q, q̇) = τ (4.3)

where M(q) ∈ Rn×n represents the inertia effects, N(q, q̇) ∈ Rn represents the re-

maining dynamic terms, such as the centripetal-Coriolis effects, gravitational effects,

and frictional effects, Fe(q, q̇) ∈ Rn represents the contact forces placed on the robot

manipulator by the environment, τ (t) ∈ Rn represents the input torque vector. The

subsequent development is based on the assumptions that q(t) and q̇(t) are measur-

able, M(q), N(q, q̇), and Fe(q, q̇) are unknown, second order differentiable, functions

of q(t) and q̇(t), and the inertia matrix satisfies the following property [57],
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Property 1 The inertia matrix M(q) is symmetric and positive-definite, and satis-

fies the following inequalities

m1 ‖ξ‖
2 ≤ ξT M(q)ξ ≤ m2 ‖ξ‖

2 ∀ξ ∈ R
n (4.4)

where m1, m2 ∈ R are positive constants, and ‖·‖ denotes the standard Euclidean

norm.

Remark 1 Since this development is only concerned with revolute robot manipu-

lators, the kinematic and dynamic terms denoted by M(q), N(q, q̇), and J(q), are

assumed to be bounded for all possible q(t) (i.e., these kinematic and dynamic terms

only depend on q(t) as arguments of trigonometric functions).

High Level Path Planning

As has been described previously, the whole arm grasping objective is achieved

by designing the high level path planner such that two tasks, end-effector positioning

and body self-motion positioning, are accomplished simultaneously. To facilitate the

development of the path planner, the pseudo-inverse of the manipulator Jacobian,

Jn(q), denoted by J+
n (q) ∈ Rn×p, is defined as follows

J+
n , JT

n

(

JnJT
n

)

−1
(4.5)

where J+
n (q) satisfies the following equality

JnJ
+
n = Ip (4.6)

where Ip ∈ Rp×p is the standard identity matrix. The pseudo-inverse defined as in

(4.5) satisfies the following properties [75]

JnJ
+
n Jn = Jn J+

n Jn J+
n = J+

n

(J+
n Jn)

T
= J+

n Jn (JnJ+
n )

T
= JnJ

+
n .

(4.7)

In addition to the above properties, the matrix (In − J+
n Jn) satisfies the following

useful properties
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(In − J+
n Jn) (In − J+

n Jn) = In − J+
n Jn

(In − J+
n Jn)

T
= (In − J+

n Jn)
Jn (In − J+

n Jn) = 0
(In − J+

n Jn) J+
n = 0

(4.8)

where In ∈ Rn×n is the standard identity matrix.

Remark 2 During the control development, the assumption is made that the min-

imum singular value of the manipulator Jacobian, denoted by σm is greater than a

known, small positive constant δ > 0, such that max {‖J+
n (q)‖} is known a priori and

all kinematic singularities are always avoided.

Based on (4.2) and the properties mentioned above, the kinematic level path

planner, denoted by U(t) ∈ Rn, which enables the whole arm grasping objective is

designed as follows

q̇(t) , J+
n Ue +

(

In − J+
n Jn

)

Um (4.9)

where Ue(t) ∈ Rp is the end-effector positioning controller, and Um(t) ∈ Rn is the

robot body self-motion controller. In the remainder of this section, the design of the

robot end-effector positioning controller and the robot body self-motion controller will

be discussed in detail.

End-Effector Positioning

The objective of the end-effector positioning controller is to force the end-effector

to track a desired trajectory that encompasses the surface of the object to be grasped.

For this type of problem, instead of a time based trajectory, a velocity field control

(VFC) is utilized because it more effectively penalizes the end-effector for leaving the

contour ( [76], [77], and [78]). The VFC will also not exhibit the radial reduction

phenomenon which is common with traditional control methods ( [76] and [77]). For

example, when the object to be grasped is circular, the velocity field generates a

desired trajectory that forces the end-effector to spiral inwards, toward and around

the surface of the object.
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Remark 3 A velocity field specifies a desired velocity ẋd(t) at each displacement po-

sition xn(t) on the task space of the system [77]. In [77] and [78], the authors provide

specific information about the construction of velocity fields. Also see [76] and [79]

for details of circular velocity fields. The velocity field for a specific planar application

is presented subsequently in the experimental section of this chapter.

The end-effector positioning controller Ue(t) ∈ Rp which enables the path planning

objective is developed based on a Lyapunov analysis and is defined as follows

Ue , ϑ (xn) + Kee + kn

∥

∥

∥

∥

∂V (xd)

∂xd

∥

∥

∥

∥

2

ρ2 (xn, xd) e (4.10)

where ϑ (xn) ∈ Rp is a task-space velocity field, Ke ∈ Rp×p is a positive definite

diagonal gain matrix, kn ∈ R+ is a scalar gain parameter, e(t) ∈ Rp is the task space

position tracking error defined as follows

e , xd − xn, (4.11)

where xd (t) ∈ Rp is the desired task-space position, and xn (t) was introduced in (4.1).

In (4.10), V (xd) ∈ R is a first order differentiable, nonnegative function and ρ (·) ∈ R

is a known positive function that is assumed to be bounded provided xn(t) and xd(t)

are bounded. The function V (xd) is defined for a given application subsequently in

experimental section of this chapter. For details on how to construct ρ(xn, xd) for a

specific application, the reader is referred to [79].

For the whole arm grasping objective, the desired task space velocity trajectory

is defined as

ẋd (t) , ϑ (xn) (4.12)

where ϑ (xn) is the velocity field generated by the task-space position xn(t). The

velocity tracking error is derived by taking the first derivative of (4.11) and using

(4.12)

ė = ϑ (xn) − ẋn. (4.13)
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After utilizing (4.2), the expression in (4.13) can be written as follows

ė = ϑ(xn) − Jnq̇. (4.14)

Then, after utilizing (4.9), (4.14) can be written as follows

ė = ϑ(xn) − Ue (4.15)

where (4.6) and (4.8) have also been used. Substituting (4.10), the closed loop error

system can be written as follows

ė = −Kee − kn

∥

∥

∥

∥

∂V (xd)

∂xd

∥

∥

∥

∥

2

ρ2 (xn, xd) e. (4.16)

Theorem 1 The control law described by (4.10) guarantees that e(t), ė(t) and Ue(t) ∈

L∞ and ‖e(t)‖ → 0 as t → ∞.

Proof. For brevity in this presentation the proof of the theorem is omitted. Refer

to [79], which describes a similar result.

The result of Theorem 1 proves that ‖e(t)‖ → 0 as t → ∞ and that Ue(t) ∈ L∞.

Thus, the control law defined in (4.10) guarantees that the manipulators end-effector

follows the desired contour while also ensuring that all signals remain bounded. If the

controller defined in (4.10) is used alone (i.e. q̇(t) = J+
n Ue), the joint space desired

trajectory that is tracked may take a path such that the end-effector and body of the

manipulator make contact with the object while the end-effector tries to follow the

contour of the object to be grasped. Since this is an undesirable effect, the robot body

self-motion positioning controller must be designed in such a manner to provide object

avoidance as the body of the manipulator moves around the object to be grasped.

Body Self-Motion Positioning

The objective of the body self-motion positioning controller is to “repel” the end-

effector and the body of the manipulator away from the object to be grasped while the

end-effector moves around the object. This control-induced repulsion-like property
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not only facilitates object avoidance but also removes the “slack” from the body of the

manipulator as the robot moves into the grasping position. When all possible slack is

removed, the manipulator body makes contact with the object, hence completing the

whole arm grasp of the object. Following this line of reasoning, the body self-motion

positioning controller Um(t) ∈ Rn in (4.9), is designed as follows

Um , −km

[

Js

(

In − J+
n Jn

)]T
ya (4.17)

where km ∈ R+ is a control gain, Js ∈ R1×n is a subsequently designed Jacobian-like

vector, In ∈ Rn×n was defined in (4.8), and ya (t) ∈ R is an auxiliary scalar signal

which encodes the object’s geometric information. The function ya(t) is designed

to keep the body of the manipulator away from the object as the robot end-effecor

encircles the object. See [63] for details of a general auxiliary self-motion control

signal of a redundant robot manipulator.

For whole arm grasping, a specific auxiliary signal ya (t) is designed as follows

ya ,

n
∑

i=1

hai (xi) (4.18)

where n is the number of joints of the manipulator, xi =
[

x̄i1 x̄i2 . . . x̄ip

]T
∈ Rp

is the Euclidean-space coordinate for the ith joint, and hai (xi) ∈ R is the repulsion

function for the ith joint which encodes geometric information about the surface of

the object with respect to the ith joint’s Euclidean position. The repulsion function

hai (xi) is defined as follows

hai (xi) = khi exp
(

−αiβ
2
i (xi)

)

, ∀ i = 1, .., n (4.19)

where khi, αi ∈ R+ are constants, and βi (xi) ∈ R is the joint specific geometric

function. The function βi (xi) should be designed to be positive when the manipulator

is not touching the object as well as that βi (xi) ∈ L∞, if xi(t) ∈ L∞. For example,

given a spherical object in three dimensional Euclidean-space, βi (xi) could be defined

as follows

βi (xi) , (x̄i1 − x̄c1)
2 + (x̄i2 − x̄c2)

2 + (x̄i3 − x̄c3)
2 − r2

o
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where x̄c1, x̄c2, x̄c3, ro ∈ R are the Euclidean coordinates of the center of the spherical

object and its radius, respectively.

To determine the dynamics of ya(t), the time derivative of (4.18) is written as

follows

ẏa = Jsq̇ (4.20)

where a Jacobian-type vector Js(t) ∈ R1×n is defined as follows

Js =
∂ya

(

x1 x2 .. xn

)

∂
[

xT
1 xT

2 .. xT
n

]





J1

:
Jn



 (4.21)

where
.
xi= Jiq̇ and Ji ∈ Rp×n is the Jacobian matrix relating the joint velocities

and the Euclidean velocities for the ith joint. Substituting for q̇(t) from (4.9), the

expression for ẏa(t) can be written as follows

ẏa = JsJ
+
n Ue + Js

(

In − J+
n Jn

)

Um. (4.22)

After substituting for Um(t) as defined in (4.17), ẏa(t) of (4.22) can be further ex-

pressed as

ẏa = −km

∥

∥Js

(

In − J+
n Jn

)
∥

∥

2
ya + JsJ

+
n Ue. (4.23)

Theorem 2 The control law described by (4.17) guarantees that ya(t) is practically

regulated (i.e., ultimately bounded) in the following sense

|ya(t)| ≤

√

|ya(t0)|
2 exp (−2µt) +

ω

µ
(4.24)

provided the following sufficient conditions are true

∥

∥Js

(

In − J+J
)
∥

∥

2
> δ̄ (4.25)

and

km >
1

δ̄δ2

(4.26)

where ω, µ, δ̄, δ2 ∈ R are positive constants.

57



Proof. For brevity in this presentation the proof of the theorem is omitted. Refer

to [63], which describes a similar result.

Remark 4 From (4.18) and (4.19), it is clear that 0 < ya(t) ≤
∑n

i=1 khi and that as

βi(·) increases, hai(t) decreases, and hence, ya(t) decreases. In addition each βi(·) is

designed such that βi(·) > 0 if the manipulators links are outside the object. From

(4.24), it can be shown that the initial conditions of the manipulator and the bounding

constants can be selected such that ya(t) <
∑n

i=1 khi, hence, it is clear from (4.18)

and (4.19) that βi(t) > 0 ∀t.

The result of Theorem 2 illustrates how the repulsive term ya(t) can be bounded

by an exponentially decreasing function. This implies that when all the manipulators

links are in contact with the object the auxiliary repulsion function ya(t) will approach

a constant value (
∑n

i=1 khi), hence βi(t) ≈ 0. Interestingly, as the slack in the robot

body is removed, the effect of the control term Um(t) is automatically reduced. This

is because as the manipulator links make contact with the object, the number of

redundant degrees of freedom available to accomplish the task space objective reduces.

As a consequence, the self-motion component of the control input becomes almost

zero (i.e., the null space projection ‖(In − J+
n Jn)‖ approaches zero), and hence, (4.25)

is no longer satisfied.

Low Level Control

In the previous section, a high level path planner was presented which enabled the

whole arm grasping objective to be encoded as a desired trajectory signal which can be

fed low level joint controller. This desired joint trajectory signal encodes information

from the two auxiliary controllers, the end-effector positioning controller, and the

body self-motion positioning controller. In this section, a filter is utilized to fuse the

high level path planner with the low level joint tracking controller.
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Fusing the Planner with the Controller

Traditionally for torque based control, the desired trajectory and its higher order

derivatives are required in the control implementation. It is assumed that the desired

trajectory and its higher order derivatives are always bounded for this problem to

be tractable. In this section, a desired trajectory filter which generates bounded

desired joint space trajectories for the joint space tracking controller is provided. The

structure of the desired trajectory generator is motivated by the choice of the joint

space controller [40], which is a continuous, nonlinear integral feedback controller

and requires the desired trajectory to be bounded upto its fourth derivative. This

controller was selected because of its ability to meet the tracking objective in the

presence of system uncertainties (i.e. uncertainty in the robot dynamic model and

unmeasurable contact forces).

To ensure that the desired joint space velocity trajectory is bounded, we could

use the following expression

q̇d (t) , sat (RHS of (4.9)) (4.27)

where RHS denotes the right hand side of the equation, sat(ξ) ∈ Rn is defined as

sat(ξ) = [sat(ξ1), sat(ξ2), · · · , sat(ξn)]T ∀ ξ = [ξ1, ξ2, · · · , ξn]T ∈ Rn where sat(ξi) ∈

R ∀ i = 1, · · · , n is the following saturation function

sat(ξi) =







−ξmin if ξi ≤ −ξmin

ξi if ξi > −ξmin or ξi < ξmax

ξmax if ξi ≥ ξmax

where ξmin, ξmax ∈ R+ are constants. If (4.27) is used to generate the desired trajec-

tory, we cannot prove that qd(t) is bounded, so we could use the following filtering

operation

qd (s) ,
1

(

s
ǫ
+ 1

)sat (RHS of (4.9)) (4.28)

where s ∈ C is the standard Laplace variable, and ǫ ∈ R+ is an integration constant

selected very close to zero. However, in the case of (4.28), we cannot prove that the
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higher order derivatives of qd(t) will remain bounded. So the desired trajectory qd(t)

for the manipulator joint angles are generated by the following expression

qd (s) ,
1

(

s
ǫ
+ 1

) (

s
κ

+ 1
)3sat (RHS of (4.9)) (4.29)

where κ ∈ R+ is an integration constant selected to be very large. From (4.29), it is

clear that qd (t) , q̇d (t) , q̈d (t) ,
...
qd (t) , and

....
q d (t) ∈ L∞.

Low Level Controller

The objective of the closed-loop system is to ensure asymptotic tracking between

the manipulator and the desired trajectory in the sense that

q(t) → qd(t) as t → ∞ (4.30)

where qd(t) ∈ Rn is obtained from (4.29). To quantify the control objective, an error

signal e1(t) ∈ Rn is defined as follows

e1 , qd − q. (4.31)

Furthermore, a tracking error signal e2(t) ∈ R
n is defined as follows

e2 , ė1 + γ1e1 (4.32)

where γ1 ∈ R+ is a control gain.

Since the robot dynamic model is a nonlinear uncertain multi-input multi-output

system, the strategy developed by Xian et al. [40], can be used for the continuous

low level controller. The control objective of (4.30) can be met with the following

controller

τ , (Ks + In)

[

e2(t) − e2(t0) + γ2

∫ t

t0

e2(τ )dτ

]

+

∫ t

t0

[Γsgn(e2(τ ))] dτ (4.33)
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where τ(t) ∈ R
n is the control input defined in (4.3), Ks, Γ ∈ R

n×n are positive diago-

nal control gain matrices, and sgn(·) ∈ Rn denotes the vector signum function defined

as sgn(ξ) = [sgn(ξ1), sgn(ξ2), · · · , sgn(ξn)]T ∀ ξ = [ξ1, ξ2, · · · , ξn]T ∈ Rn. The con-

troller presented in (4.33), provides asymptotic convergence of the joint tracking error,

i.e. ‖e1(t)‖ → 0 as t → ∞. For a detailed analysis of the controller the reader is

referred to [40].

Remark 5 For the experimental results presented in the subsequent section of this

chapter the controller in (4.33) was utilized as the low level joint space controller.

However, it is a simple matter to replace this controller with the neural network

controller designed in the previous chapter, i.e. equation (3.9) could be utilized with

the feedforward neural network component.

Remark 6 The trajectory generator defined in (4.29) generates a filtered version of

(4.9). This filtered signal is used as a desired trajectory for the joint space controller

defined in (4.33). The joint space controller (4.33), forces the actual robot joint angles

to track the filtered desired trajectory of (4.29). However, we cannot show that the

actual robot joint velocities track the kinematic velocity signal defined in (4.9). Thus,

the results of Theorem 1 and Theorem 2 may not be technically valid, however, the

validity of the approach is illustrated through the experimental results presented in the

subsequent section.

Experimental Results

To evaluate the performance of the proposed approach experiments were con-

ducted using a planar, three link configuration of the Barrett whole arm manipulator

(WAM). In this section indicative results are presented to demonstrate the validity

of the whole arm grasping controller.
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Experimental Testbed

The Barrett WAM is a seven degree of freedom (d.o.f.), highly dexterous and back-

drivable robotic manipulator. To simplify the controller implementation, four joints of

the robot were locked at fixed angles and the remaining links of the manipulator were

used as a three d.o.f. planar robot manipulator. Figure 4.1, shows the experimental

setup with a circular object to be grasped.

The control algorithm was written in “C++” and hosted on an AMD Athlon

1.2 GHz PC running the QNX 6.2.1 real-time operating system. Data logging and

on-line gain tuning was performed using Qmotor 3.0 control software [65]. Data

acquisition and control implementation was performed at a frequency of 1.0 [kHz]

using the ServoToGo I/O board. Joint positions were measured using the optical

encoders located at the motor shaft of each axis and joint velocity measurements

were obtained using a filtered backwards difference algorithm. In this demonstration

of the whole arm grasping controller a rigid cylindrical object was selected.

Path Planner and Controller Setup

Refer to Figure 4.2 for an explanation of the notations used in this section. Xc =

[xc, yc]
T ∈ R2 represents the co-ordinates of the center of the object and r0 ∈ R

represents the object radius. We define the task space variable for each of the three

links and the mid-point5 of each of the three links as Xi = [xi, yi]
T ∈ R2 ∀ i = 1, 2, .., 6.

The joint angles for the three links are represented by q = [q1, q2, q3]
T ∈ R3. The

object specific functions defined for each of the three links and the mid-points of the

three links are defined as β1(·), β2(·), · · · , β6(·) ∈ R.

The object specific functions for this planar application were defined as follows

βi (Xi) , (xi − xc)
2 + (yi − yc)

2 − r2
o ∀ i = 1, .., 6. (4.34)

5The object function for the mid-points of each of the manipulator links was used for this three
link application, since it provides more control over the body self-motion positioning control (i.e.
the repulsion functions) than just using the link end-points alone.
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Figure 4.1 Experiment setup showing the Barrett Whole Arm manipulator and
object to the grasped.

r0

¯6

¯5

¯4

¯3

¯2

¯1

X6 = [x6; y6]
T

X5 = [x5; y5]
T

X4 = [x4; y4]
T

X3 = [x3; y3]
T

X2 = [x2; y2]
T

X1 = [x1; y1]
T

Xc = [xc; yc]
T

q3

q1

q2

Figure 4.2 Planar configuration for the three link robot with a circular object.
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The task-space velocity field which provides the desired end effector trajectory for a

planar, circular contour, was defined as follows [76]

Ẋd = ϑ(X6) = −2K(X6)f(X6)

[

(x6 − xc)
(y6 − yc)

]

+2c(X6)

[

−(y6 − yc)
(x6 − xc)

]

(4.35)

where the functions f(X6), K(X6), and c(X6) ∈ R are defined according to [76] as

follows

f(X6) = (x6 − xc)
2 + (y6 − yc)

2 − r2
0

K(X6) =
k∗

0
√

f 2(X6)
∥

∥

∥

∂f(X6)
∂X6

∥

∥

∥
+ ǫ0

(4.36)

c(X6) =
c0 exp

(

−µ0

√

f 2(X6)
)

∥

∥

∥

∂f(X6)
∂X6

∥

∥

∥

.

In (4.36), the constant parameters were selected as ǫ0 = 0.005 [m3], µ0 = 20 [m−1],

k∗

0 = 0.1 [ms−1], and c0 = 0.1 [ms−1]. These constants were selected in such a manner

as to provide smooth motion of the end effector. The constants can be modified to

either increase or decrease the velocity of the desired end effector trajectory. The

desired position for the end-effector was represented as Xd = [xd, yd]
T ∈ R2. The

controller defined in (4.10) was implemented with e = Xd − X6, V (Xd) , 4 ‖Xd‖
2,

and ρ (·) = 1.

The initial joint angles were q1(0) = 98[deg], q2(0) = 45.8[deg], q3(0) = 31[deg],

which corresponds to a position of x6(0) = 0.368 [m] y6(0) = −0.883 [m] for the

end-effector in the task space. The position of the object center in the task space

was xc = 0.307 [m], yc = −0.117 [m], and the radius of the circular object was found

to be 0.12 [m]. To take into account the width of the manipulator arm, the radius

of the object was augmented to r0 = 0.16 [m] in the implementation of the repulsion

function.
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Control Parameter Tuning

The control gains which gave the good performance were found to be as follows

Ke = diag{800, 800}, kn = 1, km = 100,

kh = {0.001, 0.01, 0.01, 0.05, 8.5, 8},

αi = {3, 3, 3, 3, 5, 5}, Ks = diag{16, 9, 6},

Γ = diag{5, 5, 2}, γ1 = diag{1, 1, 1},

γ2 = diag{2, 2, 2}, ǫ = 0.01, κ = 500.

These control gains were determined in the following manner; first the gains for the

path planner were set to some arbitrary values and the gains in the low level controller,

Ks, Γ, γ1, γ2, were adjusted till the joint space tracking error was within a satisfactory

limit. At the same time the gains for the joint trajectory filter were tuned such that

the desired joint trajectory being provided to the low level controller was bounded

and smooth. In the filter, the value for κ must be selected to be very large compared

to the value of ǫ. Once the low level controller was tuned satisfactorily the gains in

the path planner were adjusted. In the path planner, first the end-effector positioning

control gains Ke, kn, were adjusted such that the end-effector tracked the trajectory

being generated from the velocity field. Then the gains in the body self-motion control

were adjusted so that the individual links of the manipulator avoided contact with the

object while the end-effector was moving around the object. Notice that the gains for

the last two elements of kh, which are the repulsion function gains for the third link,

were much higher than the other links as the third link had to travel much further

around the object before the grasp could be completed.

Results and Discussion

Figure 4.3 shows the actual and desired joint angles of the three links and figure

4.4 shows the value of the joint tracking error. From figures 4.3 and 4.4 we see that

the joint tracking error is within 3 − 4 degrees. Figure 4.5 shows the joint control
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torques during the whole arm grasp. Figure 4.6 shows the time evolution of the spatial

position of each of the links and their mid-points during the grasp.

Since the desired trajectory for the end-effector is being generated using the ve-

locity field, it will continuously generate the trajectory even after the manipula-

tor has moved into a optimal grasp configuration. To determine when the desired

trajectory generation must be stopped, the norm of the following vector β(·) =

[β1(·), β2(·), · · · , β6(·)] ∈ R
6 was used to determine when when all the links of the

manipulator make contact with the object. Notice that as the links of the manipu-

lator move closer to the object boundary, ‖β(·)‖ approaches zero, and this gives an

estimate of how close the manipulators links are to the object. For the experiment,

we stopped the trajectory generation by setting Ẋd = 0 when ‖β(·)‖ ≤ η0, where the

constant η0 = 0.01 was determined experimentally.

Remark 7 The value of ‖β(·)‖ at which we stop the generation of the desired tra-

jectory is specific to a particular grasp configuration. It will change if the object is

re-positioned in the task space. However, if we use a highly redundant robot arm which

can wrap its entire body around the object, then ‖β(·)‖ will approach zero when the

arm grasps the object, since the entire body of the arm will be in contact with the

object.
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Figure 4.3 Desired joint angles qd(t) and actual joint angles q(t).
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Figure 4.4 Joint space position tracking error e1(t).
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Figure 4.5 Joint space control torques τ (t).
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Figure 4.6 Spatial position Xi ∀ i = 1, · · · , 6 (each link and mid-point of the link).
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CHAPTER 5

CONCLUSION

In Chapter 2, a task-space, adaptive tracking controller for robot manipulators

with uncertainty in both the kinematic and the dynamic models was developed. The

controller yields asymptotic regulation of the end-effector position and orientation

tracking errors. The advantages of the proposed controller are that singularities

associated with the three parameter representation are avoided, and unlike previous

research the controller does not require the measurement of the task-space velocity.

The experiment carried out on a planar, two link configuration of the Barrett WAM

validates the performance of the adaptive controller.

In Chapter 3, a neural network based joint tracking controller for continuum robot

manipulators was developed. Unlike previous research, the proposed approach does

not require that an accurate dynamic model of the continuum manipulator be known.

The feedforward neural network estimation scheme was used to compensate for the

uncertain nonlinear dynamics of the continuum manipulator. Experimental results

for the OCTARM continuum robot manipulator were presented to demonstrate the

significant performance improvement provided by the neural network feedforward

estimation technique. The developed approach is not dependent on any specific ma-

nipulator model and hence it can be easily adapted to a wide range of continuum

manipulator designs.

Finally in Chapter 4, a whole arm grasping controller for kinematically redun-

dant robot manipulators was presented. A high level path planner which enables

end-effector position tracking as well as body self-motion positioning control to be

encoded as the desired joint trajectory was developed. Then, the joint tracking con-

troller developed in Chapter 3, which enables the robot to track a desired trajectory

in the presence of system uncertainties and unmeasurable contact forces was utilized.

The controller provides asymptotic tracking which enables the whole arm grasping

objective to be completed. Experimental results for a planar, three link configura-
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tion of the Barrett WAM are provided to demonstrate the efficacy of the whole arm

grasping controller.
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