559 research outputs found

    Simulating the Impact of Traffic Calming Strategies

    Get PDF
    This study assessed the impact of traffic calming measures to the speed, travel times and capacity of residential roadways. The study focused on two types of speed tables, speed humps and a raised crosswalk. A moving test vehicle equipped with GPS receivers that allowed calculation of speeds and determination of speed profiles at 1s intervals were used. Multi-regime model was used to provide the best fit using steady state equations; hence the corresponding speed-flow relationships were established for different calming scenarios. It was found that capacities of residential roadway segments due to presence of calming features ranged from 640 to 730 vph. However, the capacity varied with the spacing of the calming features in which spacing speed tables at 1050 ft apart caused a 23% reduction in capacity while 350-ft spacing reduced capacity by 32%. Analysis showed a linear decrease of capacity of approximately 20 vphpl, 37 vphpl and 34 vphpl when 17 ft wide speed tables were spaced at 350 ft, 700 ft, and 1050 ft apart respectively. For speed hump calming features, spacing humps at 350 ft reduced capacity by about 33% while a 700 ft spacing reduced capacity by 30%. The study concludes that speed tables are slightly better than speed humps in terms of preserving the roadway capacity. Also, traffic calming measures significantly reduce the speeds of vehicles, and it is best to keep spacing of 630 ft or less to achieve desirable crossing speeds of less or equal to 15 mph especially in a street with schools nearby. A microscopic simulation model was developed to replicate the driving behavior of traffic on urban road diets roads to analyze the influence of bus stops on traffic flow and safety. The impacts of safety were assessed using surrogate measures of safety (SSAM). The study found that presence of a bus stops for 10, 20 and 30 s dwell times have almost 9.5%, 12%, and 20% effect on traffic speed reductions when 300 veh/hr flow is considered. A comparison of reduction in speed of traffic on an 11 ft wide road lane of a road diet due to curbside stops and bus bays for a mean of 30s with a standard deviation of 5s dwell time case was conducted. Results showed that a bus stop bay with the stated bus dwell time causes an approximate 8% speed reduction to traffic at a flow level of about 1400 vph. Analysis of the trajectories from bust stop locations showed that at 0, 25, 50, 75, 100, 125, 150, and 175 feet from the intersection the number of conflicts is affected by the presence and location of a curbside stop on a segment with a road diet

    Hardware-in-the-Loop Simulation to Evaluate the Performance and Constraints of the Red-light Violation Warning Application on Arterial Roads

    Get PDF
    Understanding the safety and mobility impacts of Connected Vehicle (CV) applications is critical for ensuring effective implementations of these applications. This dissertation provides an assessment of the safety and mobility impacts of the Red-Light Violation Warning (RLVW), a CV-based application at signalized intersections, under pre-timed signal control and semi-actuated signal control utilizing Emulator-in-the-loop (EILS), Software-in-the-loop (SILS), and Hardware-in-the-loop simulation (HILS) environments. Modern actuated traffic signal controllers contain several features with which controllers can provide varying green intervals for actuated phases, skip phases, and terminate phases depending on the traffic demand fluctuation from cycle to cycle. With actuated traffic signal operations, there is uncertainty in the end-of-green information provided to the vehicles using CV messages. The RLVW application lacks accurate input information about when exactly a phase is going to be terminated since this termination occurs when a gap of a particular length is encountered at the detector. This study compares the results obtained with the use of these three aforementioned simulation platforms and how the use of the platforms impacts the assessed performance of the modeled CV application. In addition, the study investigates using HILS and a method to provide an Assured Green Period (AGP) which is a definitive time when the green interval will end to mitigate the uncertainties associated with the green termination and to improve the performance of the CV application. The study results showed that in the case of pre-timed signal control, there are small differences in the assessed performance when using the three simulated platforms. However, in the case of the actuated control, the utilization of EILS showed significantly different results compared to the utilization of the SILS and the HILS platforms. The use of the SILS and the HILS platforms produced similar results. The differences can be attributed to the variations in the time lag between vehicle detection and the use of this information between the EILS and the other two platforms. In addition, the results showed that the reduction in red-light running due to RLVW was significantly higher with pre-timed control compared to the reduction with semi-actuated control. The reason is the uncertainty in the end-of-green intervals provided in the messages communicated to the vehicles, as stated above. In the case of semi-actuated control, the results showed that the safety benefits of the RLVW without the use of AGP were limited. On the other hand, the study results showed that by introducing the AGP, the RLVW can reduce the number of red-light running events at signalized intersections by approximately 92% with RLVW utilization of 100%. However, the results show that the application of the AGP, as applied and assessed in this dissertation, can have increased stopped delay and approach delay under congested traffic conditions. This issue will need to be further investigated to determine the optimal setting of the AGP considering both mobility and safety impacts

    Estimating Uncertainty of Bus Arrival Times and Passenger Occupancies

    Get PDF
    Travel time reliability and the availability of seating and boarding space are important indicators of bus service quality and strongly influence users’ satisfaction and attitudes towards bus transit systems. With Automated Vehicle Location (AVL) and Automated Passenger Counter (APC) units becoming common on buses, some agencies have begun to provide real-time bus location and passenger occupancy information as a means to improve perceived transit reliability. Travel time prediction models have also been established based on AVL and APC data. However, existing travel time prediction models fail to provide an indication of the uncertainty associated with these estimates. This can cause a false sense of precision, which can lead to experiences associated with unreliable service. Furthermore, no existing models are available to predict individual bus occupancies at downstream stops to help travelers understand if there will be space available to board. The purpose of this project was to develop modeling frameworks to predict travel times (and associated uncertainties) as well as individual bus passenger occupancies. For travel times, accelerated failure-time survival models were used to predict the entire distribution of travel times expected. The survival models were found to be just as accurate as models developed using traditional linear regression techniques. However, the survival models were found to have smaller variances associated with predictions. For passenger occupancies, linear and count regression models were compared. The linear regression models were found to outperform count regression models, perhaps due to the additive nature of the passenger boarding process. Various modeling frameworks were tested and the best frameworks were identified for predictions at near stops (within five stops downstream) and far stops (further than eight stops). Overall, these results can be integrated into existing real-time transit information systems to improve the quality of information provided to passengers

    Increasing Capacity of Intersections with Transit Priority

    Get PDF
    Dedicated bus lane (DBL) and transit signal priority (TSP) are two effective and low cost ways in improving the reliability of transits. On the contrary, these strategies reduce the capacity of general traffic. This paper presents an integrated optimization (IO) model to improve the performance of intersections with dedicated bus lanes. The IO model integrated geometry layout, main-signal timing, pre-signal timing and transit priority. The optimization problem is formulated as a Mix-Integer-Non-Linear-Program (MINLP) that can be transformed into a Mix-Integer-Linear-Program (MILP) and then solved by the standard branch-and-bound technique. The applicability of the IO model is tested through numerical experiment under different intersection layouts and traffic demands. A VISSIM microsimulation model was developed and used to evaluate the performance of the proposed IO model. The test results indicate that the proposed model can increase capacity and reduce delay of general traffic when providing priority to buses

    Methods for Utilizing Connected Vehicle Data in Support of Traffic Bottleneck Management

    Get PDF
    The decision to select the best Intelligent Transportation System (ITS) technologies from available options has always been a challenging task. The availability of connected vehicle/automated vehicle (CV/AV) technologies in the near future is expected to add to the complexity of the ITS investment decision-making process. The goal of this research is to develop a multi-criteria decision-making analysis (MCDA) framework to support traffic agencies’ decision-making process with consideration of CV/AV technologies. The decision to select between technology alternatives is based on identified performance measures and criteria, and constraints associated with each technology. Methods inspired by the literature were developed for incident/bottleneck detection and back-of-queue (BOQ) estimation and warning based on connected vehicle (CV) technologies. The mobility benefits of incident/bottleneck detection with different technologies were assessed using microscopic simulation. The performance of technology alternatives was assessed using simulated CV and traffic detector data in a microscopic simulation environment to be used in the proposed MCDA method for the purpose of alternative selection. In addition to assessing performance measures, there are a number of constraints and risks that need to be assessed in the alternative selection process. Traditional alternative analyses based on deterministic return on investment analysis are unable to capture the risks and uncertainties associated with the investment problem. This research utilizes a combination of a stochastic return on investment and a multi-criteria decision analysis method referred to as the Analytical Hierarchy Process (AHP) to select between ITS deployment alternatives considering emerging technologies. The approach is applied to an ITS investment case study to support freeway bottleneck management. The results of this dissertation indicate that utilizing CV data for freeway segments is significantly more cost-effective than using point detectors in detecting incidents and providing travel time estimates one year after CV technology becomes mandatory for all new vehicles and for corridors with moderate to heavy traffic. However, for corridors with light, there is a probability of CV deployment not being effective in the first few years due to low measurement reliability of travel times and high latency of incident detection, associated with smaller sample sizes of the collected data

    Performance Evaluation of Connected Vehicle (CV) and Transportation Systems Management and Operations (TSM&O) Projects in Florida

    Get PDF
    BDV29-977-64Connected vehicle (CV) technologies and Transportation Systems Management and Operations (TSM&O) strategies are increasingly being considered by transportation agencies to improve the safety and mobility of the transportation network. To fully understand the potential benefits of CV and TSM&O initiatives, it is crucial to not only identify the performance measures used to evaluate the progress of each initiative, but also to estimate the benefit-to-cost (B/C) ratios to justify the funding requests associated with implementing these technologies and strategies. The primary goal of this research was to assist the Florida Department of Transportation (FDOT) in developing approaches to evaluate the performance of CV projects and current TSM&O strategies being deployed, including the Rapid Incident Scene Clearance (RISC) program, the Road Ranger Service Patrol (RRSP) program, and the Smart Work Zone (SWZ) TSM&O strategies. A comprehensive review of the existing body of literature was conducted to identify the quantitative and qualitative performance measures and metrics that are being considered in evaluating the performance of CV deployments and TSM&O strategies. B/C analyses were conducted to quantify the mobility and safety benefits associated with implementing the RISC and RRSP programs. Results indicate that for every dollar spent on the RISC program, 5.78isreturnedinsecondarycrashsavings,and5.78 is returned in secondary crash savings, and 1.20 is returned in incident-related traffic delay savings. For every dollar spent on the RRSP program, 5.15isreturnedinsecondarycrashsavings,and5.15 is returned in secondary crash savings, and 7.44 is returned in incident-related traffic delay savings. The study also discussed the potential safety and mobility benefits of Smart Work Zone (SWZ) technologies. Performance criteria and evaluation metrics were also developed for the different stages of the CV project development process (i.e., pre-project phase, planning phase, design-deploy-test phase, and the operations & maintenance phase). The performance criteria of two CV deployments in Florida (Gainesville Signal Phase and Timing (SPaT) Project and I-4 Florida\u2019s Regional Advanced Mobility Elements (I-4 FRAME) Project) were also reviewed. Findings from this research offer guidance in evaluating the effectiveness of CV and TSM&O initiatives. Evaluation criteria and approaches presented in this report can better prepare FDOT for deployments

    Strategic and Tactical Guidance for the Connected and Autonomous Vehicle Future

    Get PDF
    Autonomous vehicle (AV) and Connected vehicle (CV) technologies are rapidly maturing and the timeline for their wider deployment is currently uncertain. These technologies are expected to have a number of significant societal benefits: traffic safety, improved mobility, improved road efficiency, reduced cost of congestion, reduced energy use, and reduced fuel emissions. State and local transportation agencies need to understand what this means for them and what they need to do now and in the next few years to prepare for the AV/CV future. In this context, the objectives of this research are as follows: Synthesize the existing state of practice and how other state agencies are addressing the pending transition to AV/CV environment Estimate the impacts of AV/CV environment within the context of (a) traffic operations—impact of headway distribution and traffic signal coordination; (b) traffic control devices; (c) roadway safety in terms of intersection crashes Provide a strategic roadmap for INDOT in preparing for and responding to potential issues This research is divided into two parts. The first part is a synthesis study of existing state of practice in the AV/CV context by conducting an extensive literature review and interviews with other transportation agencies. Based on this, we develop a roadmap for INDOT and similar agencies clearly delineating how they should invest in AV/CV technologies in the short, medium, and long term. The second part assesses the impacts of AV/CVs on mobility and safety via modeling in microsimulation software Vissim

    Calibrating and Evaluating Dynamic Rule-Based Transit-Signal-Priority Control Systems in Urban Traffic Networks

    Get PDF
    Setting the traffic controller parameters to perform effectively in real-time is a challenging task, and it entails setting several parameters to best suit some predicted traffic conditions. This study presents the framework and method that entail the application of the Response Surface Methodology (RSM) to calibrate the parameters of any control system incorporating advanced traffic management strategies (e.g., the complex integrated traffic control system developed by Ahmed and Hawas). The integrated system is a rule-based heuristic controller that reacts to specific triggering conditions, such as identification of priority transit vehicle, downstream signal congestion, and incidents by penalizing the predefined objective function with a set of parameters corresponding to these conditions. The integrated system provides real time control of actuated signalized intersections with different phase arrangements (split, protected and dual). The premise of the RSM is its ability to handle either single or multiple objective functions; some of which may be contradicting to each other. For instance, maximizing transit trips in a typical transit priority system may affect the overall network travel time. The challenging task is to satisfy the requirements of transit and non-transit vehicles simultaneously. The RSM calibrates the parameters of the integrated system by selecting the values that can produce optimal measures of effectiveness. The control system was calibrated using extensive simulation-based analyses under high and very high traffic demand scenario for the split, protected, and dual control types. A simulation-based approach that entailed the use of the popular TSIS software with code scripts representing the logic of the integrated control system was used. The simulation environment was utilized to generate the data needed to carry on the RSM analysis and calibrate the models. The RSM was used to identify the optimal parameter settings for each control type and traffic demand level. It was also used to determine the most influential parameters on the objective function(s) and to develop models of the significant parameters as well as their interactions on the overall network performance measures. RSM uses the so-called composite desirability value as well as the simultaneous multi-objective desirabilities (e.g., the desirability of maximizing the transit vehicles throughput and minimizing the average vehicular travel time) estimates of the responses to identify the best parameters. This study also demonstrated how to develop “mathematical” models for rough estimation of the performance measures vis-à-vis the various parameter values, including how to validate the optimal settings. The calibrated models are proven to be significant. The optimal parameters of each control type and demand level were also checked for robustness, and whether a universal set of relative parameter values can be used for each control type. For the high traffic demand level, the optimal set of parameters is more robust than those of the very high traffic demand. Besides, the dual actuated controller optimal setting under the very high traffic demand scenario is more robust (than other control types settings) and shows the best performance

    Quantifying the Mobility and Safety Benefits of Transit Signal Priority

    Get PDF
    The continuous growth of automobile traffic on urban and suburban arterials in recent years has created a substantial problem for transit, especially when it operates in mixed traffic conditions. As a result, there has been a growing interest in deploying Transit Signal Priority (TSP) to improve the operational performance of arterial corridors. TSP is an operational strategy that facilitates the movement of transit vehicles (e.g., buses) through signalized intersections that helps transit service be more reliable, faster, and more cost-effective. The goal of this research was to quantify the mobility and safety benefits of TSP. A microscopic simulation approach was used to estimate the mobility benefits of TSP. Microscopic simulation models were developed in VISSIM and calibrated to represent field conditions. Implementing TSP provided significant savings in travel time and average vehicle delay. Under the TSP scenario, the study corridor also experienced significant reduction in travel time and average vehicle delay for buses and all other vehicles. The importance and benefits of calibration of VISSIM model with TSP integration were also studied as a part of the mobility benefits. Besides quantifying the mobility benefits, the potential safety benefits of the TSP strategy were also quantified. An observational before-after full Bayes (FB) approach with a comparison-group was adopted to estimate the crash modification factors (CMFs) for total crashes, fatal/injury (FI) crashes, property damage only (PDO) crashes, rear-end crashes, sideswipe crashes, and angle crashes. The analysis was based on 12 corridors equipped with the TSP system and their corresponding 29 comparison corridors without the TSP system. Overall, the results indicated that the deployment of TSP improved safety. Specifically, TSP was found to reduce total crashes by 7.2% (CMF = 0.928), FI crashes by 14% (CMF = 0.860), PDO crashes by 8% (CMF = 0.920), rear-end crashes by 5.2% (CMF = 0.948), and angle crashes by 21.9% (CMF = 0.781). Alternatively, sideswipe crashes increased by 6% (CMF = 1.060), although the increase was not significant at a 95% Bayesian credible interval (BCI). These results may present key considerations for transportation agencies and practitioners when planning future TSP deployments
    corecore