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ABSTRACT OF THE DISSERTATION 

METHODS FOR UTILIZING CONNECTED VEHICLE DATA IN SUPPORT OF 

TRAFFIC BOTTLENECK MANAGEMENT 

by 

Samaneh Khazraeian 

Florida International University, 2017 

Miami, Florida 

Professor Mohammed Hadi, Major Professor 

The decision to select the best Intelligent Transportation System (ITS) 

technologies from available options has always been a challenging task. The availability 

of connected vehicle/automated vehicle (CV/AV) technologies in the near future is 

expected to add to the complexity of the ITS investment decision-making process. The 

goal of this research is to develop a multi-criteria decision-making analysis (MCDA) 

framework to support traffic agencies’ decision-making process with consideration of 

CV/AV technologies. The decision to select between technology alternatives is based on 

identified performance measures and criteria, and constraints associated with each 

technology.  

Methods inspired by the literature were developed for incident/bottleneck 

detection and back-of-queue (BOQ) estimation and warning based on connected vehicle 

(CV) technologies. The mobility benefits of incident/bottleneck detection with different 

technologies were assessed using microscopic simulation. The performance of 

technology alternatives was assessed using simulated CV and traffic detector data in a 
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microscopic simulation environment to be used in the proposed MCDA method for the 

purpose of alternative selection. 

In addition to assessing performance measures, there are a number of constraints 

and risks that need to be assessed in the alternative selection process. Traditional 

alternative analyses based on deterministic return on investment analysis are unable to 

capture the risks and uncertainties associated with the investment problem. This research 

utilizes a combination of a stochastic return on investment and a multi-criteria decision 

analysis method referred to as the Analytical Hierarchy Process (AHP) to select between 

ITS deployment alternatives considering emerging technologies. The approach is applied 

to an ITS investment case study to support freeway bottleneck management.  

The results of this dissertation indicate that utilizing CV data for freeway 

segments is significantly more cost-effective than using point detectors in detecting 

incidents and providing travel time estimates one year after CV technology becomes 

mandatory for all new vehicles and for corridors with moderate to heavy traffic. 

However, for corridors with light, there is a probability of CV deployment not being 

effective in the first few years due to low measurement reliability of travel times and high 

latency of incident detection, associated with smaller sample sizes of the collected data. 
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CHAPTER I 

INTRODUCTION 

 BACKGROUND 1.1

Traffic Management Centers (TMCs) are increasingly investing in advanced 

strategies and associated technologies with consideration of the costs and benefits of 

these implementations. These centers are the hubs for operating and managing traffic and 

incidents and disseminating information to travelers. The central software, utilized at 

these centers, enables TMC functionalities, and supports the management and operation 

of equipment, data source integration, and incident detection and response automation. 

An important function of these centers is the management of recurrent and non-recurrent 

bottlenecks. The detection of these bottleneck occurrences and their attributes, including 

the extent and duration, is an important component of future TMC operations. 

Data quality and quantity to support real-time traffic operations and off-line 

transportation planning, including bottleneck identification, are expected to be 

significantly affected and improved by emerging connected vehicle technologies. Thus, 

transportation agencies need to start preparing for the next generation of advanced traffic 

management strategies that utilize connected vehicle (CV) data. As part of this 

preparation, the TMC central software needs to be enhanced to be able to capture and 

process the CV data to detect and determine the bottleneck characteristics.  

Decisions to invest in alternative ITS technologies to support transportation 

system management and operations (TSMO) are expected to increase in complexity, 

particularly with the introduction of connected vehicles (CV) and automated vehicles 

(AV) in the coming years. A survey done as a part of the United States Department of 
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Transportation (USDOT) ITS Deployment Tracking Project (Wright et al. 2014) 

identified safety and mobility benefits, integration with existing technologies, availability 

of funding, and equipment price as the major factors in the decision-making process for 

investing in ITS technologies (Gordon et al. 2014). The National CV Field Infrastructure 

Footprint Analysis document produced by the American Association of State Highway 

and Transportation Officials (AASHTO) (Wright et al. 2014) pointed out that public 

agencies will need to assess the use of connected vehicle probe data versus existing 

methods of data collection when making investment decisions.  

 MOTIVATION OF THE RESEARCH 1.2

Investing in ITS strategies is becoming a challenge for transportation agencies 

with the introduction of connected and automated vehicle (CV/AV) technologies. 

Methods are needed to assess the impact of CV/AV on the TMC functionalities such as 

bottleneck management.  

Currently, the available sources of data for TMCs to determine the state of 

managed systems, including bottleneck occurrence and characteristics, are: traffic 

sensors, cameras, automatic vehicle re-identification technologies (such as Bluetooth and 

Wi-Fi readers), and data collected from third-party feeds from HERE, INRIX, and 

WAZE. Connected vehicle data is a potential alternative for collecting and disseminating 

data. The collected traffic data provides the required inputs to different ATDM strategies 

such as incident management and queue warning. However, new algorithms need to be 

developed to utilize connected vehicle data to support bottleneck detection and 

characteristics determination as part of the next generation of active traffic and demand 

management (ATDM). The performance of existing and emerging technologies in 



  

                                      3 

 

bottleneck identification can be assessed with the use of new algorithms and used as a 

basis for the alternative selection process.  

The decision to select among various technology alternatives, as proposed in this 

dissertation, is based on the functions, performance metrics and criteria, and constraints 

and risks associated with each technology.  The decision reached based on these decision 

elements could be different for different agencies, based on agency objectives and local 

needs and conditions. Therefore, there is a need to develop a multi-criteria decision-

making framework that support agencies in their decisions to invest in ITS technologies, 

with consideration of different criteria, as well as the uncertainties involved in the 

decision-making process.   

 GOALS AND OBJECTIVES 1.3

This dissertation aims to develop methods to assess the use of connected vehicle 

data, combined with developed algorithms for use as part of a framework to support 

agencies in the ITS investment decisions related to traffic bottleneck management. The 

specific objectives of this dissertation are: 

Objective 1: Explore the potential use of connected vehicle data as a source of 

traffic bottleneck and back-of-queue identification. 

Objective 2: Develop a framework that utilizes the results of the abovementioned 

assessment in the decision-making process and support traffic agencies in ITS investment 

decisions related to traffic bottleneck management. 
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 DISSERTATION ORGANIZATION 1.4

The remainder of this dissertation includes four chapters and is organized as 

following. Chapter II presents a review of past studies related to the objectives of this 

research. First, a summary of available real-world CV data and CV applications is 

presented. Second, a review is presented on two CV applications that help TMCs manage 

freeway bottlenecks: incident/bottleneck occurrence detection and queue warning. 

Chapter II also presents a review of multi-criteria decision analysis (MCDA) methods 

widely used in the transportation field. Chapter III examines the methodology and 

elaborates on the algorithms developed as a part of this dissertation. Developed methods 

inspired by the literature are presented for incident/bottleneck detection and queue 

estimation and warning based on connected vehicle data. The performance of the use of 

CV and traffic detector data to support bottleneck management is assessed for use as a 

part of the proposed MCDA process. A novel MCDA framework (a combination of 

return on investment and AHP method) is proposed as a part of this dissertation and 

applied to an ITS investment case study to support the investment decision-making 

process. The Chapter IV discusses the analysis results of the developed methodology. 

Chapter V expands on the results presented in Chapter IV and summarizes the findings of 

this research.  
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CHAPTER II 

2                                            LITERATURE REVIEW 

 INTRODUCTION 2.1

This chapter includes three main parts that present reviews of past studies on CV 

data and its applications, as well as MCDA methods. The first part, CV data and 

applications, includes the review of studies on bottleneck/incident detection and queue 

warning and estimation algorithms, as well as a summary of available real-world CV 

data. The second part discusses some of the main MCDA methods used in the 

transportation field.  

 CONNECTED VEHICLE DATA AND APPLICATIONS 2.2

This section provides an introduction to the connected vehicle data elements, the 

communication technologies associated with connected vehicles, available real-world 

connected vehicle data, and connected vehicle applications.   

2.2.1 Connected Vehicle Data Elements 

The Society of Automotive Engineers (SAE) J2735 (2009) specifies the 

connected vehicle message types and components. One of the messages specified in the 

SAE J2735 standard is the basic safety message (BSM), which contains safety-related 

information and has two parts: BSM Parts I and II. BSM Part I is broadcasted each 10th 

of a second and contains core data elements, including vehicle position, heading, speed, 

acceleration, steering wheel angle, and vehicle size.  BSM Part II contains optional data 

elements such as precipitation, air temperature, wiper status, light status, road coefficient 

of friction, Antilock Brake System (ABS) activation, Traction Control System (TCS) 
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activation, and vehicle type. However, not all of these data will be available and 

mandated by the USDOT. There other types of CV messages specified in the J2735 

standards in addition to BSM, as shown in Table 2-1.  The data sets used in this study are 

BSM, Parts I and II.  

Table 2-1 SAE J2735 Messages and Communication Modes (AASHTO 2013) 

Messages V2V V2I I2V 

Basic Safety Message Part 1    

Basic Safety Message Part 2    

Emergency Vehicle Alert    

Common Safety Request    

Probe Data Messages    

Signal Request Message    

Roadside Alert    

Traveler Information    

MAP Data    

2.2.2 DSRC versus Cellular-Based Technologies 

The messages discussed above are transmitted either via dedicated short range 

communication (DSRC) or non-DSRC technologies (e.g., cellular, Wi-Fi), or the 

combination of the two. According to the AASHTO CV Infrastructure Footprint Analysis 

(Wright et al. 2014), around 80% (250,000) of the nation’s traffic signal locations and 

25,000 other roadside locations will be V2I enabled by the year 2040. Based on the 

aforementioned study, 50% of the existing ITS sites on freeways, such as vehicle 

detection stations, DMS, CCTV, and environmental sensor stations will be equipped with 

DSRC by that time. Many mobility applications do not require the information frequency 

of 1/10 seconds. The information needs to be repeatedly sent to the infrastructure at a 

lower, updated rate. 
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2.2.3 Real-World Connected Vehicle Data Currently Available in the USDOT 

Research Data Environment (RDE) 

One of the options in performing the tasks of this project is to use real-world data 

collected in previous CV demonstrations. Such data are available from the Research Data 

Exchange (RDE). RDE is a transportation data sharing system that provides data from 

different sources to support ITS researchers and developers. The data currently available 

in the RDE are summarized in Table 2-2.  

Table 2-2 A Brief Description of Data Sets in RDE 

Data Set 

Name 
Location Time Period Sample Size Purpose 

Safety Pilot 

Model 

Deployment 

Data 

Ann Arbor, 

MI 

10/1/2012 – 

4/30/2013 

(The data in 

October 2012 and 

April 2013 are 

provided in RDE) 

Over 2,700 

vehicles 

-Explores the real-world 

effectiveness of connected 

vehicle safety applications in 

multi-modal driving conditions 

-Evaluates how drivers adapt to 

the use of connected vehicle 

technology 

-Identifies potential safety 

benefits as a result of connected 

vehicle technology. 

ITS World 

Congress 

Connected 

Vehicle 

The City of 

Detroit 

9/8/2014 – 

9/10/2014 
9 vehicles 

-Supports a queue estimation 

algorithm 

-Demonstrates a real-world 

implementation of a connected 

vehicle environment 

-Showcases the operation of the 

associated Data Warehouse and 

Data Clearinghouse with an 

intention to support connected 

vehicle research. 

Road Weather 

Demonstration 

A short 

loop on 

Belle Isle, 

Detroit, MI 

9/5/2014-

9/11/2014 
 

-For the public demonstration in 

September 2014. 

-Showcases the ability of 

instrumented vehicles to collect 

vehicle sensor data under the 

simulated road weather 

conditions and trig advisories or 

warnings to travelers. 

FDOT Orlando 

ITS World 

Congress 

Orlando FL 
9/1/2010-

10/22/2010 

A set of Lynx 

transit buses 

-Tests the capability of Vehicle 

Awareness Devices (VADs) to 

capture and store data in the 

format of the J2735 Basic Safety 

Message (BSM) on a large scale. 

NCAR 2010 
Michigan 

Test Bed 

1/28/2010 – 

3/29/2010  

(Only the best 

A small set of 

vehicles 

-Focuses on comparing 

atmospheric data from vehicle-

mounted sensors to data from a 
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Data Set 

Name 
Location Time Period Sample Size Purpose 

road side unit 

(RSE) and on-

board equipment 

(OBE) data in six 

days are included 

in this dataset.) 

nearby fixed weather observing 

station. 

NCAR 2009 
Michigan 

Test Bed 

4/6/2009 – 

4/22/2009  

(Nine-day RSE 

data in April 

2009 and six-day 

good RSE and 

OBE data are 

available in the 

data set.) 

A small set of 

vehicles 

-Concentrates on collecting data 

during periods of rainy or snowy 

weather. 

San Diego 
I-5 in San 

Diego 

1/1/2010 – 

12/31/2010 
10,000 trips 

-Provides multi-modal data and 

contextual information (weather 

and incidents) that can be used 

to research and develop 

applications for the USDOT 

Dynamic Mobility Applications 

(DMA) program. 

-One of the four test data sets 

acquired by the USDOT Data 

Capture and Management 

program. 

Pasadena 

Diverse 

roadway 

network in 

and around 

the City of 

Pasadena, 

California 

9/1/2011 – 

10/31/2011 
 

-Provide multi-modal data and 

contextual information (weather 

and incidents) that can be used 

to research and develop 

applications for the USDOT 

Dynamic Mobility Applications 

(DMA) program. 

-One of the four test data sets 

acquired by the USDOT Data 

Capture and Management 

program. 

Portland 

Portland 

(including 

freeways 

and 

arterials) 

9/15/2011 – 

11/15/2011 
 

-Provide multi-modal data and 

contextual information (weather 

and incidents) that can be used 

to research and develop 

applications for the USDOT 

Dynamic Mobility Applications 

(DMA) program. 

-One of the four test data sets 

acquired by the USDOT Data 

Capture and Management 

program. 

Seattle Seattle 
5/1/2011 – 

10/31/2011 
 

-Provide multi-modal data and 

contextual information (weather 

and incidents) that can be used 

to research and develop 

applications for the USDOT 
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Data Set 

Name 
Location Time Period Sample Size Purpose 

Dynamic Mobility Applications 

(DMA) program. 

-One of the four test data sets 

acquired by the USDOT Data 

Capture and Management 

program. 

Safety Pilot 

Model 

Deployment – 

One Day 

Sample 

Ann Arbor, 

MI  
4/11/2013 

Over 2,700 

vehicles 

-Serve as the preview of the 

larger Safety Pilot Model 

Deployment data. 

-Intend to help prepare 

researchers and application 

developers to understand these 

data to assist their research and 

development activities.  

Vehicle 

Infrastructure 

Initiative Proof 

of Concept 

Michigan 

Test Bed 

8/21/2008 – 

8/29/2008 (RSE 

data for the 

public application 

tests were 

available for 

eight days in 

August 2008. The 

data in this data 

set consists of 

RSE and OBE 

data for the 

middle six of 

these days.) 

52 RSEs 

within 45 

square miles 

and 27 

vehicles 

configured 

with OBEs  

-Proof of Concept (POC) trials. 

-Three major phases were 

included in this testing program: 

subsystem test, system 

integration and test, and public 

and private applications test. 

Leesburg VA 

Vehicle 

Awareness 

Device 

Trips in 

and around 

Leesburg, 

VA and 

one long 

road trip 

from Ann 

Arbor, MI 

to 

Leesburg, 

VA by way 

of eastern 

Indiana. 

10/18/2012 – 

12/19/2012 

One test 

vehicle 

-The data set was produced to 

give researchers an early sample 

of the large data set being 

collected as part of the Safety 

Pilot Model Deployment 

(SPMD).   

Minnesota 

DOT Mobile 

Observation 

data 

Minnesota 
6/26/2013 – 

12/21/2015 

310 

instrumented 

snowplows 

and 19 

instrumented 

light duty 

trucks as of 

May 2013. 

-Provides sample weather and 

vehicle engine status data 

transmitted in near-real time 

from vehicles to MnDOT over 

cellular media. (Vehicle-to-

Infrastructure) 
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As shown in Table 2-2, 10 out of the 14 datasets are connected vehicle-related 

data.   The Safety Pilot Model Deployment is one of the largest real-world applications of 

connected vehicles. The Safety Pilot Model was deployed in Ann Arbor, Michigan 

between October 1, 2012 and April 30, 2013 (Hamilton 2015). Approximately 3,000 

vehicles participated in this deployment, including passenger cars, commercial trucks, 

and buses.  Four types of devices were installed in these vehicles, including Integrated 

Safety Device (ISD), Aftermarket Safety Device (ASD), Retrofit Safety Device (RSD), 

and Vehicle Awareness Device (VAD). Twenty-six roadside units (RSUs) were installed 

at signalized intersections and strategic freeway locations. 

The dataset of the Safety Pilot Model consists of eight components, including two 

driving datasets (DAS1 and DAS2), basic safety message (BSM), RSE, and three types of 

contextual data (weather, network, and schedule). DAS1 is the data collected by the Data 

Acquisition System developed by the University of Michigan Transportation Research 

Institute (UMTRI), while DAS2 represents the data collected by the system developed by 

the Virginia Tech Transportation Institute (VTI). BSM is the basic safety message 

transmitted to and from an equipped vehicle.  RSE is the data received and transmitted by 

roadside equipment. The contextual data of weather, network configuration and 

performance, and transit and special event schedule show the conditions that the data 

were collected.   

2.2.4 Connected Vehicle Applications 

The connected vehicle program of the United States Department of Transportation 

(USDOT) has defined a set of applications for connected vehicles, as discussed in this 

section. The Connected Vehicle Reference Implementation Architecture (CVRIA) is a 
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connected vehicle architecture developed by the ITS joint program office of the USDOT 

and is composed of four viewpoints: Physical, Functional, Communication and 

Enterprise. These viewpoints are modeled in the forms of diagrams, tables, and 

associated databases (ITERIS 2016). Four types of connected vehicle applications are 

defined in the CVRIA: Environmental, Mobility, Safety, and Support. There are several 

applications under each type, as shown in Table 2-3. Table 2-3 displays the applicability 

of each application to TMC functions.  

Table 2-3 Connected Vehicle Applications (ITERIS 2016) 

Type Group Application Name 

Potential 

Application to 

TMC 

Environmental 

AERIS/Sustainable 

Travel 

Eco-Multimodal Real-Time Traveler 

Information 

 

Eco-Ramp Metering  

Eco-Smart Parking  

Eco-Speed Harmonization  

Eco-Traffic Signal Timing  

Eco-Transit Signal Priority  

Electric Charging Stations Management  

Low Emissions Zone Management  

Road Weather 

Road Weather Information and Routing 

Support for Emergency Responders 

 

Road Weather Information for Freight 

Carriers 

 

Road Weather Information for 

Maintenance and Fleet Management 

Systems 

 

Road Weather Motorist Alert and 

Warning 

 

Variable Speed Limits for Weather-

Responsive Traffic Management 

 

Mobility 

Public Safety 

Advanced Automatic Crash Notification 

Relay 

 

Emergency Communications and 

Evacuation 

 

Incident Scene Pre-Arrival Staging 

Guidance for Emergency Responders 

 

Incident Scene Work Zone Alerts for 

Drivers and Workers 

 

Traffic Network Cooperative Adaptive Cruise Control  
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Type Group Application Name 

Potential 

Application to 

TMC 

Queue Warning  

Speed Harmonization  

Vehicle Data for Traffic Operations  

Traffic signals 

Emergency Vehicle Preemption  

Freight Signal Priority  

Intelligent Traffic Signal System  

Pedestrian Mobility  

Transit Signal Priority  

Traveler Information 
Advanced Traveler Information Systems  

Traveler Information- Smart Parking  

Safety 

Transit Safety 

Transit Pedestrian Indication  

Transit Vehicle at Station/Stop Warnings  

Vehicle Turning Right in Front of a 

Transit Vehicle 

 

V2I Safety 

Curve Speed Warning  

In-Vehicle Signage  

Oversize Vehicle Warning  

Pedestrian in Signalized Crosswalk 

Warning 

 

Railroad Crossing Violation Warning  

Red Light Violation Warning  

Reduced Speed Zone Warning / Lane 

Closure 

 

Restricted Lane Warnings  

Spot Weather Impact Warning  

Stop Sign Gap Assist  

Stop Sign Violation Warning  

Warnings about Hazards in a Work Zone  

Warnings about Upcoming Work Zone  

V2V Safety 

Blind Spot Warning + Lane Change 

Warning 

 

Control Loss Warning  

Do Not Pass Warning  

Emergency Electronic Brake Light  

Emergency Vehicle Alert  

Forward Collision Warning  

Intersection Movement Assist  
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Type Group Application Name 

Potential 

Application to 

TMC 

Motorcycle Approaching Indication   

Pre-crash Actions  

Situational Awareness  

Slow Vehicle Warning   

Stationary Vehicle Warning   

Tailgating Advisory  

Vehicle Emergency Response  

Support 

Core Services 

Core Authorization  

Data Distribution  

Infrastructure Management  

Location and Time  

Map Management  

Object Registration and Discovery  

Privacy Protection  

System Monitoring  

Security Security and Credentials Management  

The description of each application and the subset of CVRIA that belongs to that 

application, including physical and enterprise diagrams, processes, requirements and 

security, are available online (ITERIS 2016). A subset of the applications that support 

TMC operations will be investigated in this study, including incident detection as a 

special case of bottleneck identification and queue warning. 

 TMC-BASED CONNECTED VEHICLE APPLICATIONS 2.3

As stated in the previous section, this study explores the use of CV data to support 

two TMC operation applications: incident/bottleneck detection and queue warning. 

2.3.1 Incident/Bottleneck Detection 

An Automatic Incident Detection (AID) system aims to detect incident occurrence 

automatically utilizing traffic data such as speed, volume and occupancy. An AID system 
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has two components:  a data collection system and an incident detection algorithm. The 

data collection system provides real-time traffic data such as speed, occupancy, and flow 

using data collection devices (e.g., point detectors, CCTV cameras, tag readers, 

Bluetooth, etc.). The collected data is analyzed through incident detection algorithms to 

declare the incident occurrence. The performance of incident detection algorithms is 

normally evaluated using three commonly used performance measures: detection rate 

(DR), false alarm rate (FAR) and mean time to detect (MTTD) (Parkany et al. 2005, 

Mahmassani et al. 2005). DR is the ratio of number of correct detections by the total 

number of actual incidents occurring in a time period and is shown in the following 

equation: 

                                          DR=
Number of correct detections

Total Number of incidents
*100%                                    (2-1) 

                                  

Different researchers have defined FARs differently for different purposes. 

FARonline and FARoff-line are the two main definitions found in the literature. FARonline is 

the percentage of the number of incorrect decisions relative to the total number of 

algorithm decisions (all the declared alarms), while FARoff-line is the ratio of algorithm 

incorrect decisions by the number of algorithm applications (Wu et al. 2013). The two 

FAR definitions are shown in the following equations: 

                                FAR
online

=
Number of incorrect detections

Total number of algorithm decisions 
*100%                      (2-2) 

                               FARoff-line=
Number of incorrect detections

Total number of algorithm decisions 
*100 %                (2-3) 
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MTTD is the difference between the estimated incident time by the algorithm and 

the detected incident time, which is shown below. 

𝑀𝑇𝑇𝐷 = 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 𝑡𝑖𝑚𝑒 − 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 𝑡𝑖𝑚𝑒                (2-4) 

The following section presents an extensive literature review on the existing 

incident/bottleneck detection algorithms. The classification of AID can be based on the 

underlying algorithm or the data collection system, as described below.  

Generally, the AID methods are categorized into six groups and are based on the 

underlying algorithm: 

 comparative algorithms 

 statistical algorithms 

 time-series algorithms 

 filtering based algorithms 

 traffic modeling algorithms 

 artificial intelligence algorithms 

Each of these algorithm categories is described below. 

The logic behind comparative algorithms is comparing traffic flow characteristics 

such as speed and occupancy upstream and downstream of the incident location. These 

algorithms are based on the fact that these characteristics upstream of the incident are 

different from the ones downstream of the incident. An alarm is declared when the 

difference between the downstream and upstream measurements exceeds a predefined 

threshold.  

The California series algorithms initially proposed by Payne et al. (1976) are the 

most known comparative algorithms. These algorithms use occupancy measurements 
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obtained from point detectors and compare the upstream and downstream occupancies of 

two adjacent detectors. This difference passes through three conditions with three 

different thresholds: 1) the absolute difference between downstream and upstream 

occupancy; 2) the relative difference between downstream and upstream occupancy 

compared to the upstream occupancy; and 3) the relative difference between downstream 

and upstream occupancy compared to the downstream occupancy. Ten versions of the 

California algorithms were developed based on the initial logic. These algorithms were 

implemented in Los Angeles and Minneapolis. The offline test results show that 

Algorithm #7 and Algorithm #8 (Payne et al. 1978) had the best performance among the 

tested versions. The California algorithms are popular due to their ease of implementation 

and simple logic.  

Statistical algorithms detect incidents using statistical techniques. The two main 

statistical incident detection algorithms are the standard normal deviate (SND) algorithm 

and the Bayesian algorithm.  

The SND was developed in 1970 by Dudek et al. (1974) at the Texas 

Transportation Institute (TTI) and used in Houston, Texas. The standard normal deviation 

of a traffic flow parameter is calculated by the algorithm and then compared with a 

threshold. If the SND is bigger than the threshold, the incident alarm is triggered. Based 

on the results of the SND algorithm evaluation from the Gulf Freeway in Houston, the 

algorithm was able to detect the incident in 1.1 minutes, with a 1.3% FAR and 92% DR. 

Aggregated point detector occupancy data at a one-minute interval was used as input to 

the algorithm.  
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The Bayesian algorithm was proposed by Levin and Krause (1978). The 

algorithm uses the frequency distributions of the difference between downstream and 

upstream occupancy under incident and no-incident conditions. Having the distributions, 

the probability of a set of data that belong to incident and no-incident conditions is 

calculated. If the ratio of the probabilities is more than a threshold, the incident alarm is 

triggered. The offline version of the algorithm was tested in the J.F. Kennedy Expressway 

in Texas. The study concluded that the Bayesian algorithm has better performance than 

the California algorithm in terms of DR and FAR, but has a higher MTTD with 100% 

DR, 0% FAR and a 4-minute MTTD.  

Time-series algorithms are based on the principle that traffic flow follows a 

predictable pattern. The short-term traffic condition is predicted by these algorithms, and 

if the measured traffic parameters deviate significantly from the predicted values, the 

incident occurrence is declared. 

One of the well-known time series algorithms is the autoregressive moving-

average (ARIMA) method developed by Ahmed and Cook (1977). Occupancy is used as 

the input to the controller. The algorithm is based on the principle that the difference 

between occupancy at time step t and time t-1 can be forecasted by averaging the errors 

between the observed and predicted values in the past three time steps. The errors are 

supposed to follow a normal pattern in an incident-free condition, while the abnormal 

errors indicate the incident presence.  The ARIMA algorithm was tested offline, and the 

results were compared with the California and the double exponential smoothing 

algorithm. The paper concluded that the ARIMA outperformed the other two algorithms 

by having 100% DR, 1.4% FAR and less than a 1.5-minute MTTD.  
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Smoothing/filtering-based algorithms remove the short-term noise that causes 

false alarms from raw detector data and makes the changes in traffic patterns more 

visible. The technique for calculating the weighted average of a traffic variable is called 

“smoothing.” Filtering algorithms use a linear filter to remove undesirable high frequency 

components of the data and pass through the low-frequency ones. The double exponential 

smoothing (DES) algorithms, low-pass filter (LPF) algorithms, and the discrete wavelet 

transform and linear discriminant analysis (DWT-LDA) algorithms belong to the 

smoothing/ filtering-based algorithms category. 

The DES algorithm calculates a weighted average of the past and present values 

of traffic variables to predict short-term traffic conditions.  A tracking signal, which is the 

sum of all of the previous errors between the forecasted and observed traffic variable, is 

calculated. If the tracking signal deviates from zero and reaches a predefined threshold, 

the incident alarm is triggered. This algorithm was tested by Cook and Cleveland (1974), 

who used occupancy and flow as control variables. The study results show that the DES 

algorithm outperforms the California algorithm in terms of MTTD, but has a higher FAR.  

The low-pass filter (LPF) algorithm, which is also called the Minnesota algorithm 

or the DELOS (detector logic with smoothing), was proposed by Stephanedes and 

Chassiakos (1993).  The LPF algorithm removes high frequency components (noise) and 

passes low frequency fluctuations. The spatial difference between downstream and 

upstream occupancies is used as the control variable. The method employs two different 

filters (with a 3-minute and 5-minute moving average of occupancies) and three 

smoothing methods: statistical median, moving average and exponential smoothing. The 

data from the I-35W Freeway in the Twin Cities was used to evaluate the LPF method 
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performance. The study concluded that the algorithm outperforms the California #7 and 

time series algorithm proposed by Ahmed and Cook (1977) by having a 0.15% FAR.   

The DWT algorithms were originally developed for the purpose of signal and 

image processing. It has been widely used by researchers to detect incidents. It uses the 

wavelet transform to extract the traffic features under incident and no-incident conditions. 

It has been shown that the extracted traffic features under incident conditions differ 

significantly from normal conditions. Teng and Qi (2003) used the DWT algorithm for 

incident detection. The occupancy difference between two consecutive detectors was 

used as the input to the wavelet transform algorithm. Based on the study’s findings, the 

DWT algorithm was found to have a superior performance, compared to the California 

algorithm and the low-pass filter algorithms, based on examining the detection rate 

versus the false alarm rate curves.  

Traffic modeling algorithms use traffic flow-based models to predict traffic 

behaviors under incident conditions and detect the incidents by comparing the observed 

traffic measurements and the predicted values by the model. Two representative traffic 

modeling algorithms are the catastrophe theory model (MacMaster algorithm) and the 

low-volume (LV) incident detection algorithm.  

The MacMaster algorithm is the most well-known traffic modeling-based incident 

detection algorithm that utilizes volume and occupancy obtained from point detectors to 

detect abrupt changes to regular traffic patterns. This method utilizes a volume-

occupancy template composed of four regions, as shown in Figure 2-1 (the uncongested 

traffic, low-occupancy congestion, high-occupancy congestion, and downstream 

bottleneck regions). This template needs to be developed for each location by using 
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historical data. The MacMaster algorithm has been modified by other researchers (Forbes 

et al. 1990, Hall et al. 1993, Gall et al. 1989). Hall et al. (1993) evaluated the MacMaster 

algorithm using field data from the Burlington Skyway in Ontario, Canada and Queen 

Elizabeth Way in Mississauga, Canada. The results showed a good performance of the 

algorithm.  

 

Figure 2-1 Volume-Occupancy Template Used in the McMaster Algorithm 

(Forbes et al. 1990) 

The low-volume (LV) algorithm (Fambro et al. 1979) is designed to detect 

incidents in non-congested conditions when the incident does not lead to severe 

congestion. Unlike the aforementioned algorithms, the LV algorithm relies on individual 

vehicle data entering the roadway network. The vehicles’ exiting times are predicted 

based on vehicle speeds and entering times. Then, the predicted exiting time is compared 

with the observed existing time, and the decision about the incident occurrence is made.  

Artificial intelligence (AI) algorithms detect the incidents using either a rule-

based technique or a training-based technique. Examples of the utilized methods are 
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neural networks (Stephanedes et al. 1995), fuzzy logic (Ching-Ping Chang et al. 1994) or 

combinations of the two.  

Fuzzy logic was first used by Chang et al. (1994) to supplement the California #8 

algorithm in order to improve it. The fuzzy algorithm does not generate an incident 

alarm. Rather, it provides the probability of an incident, given a set of traffic data 

(occupancy). Fuzzy logic aims to remove sharp crisp thresholds and use fuzzy sets 

instead. The decision tree in the California algorithm was also replaced by the fuzzy 

rules.  

Neural network algorithms are designed based on the human brain neural system. 

Neural-based automatic incident detection algorithms usually have three layers: the input 

layer that processes the traffic sensor data, the intermediate layer, which analyzes the 

data, and the output layer, which generates the incident or no-incident alarm. The 

network is trained to generate appropriate weights to the inputs and to process them to 

generate the alarms. The early attempt to use neural network for incident detection was 

conducted by the University of California, Irvine (Ritchie et al. 1993) and University of 

Minnesota (Dia et al. 1997) in the 1990s. Based on the results, the neural-based algorithm 

outperformed the California algorithm by achieving an 85% detection rate, 0.075% false 

alarm rate, and a 3-minute MTTD. According to the University of Minnesota’s results, 

the performance was not as good as the University of California study, yet it was 

promising. Table 2-4 presents a summary of the algorithms presented in the previous 

section.  

The AID methods can also be grouped based on the corresponding data collection 

system, as follows:  
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 detector-based detection 

 probe-based detection 

 driver-based detection  

Table 2-4 Summary of Point Detector-Based Algorithm Performances  

Algorithm Name 
DR 

(%) 

MTTD 

(min) 
FAR (%) Location 

California 82 0.85 1.73 
California, Chicago, 

Texas 

SND 92 1.1 1.3 Huston 

Bayesian 100 4 0 Texas 

McMaster 68 2.2 0.0018 Minnesota 

ARIMA 100 1.5 1.4 - 

DES (Double Exponential 

Smoothing) 
- 

Better 

than 

California 

Higher 

Than 

California 

- 

LPF (Low-Pass Filter) - - 0.15 Twin Cities 

Neural Networks 85 3 0.075 - 

Neural Networks (Martin, et al., 

2009) 
89 0.96 0.012 

Modeling, Simulation 

and Analysis (MSA) 

LPF (Stephanedes , et al., 1991) 80 4 0.3 Modeling 

DES (Cook, 1974) 92 0.7 1.87 Toronto 

Bayesian (Levin, et al., 1979) 100 4 0 Modeling 

 

The three groups are described in the following subsections. 

Detector-based algorithms that use point-detector data were covered in the 

previous section and summarized in Table 2-4. 

As mentioned earlier, most of the traditional automatic incident detection 

algorithms use point detector data to detect incidents. However, there are some 

disadvantages of using point detector data. The main drawback of the point detector-

based methods is that they cannot detect the incident until the queue caused by the 

incident reaches the upstream detector (Chue et al. 2002), which may take a long time or 

may never happen if the queues due to incidents are short or do not exist. These 

algorithms were also found to produce large numbers of false alarms (Stephanedes et al. 
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1992, Mahmassani et al. 1998, Petty et al. 1997). Furthermore, these sensors cannot be 

deployed all over the network, as they are expensive and cannot cover the entire network. 

It is also difficult to realize the true traffic conditions, as sensors collect spot traffic data.  

Incidents may be detected more efficiently using travel time measurements 

collected by probes (e.g., Bluetooth, Wi-Fi, electronic toll tag readers and global 

positioning system (GPS)), as they have a wider roadway coverage. A study by TTI 

examined the feasibility of using probe vehicles in freeway incident detection (Balke et 

al. 1996). Two hundred trained commuters were asked to report their position as they 

passed reference points using cellular phone calls. The vehicles were tracked using their 

probe identification number by operators in the center, and their travel times were 

estimated between two adjacent reference points. Reference points were located evenly 

spaced, approximately 5 miles apart at key interchanges. The algorithm was developed 

based on the standard normal deviates (SND) principal. If the probes travel time is longer 

than a threshold calculated according to this principal, the incident alarm is triggered. The 

threshold is calculated as shown in the following equation:  

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 𝑡�̅� + 𝑆𝑁𝐷 ∗ 𝑠𝑖                                                     (2-5) 

where, 

 𝑡�̅�    =  historical average travel time for a given time of day interval, 

 𝑆𝑁𝐷  =   z value for a normally distributed population, and 

       𝑠𝑖     =   standard deviation of the average travel time in the same interval. 

Based on the preliminary results, the TTI algorithm is worse than most of the 

common loop detector algorithms. It should be noted that this is most likely due to the 

low market penetration of probe vehicles. 
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The Upper Confidence Bound (UCB) algorithm was developed by Petty et al. 

(1997) and utilizes information from vehicles equipped with radio transponders on the I-

880 Freeway in Hayward, California. The radio transponder can communicate with the 

existing cellular phone stations via the cellular digital packet data (CDPD) protocol. The 

probed data is transmitted to the station, and then from the station to the TMC for further 

analysis. The probe vehicle’s headway was calculated as 6-8 minutes, which indicates an 

approximately 0.08-0.1% market penetration. The algorithm works based on the principal 

that vehicles change their speed and acceleration when passing the incident location. 

Hence, the location of the incident is detected by observing the probe vehicle’s speed and 

acceleration profile, and if the acceleration falls above a threshold (α) with a certain 

speed (𝑣𝑡 ), incident occurrence is declared (Figure 2-2). The reason for including (𝑣𝑡 ) is to 

eliminate the large accelerations occurring in the stop-and-go traffic. The paper 

concluded that the probe-based algorithm is feasible and does not have some of the 

infrastructure-based problems that loop-based algorithms experience.  

Mouskos et al. (1998) conducted a study to evaluate the performance of the 

Transportation Operations Coordinating Committee (TRANSCOM) System for 

Managing Incidents and Traffic (TRANSMIT). The TRANSMIT algorithm uses travel 

times estimated from probe vehicles equipped with electronic toll tags for traffic 

surveillance and incident detection. The system was installed on a 22-mile section of the 

Garden State Parkway in New Jersey and the New York State Thruway, where more than 

1.5 million vehicles were equipped with tags as part of the system. 
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Figure 2-2 Basic Principal of UCB Probed-Based Algorithm (Petty et al. 

1997)  

Roadside readers were placed at distance intervals of 0.5-2.1 miles along the 

corridor, which related the tag identification number, location, lane position and time 

information to the TMC when an equipped vehicle passed the readers. The TRANSMIT 

algorithm is similar to the TTI algorithm mentioned above and assumes that a vehicle’s 

travel time is normally distributed, and the incident alarm is declared when multiple 

successive probe vehicles arrive later than expected to the downstream reader. The 

threshold for declaring the incident occurrence is shown in the following equation.  

𝑇𝐻𝑖 = 𝐻𝑇𝑖 +𝑀𝑆𝐷 ∗ 𝐻𝑆𝐷𝑖                                                 (2-6) 

where, 

 

𝐻𝑇𝑖      =   historical average travel time for time interval i, 
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𝐻𝑆𝐷𝑖   =    standard deviation of historical travel time, and  

MSD   =   a multiplier that was set to 3 in the TRANSMIT algorithm.  

The probability of a false alarm for vehicle j during the time interval i is 

calculated using the equation below: 

𝑃(𝐹𝐴𝑖,𝑗) = 𝑃(𝐸𝑖) + 𝑃(𝑁𝐸𝑖) ∗ 𝑃(𝐿𝑇𝑖)                                       (2-7) 

where, 

𝑃(𝐸𝑖)   =  probability of exiting the probe vehicle from the corridor before 

                   reaching the downstream reader,  

 𝑃(𝑁𝐸𝑖) = probability that a vehicle does not exit, and  

𝑃(𝐿𝑇𝑖) = probability of the probe vehicle arriving at the downstream reader 

                       later than expected for a non-incident reason. 

 Findings of the study show that the algorithm is comparable to the common loop-

based algorithms. The detection rate for most of the roadside terminals (RST) was 100%, 

and was 28 to 61% for the fewer terminals due to anomalies in the reader transmission 

rate.  

Crabtree et al. (2007) examined the use of connected vehicle data communicated 

using DSRC to detect freeway incidents. The CORSIM microsimulation tool was used to 

simulate the incidents, and an output post-processing was conducted to generate 

connected vehicle probe data. The algorithm was based on the comparison between 

measured travel time and “normal” travel time estimated based on no-incident conditions 

data. The travel time threshold used in the study was set to one-third of the travel time 

standard deviation with a minimum of 20 seconds, and a maximum of 60 seconds. The 

results showed that the proposed algorithm can rapidly and reliably detect incidents. The 
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study concluded that for a market penetration of 30% (25% trucks, 5% cars) the MTTD 

ranges from 2 to 4 minutes for a reader spacing of 2 miles and 2.5 to 14 minutes for a 

reader spacing of 10 miles. 

In 2015, Asakura et al. (2015) proposed two incident detection algorithms based 

on data collected from probe vehicles equipped with on-board GPS equipment. The 

AIMSUN microsimulation tool was used as the traffic simulator to assess the algorithms. 

One of the algorithms was based on the comparison of probe vehicle travel time on two 

consecutive links. If the average vehicle’s travel time on the upstream link is more than 

the downstream link, a bottleneck is detected in the upstream link. The second algorithm 

is based on backward congestion shockwave detection using three GPS-equipped 

consecutive vehicles. The paper concluded that the first algorithm (Algorithm I) produced 

a DR, FAR and MTTD of 55%, 0.041%, and 14.8 minutes at 1% market penetration, all 

of which indicate a higher detection rate and false alarm compared to the second 

algorithm (Algorithm II), which produced a DR, FAR and MMTD of 19.1%, 0.0021%, 

and 7.9 minutes at 1% probe market penetration. Different market penetrations were 

tested, and when the market penetration was more than 0.5%, the Algorithm I results 

were satisfactory. Algorithm II had its best performance when the market penetration 

reached 5% with a DR, FAR, and MTTD of 50%, 0.00022 and 6.4 minutes, respectively 

(Asakura et al. 2015). 

A Bluetooth-based arterial incident detection method was proposed by Yu et al. in 

2015. The incident detection algorithm uses travel time and Media Access Control 

(MAC) address counts based on Bluetooth device measurements. A moving average over 

time was used to detect the traffic patterns resulting from incidents. The paper concluded 
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that the DR and FAR that could be obtained using this method are 75% and 0%, 

respectively, at 6% market penetration. There is no information about the MTTD 

performance in the paper. 

Chue et al. (2002) proposed a mobile sensor and sample-based algorithm 

(MOSES) that detects the incident based on the statistical difference in the mean travel 

time of two sets of probe vehicle samples before and during incidents. The Paramics 

microsimulation tool was used to model the network. The paper concluded that freeway 

incident detection time varies from 12 minutes at 5% market penetration to 3-4 minutes at 

50% market penetration. The DR was found to range from 50% to 90%, and the FAR was 

found to range between 0.5 % to 2% when the market penetration varies between 20% 

and 50%. A summary of the probe-based algorithm performances reviewed above and 

other algorithms are shown in Table 2-5. 

In driver-based algorithms, incidents are detected directly by road users using 

cellular phones (call to 911 or TMC), service patrol vehicles, police cruises, roadside call 

boxes, and calls by public entity personnel (roadway maintenance crews, transit 

operators, fire departments, etc.). One of the advantages of driver-based detection is that 

the location, severity, and type of incident can be described easily. The methods can 

provide broader monitoring coverage than the other existing surveillance systems and has 

the ability to cover both minor and major roads (Parkany et al. 2005).  

Skabardonis et al. (1998) evaluated the cellular phone-based incident detection on 

a 9-mile section of I-880 in the San Francisco Bay Area and compared it with the 

following diver-based methods: 



  

                                      29 

 

 California Highway Patrol (CHP) calls: calls from CHP officers patrolling about 

50 freeway segments (each segment 10 miles in length);  

 Call boxes: calls from the roadside call boxes used by motorists to report the 

incidents;  

Table 2-5 Summary of Probe Vehicle-Based Incident Detection Algorithm 

Performances 

Algorithm 

Name 

Probe 

Technology 

Penetration 

Rate 

Environment 

Type 

Data 

Requirement 
MMTD 

MIT 

(Parkany et 

al. 1995) 

AVI/ETC 50% 
MITSIM-Based 

Simulation 

Travel time and 

headway by 

lane, Lane 

switches, 

Volume by lane 

0.8 min 

TTI (Balke et 

al. 1996) 
Cellular 

5-min 

headway 

Field in 

Houston, TX 
Travel time 15 min 

TRANSMIT 

(Mouskos et 

al. 1998) 

AVI/ETC 
1-min 

headway 

Field in 

Metropolitan 

NYC 

Travel time 15 min 

Waterloo 

(Hellinga et 

al. 2000) 

AVI/ETC 10% 

INTEGRATION

- Based 

Simulation 

Travel time 0.3 min 

MOSES 

(Chue et al. 

2002) 

Mobile 

Sensor 
5 to 50% 

Paramics Micro-

Simulation 
Travel time 

12 to 4 

min 

DSRC –

based 

method 

(Crabtree et 

al. 2007) 

DSRC 30% 

CORSIM 

Micro-

Simulation 

Travel time 

Reader 

spacing 2 

miles: 2 

to 4 min 

Reader 

spacing 

10 miles: 

2.5 to 14 

min 

 

Bluetooth-

based 

method (Yu 

et al. 2015) 

Bluetooth 6% Field in Oregon 
Travel time and 

volume 

Not 

reported 

GPS-based 

method 

(Asakura et 

al. 2005) 

GPS 1% 

AIMSUN 

Micro-

Simulation 

Travel time 14.8 min 
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 Cellular 911 calls: calls from motorists using their cellular phone, which is 

directly routed to the Computer Aided Dispatch (CAD) center;  

 Public Entities’ calls: calls from public organizations (e.g., fire departments, local 

police departments, etc.) personnel; and  

 Freeway Service Patrol (FSP) calls: 52 FSP trucks monitoring 218 miles of the 

Bay Area that communicate with the CAD center via two-way radios and on-

board Mobile Data Terminals (MDTs).  

      Incidents reported by cellular phone calls and other sources were obtained from 

the CHP computer-aided dispatch center. Incidents observed by probe vehicle drivers 

passing the same freeway with an average headway of 7 minutes are also included in the 

evaluation.  

      The detection rates and false alarms for each of the abovementioned methods are 

shown in Table 2-6. The reported events that cannot be verified by the CHP officers 

dispatched to the scene are considered false alarms.  

Table 2-6 Detection and False Alarm Rates (%) 

Detection Source Detection Rate False Alarm Rate 

Cellular Phone 37.9 7.4 

CHP 25 0 

FSP 17.1 0 

Public Entity 13.3 5.4 

Call Box  4.5 0 

The study also concluded that the fastest detection method is cellular phone calls. 

On average, cellular phone motorists report the incident 3 minutes sooner than the probe 

vehicles, while CHP officers detect the incident 2 minutes slower than the probe vehicles. 

Christenson (1995) conducted a survey of the existing cellular call-in programs in 

the United States, which have a dedicated line for drivers to report the incident. Table 2-7 
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shows the average detection time for minor and major incidents. Minor and major 

incidents can be incidents whose responses are or are not sufficient from motorist, 

assistant patrol, or police officer.  

Table 2-7 Estimated Detection Time for Minor and Major Incidents 

Detection Method Detection Time (minute) for 

Minor Incidents 

Detection Time (minute) 

for Major Incidents 

Cellular Telephone 2 2 

Motorists Assistant Patrol 5 5 

Police or Highway Patrol 10 10 

Closed-Circuit Television 5 5 

Roadside Call Boxes 10 10 

Roadside Telephones 10 10 

Loop Detectors 5 5 

Mussa (1997) developed an analytical model to evaluate the performance of 

driver-based incident detection. The probability of incident detection was assumed to 

have a binomial distribution. The detection time is the time that a driver with a 

communication medium arrives within a 100-foot visible zone. The FRESIM 

microscopic simulation (currently a component of CORSIM) was used to evaluate the 

performance of river-based incident detection. The paper concluded that all of the 

incidents are detected in one minute, regardless of the incident type if the cellphone 

market penetration is 10%.  

2.3.2 Queue Warning and Back-of-Queue Estimation 

Rear-end collisions are a main safety concern on freeways and are caused by 

slow/stopped traffic. One-third of all collisions have been reported to be rear-end 

incidents (NTSF 2001). Recurrent congestion (bottlenecks), incidents, and work zones 

are three main causes of slow/stopped traffic and can lead to queued traffic conditions 

and consequently, rear-end collisions. Queue warning systems are designed to inform 
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drivers about the queued traffic ahead so that they can react in a timely manner. Based on 

the results of one study by Daimler-Benz (NTSF 2001), 60% of rear-end collisions could 

be prevented if drivers had an extra half of a second of warning.  The study also indicated 

that 90% of rear-end collisions could be prevented if an additional second of warning 

would be given to drivers. Findings from the queue warning system (QWS) evaluation in 

Amsterdam showed that the system reduced the overall crash frequency by 23% and 

secondary crash frequency by 46%. An evaluation of queue warning systems and freeway 

lane control found a 20% reduction in crash rates (FHWA 1999). A queue warning 

system in Madison County, Illinois showed a 13.8% reduction in incidents (Enterprise 

2014). A new, innovative end-of-queue warning system implemented on I-35 along 96 

miles in central Texas reduced crashes by 45%, and fewer rear-end collisions were 

observed (ARTBA Work Zone Safety Consortium 2015). Different queue detection 

techniques have been tested so far. A video-based queue detection was implemented on 

the E313 Freeway in a Belgian city. The detection algorithm reads the speed and 

occupancy measured by the video detection camera, and if the occupancy is more than 

50% and the speed is less than 50 km/h (31 mph), a warning message is sent to the 

dynamic message signs (DMS) upstream of the incident (FLIR 1998). The QWS 

implemented in Toronto, Canada on Queen Elizabeth Way in the town of St. Catharines 

uses microwave sensor stations data to warn drivers about slow/stopped traffic. If the 

differential speed between two microwave stations is high, drivers are advised through 

arterial DMS (Alexander et al. 2002). In Jutland, a city in Denmark, the QWS is activated 

when the speed obtained from traffic sensors is below 50 km/h (31 mph). After the 

system activation speed limits of 90, 70 and 50 km/h (56, 44 and 31 mph) are shown on 
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the successive DMS upstream of the queue tail (Wiles et al. 2003). The queue QWS in 

Oslo, Norway utilizes video detectors to detect the back-of-queue. If speeds are below 30 

km/h (19 mph), occupancy is higher than 30%, and if the limits for speed and occupancy 

exceed more than 15 seconds, a warning is sent to drivers through DMSs.  Reference 62 

concluded that the queue warning system has a positive effect on driver speed and 

braking characteristics, which means that the video detectors detected the queue fairly 

well (Engan et al. 2001). The smart work zone in Illinois (Nemsky 2014), which is 

composed of Doppler speed detectors, Bluetooth readers, and portable DMSs, were found 

to reduce the number of rear-end crashes by 14%. This reduction occurred despite the 

increase in traffic volume and the higher number of temporarily closed lanes during the 

project. There are queue warning systems implemented all over the U.S., as summarized 

in Table 2-8. 

Ulman et al. (2016) investigated the safety effects of portable end-of-queue 

(EOQ) warning system implementation at Texas work zones along 96 miles of I-35 that 

were being widened. The EOQ system consists of portable radar speed sensors connected 

to one or more portable DMSs. 

A portable travel rumble strip was also deployed upstream of the nighttime lane 

closures where the queue was expected to grow. The EOQ was implemented on more 

than 200 nighttime lane closures along the corridor. The number of expected crashes for 

each lane closure was estimated with and without EOQ. The results indicate that the EOQ 

system had a positive impact on reducing crashes. The EOQ system reduced the number 

of crashes by 44 percent, and reduced crash costs by $1.36 million over the study period. 
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The crash cost savings were estimated to offset the cost of the EOQ system deployment 

after 95 to 190 nights of use.  

Table 2-8 Summary of Queue Warning Techniques in the United States 

State/City Problem Type 
Queue Detection 

Technique 

Florida/Palm Beach county IH 95 

(Wiles et al. 2003) 
Construction Zone Queues 

Video Detection 

Radar (ADDCO) 

Illinois/IH 55 (Wiles et al. 2003) Construction Zone Queues Radar Detection 

Indiana/IH 65 @ State Rd 131 

(INDOT 2000) 
Exit Ramp Spillback Embedded Loops 

Central Minnesota (Iowa State 

University 2002) 

Recurrent Congestion (at 

Freeway Lane Drop) 

Rear-End Collisions 

Optical Detectors 

Pennsylvania/US 22 (FHWA 1998) 

Construction Zone Queues 

Sight Distance Limitations 

Rear-End Collisions 

Queue Length 

Detectors 

using Infrared Beams 

Pennsylvania/ Turnpike (Paturnpike 

1999) 

Construction Zone Queues 

Rear-End Collisions 

Radar Detector Speed 

Devices 

Texas/San Antonio TransGuide (Trans 

Guide 2002) 

Recurrent Congestion 

Rear-End Collisions 
Embedded Loops 

 

Paterson et al. (2013) investigated the accuracy and latency of the queue warning 

and travel time estimation systems for the Minnesota I-94 Intelligent Work Zone (IWZ) 

project. The results showed that the accuracy of the back-of-queue estimation were 

within one mile across different queue lengths (note that detectors were spaced at one-

mile intervals). The comparison of the posted and actual distance to the back-of-queue is 

shown in Figure 2-3. 

Most of the existing queue estimation methods are point detector-based and use 

either speed or cumulative volume to estimate the queue length. In the speed-based 

methods, downstream and upstream speed measurements are compared with a threshold. 
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Figure 2-3 Comparison of the Posted and Actual Distance to the Back-of-Queue on 

I-94 in Minnesota-June 14, 2013 (Peterson et al. 2013)  

If both are less than a threshold, the queue length is assumed to be equal to the 

length of the segment, and if only downstream measurements are less than the threshold, 

the queue length is assumed to be half of the segment length. The cumulative, volume-

based methods use volume measurements instead of speed. The cumulative downstream 

detector arrival volume count is compared with the cumulative departure volume count, 

and the difference between these two is estimated as the number of vehicles in queue 

(Nam et al. 1999, Zhang 2006, Vanajakshi et al. 2009). The cumulative volume method, 

however, requires detection of ramps, as well as mainline segments. 

Pesti et al. (2013) proposed a point detector-speed-based queue estimation 

algorithm and used VISSIM microsimulation to evaluate the algorithm. Different design 

parameters such as speed thresholds, aggregation interval, detector spacing and portable 

DMS locations were examined.  A speed threshold of 35 mph, aggregation interval of 5 

minutes and DMS message update interval of 1 or 5 minutes were recommended by the 
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study (Pesti et al. 2013). All of the aforementioned QWS rely on fixed traffic sensors or 

cameras to detect the back-of-queue. Hence, the location of back-of-queue cannot be 

detected exactly. If the transmitted messages from the connected vehicles are utilized, the 

detection has the potential to be faster and more accurate. A recent study by Elfar et al. 

(2016) attempted to examine the queue warning system in a connected environment using 

a microsimulation platform. However, the results of the study have not been published 

yet.  

Balke et al. (2014) developed speed harmonization and queue warning algorithms 

to generate recommended speeds and queue warning information to drivers as a part of 

the United States Department of Transportation Intelligent Network Flow Optimization 

(INFLO) prototype. The study also addressed how the prototype uses the recommended 

speed and queue warnings generated by algorithms to produce both infrastructure and 

vehicle-based warning messages. Three types of queue warning algorithms were included 

in the prototype: Traffic Management Entity (TME)-based, Cloud-based, and vehicle 

based. The TME queue warning algorithm fuses the data obtained from the traffic sensors 

and connected vehicles to detect the back-of-queue (BOQ) and generate queue warning 

messages through both infrastructure signs and connected vehicles. It is assumed that the 

front-of-queue (FOQ) is known. The process of detecting the BOQ is shown in Figure 2-

4. 
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Figure 2-4 The TME Queue Warning Algorithm Proposed by Balke et al. 

(2014) 

In the cloud-based queue warning algorithm, connected vehicles send BSM 

messages, queued state (Y or N), and mile marker (MM) location of the vehicle to the 

cloud using cellular communication. The information is analyzed in the cloud, and BSM 

messages are assigned to sublinks based on the vehicle’s location. Then, the queued state 

of the sublink is determined, and the BOQ is defined as the mile marker of the most 

upstream sublink. Based on the BOQ, the queue growth rate, length of queue and speed 

in the queue are calculated. Finally, the generated queue warning messages are displayed 

in the connected vehicles. The process of determining the BOQ is repeated every 5 

seconds. The cloud-based queue warning application is shown in Figure 2-5. 

In the vehicle-to-vehicle-based (V2V) algorithm, each vehicle sends its mile 

marker location and queued state (Y or N), along with other V2V message data elements 

each 1/10
th

 of a second to the surrounding vehicles using DSRC communication. Vehicle 

queued status is determined using vehicle speed and separation (gap) from the immediate 
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downstream vehicle. A non-queued connected vehicle can identify the BOQ that has the 

information from the downstream vehicles. Then, the BOQ information is transmitted by 

all of the non-queued vehicles. A warning message is displayed in the upstream vehicles 

regarding the BOQ. If the vehicle location is further than a user-defined threshold from 

the BOQ (10 miles for the prototype testing), the warning message will not be displayed. 

The V2V queue warning system is shown in Figure 2-6. 

The queue warning message display is also discussed in reference (Balke et al. 

2014). The TME-based and cloud-based algorithms generate the FOQ and BOQ, 

location, speed in queue, and rate of queue growth, while the V2V-based algorithm 

generates only the location of the BOQ and sends it to the vehicles. Based on the location 

of the vehicle from the back-of-queue, the type of the displayed message varies. A 

vehicle can be in stopping sight distance, decision sight distance, or upstream of the 

decision sight distance from the BOQ, as shown in Figure 2-7. The displayed messages 

are set differently for each of these locations. 
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Figure 2-5 Cloud-Based Queue Warning Algorithm Proposed by Balke et al. (2014) 
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Figure 2-6 V2V-Based Queue Warning System Proposed by Balke et al. (2014)
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Figure 2-7 Queue Warning Display Depending on the Vehicle Distance from 

BOQ Recommended by Balke et al. (2014) 

Dowling et al. (2015) evaluated the impacts of the developed prototype of Speed 

Harmonization (SPD-HARM) by Balke et al. (2014). The VISSIM microsimulation was 

used to model 8.5 miles of the U.S. 101 Freeway in San Mateo, California. The SPD-

HARM /Q-WARN (queue warning) prototype was written in the VISSIM COM 

interface. However, researchers pointed out that the Q-WARN application could not be 

assessed in the microsimulation due to the lack of information on how drivers would 

react to the queue warning messages. Therefore, only the performance of the SPD-

HARM was tested in the microsimulation. It was assumed that 100% of drivers comply 

with the recommended speed generated by the SPD-HARM algorithm. The study 

concluded that the prototype reduced the magnitude of shockwaves (speed drops between 

vehicles) at a 10% market penetration level. It also showed a rapid increase in the 

benefits for the first 20% of vehicles that were both connected and complying with the 

SPD-HARM recommendations. After the 20%, the rate of increase in the benefits is 

lower, but still increasing. 
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 A small-scale demonstration was conducted by TTI, Battelle and the Washington 

State Department of Transportation (WSDOT) (Stephens et al. 2015) involving equipping 

21 vehicles with connected vehicle systems traveling in a 23-mile corridor of I-5 from 

Tukwila to Edmonds through downtown Seattle during the week of January 12, 2015. 

The connected vehicle data was transmitted and gathered using bot cellular phone and 

DSRC communication. The purpose of the small-scale demonstration was to implement 

the INFLO prototype and test its functionality and performance in a real traffic 

environment. The TME-based queue warning and TME-based speed harmonization 

described earlier, combined with Weather Responsive Traffic Management (WRTM), 

were implemented. Speed data were collected from both the WSDOT infrastructure-

based detectors and the connected vehicles. The collected data were analyzed in real time 

as the Q-WARN and SPD-HARM messages were delivered to drivers. The study 

concluded that no loss of BSM data was observed and there was no disruption in the 

algorithm due to any loss of BSM data. The data capture, processing, and delivery of 

messages to the drivers took less than 10 seconds. This guaranteed that drivers receive 

the queue warning message 1 mile in advance of the back-of-queue. The Q-WARN was 

found to detect the back-of-queue 3 minutes sooner and could locate the back-of-queue 

more accurately (0.5 to 1.5 miles farther upstream) than road loop detectors. Since the 

INFLO algorithms capture the speed data each 0.1-mile interval, they can provide a better 

estimation of vehicle speed in the queue than the infrastructure-based sensors that capture 

speed every 0.5 miles.   
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 MULTI-CRITERIA DECISION ANALYSIS (MCDA)  2.4

For most of the cases, the decision-making process involves many objective and 

constraints that conflict with each other. The MCDA is a branch of operation research 

that tries to find a compromise solution among different alternative considering multiple 

objectives (criteria). In other words, there is no solution that optimizes all of the criteria. 

MCDA helps decision makers select the best alternative with regards to the conflicting 

objectives. There are several MCDA methods used in the literature. The simplest MCDA 

approach is the Simple Multi-Attribute Rating Technique (SMART) approach, also 

known as the Simple Additive Weighting (SAW) method, described by Fishburn (1967). 

This approach involves identifying decision criteria, criterion weights, assessment of the 

values associated with each criteria, normalizing the values to a common scale, and 

obtaining “scores” based on the values. The result is a weighted score for each of the 

compared alternatives. When there are a large number of evaluation criteria and the 

priorities of multiple stakeholders are to be considered, the SAW method cannot 

sufficiently capture the weights of different criteria (Annette et al. 2016). More advanced 

MCDA methods, compared to the SAW method, have been proposed and successfully 

used. These methods include the Analytic Hierarchy Process (AHP), Technique for Order 

Preference Similarity to Ideal Solution (TOPSIS) (Hwang et al. 1981), Preference 

Ranking Organization Method for Enrichment of Evaluations (PROMETHEE) (Brans et 

al. 1985, San Cristobal. 2013), Elimination Et Choix Traduisant la Realité (ELECTRE) 

(Roy 1968, Benayoun et al. 1966, Hokkanen et al. 1997) and others (Jato-Espino et al. 

2014). All of these methods require stakeholder inputs regarding their preferences and 

priorities, with respect to various decision criteria and an assessment of each alternative 
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to meet each criterion. Among these MCDA methods, the AHP method developed by 

Saaty (1980) has been the most widely used in various disciplines, including 

transportation engineering. According to the Macharis et al. (2015) study, 33% of the 

reviewed publications on utilizing MCDA in the transportation field used AHP or a 

variant of AHP in their analysis. In the following section, some of the highly used 

MCDA methods such as AHP are elaborated.  

2.4.1 Simple Additive Weighting (SAW) 

The Simple Additive Weighting (SAW), described by Fishburn (1967),  

determines a weighted score for each of the alternatives to be compared. If the units of 

different inputs (attributes) vary, the input values are normalized using linear or vector 

normalization. The overall score of an alternative is calculated using the following 

equation: 

𝑃𝑖 = ∑ 𝑤𝑗(𝑚𝑖𝑗)
𝑀
𝑗=1                                                          (2-8) 

where, 

   Pi = the i
th 

alternative score, 

 wj = the j
th

 attribute (criterion) weight, and 

 mij = value of the j
th

 attribute, in a non-normalized form, for the i
th

 alternative.           

In this method, each attribute has a weight and the sum of all weights should be 1. 

The decision table is shown in Table 2-9. This table is applicable to all of the MCDA 

methods.  
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Table 2-9 Decision Table in MCDM Methods (Venkata Rao 2006) 

Alternatives Attributes 

 B1 

(W1) 

B2 

(W2) 

B3 

(W3) 

- 

(-) 

- 

(-) 

BM 

(WM) 

A1 m11 m12 m13 - - m1M 

A2 m21 m22 m23 - - m2M 

A3 m31 m32 m33 - - m3M 

- - - - - - - 

- - - - - - - 

AN mN1 mN2 mN3 - - mNM 

 

If the attribute units are different, the performance measures can be normalized 

and each alternative weight is calculated, as shown below: 

𝑃𝑖 = ∑ 𝑤𝑗(𝑚𝑖𝑗)𝑛𝑜𝑟𝑚𝑎𝑙
𝑀
𝑗=1                                                     (2-9) 

where (mij) normal is the normalized value of the mij. 

When the attributes are beneficial, the normalized value is calculated by dividing 

the mij by the maximum mij among all of the alternatives (in the jth column). Beneficial 

attributes are the ones that yield more desirability as they increase (e.g., profit). For the 

non-beneficial attributes, the normalized value of mij is obtained by dividing the 

maximum mij by the mij. 

If the condition of the equality of the sum to 1 is relaxed, then each alternative 

score is calculated using the following equation, and the method is called the simple 

multiple attribute rating technique (SMART) (Venkata Rao 2006). 

                                                       Pi=
∑ wj(mij)normal

M
j=1

∑ wj
M
j=1

                                                       (2-10) 

                                                        

In a study by Medina et al. (2014), three MCDA methods were used to select the 

optimal traffic signal control considering different modes of transportation such as cars, 

buses, pedestrians and bicycles. One of the methods used was the SAW. The score of 
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each alternative j, which is a set of signal timing settings, was calculated using Equation 

2-11. Each mode is a selection criterion i with a weight (𝑤𝑖). Lower scores indicate better 

alternatives, as delay is to be minimized. 

𝑠𝑗 = ∑ 𝑑𝑖𝑗𝑖 𝑣𝑖𝑤𝑖                                                          (2-11) 

where, 

 𝑑𝑖𝑗 = delay per unit of mode i for alternative j, 

 𝑣𝑖 = volume of mode i, and 

 𝑤𝑖 = weight of mode i.  

2.4.2 Analytic Hierarchy Process (AHP) 

The Analytic Hierarchy Process (AHP) developed by Thomas Saaty (1980) is one 

of the popular MCDA methods that help decision makers prioritize different alternatives 

and make the best decision. A weight is assigned to each evaluation criterion based on 

decision makers’ pairwise comparisons of the criteria. Then, for a fixed criterion, a score 

is assigned to each alternative based on the decision maker’s pairwise comparison of the 

alternatives based on that criterion. The higher the score, the better the alternative with 

respect to the corresponding criterion. Finally, the criteria weight and alternatives scores 

are combined and a global score is generated for each alternative using the AHP method. 

The global score of each alternative is a weighted sum of the scores with respect to all of 

the criteria. The AHP method has three steps: 

 calculating the vector of criteria weights, 

 calculating the matrix of alternatives scores, and 

 ranking the alternatives. 
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The first step is calculating the vector of criteria weights. In this step, a pairwise 

comparison matrix A (m*m) is created, where m is the number of evaluation criteria. 

Each element aij of the matrix indicates the importance of ith criterion relative to the jth 

criterion. If aij >1, criterion i is more important than criterion j. The values used to 

measure the relative importance between the two criteria are selected from a numerical 

scale ranging from 1 to 9, and the reciprocals are used when the second criterion (jth 

criterion) is more important (1/2, 1/3…1/8, 1/9). After creating the pairwise comparisons 

matrix, a normalized pairwise matrix Anorm is created and each element of the matrix is 

calculated as shown in the following equation. 

                                                               a̅ij=
aij

∑ aij
m
i=1

                                                                  (2-12) 

                                                         

where �̅�𝑖𝑗 are elements of the normalized pairwise matrix (Anorm) indicating the 

importance of ith criterion relative to the jth criterion and 𝑎𝑖𝑗 are elements of the pairwise 

comparison matrix A. 

Finally, each criterion’s weight (𝑤𝑗) is calculated by averaging the elements on 

each row of the normalized matrix using the equation below: 

                                                               wj=
∑ a̅ij

m
j=1

m
                                                                  (2-13) 

                                                          

where  𝑤𝑗is criterion j weight and m is pairwise comparison matrix dimension. 

In the second step, a matrix of alternative scores is calculated. The score matrix S 

is an n*m matrix, where n is the number of alternatives and m is the number of criteria. In 

order to derive the matrix S, a pairwise matrix B
(i)

 needs to be created for each of the m 

criterion (i=1,…, m). Matrix B
(i) 

 is an n*n matrix, and each element 𝑎𝑘ℎ
𝑖  of the matrix B

(i) 
  

indicates the importance of the k
th

 alternative, compared to the h
th

 alternative, with 
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respect to the i
th 

criterion. If 𝑎𝑘ℎ
𝑖 >1, the k

th
 alternative is better than the h

th
 alternative, 

with respect to the i
th 

criterion. Then, the same procedure applied to matrix A is applied to 

each matrix B
(i) 

. Each element of the matrix is divided by the sum of entries in the same 

column, and then the elements of each row are averaged to calculate the score vectors s
(i)

 

, i=1,…,m. In other words, s
(i) 

 is a vector composed of different alternative scores with 

respect to the i
th

 criterion. The score matrix S is defined as the following:  

𝑆 = [𝑠(1)…𝑠(𝑚)]                                                   (2-14) 

where  𝑆 is the score matrix and s
(i)

 is the score vector with respect to the i
th

 criterion. 

Finally, in the third step, having the weight vector w and the score matrix S, the 

global score for each alternative is calculated by multiplying S and w, as shown below: 

𝑣 = 𝑆. 𝑤                                                          (2-15) 

where, 

 

 𝑣 = global score for each alternative, 

 𝑆 = score matrix, and 

 𝑤 = criteria weight vector. 

The i
th

 element of v is the global score for alternative i. Finally, AHP ranks the 

alternatives by ordering the global scores in a descending order.  

A consistency ratio (CR) needs to be calculated to make sure that the rankings 

given by different decision makers and used as inputs to the AHP application are 

consistent. CR is calculated using the following equation: 

                                                                    CR=
CI

RI
                                                                   (2-16) 

where, 
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 𝐶𝑅 = consistency ratio, 

 𝐶I = consistency index, and 

 𝑅𝐼 = the random index. 

CI is calculated using the following equation, and RI is obtained from reference 

(Saaty, 1980). If the consistency ration is less than 0.1, the rankings are consistent; 

otherwise, they have to be revised by the decision makers. 

CI=
λmax-n

n-1
                                                         (2-17) 

                                                      

where 𝜆𝑚𝑎𝑥is the maximum Eigen value of the comparison matrix and n is the number of  

criteria being compared. 

2.4.3 Technique for Order Preference Similarity to Ideal Solution (TOPSIS) 

The technique for order preference by similarity to ideal solution (TOPSIS) 

method was introduced by Hwang and Yoon in 1981 (1981). The TOPSIS method 

defined two hypothetical alternatives using available attribute values: the positive ideal 

solution and the negative ideal solution. The positive ideal solution is composed of the 

best observed attribute values in the database (highest values for the beneficial attributes 

and lowest value for the non-beneficial attributes). On the other hand, the negative ideal 

solution is an option composed of the worst attribute values in the database. The best 

alternative is the one that has the shortest Euclidean distance from the ideal solution and 

the farthest from the negative ideal solution. The procedure to select the best alternative 

among others in the TOPSIS method is described below. 

The first step is to create a matrix similar to the decision table (Table 2-9), in 

which each row belongs to one alternative and each column belongs to one attribute. 
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Each element mij of the decision table represents the original value of the j
th

 attribute 

(non-normalized) for the i
th

 alternative. When the attribute values are subjective, Table 2-

10 may be used to assign a ranked value to the attribute.  

Table 2-10 Value of Attributes (Venkata 2006) 

Subjective Measure of Attribute Assigned Value 

Exceptionally Low 0.0 

Extremely Low 0.1 

Very Low 0.2 

Low 0.3 

Below Average 0.4 

Average 0.5 

Above Average 0.6 

High 0.7 

Very High 0.8 

Extremely High 0.9 

Exceptionally High 1.0 

 

Then, the normalized decision matrix, R, is obtained using the following equation:  

                                                        𝑅𝑖𝑗 =
𝑚𝑖𝑗

[∑ 𝑚𝑖𝑗
2𝑀

𝑗=1 ]1/2
                                                     (2-18) 

where, 

 

 𝑅𝑖𝑗 = element of the normalized decision matrix that represents the value of 

              the j
th

 attribute for the i
th

 alternative, and 

 𝑚𝑖𝑗 = element of the decision table that represents the original value of the j
th

 

              attribute (non-normalized) for the i
th

 alternative. 

The next step is to calculate the attribute weight vector. A set of weights wj (for 

j=1, 2,..., M) such that ∑𝑤𝑗 = 1 is obtained in this part. The weighted normalized matrix 

V is then calculated. Matrix V is obtained by the multiplication of each element of matrix 

R with the associated weight, as shown in the following equation.  

𝑉𝑖𝑗 = 𝑤𝑗𝑅𝑖𝑗                                                           (2-19) 
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where, 

 

  𝑉𝑖𝑗 = element of the weighted normalized matrix that represents the value of 

              the j
th

 attribute for the i
th

 alternative,  

  𝑤𝑗 = weight of criterion j, and 

  𝑅𝑖𝑗 = element of the normalized decision matrix that represents the value of 

              the j
th

 attribute for the i
th

 alternative. 

The positive ideal solution and negative ideal solution are generated in the next 

step, as expressed below.  

𝑉+ = {(max(𝑉𝑖𝑗) 𝑖𝑓 𝑗 ∈ 𝐽), (min(𝑉𝑖𝑗) 𝑖𝑓 𝑗 ∈ 𝐽)́} = {𝑉1
+, 𝑉2

+, … . . , 𝑉𝑀
+}         (2-20) 

𝑉− = {(min(𝑉𝑖𝑗) 𝑖𝑓 𝑗 ∈ 𝐽), (max(𝑉𝑖𝑗) 𝑖𝑓 𝑗 ∈ 𝐽)} = {𝑉1
−, 𝑉2

−, … . . , 𝑉𝑀
−}        (2-21) 

  i=1, 2, …, N 

where, 

 

 𝐽 = associated with beneficial attributes (j=1,2, …, M) ,  

 𝐽 = associated with the non-beneficial attributes (j=1,2, …, M),  

𝑉+ = positive ideal solution, and 

𝑉− = negative ideal solution. 

Each alternative distance from the ideal solution and the negative ideal solution is 

calculated using the following equations:  

𝑆𝑖
+ = {∑ (𝑉𝑖𝑗 − 𝑉𝑗

+)2𝑀
𝑗=1 }

0.5
                    𝑖 = 1, 2, … ,𝑁                           (2-22) 

𝑆𝑖
− = {∑ (𝑉𝑖𝑗 − 𝑉𝑗

−)2𝑀
𝑗=1 }

0.5
                    𝑖 = 1, 2, … ,𝑁                            (2-23) 

where, 

 𝑆𝑖
+ = alternative i distance from the ideal solution, and 
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 𝑆𝑖
− = alternative i distance from the negative ideal solution. 

The relative closeness of an alternative to the ideal solution, 𝑃𝑖, is obtained using  

the following equation: 

Pi=
Si

-

(Si
+

+Si
-)

                                                       (2-24) 

where 𝑃𝑖 is the overall score of alternative i. 

  Finally, the alternatives are arranged in a descending order based on their 𝑃𝑖 

value, and the best alternative is selected. The higher the score 𝑃𝑖, the better the 

alternative.  

2.4.4 Fuzzy TOPSIS 

In the following section, the fuzzy set theory is briefly introduced, and then the 

fuzzy TOPSIS method is discussed. 

2.4.4.1 Introduction to the Fuzzy Set Theory 

 The fuzzy logic concept was proposed by Professor Lotfi Zade (1965) at the 

University of California, Berkeley, and uses linguistic knowledge and human expertise in 

the decision-making process. For example, the probability of the occurrence of an 

incident can be expressed in linguistic terms of very high, high, and low, etc. There are 

certain definitions and properties related to the fuzzy set theory that are explained as 

follows.  

A fuzzy set �̃� is characterized by a membership function 𝜇�̃�(𝑥) that maps each 

crisp input x to a value between 0 and 1. There are different types of membership 

functions such as triangular, trapezoidal, bell-shaped, etc., among which the triangular 

fuzzy set (Figure 2-8) has been popular and commonly used due to its simplicity (Yeh et 
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al. 2004, Pedrycz 1994). A triangular fuzzy set �̃� is defined by three numbers: �̃� =

(𝑎1, 𝑎2, 𝑎3). The membership function 𝜇�̃�(𝑥) of a triangular fuzzy set �̃� is shown in the 

equation below: 

𝜇�̃�(𝑥) =

{
 
 

 
 
0,                               𝑥 ≤ 𝑎1
𝑥−𝑎1

𝑎2−𝑎1
,            𝑎1 ≤ 𝑥 ≤ 𝑎2

𝑎3−𝑥

𝑎3−𝑎2
,             𝑎2 ≤ 𝑥 < 𝑎3

0,                               𝑥 > 𝑎3

                                      (2-25) 

where, 

𝜇�̃�(𝑥)  = membership function of a triangular fuzzy set �̃�, 

 �̃�  = triangular fuzzy set (𝑎1 < 𝑎2 < 𝑎3),  

𝑎1, 𝑎2, 𝑎3 = triangular fuzzy set parameters, and 

 𝑥  = crisp input. 

 

Figure 2-8 Triangular Fuzzy Number �̃�  (Awasthi et al. 2011)  

Let  �̃� = (𝑎1, 𝑎2, 𝑎3) and �̃� = (𝑏1, 𝑏2, 𝑏3) be two triangular fuzzy sets. The main 

operations on the two sets are shown below: 

�̃�(+)�̃� = (𝑎1 + 𝑏1, 𝑎2 + 𝑏2, 𝑎3 + 𝑏3),                     𝑎1 ≥ 0, 𝑏1 ≥ 0 

�̃�(×)�̃� = (𝑎1 × 𝑏1, 𝑎2 × 𝑏2, 𝑎3 × 𝑏3),                     𝑎1 ≥ 0, 𝑏1 ≥ 0 

�̃�(−)�̃� = (𝑎1 − 𝑏1, 𝑎2 − 𝑏2, 𝑎3 − 𝑏3),                     𝑎1 ≥ 0, 𝑏1 ≥ 0 
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�̃�(/)�̃� = (𝑎1/𝑏1, 𝑎2/𝑏2, 𝑎3/𝑏3),                               𝑎1 ≥ 0, 𝑏1 ≥ 0 

�̃�−1 = (
1

𝑎1
,
1

𝑎2
,
1

𝑎3
)                                                            𝑎1 ≥ 0             

𝑘 ∗ �̃� = (𝑘𝑎1, 𝑘𝑎2, 𝑘𝑎3)                                              𝑎1 ≥ 0, 𝑘 ≥ 0 

𝑘/�̃� = (𝑘/𝑎1, 𝑘/𝑎2, 𝑘/𝑎3)                                         𝑎1 ≥ 0, 𝑘 ≥ 0 

�̃�/𝑘 = (𝑎1/𝑘, 𝑎2/𝑘, 𝑎3/𝑘)                                         𝑎1 ≥ 0, 𝑘 ≥ 0 

�̃�(+)�̃� = �̃�(+)�̃� 

�̃�(×)�̃� = �̃�(×)�̃� 

�̃�(−)�̃� = �̃�(−)�̃� 

𝑘 ∗ �̃� = �̃� ∗ 𝑘 

The distance between the two sets is obtained using the vertex method, as shown 

in the equation below. 

𝑑(�̃�, �̃�) = √
1

3
[(𝑎1 − 𝑏1)2 + (𝑎2 − 𝑏2)2 + (𝑎3 − 𝑏3)2]                      (2-26)    

where, 

𝑑(�̃�, �̃�) = distance between the two fuzzy sets �̃� and �̃�, 

𝑎1, 𝑎2, 𝑎3 = triangular fuzzy set �̃� parameters, and 

𝑏1, 𝑏2, 𝑏3 = triangular fuzzy set �̃� parameters. 

2.4.4.2 Fuzzy TOPSIS Steps 

The first step when using the fuzzy TOPSIS is computing the decision matrix. Let 

us assume there are m alternatives, n criteria and k decision makers to rate the criteria. 

The performance ratings of each decision maker k (k=1,2,…,K) for each alternative Aj 
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(j=1,2,..., n), with respect to criteria Ci (i=1,2,…,m), are defined as �̃�𝑘 = �̃�𝑖𝑗𝑘 with a 

membership function of 𝜇�̃�𝑘(𝑥), as defined in the equation below, if the triangular fuzzy 

set is used: 

 �̃�𝑖𝑗𝑘 = (𝑎𝑖𝑗𝑘, 𝑏𝑖𝑗𝑘, 𝑐𝑖𝑗𝑘)                                                       (2-27) 

where, 

             �̃�𝑖𝑗𝑘  = The performance ratings of each decision maker k for each 

                                    alternative Aj  with respect to criteria Ci, 

 𝑎𝑖𝑗𝑘 , 𝑏𝑖𝑗𝑘, 𝑐𝑖𝑗𝑘 = triangular fuzzy set �̃� parameters. 

Therefore, each element of the decision matrix, which is denoted as 𝑋𝑖𝑗 (i=1,2,…, 

m and j=1,2,…,n) is given by aggregating  �̃�𝑖𝑗𝑘, as shown below. 

�̃�𝑖𝑗 = (𝑎𝑖𝑗, 𝑏𝑖𝑗, 𝑐𝑖𝑗)                                                          (2-28) 

where, 

𝑎𝑖𝑗 = min(𝑎𝑖𝑗𝑘) , 

𝑏𝑖𝑗 =
∑ 𝑏𝑖𝑗𝑘
𝐾
𝑘=1

𝑘
  , and 

𝑐𝑖𝑗 = max (𝑐𝑖𝑗𝑘). 

Finally, the fuzzy decision matrix is constructed, as shown below. 

�̃� = [
�̃�11 ⋯ �̃�1𝑛
⋮ ⋱ ⋮
�̃�𝑚1 ⋯ �̃�𝑚𝑛

]         𝑖 = 1,2, … ,𝑚; 𝑗 = 1,2, … , 𝑛                (2-29) 

where  �̃� is the decision matrix. 

 

The second step is computing the criteria weights. The aggregated fuzzy weights 

�̃�𝑖𝑗 of each criterion are obtained using the following equation: 
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 �̃�𝑗 = (𝑤𝑗1, 𝑤𝑗2, 𝑤𝑗3)                                                   (2-30) 

where, 

            �̃�𝑗    = fuzzy weight for criterion j, 

𝑤𝑗1  = min(𝑎𝑗𝑘1), 

𝑤𝑗2  =
∑ 𝑤𝑗𝑘2
𝐾
𝑘=1

𝑘
 , and 

𝑤𝑗3  = max (𝑤𝑗𝑘3). 

In the third step, the decision matrix is normalized. The normalized fuzzy matrix 

R̃ is calculated using the following equation: 

�̃� = [�̃�𝑖𝑗]𝑚×𝑛 ,    𝑖 = 1,2, … ,𝑚; 𝑗 = 1,2, … , 𝑛                                (2-31) 

where, 

 

 𝑟𝑖𝑗 = (
𝑎𝑖𝑗

𝑐𝑗
∗ ,

𝑏𝑖𝑗

𝑐𝑗
∗ ,
𝑐𝑖𝑗

𝑐𝑗
∗)  ,            𝑐𝑗

∗ = 𝑀𝑎𝑥 ( 𝑐𝑖𝑗)         (Beneficial criteria) 

 𝑟𝑖𝑗 = (
𝑎𝑗
−

𝑐𝑖𝑗
,
𝑎𝑗
−

𝑏𝑖𝑗
,
𝑎𝑗
−

𝑎𝑖𝑗
)  ,            𝑎𝑗

− = 𝑀𝑖𝑛 ( 𝑎𝑖𝑗)        (Non-beneficial criteria) 

The weighted normalized matrix is computed in the fourth step. The weighted 

normalized matrix �̃� is obtained by multiplying the weights (�̃�𝑗) of criteria by the 

normalized fuzzy decision matrix �̃�𝑖𝑗, as shown below: 

�̃� = [�̃�𝑖𝑗]𝑚×𝑛                                                      (2-32) 

where, 

              �̃�    = weighted normalized matrix, and 

              𝑣𝑖𝑗  = 𝑟𝑖𝑗 ×𝑤𝑗. 
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The fuzzy positive ideal solution (FPIS) and fuzzy negative ideal solution (FNIS) 

are computed in the fifth step. The FPIS and FNIS for each alternative are calculated 

using the following equations:  

𝐴∗ = (�̃�1
∗, �̃�2

∗, … , �̃�𝑛
∗)                                             (2-33) 

where, 

             𝐴∗ = fuzzy positive ideal solution, 

 �̃�𝑗
∗ = 𝑚𝑎𝑥𝑖{𝑣𝑖𝑗3}, 𝑖 = 1,2, … ,𝑚;  𝑗 = 1,2, … , 𝑛.    

𝐴− = (�̃�1
−, �̃�2

−, … , �̃�𝑛
−)                                             (2-34) 

where, 

 

            𝐴− = fuzzy negative ideal solution, 

            �̃�𝑗
− = 𝑚𝑖𝑛𝑖{𝑣𝑖𝑗1}, 𝑖 = 1,2, … ,𝑚; 𝑗 = 1,2, … , 𝑛.         

In the sixth step, the distance of each alternative from FPIS and FNIS is 

computed. Each alternative distance from the FPIS and the FNIS is calculated, as shown 

below: 

𝑑𝑖
∗ = ∑ 𝑑𝑣(�̃�𝑖𝑗, �̃�𝑗

∗), 𝑖 = 1,2, … ,𝑚𝑛
𝑗=1                                        (2-35) 

where, 

 

             𝑑𝑖
∗         = distance of alternative i from the fuzzy positive ideal solution, and 

            𝑑𝑣(�̃�, �̃�) = distance between fuzzy numbers �̃� and �̃�. 

𝑑𝑖
− = ∑ 𝑑𝑣(�̃�𝑖𝑗 , �̃�𝑗

−), 𝑖 = 1,2, … ,𝑚𝑛
𝑗=1                                       (2-36) 

where 𝑑𝑖
− is the distance of alternative i from the fuzzy negative ideal solution. 
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Then, the closeness coefficient of each alternative is calculated. Each alternative’s 

closeness coefficient, 𝐶𝐶𝑖, is calculated, as shown below: 

𝐶𝐶𝑖 =
𝑑𝑖
−

𝑑𝑖
−+𝑑𝑖

∗   , 𝑖 = 1,2, … ,𝑚                                            (2-37) 

where 𝐶𝐶𝑖 is alternative i closeness coefficient. 

 

Finally, the alternatives are ranked based on this closeness coefficient in a 

descending order. The best alternative is closest to FPSI and farthest from FNIS (Awasthi 

et al. 2011).  

 Summary  2.5

Bottleneck management (recurrent and non-recurrent) is one of the crucial TMC 

functionalities that can help alleviate freeway congestion. Detection of bottlenecks and 

their attributes, including the identification of the extent (back-of-queue) is an important 

part of TMC’s operation. Timely bottleneck/incident detection has been the topic of 

many research papers starting in the 1970s. Several advanced algorithms have been 

proposed for bottleneck/incident detection ever since. Point-detectors and probes have 

been the source of data for most of these algorithms. There is a lack of studies on 

utilizing the connected vehicle data as an alternative source of data for bottleneck 

identification. It is necessary to assess the performance of the existing and emerging 

technologies in bottleneck identification by the new algorithms and use it as a basis for 

the alternative selection process. 

It is also necessary to identify a method to support the selection between legacy 

and emerging technologies for bottleneck management. Several MCDA methods have 

been developed to facilitate the decision-making process. The main MCDA methods 

were elaborated in this chapter. The basis for most of the MCDA methods is the same 



  

                                      59 

 

and includes: (1) assigning a weight to each evaluation criterion based on decision 

makers’ pairwise comparisons of the criteria; (2) assigning a score to each alternative 

based on the decision maker’s pairwise comparison of the alternatives for each criterion.  

The higher the score, the better the alternative with respect to the corresponding criterion; 

and (3) combining the criteria weights and alternative scores and generating a global 

score for each alternative. Among the MCDA methods reviewed in this chapter, the AHP 

method is one of the most widely used methods in the transportation field. With the 

introduction of CV technology, there is a need to utilize the MCDA methodology for ITS 

investment decision problems, as will be done in this study.  
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CHAPTER III 

3                                                  METHODOLOGY  

 INTRODUCTION 3.1

This chapter provides a detailed description of the methods developed and 

proposed as a part of this dissertation to achieve the defined objectives. The 

incident/bottleneck detection and queue estimation and warning methods were adopted 

from the literature and modified for the CV technology application. The performance of 

the adopted methods was tested using CV and point detector data and used in the 

proposed MCDA framework of this dissertation. The proposed MCDA method which is a 

combination of return on investment and AHP analysis was applied to an ITS investment 

case study for the purpose of alternative selection. 

  Figure 3-1 shows the general framework of the methodology used to accomplish 

the objectives of this research. The first part describes the data acquisition and 

processing. Multiple data sources were utilized to calibrate, develop, and test the models 

and methods used in this research work. As the focus of the study is on bottleneck 

management, two TMC-related CV applications that help manage bottlenecks were 

implemented as a part of the study framework to support agencies in the ITS investment 

decisions: incident/bottleneck detection and queue warning.  

The second part of this chapter presents proposed algorithms for 

incident/bottleneck detection and queue estimation and warning utilizing CV data. To test 

the developed algorithms, a one-lane blockage incident was modeled in a microscopic 

simulation to generate a bottleneck location for the purpose of this study. The simulation 

model was calibrated for the incident condition using real-world data (explained in the 
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data collection section). An incident/bottleneck detection algorithm inspired by the 

California method was developed and modified based on CV data to detect abnormalities 

in traffic behavior. The bottleneck and back-of-queue were detected based on the 

simulated connected vehicle data, and the queue warning message was disseminated 

dynamically at a specific location in the simulated corridor, upstream of the back-of-

queue using a DMS or connected vehicle on-board units (OBUs). The performance of the 

proposed algorithms, including the incident/bottleneck detection and back-of-queue 

estimation, was tested using simulated connected vehicle data, as well as simulated point 

detector data, to provide the basis for an alternative selection process utilizing MCDA.  

In the third part, a novel MCDA method composed of a stochastic return on 

investment and the AHP method is proposed. The approach is applied to a case study of 

freeway bottleneck management service, which includes incident/bottleneck detection 

and travel time estimation to support the selection between CV deployment and legacy 

detection technology. It should be noted that the application of this MCDA methodology 

can be applied to any other ITS service. 

 DATA COLLECTION AND PROCESSING 3.2

As mentioned in the previous section, data sources and modeling tools were used 

in this study to develop, calibrate and test the developed methods, as listed below: 

 The VISSIM micro-simulation was used to simulate traffic under normal and 

incident conditions. For both incident detection and queue warning applications, a 

virtual incident was created in the traffic simulation model. A real-world network 

was used to test the developed methods for incident detection, back-of-queue 
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estimation, and queue warning. The network is a 15-mile segment of the I-95 

southbound (SB) corridor in Broward County, Florida. 

 

 

 

 

 

 

Figure 3-1 Methodology Framework 

 Real-world data were used, which included speed and occupancy measurements 

from point detectors on I-95 SB and the associated incident database. In order to 

model an incident in VISSIM, a real-world incident on the I-95 SB facility was 

selected from the I-95 incident database. Then, using measurements from the 

point detectors, the traffic performance was calibrated for incident condition. 

 The Trajectory Conversion Algorithm (TCA) produced by the FHWA (2014) was 

used to emulate the connected vehicle data based on vehicle trajectory data 

Simulated Connected Vehicle Applications 

Automatic Incident/Bottleneck Detection Queue Warning and BOQ Estimation 

Multi-Criteria Decision Analysis 

Traffic Data and Tools 

Alternative Selection 

Bottleneck Identification 

Existing (Legacy) Data  

( 
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generated from simulation models. The TCA can read vehicle trajectories from 

simulations or real-world data and emulate the transmission of the Basic Safety 

Messages (BSM), Probe Data Messages (PDMs) and European Cooperative 

Awareness Messages (CAM).  The method of the study assumes that the speed of 

the vehicles will be estimated based on data collected from connected vehicles 

using the BSM, as specified in the SAE J2735 standards (2009).  

 The Surrogate Safety Assessment Model (SSAM) tool was used to evaluate the 

safety impacts of the tested queue warning system. SSAM is a tool developed by 

the FHWA for performing safety analysis of vehicle trajectory data generated by 

micro-simulation software to calculate the frequency of different types of 

conflicts, including crossing, lane-changing, and rear-end conflicts, and severity 

indicators such as time-to-collision (TTC) and post-encroachment time (PET). 

The tool computes safety surrogate measures for each conflict and then generates 

a summary of the surrogate measures, including the mean, maximum, minimum 

and variance. A conflict is a situation in which two vehicles approach each other 

so that there is a risk of collision if they continue their movements. TTC is 

estimated using the speed, position, and future trajectory of the two vehicles. If 

the estimated TTC is less than a threshold, the movement is identified as a 

conflict. The conflict type is another output of the SSAM tool that determines 

whether the conflict is related to rear-end, lane-change, or crossing movements 

(Gettman et al. 2008). 
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 TMC-BASED CONNECTED VEHICLE APPLICATIONS 3.3

Two TMC-based connected vehicle applications were implemented and assessed 

in this study: incident/bottleneck detection and queue warning. The detailed description 

of the proposed algorithms for each of the applications is provided below. 

3.3.1 Incident/Bottleneck Detection  

In this study, a freeway incident/bottleneck detection method based on a vehicle’s 

speed estimated by connected vehicle data inspired by the literature was developed. The 

speed is expected to change due to most incident conditions, although the change is 

expected to be a function of the congestion level with and without incidents. Minor 

incidents that do not attract some attention from the drivers to cause them to change their 

speeds will not be detected by this method.  The method of the study assumes that the 

speed of the vehicles will be estimated based on data collected from connected vehicles 

using the BSM of the SAE J2735 standards.  It is assumed that the BSM messages will be 

communicated to the infrastructure using DSRC, cellular communication or other 

communication technologies.  

The proposed method, which is referred to as the “Speed Difference Method,” is a 

simplified version of the California algorithm. This method is based on hypothesis testing 

of the occurrence of the incident in a segment (the hypothesis test segment) and aims to 

detect the abnormality in traffic conditions using a predefined threshold based on the 

acceptable probability of false alarms. The network is decomposed to “m” segments and 

the average speed of each segment is calculated at each time step. This method simply 

takes the average of the measurements in each segment during a time period (45 seconds 
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in this study), and if the difference between the downstream average speed and upstream 

average speed is more than a threshold, the location is identified as the incident location. 

The 99 percentile of speed difference distribution under the no-incident condition is 

selected as the threshold for testing the hypothesis for an incident on the subject segment. 

In other words, the probability of false alarm was set to 1% and the associated threshold 

was calculated. The process of providing inputs for the incident detection method is 

shown in Figure 3-2. 

 

 

 

 

 

 

Figure 3-2 Process of Providing Input for the Incident Detection Method 

 

The method was tested using the VISSIM microscopic simulation tool. VISSIM 

was used to emulate an incident occurring in a mixed connected vehicle and not 

connected vehicles in a traffic stream. The vehicle’s trajectories produced by VISSIM 

was fed to the TCA tool (2014) to emulate BSM messages generating from the 

simulation. Then, the generated BSM messages were input into the incident detection 

method to investigate its performance.  

Generate VISSIM Trajectory 
Under incident condition 

(.fzp) 

Emulate CV Data 
Running TCA and generating 

CV data which are input for the 

incident detection algorithm 

Apply Detection Algorithm 
Running the detection algorithm and 

determining the incident location and 

time using MATLAB 

Calculate Detection Threshold 
Using MATLAB to determine 

threshold 

Generate VISSIM Trajectory 
Under no-incident condition 

(.fzp) 
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3.3.1.1 VISSIM Calibration for Incident Condition 

A one-lane blockage incident was introduced into the traffic stream in the 

microscopic simulation model to emulate a non-recurrent bottleneck condition for the 

purpose of this study.  Since VISSIM cannot model incidents directly, the incident was 

modeled by creating a signal head in one lane of the freeway, and the rubbernecking 

effect was modeled by changing the car-following factors upstream of the incident 

location through the VISSIM COM interface.  

  The values of the car-following factors for the incident link during the incident 

conditions were changed based on values recommended in the literature. Knoop et al. 

(1990) explored driver behaviors under incident conditions by looking at the vehicles’ 

trajectories collected by a helicopter from two actual incidents. The results showed that 

the driver’s reaction time, headway distribution, and capacity are affected by the presence 

of the incident. A bimodal headway distribution, an increase in reaction time, and a 30% 

decrease in capacity were observed in incident conditions. Some researchers found that 

the incident impacts can be modeled by changing VISSIM car-following factors.  A 

detailed description of the VISSIM car modeling factors can be found in the VISSIM user 

manual (2012). A study of the VISSIM calibration parameters (Woody 2006) found that 

the CC0, CC1, CC2, CC4 and CC5 parameters have the most effect on the capacity of a 

freeway link. CC0 is the desired distance between stopped cars. CC1 is the desired time 

headway that the driver wants to keep from the leading vehicle. CC2 is the safety 

distance, which is the minimum distance a driver keeps from the leading vehicle. CC4 

and CC5 are the parameters controlling the speed differences between a following and 

leading vehicle. Increasing CC0, CC1, and the absolute value of the CC4/CC5 ratio result 
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in capacity reduction. Gomes et al. (2004) modified the CC1, CC2, and CC4/CC5 

parameters to model the capacity drops resulting from curvatures. The calibrated 

parameters for the studied freeway segment were CC1, CC2, and CC4/CC5, with the 

values of 1.7, 0.9 and -2/2, respectively. Rahman et al. (2014) found that the car-

following values proposed in prior studies for incident modeling produced better results 

in terms of macroscopic measures, compared to the default values. Rompis et al. (2014) 

developed a methodology for VISSIM calibration based on the kinematic queuing theory. 

In this study, incidents were modeled by coding a traffic signal in VISSIM. Based on the 

results from the reviewed studies, the CC0, CC1 and CC2 values were changed to 

replicate the actual freeway operation under incident conditions. 

3.3.2 Queue Warning 

In the previous section, the incident detection method based on CV data, as 

utilized in this study, was explained. Once the incident is detected, the back-of-queue 

estimation algorithm and queue warning are activated in the simulation model. To 

identify the back-of-queue, the segments are sorted based on their position, compared to 

the incident location. If a segment average speed is below a threshold, the segment is 

considered queued. The algorithm continues to test if the next upstream segment is 

queued and the first unqueued segment upstream of the incident is declared as the back-

of-queue. The BOQ estimation algorithm is shown in Figure 3-3. Lastly, the performance 

of the connected vehicle-based BOQ detection is compared with the ground truth queue 

based on VISSIM results and with the queue estimated based on point detection in the 

simulation. The point detector-based BOQ algorithm is taken from the Pesti et al. (2013) 

study, which estimates the location of queue using the following equation. 
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𝑋 = 𝑋𝐷𝐸𝑇(𝑖) +
1

2
∆𝑋𝐷𝐸𝑇                                                   (3-1)       

where, 

                 𝑋 = back-of-queue location, 

                𝑋𝐷𝐸𝑇(𝑖) = distance from the incident location to the speed detector i, and 

                ∆𝑋𝐷𝐸𝑇 = detector spacing. 

 

 
Figure 3-3 Back-of-Queue (BOQ) Estimation Algorithm 

The queue warning system is activated when the incident (or recurrent bottleneck) 

is detected and the queue starts growing. In this study, the queue warning impact is 

modeled by changing a certain percentage of a vehicle’s speed upstream of the queue 

using the VISSIM COM interface. It is assumed that the back-of-queue is detected by the 

connected vehicle data and the queue warning message is shown dynamically at a 

specific location upstream of the back-of-queue using a DMS or connected vehicle on-

board units (OBUs). The proportions of vehicles changing speeds in response to OBU 
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messages reflect the number of connected vehicles equipped with OBU and driver 

acceptance of the message advisory. In the future, with the introduction of connected 

automated vehicles, the response to queue warning messages will be set automatically by 

the vehicle, and the driver acceptance will become less of a factor.  

The vehicle’s trajectories produced by VISSIM are fed to the TCA tool to emulate 

BSM messages generating from the simulated vehicles. The generated BSM messages are 

input to the incident and BOQ detection algorithms utilized in this study to investigate 

their performances. The trajectories of the simulated vehicles are also input to the SSAM 

tool to obtain safety surrogate measures to analyze the safety benefits of the queue 

warning system.  

 INVESTMENT DECISION SUPPORT METHODOLOGY 3.4

Decisions to invest in alternative ITS technologies to support transportation 

system management and operations (TSMO) are expected to increase in complexity, 

particularly with the introduction of CV and automated vehicles (AV) in the coming 

years. 

Although the rate of deployment of new technologies is highly uncertain, CV and 

AV technologies promise significant potential savings and opportunities for TSMO 

applications. Traditionally, ITS technology and associated strategy alternatives have been 

assessed using return on investment analyses that utilize methods like deterministic Net 

Present Value (NPV) and Discounted Cash Flow (DCF). For example, the traditional 

NPV method involves deterministic estimates of the present values of the current and 

future benefits and costs over the project’s life. Discount rates are used to calculate the 

present value of cash flows. These methods are unable to capture the risks and 
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uncertainties associated with the investment problem (Wright et al. 2014). The Monte 

Carlo method (Boyle 1977) is capable of integrating multiple sources of uncertainty and 

has been used in various fields to account for uncertainty by expressing cost and benefit 

parameters as probability distributions rather than as fixed values (Yang et al. 2007, 

Neufville et al. 2011, Sullivan et al. 1982, Cox et al. 1999). Therefore, the Monte Carlo 

simulation method was selected for use to account for the uncertainty in traffic flow. 

Measures that are difficult to be assessed in dollar values cannot be accounted for 

using the economic return on investment analysis methods. In addition, these methods 

cannot account for agency preferences and constraints that cannot be converted to dollar 

values. Thus, these methods are not fully adequate for use in assessing technology 

alternatives (Sullivan 1985). As described in the review of the literature section, MCDA 

methods have been proposed to account for both qualitative and quantitative factors in 

the decision-making process.    

Among the MCDA methods reviewed in Chapter II, the AHP method developed 

by Saaty (1980) has been the most widely used in various disciplines, including 

transportation engineering. According to the Macharis et al. (2005) study, 33% of the 

reviewed publications on utilizing MCDA in the transportation field used AHP or a 

variant of AHP in their analysis.  Hence, the AHP method was selected for use in this 

study. 

This study proposes a combination of a stochastic NPV and the AHP method to 

select between ITS deployment alternatives with consideration of emerging technologies. 

The approach is applied to the selection between CV deployment and legacy detection 

technology to support the freeway traffic data collection and monitoring service, which 
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includes incident detection and travel time estimation. It should be noted that the 

application to the data collection and monitoring service is utilized as a case study, and 

the methodology can be applied to any other ITS services. The stochastic NPV analysis 

utilizes a Monte Carlo approach to account for uncertainty in the estimation of the 

benefits and costs of utilizing CV versus the legacy systems. The AHP method involves 

the consideration of various criteria and measures weighed by agency priorities and 

preferences. This approach considers these priorities and preferences, in addition to 

accounting for measures that cannot be converted to dollar values. Both of these 

considerations are not possible with the NPV analysis. The results from the NPV analysis 

are included as one of the four objectives defined in the AHP evaluation. The other three 

objectives are the provision of the required functions, achieving the required 

performance, and minimizing the risks and constraints. The results of the selection among 

the various alternatives are expected to be dependent on the input parameters, which are 

different for different agencies and locations.   

A four-level decision-making hierarchy according to the AHP method is defined 

for the purpose of alternative selection in this study, as shown in Table 3-1. The top level 

of the decision hierarchy or the goal for the case study service is “To select between CV 

and existing detection technologies for providing traffic data collection and monitoring 

service.” The two middle levels of the hierarchy include the overall objectives and the 

sub-criteria associated with each of the objectives, and the lower level is the alternative 

level. The monetizable measures are assessed in the stochastic NPV analysis using the 

Monte Carlo simulation, and the NPV results are included as a criterion in the AHP 

analysis. The non-monetizable measures are included as additional measures in the AHP 
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analysis. The NPV and AHP analysis, as conducted in this study, are discussed in more 

details in the following subsections.  

Table 3-1 Criteria for Selection between Emerging and Existing Traffic Monitoring 

and Data Collection Technologies 

Goal Objectives Sub-Criteria Alternatives 

Selecting between CV and 

existing detection 

technologies for providing 

traffic data collection and 

monitoring service 

1-Provision 

of the 

required 

functions 

1.1- Ability to measure travel 

time 

Alternative 1: 

Point 

detectors 

 

Alternative 2: 

Connected 

vehicles 

1.2- Ability to measure  volume 

and/or density 

1.3- Ability to measure  new 

measures (acceleration noise, 

stops, breaks, wiper on/off, light 

on/off, emission, potential for 

crashes etc.) 

2-Achieving 

the required 

performance 

2.1-Mean absolute error in 

measurement 

2.2-Stdandard deviation of error 

of measurement  

2-3 Detection timeliness 

3-Minimizing 

the risks and 

constraints 

3.1-Technology uncertainty 

3.2-Standard stability 

3.3-Uncertainty in business 

model 

3.4-Data archiving and 

processing and technical skill 

concerns 

3.5-Funding (initial and 

recurring) 

3.6-Data availability and sharing 

concern 

3.7-Security and privacy 

concerns 

4-

Maximizing 

the return on 

investment 

based on 

NPV  

4.1-Median present worth (based 

on Monte Carlo analysis) 

4.2- 15% present worth (based 

on Monte Carlo analysis) 

3.4.1 NPV Analysis 

Maximizing the return on investment is one of the criteria included in this study’s 

MCDA analysis, as indicated in Table 3-1. As stated earlier, this study utilizes a 
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stochastic approach based on the Monte Carlo analysis to estimate the NPV. This section 

describes the assessment of the return on investment of utilizing connected vehicle data 

versus traditional point-detector data to detect freeway incidents, and collect travel time 

information using a case study of a 15-mile long freeway facility in Florida. Unlike the 

traditional return on investment analysis, which calculates deterministic point estimates 

of the NPV of the project’s alternatives, the NPV analysis of this study employs a Monte 

Carlo simulation to account for the uncertainties involved in the assessment and generates 

a distribution for each alternative’s NPV. To calculate the NPV, the alternative benefits 

and costs need to be calculated first, as discussed in the following subsections. 

3.4.1.1 Traffic Data Collection and Monitoring Benefits 

The incremental benefits of traffic monitoring technology alternatives are 

assumed to result from: 1) faster incident/bottleneck detection that results in lower 

delays; and 2) more accurate traveler time estimation that results in better diversion 

decisions.   

The first part of the benefits is due to faster incident/bottleneck detection. To 

evaluate the two alternatives of this study (CV versus point detectors), a base case was 

defined and the benefit, in terms of delay reduction, of each alternative was calculated 

relative to the base case, as shown in the following equation. The defined base case is 

“No detection technology,” which involves detection utilizing service patrol, police calls, 

CCTV monitoring, and other “manual” methods, but no infrastructure-based incident 

detection. 

𝐼𝑛𝑐𝑖𝑑𝑒𝑛𝑡 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝐵𝑒𝑛𝑒𝑓𝑖𝑡𝑖 = (𝑇𝐷𝑏𝑎𝑠𝑒 − 𝑇𝐷𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒) × 𝑉𝑂𝑇 × 𝐼𝐹𝑖    (3-2) 

 

where, 
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 𝑇𝐷𝑏𝑎𝑠𝑒 = total delay of the base alternative (veh-hr), 

 𝑇𝐷𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 = total delay of the alternative (veh-hr),  

 VOT  = value of time (dollars), and 

 𝐼𝐹𝑖  = total number of incidents for the i
th

 year.  

The benefits of using CV data versus point detector data were calculated using the 

difference between the benefits in delay when utilizing CV data for detection (𝑇𝐷𝐶𝑉) in 

veh-hr and the benefits in delay when using detector data for detection (𝑇𝐷𝑑𝑒𝑡𝑒𝑐𝑡𝑜𝑟). The 

delay saving of incident detection is assessed using queuing theory equations (May 1990) 

that calculate the total delay (TD) based on demand, capacity, and incident duration, as 

follows: 

𝑇𝐷 = 𝑡𝑅𝑡𝑄(𝜆−𝜇𝑅)/2                                   (3-3) 

𝑡𝑄 = 𝑡𝑅(𝜇−𝜇𝑅)/(𝜇 − 𝜆)                                                      (3-4) 

where, 

  𝜆 = arrival rate (demand) (vph), 

  𝜇 = departure rate (vph), 

  𝜇𝑅 = reduced capacity rate under metering for ramps or under non-recurrent 

               conditions for the mainline (vph), 

  𝑡𝑅 = event duration (hr), and 

  𝑡𝑄 = time in queue duration (hr). 

An important input to the calculation of delay in the above equations is the 

reduction in the incident duration due to the reduction in the detection time resulting from 

applying the alternative detection technology. The incident detection time based on CV 
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data and traffic detector data were derived based on simulation results and are presented 

in Chapter IV. The general format of the developed equations is shown below, with the 

derived equations presented in Chapter IV: 

𝑀𝑇𝑇𝐷𝐶𝑉 = 𝑓(𝑀𝑃,
𝑣

𝑐
)                                           (3-5) 

where, 

   𝑀𝑇𝑇𝐷𝐶𝑉 = mean time to detect using CV data (min),  

   MP  = CV market penetration (%), 

   v  = volume (vph), and  

   c  = capacity (vph).   

𝑀𝑇𝑇𝐷𝑑𝑒𝑡𝑒𝑐𝑡𝑜𝑟 = 𝑓(𝐷,
𝑣

𝑐
)                                              (3-6) 

where, 

  𝑀𝑇𝑇𝐷𝑑𝑒𝑡𝑒𝑐𝑡𝑜𝑟 = mean time to detect using detector data (min), and  

  D  = distance between the closest upstream point detector to the 

                           incident location (ft)     

Equations 3-2 to 3-6 include several stochastic variables that result in uncertainty 

in the benefit analysis. The uncertainty in the incident rate, CV market penetration, traffic 

demand, incident location with respect to the point detectors, incident detection time 

without infrastructure detection, and the value of time were accounted for by varying 

these variables in the Monte Carlo analysis, specifically by expressing the variables as 

distributions rather than point estimates. The parameters of the distributions utilized in 

this study were borrowed from previous studies. The lane blockage incident rate was 

assumed to have a Poisson distribution, with a mean of 0.616 per million VMT per hour 

per lane, based on a previous study by the authors for the same location of the study area 
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(Hadi et al. 2008). The variance of the Poisson distribution is equal to the mean. The 

utilized VOT stochastic distribution in the Monte Carlo simulation is calculated based on 

a distribution derived in a study by Hossan et al. (2016). The travel demand is assumed to 

have a fixed coefficient of variation calculated based on real-world data in Florida and 

with the mean demands changing according to a uniformly distributed random annual 

growth rate between 0.5% and 1.5%. The location of the incident is assumed to vary 

according to a uniform distribution between 20 ft and 2,250 ft from the upstream 

detector, with a detector spacing of half a mile.   

The base case incident detection time (no detection technology) is assumed to 

follow a normal distribution with a mean of 6.856 minutes and a standard deviation of 

1.782 minutes for detection based on the service patrol, a mean of 4.63 minutes, and a 

standard deviation of 3.273 minutes for detection using other methods (CCTV, FHP, and 

other manual methods), as estimated by Qiang et al. for the study area (Qiang et al. 

2009). These distributions are used in the Monte Carlo simulation to determine the 

detection time with no detection technology. The connected vehicle market penetration is 

assumed to follow a lognormal distribution, as derived in a study by Iqbal et al. (2017). 

The second part of the benefits is due to providing more accurate travel time 

information. The benefits of travel time accuracy in terms of the impact on diversion 

decisions made by travelers during incidents were also included in the return on 

investment analysis. The Standard Deviation of Percentage Error (SDPE) was used as a 

measure to estimate the reliability of the information since this measure was associated 

with the dollar value in a previous study. The SPDE with point traffic detection was 

calculated by assuming a random value between 10% and 20%, based on a previous 
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assessment of this parameter for estimating travel time during incident conditions (Xiao 

2011). The SPDE of travel time estimated based on CV data was calculated as a function 

of the stochastic CV market penetration using the following equation (Hadi 2017):  

𝑆𝑃𝐷𝐸 =  25.15 − 19.81 cos (
𝑣

𝑐
) − 0.75 log(𝑀𝑃) − 11.56

𝑣

𝑐
 + 0.02 (MP)      (3-7) 

 

where, 

 

𝑆𝑃𝐷𝐸 = standard deviation of percentage error, 

v = volume (vph),  

c = capacity (vph), and 

MP = CV proportion.  

To convert the travel time estimation error impact on traveler diversion decisions 

to dollar values, the relationship developed by Toppen et al. (2003) was used, which 

converts the SDPE measures to dollar values,  as shown in the following equation:  

𝑆 = 1.2 − 0.003918 × 𝑆𝑃𝐷𝐸𝑖
2                                                         (3-8) 

where, 

S = monetary value of travel time accuracy per trip ($), and 

SPDEi = i
th

 year travel time standard deviation of percentage error. 

The yearly benefits of travel time accuracy were then calculated by multiplying 

the dollar value obtained from Equation 3-8 by the yearly number of trips passing the 

incident location in the presence of queue and were willing to divert, as shown in the 

equation below: 

𝑇𝑇 𝐴𝑐𝑐𝑢𝑎𝑟𝑐𝑦 𝐵𝑒𝑛𝑒𝑓𝑖𝑡𝑖 = (1.2 − 0.003918 × 𝑆𝑃𝐷𝐸𝑖
2) ∗ 𝑡𝑄𝑖 × 𝐷𝑖 × 𝐼𝐹𝑖 × 𝐷𝑅𝑖      (3-9)          

where, 

  𝑇𝑇 𝐴𝑐𝑐𝑢𝑎𝑟𝑐𝑦 𝐵𝑒𝑛𝑒𝑓𝑖𝑡𝑖 = i
th

 year travel time accuracy benefit, 
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  SPDEi   = i
th

 year travel time standard deviation of error, 

  𝑡𝑄𝑖    = i
th

 year queue duration calculated using the 

                                                          queuing theory as presented  in Equation 3-4,  

  𝐷𝑖    = i
th

 year travel demand, 

  𝐼𝐹𝑖    = i
th

 year incident frequency, and 

 𝐷𝑅𝑖    = i
th

 year diversion rate. 

The diversion rate is assumed to be a random value between 20% and 40%. It 

should be noted that as with the calculation of the incident detection benefits, as reported 

in the previous section, variables in the above equation are considered random variables 

in the Monte Carlo analysis. The user of the methodology can change the parameters of 

the variable distributions if information is available based on additional research or local 

conditions.  

3.4.1.2 Traffic Data Collection/ Monitoring Deployment Costs 

Based on the Florida Department of Transportation’s (FDOT) District 6 cost 

database, the point detector cost at each location is estimated to be $21,800. This cost 

includes capital, replacement, calibration, maintenance, design, and mobilization costs. It 

is assumed that these detectors are installed at a half-mile interval, resulting in a total 

capital cost of $665,200 for the 15-mile segment of study. The connected vehicle 

deployment costs were extracted from “The Life Cycle Cost Model (LCCM)” developed 

by the Federal Highway Administration (FHWA) (2015). With this tool, the user is asked 

to specify the CV Vehicle-to-Infrastructure (V2I) application of interest, as well as other 

questions to determine the quantities of the components required for the application 

deployment. If necessary, other types of costs such as backhaul communication upgrades 
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can be added by the user. The unit costs pertinent to the CV deployment are shown in 

Table 3-2. The segment length is assumed to be 1 mile; therefore, the study corridor 

includes 15 segments. The total cost of CV deployment for a 15-mile corridor was 

estimated to be $609,100. Due to the uncertainty in the CV costs, it is assumed that the 

cost varies within 15% of these values, according to a uniform distribution. 

Table 3-2 CV Deployment Unit Costs 

Roadside Equipment (RSEs) 

Unit Cost $11,000 

Number of units per segment 1 

Installation Cost $3550 

Operation and Maintenance Cost $11,550 

System Engineering Cost $16,500 

RSE Planning & Design 

Unit Cost $6,650 

Number of units per segment 1 

System Engineering Cost $9,975 

3.4.2 Analytical Hierarchy Process Application 

As mentioned earlier, the AHP method was selected to perform the multi-criteria 

decision analysis of this study. The AHP method decomposes the decision criteria into a 

hierarchy by reducing the number of criteria for comparison at each level, thus 

simplifying the structure of the comparison of the relative importance of these criteria, 

along with considering the number of criteria that may still need to be examined.  Both 

quantitative and qualitative criteria can be assessed using this method. The pairwise 

comparison by the decision makers facilitates the estimation of the weights of the criteria, 

and the consistency in the judgment between different comparisons can be checked. The 

method is also generally easy to apply using a spreadsheet or commercial off-the-shelve 

tools that have more advanced analysis and visualization capabilities of the decision-

making elements and results. The AHP method has three steps: calculating the weights 
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for each criteria (vector of criteria weights), calculating the rating for each alternative 

with respect to each criterion (matrix of alternative scores), and calculating the weighted 

average rating for each alternative and ranking them. These steps were described in 

Chapter II.  

 SUMMARY 3.5

In this chapter, data sources to calibrate, develop, and test the models and 

methods used in this research work were explained. Methods inspired by the literature 

were developed for incident/bottleneck detection and queue warning and estimation 

based on connected vehicle data. Finally, a novel MCDA framework which is a 

combination of a stochastic return on investment and AHP method was proposed as a part 

of this dissertation to support the ITS investment decisions.  
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CHAPTER IV 

4                                             ANALYSIS RESULTS 

 INTRODUCTION 4.1

As stated in the methodology chapter, microsimulation was used to evaluate the 

performance of the methods developed in this study. This chapter presents the results 

from applying the methodology. First, the performance of the incident/bottleneck 

detection was tested using simulated both CV and point-detector data. In the second part, 

the queue length resulting from the bottleneck is estimated using both simulated CV and 

point-detector data. Once the queue is detected by the developed algorithm, the queue 

warning system is assumed to be activated by delivering messages to the drivers ahead of 

the bottleneck. The safety impacts of the implemented queue warning system is then 

examined and presented. The third part shows the application of the developed AHP 

method to a bottleneck management case study utilizing the performance measures 

obtained from the first part. The results of the AHP application and the selection between 

CV deployment and legacy detection technology are presented in the third part.  

 INCIDENT/BOTTLENECK DETECTION RESULTS 4.2

The developed incident/bottleneck detection algorithm presented in Chapter III 

was tested using CV data and traffic detector data. The detection time based on the point 

detectors was derived in this study based on simulation results, as shown below: 

𝑀𝑇𝑇𝐷𝑑𝑒𝑡𝑒𝑐𝑡𝑜𝑟 = 4.375 − (6.427 ×
𝑣

𝑐
) + (0.003 × 𝑋)                           (4-1) 

where, 

𝑀𝑇𝑇𝐷𝑑𝑒𝑡𝑒𝑐𝑡𝑜𝑟 = mean time to detect using detector data (min),  
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X  = distance between the closest upstream point detector to the 

                            incident location (ft),     

v  = volume (vph), and  

         c  = capacity (vph).   

The detection time based on CV data in the Monte Carlo simulation was 

estimated as a function of the stochastic CV market penetration and volume levels, as 

shown in Table 4-2. The results in Table 4-1 are based on emulated CVs utilizing 

microscopic simulation combined with a Monte Carlo analysis with multiple runs that 

randomly assign connectivity to the vehicles since the position of the connected vehicles 

relative to the bottleneck location affects the results. One hundred runs were performed 

for each of the tested demand level and CV market penetration combinations. The 

investigated v/c ratios were 0.36, 0.5, 0.72, 0.86, and 1.01, and the CV proportions were 

1, 3, 6, 9 and 15 percent. The Monte Carlo run results are shown in Table 4-1. As can be 

seen, the median and different percentiles of the MTTD vary as a function of the market 

penetration and volume.  It is interesting to note that the simulation shows that even at 

low market penetrations (1%), the median and average MTTD are around 1.5 minutes. 

However, at such low market penetration, the 90th and 95th percentile MTTD can be 

between 3.0 minutes and 4.5 minutes, and between 4.5 and 6.75 minutes, respectively. 

The results from the Monte Carlo runs were used to develop regression equations 

to allow the calculation of the MTTD at a certain CV proportion and volume level 

combination. Table 4-2 shows the equations derived for the 80
th

 and 95
th

 percentiles of 

the MTTD in minutes. The result shows that the MTTD decreases as the v/c ratio and CV 

market penetration (MP) increase. It should be noted that the equations in Table 4-2 are 
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applicable to one-lane blockage incidents on four-lane freeways. The equations are also 

applicable when the v/c ratio is greater than 0.4. This is because the incident is not 

detectable based on speed for v/c less than 0.4 with the utilized methodology, as there is 

no queue formed and no speed reduction, at least in the microscopic simulation model 

(queue may form in real world at this v/c ratio). 

 QUEUE ESTIMATION AND WARNING RESULTS 4.3

To test the queue estimation and warning methods presented in this study, a total of 

40 scenarios with different CV penetrations and TCA seed numbers were evaluated (4 

different CV penetrations and for each one, 10 TCA runs with different seed numbers 

were performed). The purpose of having multiple TCA runs is to randomly assign 

connectivity to the vehicles, since the position of the connected vehicles relative to the 

bottleneck location affects the accuracy of the results. To confirm that the 10 TCA runs 

are sufficient, the required numbers of runs at the 95% confidence level were estimated 

using the following equation:   

                                                                     n = 
σ2*t2

e2
                                                                   (4-4) 

where, 

  σ = standard deviation of the measurements, 

  t = associated t value with the 95% confidence interval (T distribution), and  

  e = the acceptable measurement error (assumed to be 200 ft in this study). 
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Table 4-1 Mean Time to Detect (MTTD) for Different CV Market Penetrations and 

Different v/c Ratio 

v/c MP*(%) No. of TCA Runs SD** Median (min) 80% (min) 90%(min) 95%(min) 

0.43 

1 130 1.56 2.25 3 4.5 5.25 

3 30 0.68 1.5 1.5 2.25 3 

6 30 0.42 0.75 1.5 1.5 1.5 

9 20 0.43 0.75 1.5 1.5 1.5 

15 10 0.32 0.75 0.75 1.5 1.5 

0.58 

1 120 1.66 1.5 3 4.5 5.25 

3 60 0.49 0.75 1.5 1.5 2.25 

6 30 0.43 0.75 0.75 0.75 1.5 

9 20 0.08 0.75 0.75 0.75 0.75 

15 10 0 0.75 0.75 0.75 0.75 

0.61 

1 100 1.8 1.5 3 3.75 6.75 

3 20 0.51 0.75 1.5 1.575 2.25 

6 10 0 0.75 0.75 0.75 0.75 

9 10 0 0.75 0.75 0.75 0.75 

15 10 0 0.75 0.75 0.75 0.75 

0.73 

1 70 1.29 1.5 2.4 3 4.5 

3 30 0.39 0.75 1.5 1.5 1.5 

6 10 0.32 0.75 0.75 1.5 1.5 

9 10 0 0.75 0.75 0.75 0.75 

15 10 0 0.75 0.75 0.75 0.75 

0.86 

1 130 1.61 1.5 3 4.5 5.7 

3 30 0.45 0.75 1.5 1.5 2 

6 20 0.27 0.75 0.75 1.5 1.5 

9 10 0 0.75 0.75 0.75 0.75 

15 10 0 0.75 0.75 0.75 0.75 

*MP: Market Penetration 

**SD: Standard Deviation 
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Table 4-2 Derived Equations for MTTD for Different CV Proportions and 

Different v/c Ratios 

 Mean Time to Detect (MTTD) (80%)  

Equation 









 %6563.54649.51

%675.0
×)/( MPe

MP
MTTD

MPcv
  (4-2) 

Coefficients 

Statistics 

Coefficients Std. Error t value Pr(>|t|)     

𝛽0 7.447 -6.936 0.000 

𝛽1 7.607 7.173 0.000 

Multiple R-squared:   0.798 

Adjusted R-squared:  0.783 

 Mean Time to Detect (MTTD) (95%)  

Equation 








 %6192.108892.102

%675.0
×)/( MPe

MP
MTTD

MPcv
 

 (4-3) 

Coefficients 

Statistics 

Coefficients Std. Error t value Pr(>|t|)     

𝛽0 20.864 -4.931 0.000 

𝛽1 21.313 5.076 0.000 

Multiple R-squared:   0.665 

Adjusted R-squared:  0.639 

 

The calculated required numbers of runs for the 3% market penetration was 9 

runs, and 2 runs for 6%, 9% and 15%, confirming that 10 runs were sufficient.   

The generated BSMs were fed to the detection algorithms, and the bottleneck 

location and back of queue were determined each minute. The detected back-of-queue 

was compared with the ones detected by the VISSIM full trajectory, and the error 

percentage for each time step was calculated using the equation below. 

Error(i,k)=100×
(BOQ

Cik
)-(BOQ

GTi
)

BOQ
GTi

                                            (4-5) 

where, 

 Error (i,k) = error percentage at time step i for the k
th

 TCA run, 

 BOQ_Cik = back-of-queue estimated by connected vehicle data at time step i 

                           for the k
th

 TCA run, and 
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 BOQ_GTi = back-of-queue estimated by full VISSIM trajectory at time step i. 

The average error over different time steps for each run k was calculated using 

Equation 4-6, and is shown in Figure 4-1.  As shown in this figure, the average error 

decreased with the increasing the market penetration.  

Average_Error(k)=
∑ Error(i,k)10

i=1

10
                                               (4-6)                                            

 
Figure 4-1 Average Error Percentages for Each Run 

The median and error range for each market penetration is shown in Table 4-3. 

The median error for the 3%, 6%, 9% and 15% CV penetrations were 6.52%, 3.72%, 

2.94% and 2.36% respectively. The detector-based error was calculated as 49.53%, 

compared to the VISSIM simulation ground truth.  
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Table 4-3 Error Percentage for Each Market Penetration Rate 

Market Penetration Rate 

(%) 

Error Range (%) Median Error (%) 

3 3.86 to 12.68 6.52 

6 2.25 to 5.37 3.72 

9 2.03 to 6.3 2.94 

15 1.36 to 3.22 2.4 

Figures 4-2(a) and 4-2(b) show the estimated queue lengths associated with 

results  from the worst run (the run that produced the largest error among the 10 runs for 

a given scenario) and the median runs that produced the median error of the 10 TCA runs 

for the four different CV penetrations versus the ones estimated based on detector data 

and emulated CV vehicles for 100% market penetration based on simulation trajectories 

of all vehicles. As can be seen in Figure 4-2, even the worst estimated queue lengths of 

the ten TCA runs are better than the ones estimated by the point detectors, compared to 

ground truth. However, with a low market penetration (3%), although the median of the 

runs produced accurate results at all the time intervals, the worst TCA runs produced 

errors at the beginning of the formation and dissipation of the queue, as shown for the 8
th

 

and 23
rd 

minute in Figure 4-2 (a). This reflects the lower number of vehicles in shorter 

queues. It should be mentioned, however, that with the expected National Highway 

Transportation Safety Administration (NHTSA) mandating CV technologies on all new 

vehicles, it is forecasted that the CV market penetration will be around 5-7% in the first 

year that this mandate becomes effective, considering the rate at which new vehicles are 

introduced in the traffic stream (Wright et al. 2014). The results from this study were also 

examined to determine how fast the bottleneck that starts the queue buildup is detected. It 

was found that the bottleneck was detected 4 minutes sooner with connected vehicle data, 

compared to point detectors at all the market penetration rates, as shown in Figure 4-2.  
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(a) Estimated queue lengths associated with the worst run vs. detector-based and 

ground truth 

 

 
(b) Estimated queue lengths associated with the median run vs. detector-based 

and ground truth 

 

MP: Market Penetration of connected vehicles in the traffic stream. 

Figure 4-2 Estimated Queue Lengths by Connected Vehicle Data vs. 

Detector-Based and Ground Truth-Results Associated with (a) Worst TCA Run (b) 
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Once the queue is detected by the developed algorithm, the queue warning system 

is assumed to be activated by delivering messages to the drivers ahead of the bottleneck. 

In order to implement the queue warning system, a driver’s response to the queue 

warning messages needs to be known or estimated. Li et al. (2010) conducted a study of 

the effectiveness of PCMS messages (“Road Work Ahead”) on reducing vehicle speeds 

in rural highway work zones. The work zone was located on U.S.-36 and U.S.-73 in 

Kansas. The study concluded that the vehicle speeds decreased by 4.7 mph over a 

distance of 500 ft when the PCMS was turned on.  Richards and Dudeck (1986) found, 

based on a field study, that when using DMS as a speed control device in work zones, 

vehicle speeds were reduced by 7 mph on average. Zech et al. (2008) evaluated the 

effectiveness of three DMS messages on vehicle speed and variance reduction in highway 

work zones. The effective message decreased the speed by 3.3 mph-6.7 mph. Dixon and 

Wang (2002) found a 6-7 mph reduction in vehicle speed in the immediate vicinity of 

DMS signs providing advanced warnings of DMS. Garber and Patel (1995) concluded 

that vehicle speeds decreased by 6 mph due to a DMS posted ahead of work zones.  A 

similar study by McCoy et al. (1995) reported that DMS activation resulted in a 4 to 5 

mph reduction in vehicle speed, and the percentage of drivers exceeding the speed limit 

(45 mph) decreased by 20 to 40 percent. This study assumed that the messages are 

delivered using OBUs or DMS located about one mile ahead of the maximum queue 

length. The complying drivers were assumed to reduce their speed by 10 mph and as a 

result, the average speed of the warning zone decreased by 3 to 10 mph, depending on the 

compliance rate with the QWS. 
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 The next step was to examine the safety impacts of the QWS. The trajectory file 

was imported into the SSAM tool to estimate the surrogate safety performance measures. 

In this study, the trajectories with and without queue warning were imported into the 

SSAM tool to investigate the effects of the implemented queue warning system on the 

number of rear-end conflicts. The tested compliance rates were 3%, 5%, 10%, 15%, 20%, 

30%, 50% and 70%. The compliance rate with the QWS was assumed to be the 

combination of compliance with the DMS signs and the OBUs. One hundred SSAM runs 

were performed for each compliance rate, and a t-test with a significance level of 0.05 

was conducted for each scenario. The results of the t-test are shown in Table 4-4. The 

mean number of rear-end conflicts over 100 SSAM runs for each compliance percentage 

scenario, as presented in the third column of the table, was compared with the mean 

conflicts of the base conditions, which is the no queue warning scenario or zero 

compliance (first cell of the third column). The significance of the reduction in the 

conflicts with different compliance rates was determined. The mean difference in the fifth 

column is the difference between the mean of each scenario (with a specific compliance 

rate) and the mean of no queue warning scenario. As shown in Table 4-4, the reduction in 

the number of rear-end conflicts becomes significant when the compliance with the queue 

warning messages is more than 15%. Most of the expected safety benefits are expected to 

be achieved when reaching a 50% compliance rate, as the difference in the percentage 

reduction in rear-end conflicts between 50% and 70% compliance rates is very small.  

 MCDA APPLICATION RESULTS 4.4

This section illustrates the application of the MCDA methodology that combines 

the stochastic return on investment analysis and the AHP, as described earlier in a case 



  

                                      91 

 

study in southeast Florida. The case study addresses an investment decision for a 15-mile 

segment of a freeway corridor with two assumed volume demand levels: moderate and 

light traffic (v/c ratio=0.8 and v/c ratio=0.4). The different volume levels affect the 

number of CV vehicles available to provide vehicles in the traffic stream and thus the 

quality of travel time estimation, as shown in Equation 3-7. 

Table 4-4 Statistical Analyses of the Impacts of QWS on the Number of Rear-End 

Conflicts Utilizing SSAM Model Results 

SSAM 

Measure 

Compliance 

with the  

queue  

warning 

System 

Mean 

No.  

of  

Conflicts 

Sig. 

Mean  

difference 

Relative  

to No QWS 

Difference 

Percentage 

Relative  

to  

No QWS (%) 

t-value of  

the test to 

 determine  

the  

significance 

 of  

the difference 

t-critical 

Rear-end 

Conflicts 

0% (No Queue 

Warning) 
6589.16 NA NA NA NA NA 

2% 6589.16 No 6.492 0.10 0.039 1.66 

5% 6136.20 No 226.478 3.56 1.321 1.66 

10% 6332.94 No 256.22 3.89 1.472 1.66 

15% 6238.95 Yes 350.21 5.31 2.201 1.66 

20% 6235.65 Yes 353.512 5.37 2.212 1.66 

30% 6228.44 Yes 360.718 5.47 2.331 1.66 

50% 6097.12 Yes 492.164 7.47 2.359 1.66 

70% 6095.17 Yes 493.992 7.50 2.37 1.66 

NA: Not Applicable 

In addition, the volume levels affect the MMTD for both CV and point detectors, 

as shown in Equations 4-1 and 4-2.    

The results from the Monte Carlo analysis were used to generate the NPV 

distribution for each alternative. Next, the results from the Monte Carlo analysis are used 

as one of the inputs to the AHP analysis and the examined alternatives are ranked based 

on their final scores, as described below. 
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4.4.1 Monte Carlo Simulation Results 

One thousand Monte Carlo analysis runs were performed with the input variables 

generated randomly from the distributions specified for each stochastic variable in the 

return on investment analysis. The NPV estimated based on each run was saved, and the 

results from the 1,000 runs were used to generate the NPV distribution. The analysis was 

carried out for 6 hours of operation for the corridor with the moderate traffic (v/c ratio of 

0.8) and 6 hours of operation with light traffic (v/c ratio of 0.4). Table 4-5 shows the 

generated performance measures from the Monte Carlo runs for each of the alternatives. 

As can be seen in this table, the quality of the CV data improves through the years due to 

the increase in the CV market penetration.  

Table 4-5 Alternatives Performance Measures based on Monte Carlo Runs 

v/c=0.4 

50
th

 Percentile (Median) Results 

  

Year 1 Year 3 Year 5 Year 7 Year 9 

SPDE (%) 
CV-based 10.76 8.38 7.05 6.02 5.12 

Point Detector 15.14 15.14 15.14 15.14 15.14 

MTTD (min) 
CV-based 2.20 0.75 0.75 0.75 0.75 

Point Detector 5.03 4.96 4.90 4.84 4.76 

85
th

 Percentile Results 

  
Year 1 Year 3 Year 5 Year 7 Year 9 

SPDE (%) 
CV-based 11.59 8.92 7.48 6.40 5.48 

Point Detector 18.48 18.48 18.48 18.48 18.48 

MTTD (min) 
CV-based 2.57 0.75 0.75 0.75 0.75 

Point Detector 7.70 7.66 7.61 7.50 7.47 

v/c=0.8 

50
th

  Percentile (Median) Results 

  

Year 1 Year 3 Year 5 Year 7 Year 9 

SPDE (%) 
CV-based 10.23 7.81 6.44 5.44 4.51 

Point Detector 14.91 14.91 14.91 14.91 14.91 

MTTD (min) 
CV-based 1.66 0.75 0.75 0.75 0.75 

Point Detector 2.94 2.81 2.72 2.61 2.54 

85
th

  Percentile Results 

  
Year 1 Year 3 Year 5 Year 7 Year 9 

SPDE (%) 
CV-based 11.02 8.34 6.89 5.84 4.91 

Point Detector 18.30 18.30 18.30 18.30 18.30 

MTTD (min) 
CV-based 2.24 0.75 0.75 0.75 0.75 

Point Detector 5.83 5.70 5.62 5.54 5.42 
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The Incremental NPV of the CV utilization for traffic monitoring is defined as the 

difference in the NPV between the utilization of CV and traffic detectors for traffic 

monitoring, calculated as described in the Methodology section. The incremental NPV 

distribution utilizing Monte Carlo simulation outputs was generated for each year, 

starting with the first year of CV deployment, which is assumed to be the year when CV 

technology becomes mandatory for all new vehicles by the United States Department of 

Transportation. The results in Figure 4-3 indicate that utilizing CV data for freeway 

segments is significantly more cost-effective than point detectors in detecting incidents 

and providing travel time estimates about one year after the CV mandate for all new 

vehicles becomes effective, particularly for the corridor with moderate traffic. However, 

for the corridor or the time period with light traffic (v/c=0.4), there is a probability of the 

CV deployment not being effective in its first few years due to low measurement 

reliability of travel time and high latency of incident detection.  

4.4.2 AHP Application Results 

In this study, the managers in two transportation system management agencies in 

Florida were asked to fill the rating tables required as inputs to the AHP methodology. 

The AHP analysis was done separately using each of the two inputs provided by 

managers, as their priorities are different. Table 4-6 shows the highest level of the ratings 

of the AHP process, which involves comparing the high-level objectives given by the 

first and second decision makers, referred to as Decision Maker 1 and Decision Maker 2, 

respectively. The colored cells are the only ones that needed to be filled, as the uncolored 

cells are the reciprocal of the colored ones.  
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(a) Corridor with Moderate Traffic (v/c=0.8)  

 
(b) Corridor with Light Traffic (v/c = 0.4) 

Figure 4-3 Incremental NPV Distributions Based on the CV Deployment vs. 

Point Detector for Each Year of Starting Utilizing CV Data after CV Technology 

Becomes Mandated  

Decision Maker 1 put the highest emphasis on achieving the required functions 

and achieving the required performance and gave these two objectives twice the 

importance of minimizing the risk and constraints and maximizing the return on 

investment. This rating favors new technologies like utilizing CV data instead of other 

existing technologies. Unlike Decision Maker 1, minimizing the risks and constraints and 
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maximizing the return on investment are the two most important factors to Decision 

Maker 2. This decision maker appears to be more conservative than Decision Maker 1 in 

accepting new technologies that provide additional functions and better performance, 

even if there are additional risks associated with the technology.  

Table 4-6 Decision Objectives Pairwise Comparison by the Decision Makers 

Decision 

Maker 
Objectives 

Provision of  

the required 

functions 

Achieving the 

required 

performance 

Minimizing  

the risks and 

constraints 

Maximizing  

the return on 

investment 

Decision Maker 

1 

Provision of the  

required functions 
1 1 2 2 

Achieving the required  

performance 
1 1 2 2 

Minimizing the risk 

and  

constraints 

0.5 0.5 1 2 

Maximizing the return 

on investment 
0.5 0.5 0.5 1 

Decision Maker 

2 

Provision of the 

required functions 
1 1 0.5 0.5 

Achieving the required 

performance 
1 1 0.5 0.5 

Minimizing the risks 

and constraints 
2 2 1 1 

Maximizing the return 

on investment 
2 2 1 1 

 

The rating at the sub-criteria level by Decision Maker 1 is shown in Table 4-7. 

The following can be concluded based on the results in Table 4-7: 

 With regard to the provided functions, Decision Maker 1 rated the measurement 

of travel time as important as measuring volume and density and twice as 

important as the ability to measure new measures that cannot be obtained using 

current detection technologies such as acceleration noise, stops, breaks, wiper 

on/off, light on/off, emission, potential for crashes, etc.   

 With regard to achieving the required performance, the estimation accuracy, as 

measured by the mean absolute error, and the estimation reliability, as measured 
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by the standard deviation of error, were ranked as equally important and two 

times more important than the timeliness of incident detection, and probably 

indicating the current use of the agency’s detector data.  

 With regard to the risks and constraints, Decision Maker 1 gave the highest rating 

to technology uncertainty, standard stability, and uncertainty in the business 

model. Data archiving and processing and the associated technical skill 

requirements, funding, data availability and sharing, and security and privacy 

concerns were not highly ranked, which indicates the current availability of good 

technical support and resources to the agency. 

 With regard to the return on investment, Decision Maker 1 rated the 50 percentile 

NPV twice as important as the 15% NPV, indicating that the median value of the 

return on investment is more important than the uncertainty or stochasticity 

associated with the return on investment analysis.   

The consistency index of the AHP was calculated for each of the tables to make 

sure that the decision maker rating of the criteria relative to each other was consistent. 

After confirming that the consistency index was acceptable, the AHP analysis was 

conducted for different demand levels and analysis years. Table 4-8 shows examples of 

the AHP analysis results.  As shown in this table, in all of the cases, utilizing CV data has 

a higher final score than point detectors. This is because CV has a significantly better 

performance in incident detection and travel time estimation.  The partial score for each 

of the criteria is also shown in the table.  Utilizing CV data has lower scores in the third 

criterion, which minimizes the risk and constraints. However, the score improved in 
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future years as the quality of data improved due to increased market penetration and the 

uncertainty and risks associated with the decrease in CV deployment.  

Table 4-9 shows the AHP results based on the Decision Maker 2 ratings.  In 

comparing Tables 4-8 and 4-9, it is clear that the CV data utilization alternative has a 

higher relative score based on the Decision Maker 1 inputs than on the Decision Maker 2 

inputs, indicating the more conservative view of Decision Maker 2, although utilizing CV 

data is still the preferred alternative to collecting data for segments with moderate to 

heavy volumes for both decision makers.  

 SUMMARY 4.5

In this chapter, the performance of incident/bottleneck detection and queue 

estimation and warning system were assessed based on the utilization of CV and traffic 

detector technologies. Then, a stochastic return on investment analysis, combined with 

the AHP method, was applied to support the decision to select between CV-based 

deployments and legacy detection technology to support the freeway bottleneck 

management service, which includes incident detection and travel time estimation and 

disseminating back-of-queue information to travelers. Managers in two transportation 

system management agencies in Florida were asked to fill the AHP rating tables. Two 

separate AHP analyses were conducted based on the two different stakeholder priorities.  

The results show that the CV-based incident detection and queue warning system 

outperform the traffic detector-based methods. Incidents/bottlenecks can be detected 

much faster with the use of CV data. It was also found that the CV-based estimation of 
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back-of-queue identification is significantly more accurate than that based on detector 

measurements. 

Table 4-7 Decision Sub-Criteria Pairwise Comparison by the First Decision Maker 

Provision of the required functions 

  Measuring travel time 
Measuring volume 

and/or density 

Measuring new 

measures  

Measuring travel time 1 1 2 

Measuring volume 

and/or density 
1 1 2 

Measuring new 

measures  
0.5 0.5 1 

Achieving the required performance  

  Mean absolute error Std. dev. of error Detection timelines 

Mean absolute error 1 1 2 

Std. dev. of error 1 1 2 

Detection timelines 0.5 0.5 1 

Minimizing the risks and constraints 

Criteria no. 1 2 3 4 5 6 7 

1 1 1 1 9 9 9 9 

2 1 1 0.5 9 9 9 9 

3 1 2 1 9 9 9 9 

4 0.11 0.11 0.11 1 1 1 1 

5 0.11 0.11 0.11 1 1 1 1 

6 0.11 0.11 0.11 1 1 1 1 

7 0.11 0.11 0.11 1 1 1 1 

Maximizing the return on investment  

  Median present worth 15% present worth 

Median present worth  1 2 

15% present worth  0.5 1 
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Table 4-8 AHP Results Based on Decision Maker 1 Ratings  
CV deployment start from year 1 

Alternatives v/c 

Provision of 

the required 

functions 

Achieving the 

required 

performance 

Minimizing 

the risks and 

constraints 

Maximizing the 

return on 

investment based 

on NPV 

Final 

Score 

CV 

0.8 

0.58 0.66 0.21 0.84 0.56 

Point 

Detector 
0.42 0.34 0.79 0.16 0.44 

CV 

0.4 

0.58 0.64 0.21 0.54 0.52 

Point 

Detector 
0.42 0.36 0.79 0.46 0.48 

CV deployment start from year 5 

Alternatives v/c 

Provision of 

the required 

functions 

Achieving the 

required 

performance 

Minimizing 

the risks and 

constraints 

Maximizing the 

return on 

investment based 

on NPV 

Final 

Score 

CV 

0.8 

0.58 0.76 0.34 0.74 0.60 

Point 

Detector 
0.42 0.24 0.66 0.26 0.40 

CV 

0.4 

0.58 0.71 0.34 0.45 0.55 

Point 

Detector 
0.42 0.29 0.66 0.55 0.45 

 

Table 4-9 AHP Results Based on Decision Maker 2 Ratings      
CV deployment start from year 1 

Alternatives v/c 

Provision of 

the required 

functions 

Achieving the 

required 

performance 

Minimizing 

the risks and 

constraints 

Maximizing the return 

on investment based 

on NPV 

Final 

Score 

CV 

0.8 

0.58 0.60 0.23 0.85 0.56 

Point 

Detector 
0.42 0.40 0.86 0.15 0.47 

CV 

0.4 

0.58 0.55 0.23 0.54 0.45 

Point 

Detector 
0.42 0.45 0.86 0.46 0.58 

CV deployment start from year 5 

Alternatives v/c 

Provision of 

the required 

functions 

Achieving the 

required 

performance 

Minimizing 

the risks and 

constraints 

Maximizing the return 

on investment based 

on NPV 

Final 

Score 

CV 

0.8 

0.58 0.73 0.37 0.75 0.59 

Point 

Detector 0.42 0.27 0.72 0.25 0.44 

CV 

0.4 

0.58 0.64 0.37 0.45 0.48 

Point 

Detector 
0.42 0.36 0.72 0.55 

0.55 

 

In addition, relatively low market penetrations are sufficient for timely 

incident/bottleneck detection and accurate and reliable estimation of the queue length. 

The results of the stochastic return on investment analysis indicates that utilizing CV data 
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for freeway bottleneck management is significantly more cost-effective than using point 

detectors in detecting incidents and providing travel time estimates one year after CV 

technology becomes mandatory for all new vehicles and for corridors with moderate to 

heavy traffic. The AHP analysis results indicate that the scores of the evaluated 

alternatives vary depending on stakeholder priorities.  
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CHAPTER VI 

5 CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE STUDIES 

Bottleneck identification, which includes bottleneck occurrence detection, queue 

extent estimation and related information dissemination, is one of the crucial functions of 

traffic management centers. This study developed and assessed bottleneck and back-of-

queue identification methods utilizing CV data and compared the results to those 

obtained utilizing traffic detector data. The performance assessment of these emerging 

and existing technologies was input into a developed MCDA framework to support 

agencies in ITS investment decisions. A stochastic NPV analysis, combined with the 

AHP method, was applied to select between CV-based deployment and the legacy point 

detection technology. The methodology was demonstrated using a case study for 

bottleneck identification and management. The following subsections summarize the 

conclusions drawn from the results of this research and provide guidance for future 

works.  

 CONCLUSIONS 5.1

Connected and automated vehicle (CV/AV) technologies are expected to have 

significant impacts on agency investment decisions in Intelligent Transportation Systems 

(ITS) and need to be considered as part of the decision-making processes associated with 

agency investment in technology. This study demonstrates the need for developing a 

framework to support agencies in ITS investment decisions considering the emerging 

technologies. To provide the basis for the decision-making process, this study assessed 

the performance of alternative technologies using the developed evaluation methods. The 
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focus of this study was on bottleneck identification, which involves incident/bottleneck 

detection and queue estimation and associated warning applications. The evaluation 

methods developed for the two applications were tested using CV and point detector data 

in the VISSIM microscopic simulation tool.  

The incident/bottleneck detection time based on CV data was estimated as a 

function of the stochastic CV market penetration and demand level. It was found that 

even at a low market penetration (1%), the median and average MTTD are around 1.5 

minutes. A market penetration of just 3% produces acceptable results for 

bottleneck/incident detection on freeways. It was also shown that CV data allows for 

faster detection of bottleneck and queue formation. The connected vehicle-based 

algorithm can detect the start of queue 4 minutes sooner than the detector-based 

algorithm.   

The study further investigated the impact of CV market penetration on the back-

of-queue estimation accuracy. It was concluded that a relatively low market penetration, 

around 3% to 6%, is sufficient for accurate and reliable estimation of the queue length. It 

can also be concluded that having 6% connected vehicles in the traffic stream allows for 

the estimation of the back-of-queue location with less than a 4% error on average. Even 

at a 3% market penetration, the CV-based estimation of back-of-queue identification is 

more accurate than that based on detector measurements. It was also found that CV data 

allows for faster detection of bottleneck and queue formation.  In addition, the safety 

impacts of the implemented queue warning system (QWS) were investigated using the 

SSAM tool. It was shown that the QWS improved the safety conditions of the network by 

reducing the number of rear-end conflicts. The safety impacts become significant when 
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compliance with the queue warning messages is more than 15%.   However, most of the 

expected safety benefits are expected to be achieved when reaching a 50% compliance 

percentage and the improvements with increasing the compliance percentage above 50% 

are lower. 

Finally, a multi-criteria decision-making methodology with consideration of 

uncertainties involved in the alternative assessment was presented. An AHP approach 

was used to select between utilizing CV-based alternatives versus legacy technology 

alternatives. The four objectives specified in the AHP analysis are providing the required 

functions, providing the required performance, minimizing the risks and constraints, and 

maximizing the return on investment. A stochastic return on investment analysis using 

the Monte Carlo simulation was used in combination with the AHP method. The method 

was applied to the selection between CV deployment and legacy detection technology to 

support the freeway bottleneck identification service, which includes incident/bottleneck 

detection and travel time estimation. However, the methodology can be applied to any 

other ITS service. Two alternatives were evaluated in the case study: utilizing CV data 

versus utilizing point detector data. The results of the stochastic return on investment 

analysis indicate that utilizing CV data for freeway segments is significantly more cost-

effective than using point detectors in detecting incidents and providing travel time 

estimates one year after CV technology becomes mandatory for all new vehicles, and for 

corridors with moderate to heavy traffic. However, for corridors with light traffic 

(v/c=0.4), there is a probability of CV deployment not being effective in the first few 

years due to low measurement reliability of travel times and high latency of incident 

detection, associated with smaller sample sizes of the collected data. The AHP analysis 
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results indicate that the scores of the evaluated alternatives vary depending on 

stakeholder priorities. When the provision of the required function and achieving the 

required performance are more important than minimizing the risk for an agency, the CV-

based alternative has a higher score than when minimizing the risk has a higher weight in 

the MCDA. 

 RECOMMENDATIONS FOR FUTURE WORKS 5.2

As mentioned earlier, this study aims to develop methods to assess the use of 

connected vehicle data, combined with new algorithms for use as part of a framework to 

support agencies in ITS investment decisions related to traffic and bottleneck 

management. This section presents a number of research opportunities to extend the 

scope of this study, as listed below: 

 This study developed methods for bottleneck/incident and back-of-queue 

detection that were assessed using simulated connected vehicle data. It is 

recommended to evaluate the developed methods utilizing real-world connected 

vehicle data, when this data becomes available.  

 To test the bottleneck/incident detection method of the study, a one-lane blockage 

incident was modeled in the VISSIM microscopic simulation tool. There is a need 

to investigate the effectiveness of the developed methods for other incident 

severities, such as two- and three-lane blockage incidents.  

 Speed measurements transmitted from the simulated connected vehicles were 

used to detect the bottleneck/incident and the associated back-of-queue. 

Connected vehicles offer a variety of information that can be utilized for this 
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purpose, such as vehicle acceleration and braking information that can be used; 

this should be assessed in future studies.  

 The proposed MCDA methodology of this study is based on a certain number of 

assumptions. To consider uncertainties involved in the decision-making process, 

the analysis variables were assumed to follow a certain distribution rather than 

fixed values. These distributions can be changed by the user if better information 

is available and is based on additional research or local conditions.  

 In this study, the AHP method was used to select between the alternatives of the 

study.  Two experts were asked to fill the questionnaire and rate the criteria with 

regard to each alternative. There is a need to compare additional expert opinions 

in the decision-making process.  
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