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Abstract 

 

Setting the traffic controller parameters to perform effectively in real-time is a 

challenging task, and it entails setting several parameters to best suit some predicted 

traffic conditions. This study presents the framework and method that entail the 

application of the Response Surface Methodology (RSM) to calibrate the parameters 

of any control system incorporating advanced traffic management strategies (e.g., the 

complex integrated traffic control system developed by Ahmed and Hawas). The 

integrated system is a rule-based heuristic controller that reacts to specific triggering 

conditions, such as identification of priority transit vehicle, downstream signal 

congestion, and incidents by penalizing the predefined objective function with a set of 

parameters corresponding to these conditions. The integrated system provides real 

time control of actuated signalized intersections with different phase arrangements 

(split, protected and dual). 

 

The premise of the RSM is its ability to handle either single or multiple objective 

functions; some of which may be contradicting to each other. For instance, maximizing 

transit trips in a typical transit priority system may affect the overall network travel 

time. The challenging task is to satisfy the requirements of transit and non-transit 

vehicles simultaneously.  

 

The RSM calibrates the parameters of the integrated system by selecting the values 

that can produce optimal measures of effectiveness. The control system was calibrated 

using extensive simulation-based analyses under high and very high traffic demand 

scenario for the split, protected, and dual control types. 

 

A simulation-based approach that entailed the use of the popular TSIS software with 

code scripts representing the logic of the integrated control system was used. The 

simulation environment was utilized to generate the data needed to carry on the RSM 

analysis and calibrate the models.   

 

The RSM was used to identify the optimal parameter settings for each control type and 

traffic demand level.  It was also used to determine the most influential parameters on 
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the objective function(s) and to develop models of the significant parameters as well 

as their interactions on the overall network performance measures.  

 

RSM uses the so-called composite desirability value as well as the simultaneous multi-

objective desirabilities (e.g., the desirability of maximizing the transit vehicles 

throughput and minimizing the average vehicular travel time) estimates of the 

responses to identify the best parameters. This study also demonstrated how to develop 

“mathematical” models for rough estimation of the performance measures vis-à-vis 

the various parameter values, including how to validate the optimal settings. The 

calibrated models are proven to be significant. 

 

The optimal parameters of each control type and demand level were also checked for 

robustness, and whether a universal set of relative parameter values can be used for 

each control type. For the high traffic demand level, the optimal set of parameters is 

more robust than those of the very high traffic demand. Besides, the dual actuated 

controller optimal setting under the very high traffic demand scenario is more robust 

(than other control types settings) and shows the best performance.  

 

Keywords: Integrated traffic control system, transit signal priority, TSP, TSIS-

CORSIM, calibration, robust, optimization, response surface methodology, RSM, 

multi-objective desirability, micro-simulation. 

 



viii 

 

 
 
 

Title and Abstract (in Arabic) 

 

ركبات النقل ملتحكم في الأولوية العلى قواعد  هقائمال هديناميكيالم نظالوتقييم  معايرة

 في المناطق الحضرية المرور في شبكاتالعام 

 صالملخ

في ) آنيا   على نحو فعالللعمل وحدة التحكم في حركة المرور معايير إعداد  مهمة إن

معايير مختلفة لتقدم أفضل تطابق مع  وتتطلب وضعمهمة صعبة، في الواقع  هي (الوقت الفعلي

الإطار )الشكل العام( والمنهجية بعض ظروف حركة المرور المتوقعة. وتعرض هذه الدراسة 

نظام تحكم يتضمن  لمعايرة أي ، وذلك(RSMسطح )الاستجابة  نموذجتطبيق  المتبعة في

كامل في حركة المرور )مثل نظام التحكم المت حركة المرورفي إدارة متقدمة ال ستراتيجياتلاا

فعالة لظروف يستجيب  ارشادينظام تحكم النظام المتكامل هو إن أحمد وحواس(.  طورهالذي 

 إعطاء أولوية لمركبات النقل العام،والكشف عن الحوادث، و عند المصب،زدحام الامحددة، مثل 

إن لهذه الشروط. المقابلة  المعاييرمسبقا بمجموعة من المحسوبة  بتغيير قيمة المنظومةوذلك 

 لفةفي التقاطعات مع ترتيبات الطور المختآني للإشارات الفعالة  تحكم يوفر النظام المتكامل

 .والمزدوجة( الآمنة/والمحمية المنفصلة)

أو  وظيفة واحدة لإنجازقائم على قدرة العمل  (RSM) سطحالاستجابة  منهجية مبدأإن 

 ؤدييمع بعضها البعض. فعلى سبيل المثال، قد  بعضها متناقضا   وقد يكون؛ عدة وظائف محددة

الإجمالي وقت الى التأثير عل العام إلىفي النظام المتبع لأولوية النقل  زيادة عدد رحلات النقل العام

النقل  مركباتمتطلبات  تحقيق/توفير. وتتمثل المهمة الصعبة في للرحلات لشبكة المواصلات ككل

 . آن واحد فيالعام مقابل المركبات الأخرى 

ل عن المتكام على معايرة معايير النظام(RSM)  سطحالاستجابة  منهجيةكما يعمل نظام 

قد تمت معايرة والأمثل للفعالية. التي يمكن من خلالها تحقيق التدابير القصوى وطريق اختيار القيم 

ة مروريظروف الحركة ال المحاکاة في ظل یموسعة تستند إل تحليلات التحكم باستخدامنظام 

 في الإشارات المرورية: المنفصلة، أنواع التحكمالمرتفعة والمرتفعة جدا  لمختلف 

 .والمزدوجة الآمنة،/والمحمية

المتعارف  برنامجالاستخدام  والذي بدوره يتضمنقائم على المحاكاة  استخدام نهجوقد تم  

حيث تم  نظام التحكم المتكامل. أساس/مع نصوص برمجية تمثل منطق (TSIS) عليه
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ومعايرة  (RSM) تحليللمتابعة واستكمال بيئة المحاكاة لتوليد البيانات اللازمة  تطبيق/مااستخد

 .النماذج

لتحكم ا من أنواع الأمثل لكل نوع المعاييرإعدادات  لتحديد  (RSM)استخدام وقد تمكما 

 لى الهدفعتأثيرا  الأكثر  المعاييرلتحديد استخدامها أيضا   وقد تم. المرورية ومستوى الحركة

بشكل لشبكة امقاييس أداء مع  جانب تفاعلهاللمعايير الفعالة الى  وتطوير نماذج الأهداف( المحدد)

 .عام

ينة الى القيمة المُرَكَبة لتحقيق غاية معما يسمى ب (RSM)المطور نظام ال يستخدمكما 

 عاييرلتحديد أفضل الم وتقديرات المخرجاتمع الغايات ذات الأهداف المتعددة  جانب تزامنها

. للمركبة( بالتزامن مع خفض متوسط زمن الرحلة السعي لغاية رفع كفاءة مركبات النقل العام)مثل 

لمقاييس  " للتقدير التقريبيحسابية/كيفية تطوير نماذج "رياضية أيضا   سةأظهرت هذه الدراقد و

. الأمثلدادات التحقق من صحة الإعو اثباتالمختلفة، بما في ذلك كيفية  المعاييرالأداء مقابل قيم 

 .المعايرةتم اثبات فعالية النماذج وقد 

 ومستوى لكل نوع من أنواع التحكماختبار المعايير الأمثل تم وبالإضافة الى ذلك، فقد 

جموعة قيم ماستخدام  بالإمكان ما إذا كانفعالية استخدام النموذج، وللتأكد من  الحركة المرورية

الحركة وى يتعلق بمست وبما. أنماط التحكمالنسبية لكل نوع من أنواع  المعاييرن مموحَدة/شاملة 

 ةثر قوأكالمعايير لمستوى مرتفع من الحركة المرورية هي من  الأمثلفإن المجموعة  المرورية،

نمط ل الإعدادات الأمثل فإنتلك التي بمستوى حركة مرورية مرتفع جدا . إلى جانب ذلك، من 

نواع هو أكثر قوة )من إعدادات أل المزدوج ولمستوى حركة مرورية مرتفع جدا  التحكم الفعا

 .بينهم التحكم الأخرى( ويظهر أفضل أداء

نظام متكامل لمراقبة حركة  ،(RSMسطح )الاستجابة  نموذج مفاهيم البحث الرئيسية:

غراض، الأمثل، مرغوب فيه متعددة الأ المعايرة،إشارة العبور،  ، أولوية TSIS،المرور

 ميكروسيمولاتيون
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List of Notations 

 

i   Intersection i of the urban road network. 

t   Current time index t. 

c   Private cars. 

b   Normal-priority busses. 

p   High priority busses. 

V   Abbreviation of virtual queue of all types of vehicles on a specific 

approach. 

𝑢/   Upstream approach.  

𝑑/   Downstream approach. 

𝜙𝑗    Abbreviation of individual phase j, j=1….8. 

ɸ1 ɸ3ɸ3ɸ6ɸ6 ɸ8ɸ8

ɸ5ɸ5 ɸ7ɸ7ɸ2ɸ2 ɸ4ɸ4

 

Φ𝑘  Abbreviation of a candidate phase set k, k=1,.....,8, where Φ1 = {𝜙1 ∪

𝜙5}, Φ2 = {𝜙1 ∪ 𝜙6}, Φ3 = {𝜙2 ∪ 𝜙5}, Φ4 = {𝜙2 ∪ 𝜙6}, Φ5 = {𝜙3 ∪

𝜙7}, Φ6 = {𝜙3 ∪ 𝜙8}, Φ7 = {𝜙4 ∪ 𝜙7}, Φ8 = {𝜙4 ∪ 𝜙8} 

𝛽
𝑖,𝜙𝑗,𝑢

/
𝑁   A coefficient for incidents on the upstream approach,𝑢/, of phase 𝜙𝑗, at 

intersection i. 

𝛽
𝑖,𝜙𝑗,𝑢

/
𝑝

  A coefficient for transit priority for high priority buses on the upstream 

approach,𝑢/, of phase 𝜙𝑗, at intersection i. 

𝛽
𝑖,𝜙𝑗,𝑢

/
𝑏   A coefficient for transit priority for normal priority buses on the 

upstream approach,𝑢/, of phase 𝜙𝑗, at intersection i. 

𝛽
𝑖,𝜙𝑗,𝑑

/
𝐵   A coefficient for blockage on the downstream exit link of phase 𝜙𝑗at 

intersection i; 
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𝛽
𝑖,𝜙𝑗,𝑢

/
𝑉   A coefficient for virtual queue of vehicles on the upstream approach 

link of phase 𝜙𝑗at intersection i; 

𝐶
𝑖,𝜙𝑗,𝑢

/
𝑏,𝑡

  The total counts of the normal priority buses, b, at time t on the upstream 

approach, 𝑢/,  of phase, 𝜙𝑗 , of intersection i. 

𝐶
𝑖,𝜙𝑗,𝑢

/
𝑐,𝑡

  The total counts of the cars, c, at time t on the upstream approach link, 

𝑢/, relevant to phase, 𝜙𝑗 , of intersection i. 

𝐶
𝑖,𝜙𝑗,𝑢

/
𝑝,𝑡

  The total counts of the high priority buses, p, at time t on the upstream 

approach, 𝑢/,  of phase, 𝜙𝑗 ,  of intersection i. 

𝑂
𝑖,𝜙𝑗,𝑢

/
𝑏   Average passenger occupancy for the normal priority buses on the 

upstream approach,  𝑢/, of phase 𝜙𝑗 at intersection i. 

𝑂
𝑖,𝜙𝑗,𝑢

/
𝑐   Average passenger occupancy for the private cars on the upstream 

approach, 𝑢/,  of phase 𝜙𝑗 at intersection i. 

𝑂
𝑖,𝜙𝑗,𝑢

/
𝑝

  Average passenger occupancy for the high priority buses on the 

upstream approach, 𝑢/,  of phase 𝜙𝑗 at intersection i. 

𝑟
𝑖,𝜙𝑗,𝑢

/
𝑉,𝑡

  The ratio of the vehicle queue length over the physical capacity of the 

corresponding link length, 𝑙𝑖,𝜙𝑗,𝑢/. 

𝐼
𝑖,𝜙𝑗,𝑑

/
𝐵,𝑡

  The indicator of the presence of blockage at time index (𝑡 − 1) on the 

downstream link, relevant to phase, 𝜙𝑗 , of intersection i. 

𝐼
𝑖,𝜙𝑗,𝑢

/
𝑁,𝑡

  Indicator of the presence of incidents at time index (𝑡 − 1) on the 

upstream link, relevant to phase, 𝜙𝑗 , of intersection i. 

𝐽𝑖,𝜙𝑗
/,𝑡

  The base congestion indicator of an individual phase, 𝜙𝑗 , in terms of 

the total virtual queue of passengers, without adjusting for the incident 

status on the approach link of the intersection i at time t for the 

individual phase, 𝜙𝑗. 

𝐽𝑖,𝜙𝑗
𝑡   The congestion indicator of an individual phase, 𝜙𝑗 in terms of the total 

virtual queue of passengers, adjusted for the incident status on the 

approach link of the intersection i at time t for the individual phase, 𝜙𝑗. 
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𝐴𝑖,𝜙𝑗
𝑡    The actuation index of an individual phase 𝜙𝑗 of intersection i at time 

t. 

𝑍𝑖,Φ𝑘
𝑡   The actuation index of phase set,Φ𝑘, of intersection i at time t. 

β𝑉  Abbreviation of the penalty coefficient of virtual queue of vehicles on 

the upstream approach link (same as 𝛽
𝑖,𝜙𝑗,𝑢

/
𝑉 ). 

β𝑏   Abbreviation of the penalty coefficient of normal priority bus (same as 

𝛽
𝑖,𝜙𝑗,𝑢

/
𝑏 ). 

β𝑝   Abbreviation of the penalty coefficient of high priority bus (same as 

𝛽
𝑖,𝜙𝑗,𝑢

/
𝑝

). 

β𝐵  Abbreviation of the penalty coefficient of blockage on the downstream 

exit link (same as 𝛽
𝑖,𝜙𝑗,𝑑

/
𝐵 ).  

β𝑁   Abbreviation of the penalty coefficient of incidents (same as 𝛽
𝑖,𝜙𝑗,𝑢

/
𝑁 ). 

N𝑏𝑢𝑠  A response variable (MOE) representing the total number of bus trips 

served during a specific analysis period (herein 1.5 hours). 

𝑇𝑡   A response variable (MOE) representing the total network travel time 

(in hours) during a specific analysis period (herein 1.5 hours). 

𝑡𝑚  A response variable (MOE) representing the mean vehicular travel time 

per trip (in seconds)  during a specific analysis period (herein 1.5 

hours). 

𝑓𝑁𝑏𝑢𝑠    Unknown non-linear function of the (N𝑏𝑢𝑠) response variable.  

𝑓𝑇𝑡   Unknown non-linear function of the (𝑇𝑡) response variable.  

𝑓𝑡𝑚    Unknown non-linear function of the (𝑡𝑚) response variable. 

𝜀𝑁𝑏𝑢𝑠   Statistical error of the function 𝑓𝑁𝑏𝑢𝑠. 

𝜀𝑇𝑡  Statistical error of the function 𝑓𝑇𝑡. 

𝜀𝑡𝑚     Statistical error of the function 𝑓𝑡𝑚. 

𝑁  Number of experiments for Central Composite or Box-Behken designs. 
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𝑘  Number of parameters to optimize (herein 3 representing β𝐵, β𝑏 =

 β𝑃 , β𝑉) . 

𝐶0   Number of central points. 

α   The axial point in Central Composite design. 

𝑑N𝑏𝑢𝑠  The model estimated individual desirability index of the total bus trips 

(N𝑏𝑢𝑠). 

𝑑𝑇𝑡    The model estimated individual desirability index of the network total 

travel time (𝑇𝑡). 

𝑑𝑡𝑚    The model estimated individual desirability index of the trip mean 

travel time (𝑡𝑚). 

𝐷   The model estimated composite desirability index; Destination. 

𝑤N𝑏𝑢𝑠   The importance (weight) parameter of the total bus trips (N𝑏𝑢𝑠). 

𝑤𝑇𝑡   The importance (weight) parameter of the network total travel time 

(𝑇𝑡). 

𝑤𝑡𝑚    The importance (weight) parameter of the trip mean travel time (𝑡𝑚). 

𝑦N𝑏𝑢𝑠  The model response value representing the total bus trips (N𝑏𝑢𝑠). 

𝑦𝑇𝑡    The model response value representing the network total travel time 

(𝑇𝑡). 

𝑦𝑡𝑚    The model response value representing the trip mean travel time (𝑡𝑚). 

𝑇N𝑏𝑢𝑠   The model target value of total bus trips (N𝑏𝑢𝑠). 

𝑇𝑇𝑡   The model target value of the network total travel time (𝑇𝑡). 

𝑇𝑡𝑚    The model target value of the trip mean travel time (𝑡𝑚). 

𝐿N𝑏𝑢𝑠   The model lower bound value of the total bus trips (N𝑏𝑢𝑠). 

𝑈𝑇𝑡   The model upper bound value of the network total travel time (𝑇𝑡). 

𝐿𝑡𝑚    The model lower bound value of the trip mean travel time (𝑡𝑚). 

𝑈𝑡𝑚    The model upper bound value of the trip mean travel time (𝑡𝑚). 
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𝑟, (r1, r2)  The weight value (s) of the individual desirability. 

DEj  Destination 𝑗 on the Eastern boundary of the test network. 

Dwj  Destination 𝑗 on the Western boundary of the test network. 

DNj  Destination j on the Northern boundary of the test network. 

DSj  Destination j on the Southern boundary of the test network. 

𝑂   Origin; 

OEj  Origin j on the Eastern boundary of the test network. 

Owj  Origin j on the Western boundary of the test network. 

ONj  Origin j on the Northern boundary of the test network. 

OSj  Origin j on the Southern boundary of the test network. 

BQL  Abbreviation used in model and graphics for the coefficient for virtual 

queue of vehicles on the upstream approach link, β𝑉.  

BTP  Abbreviation used in model and graphics for the coefficient for transit 

priority (normal or high) bus. 

BDC  Abbreviation used in model and graphics for the coefficient for 

downstream blockage penalty  

MTT  Abbreviation used in model and graphics for the trip mean travel time 

(in seconds). 

Trips  Abbreviation used in model and graphics for the total number of bus 

trips. 

TTT  Abbreviation used in model and graphics for network total travel time 

(in hours). 
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Chapter 1: Introduction  

 

1.1 Research Problem and Motivation 

Traffic demand in the urban area dynamically fluctuates with abrupt changes, 

and it is hard to predict future traffic accurately. Optimizing the controller settings in 

real time is a challenging task as it entails setting several parameters to best suit some 

predicted traffic conditions. There is nearly no logic that can accurately predict traffic 

conditions and additionally set the control parameters optimally to suit these 

conditions. There is the so-called dependency phenomenon, where the traffic 

conditions depend on the control decisions and vice versa. Not to mention the added 

complexity of additional functions such as incident detection, management, and transit 

priority systems (TSP) are active duties of the same controller. The optimization of 

such complex controllers requires analyses at different network loading levels and 

configurations. In a typical network, functions such as TSP may result in deterioration 

of performance to the regular vehicular traffic at the expense of favoring priority transit 

vehicles.  

For any typical control system, such as signal control, parameters are 

commonly selected to fit specific traffic conditions. It is natural as such that such 

systems should be re-calibrated each time they are deployed to different conditions 

(that the system was not optimized for). What makes it more challenging is the 

dynamics of traffic and the evolution of the traffic demand over the day. A signal 

controller with some TSP functions may operate effectively during specific hours but 

then fails to run at other times because its parameters are adjusted for only some 

specific conditions (but not all). Such complex control systems commonly include 
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multiple parameters that affect the performance, and as such the recalibration is 

certainly a challenging, difficult multi-dimensional task.  

It is also practically impossible to readjust such control systems by carrying the 

optimization process online. Instead, a more appealing approach is to optimize such 

systems offline, but additionally one has to ensure the robustness of the optimized 

settings. The settings should provide optimal (or near) performance measures. In brief 

words, such control systems must be calibrated to provide good performance to the 

most prevailing traffic conditions in the network, keeping in mind that these 

circumstances would certainly change.     

Regardless of the controller functions, strategy and methodology to implement, 

one has to ensure the robustness of adopted solutions. Robustness can only be assured 

with extensive analytical, simulation or field tests under variant traffic conditions and 

network configurations. In addition to robustness, there is also need to minimize the 

recalibration requirement; it is illogical and impractical to calibrate the system for 

every condition it may encounter. In a real-time operational environment, this is 

certainly an impossible task.  In brief, there is a need to devise a methodology that can 

be used to assess the effectiveness of complex control systems, calibrate parameters to 

provide optimal (or at least close to optimal) control, and assess the robustness of its 

effective control under the varying conditions. The typical notion of a robust system 

is one that performs well across a range of (traffic, geometry, weather, etc.) conditions. 

Given that this study considers varying traffic conditions and control types, the 

robustness of the system should be assured at various levels (multi-dimensional). At 

the first level, the purpose is to ensure that for each control type (e.g. dual, protected 

or split) the sensitivity of relative ratios of the parameters. The idea here is to check 

whether there is a specific relative ratio among the parameters that makes the specific 
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control type (dual, protected or split) robust under one specific traffic condition. The 

second level purpose is to identify for each control type the optimal robust relative 

ratio (identified at the first level) that makes each control type robust if applied to 

different traffic conditions. That is, when the traffic conditions vary, how to set the 

parameters of each specific controller to perform effectively under such varying traffic 

conditions. The third level purpose is to identify the “universal” relative parameters 

ratio that can be applied under varying traffic conditions for all control types together. 

The details regarding the study of robustness will be discussed later in the study in 

Chapters 5, 6 and 7.  

The challenge of the devising such methodology is the complexity of the 

objective functions and the nonlinearity nature of it in response to the calibration 

parameters. Some of the signal controllers in the literature, for instance, are even 

integrated with other advanced ATMS components such as incident detection, 

management, and transit priority systems (Ahmed and Hawas, 2015), which makes the 

calibration of parameters even more challenging. Some of integrated control systems 

may have few parameters to calibrate, and some may have many. As such, no matter 

what methodology is used to calibrate these parameters, it should be functional with 

various control systems and parameters.   

In general, Adaptive Traffic Control Systems (ATCSs) have been developed 

to adjust signal timing plans in dynamic real-time based on the current traffic 

situations, and transportation system capacity. According to a comprehensive study by 

Stevanovic (2010), each ATCS has unique features and identified several features to 

describe various adaptive traffic control logics. The distinctive working principles of 

various ATCS are detection, type of action, adjustment method, the time frame for 

adjustment, hierarchical levels, models for the status of traffic condition, signal timing 
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parameters to be adjusted, flexibility to form regions, support for vehicle-actuated 

operations, and transit operations. None of the commonly used ATCS has the 

comprehensive function of TSP, incident detection, and management as well as 

congestion protocols altogether.  

Nearly all the existing adaptive traffic control systems do not consider the 

combined effects of TSP and incidents, simultaneously (Ahmed and Hawas, 2015). 

Recently, Ahmed and Hawas (2015) developed a complex integrated traffic control 

system, which has the advanced traffic management strategies, such as transit signal 

priority, incident detection and management, and the recurrent congestion 

management. The developed integrated system prioritizes the competing phases of a 

traffic signal by the total expected throughputs (in terms of the number of passengers) 

among all competing phases.  

This research study presents an attempt to enhance the previously developed 

integrated control system by the optimization of parameters. The control system by 

Ahmed and Hawas may be best classified as heuristically-based that reacts to specific 

triggering conditions (such as downstream signal congestion, incident detection, 

identification of priority transit vehicle(s) in the traffic stream) by penalizing some 

predefined objective function with a set of parameters corresponding to these 

conditions.  

The system itself is not an optimization controller but a heuristic one. For 

instance, when a transit vehicle is detected, a transit vehicle parameter is activated to 

increase the value of the objective function for this traffic approach (and its 

corresponding signal phase) on which the transit vehicle is detected. Similarly, if the 

congestion downstream a specific phase is reaching the capacity of approach, the 
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upstream phase objective function is penalized for reducing the green time allocation 

of this phase.  

In their earlier work, Ahmed and Hawas carried out extensive analyses to 

identify the set of parameters that will suit specific traffic conditions. The analyses 

were conducted using trial and error; change the parameter values and assess the 

controller performance. Needless to say that the “optimal” settings of the earlier work 

corresponded to one of these trials. That is, there was no systematic procedure to 

identify the optimal set of parameters, nor to verify the optimality of the solutions and 

to ensure the robustness.  Given the complexity of such integrated system by Ahmed 

and Hawas (2015) and the fact it includes multiple contradicting functions that affect 

the network performance, it will be used in this study to demonstrate how can the 

proposed methodology in this research be used to calibrate any complex control 

systems.  

Advanced Traffic Management Systems (ATMS) are commonly studied, 

analyzed, and evaluated by using micro-simulation tools. These micro-simulation 

models mimic events, such as gap-acceptance to cross or merge the traffic, speed 

adjustment, lane changing, and car-following. There are also models like gap 

acceptance ones to predict driver’s behavior at signalized intersections (Teodorović 

and Janić, 2017). Various parameters are used in such models to describe the 

individual driver behavior and individual vehicle dynamics. These parameters also 

need calibration to replicate real life events accurately, and to minimize the 

discrepancy between the observed and simulated traffic conditions (Pande and 

Wolshon, 2016). This calibration is the crucial stage for any traffic simulation model 

(Hawas, 2002). Similarly, the integrated traffic control system has parameters to 
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regulate traffic for improving the overall network productivity and efficiency, and 

these parameters must be calibrated to determine their values for optimal control.  

This research has taken a step towards the calibration of the parameters for 

various real time traffic control systems (regardless of its complexity and number of 

parameters) under several traffic demand scenarios. The calibration guidelines with 

the application of the well-known simulation-based optimization method of Response 

Surface Methodology (RSM) is developed for ATMS systems calibration and 

robustness verification.  

This research study aims to develop an RSM-based methodology that can be 

used to calibrate and improve the effectiveness and robustness of the solutions of 

advanced traffic control systems in general.  The methodology would entail the 

selection of the optimal settings for the controller parameters. To demonstrate the 

details of the method and how it can be used for parameter setting and robustness 

verification, the Integrated Traffic Signal Control System developed by Ahmed and 

Hawas (2015), is used (as the controller to optimize). The proposed method can be 

effectively used to optimize parameters of multi-criteria contradicting objective 

functions within the same controller. Three criteria have been used in this study; 

maximize the transit vehicles throughput while minimizing the average vehicular 

travel time as well as the network overall vehicle travel time. These criteria may 

actually contradict each other; increasing transit throughput may increase delay and 

travel time for other vehicles. 

1.2 Research Objectives 

This study has set the following specific objectives:  
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 Carry out a detailed literature review to identify the characteristics of existing 

transit signal priority systems in specific as the most important function of any 

integrated traffic signal control system. The introduction of TSP function to a 

signal control has implications on its effectiveness as it commonly results in 

exceeding delays for nonpriority vehicles. 

 Carry on the literature review on simulation based optimization methods along 

with the features of the Response Surface Methodology (RSM) and response 

optimization method. 

 Develop the framework for complex controller optimization and robustness 

verification, and formulate a RSM-based methodology to optimize the multi-

function integrated controller by Ahmed and Hawas (2015) 

 Carry on the calibration exercise for the integrated controller under various 

traffic conditions, and signal type configurations 

 Investigate the robustness features of the identified optimal settings of the 

different signal control types. 

 Recommend some calibration guidelines and suggest further enhancement to 

the developed integrated traffic signal control system. 

1.3 Research Question  

The TSP is commonly integrated with a traffic signal controller (e.g. Ahmed 

and Hawas, 2015). The combination of TSP with the controller (integration) would 

have implications on the preset objective functions. For instance, maximizing transit 

throughput (by the TSP) is commonly accompanied by increase in vehicular traffic 

delays and travel times. Based on the nature of the controller (type and functions), and 

the TSP strategies, this study attempts to address the following research questions:  
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 What are the state-of-art and state-of-practice to implement TSP system in the 

urban network? 

 How to calibrate TSP-based traffic control systems, especially if combined 

with other functions for signal control, incident and congestion management?  

 What is the optimal set of parameters for each control type and traffic 

condition? 

 How to study the robustness of the integrated controller? 

 Are the identified optimal settings robust and to what extent?  

1.4 Thesis Outline 

This thesis is organized into seven chapters. Chapter 2 presents a detailed 

literature review of the existing transit signal priority (TSP) systems. The state-of-art 

and state-of-practice of the simulation based optimization methods are discussed in 

Chapter 3. It also incorporates all the relevant details of the Response Surface 

Methodology (RSM) and response optimization method. Chapter 4 presents the 

experimental model's setup with different traffic demand and supply conditions and 

data generation with RSM based model building and optimization process for this 

research study. Chapter 5 discusses the results, analyses, and robustness under high 

traffic demand scenario with different control settings. The results, analyses, and 

robustness under very high traffic demand scenario with different control settings are 

presented and discussed in Chapter 6. A synthesis of the main findings and the 

proposed direction for future research are presented in Chapter 7. 
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Chapter 2: Literature Review 

 

2.1 Introduction 

This research study addresses complex integrated advanced signal controllers 

coupled with transit systems priority (TSP). This chapter is intended to review the 

state-of-the-art design of traffic signals with TSP functions to identify the influence of 

calibration using simulation-based optimization. It reviews the existing methodologies 

of transit signal priority systems, both in practice and in theory. Section 2.2 discusses 

the general characteristics and features of transit signal priority (TSP) systems, such 

as TSP concepts like active, adaptive/real-time with or without optimization, TSP 

strategies, and the evaluation of TSP system. This section also provides a summary 

discussion of the TSP in general and concludes the main drives behind this research. 

The concept of the Integrated Traffic Signal Control System is presented in section 

2.3. The simulation-based optimization methods are reviewed in section 2.4.   

2.2 Transit Signal Priority (TSP)  

Transit Signal Priority (TSP) can be defined as an operational strategy to 

facilitate the movement of transit vehicles by enhancing the performance, efficiency, 

and reliability of transit systems. This entails adjustments to the traffic signal control 

logic to integrate preferential treatment to the movement of transit vehicles as they 

approach intersections. In general, TSP strategies offer benefits in minimizing the 

delays of transit vehicles. The primary objective of TSP is to reduce the transit travel 

time or the transit vehicle throughput. It is believed that TSP can significantly increase 

the operational efficiency of the transit vehicles and maintain a better schedule 

adherence. 
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The priority treatment, given to emergency vehicles and the transit vehicles, is 

not same. Although both methods facilitate the movement of vehicles, preemption, 

which gives priority to emergency vehicles, interrupts the signal operation while 

priority changes or modifies the signal operation. The TSP is used for some priority 

service within the coordinated operation of traffic signals that can reduce delay for the 

transit vehicles with minimal impact on other traffic. In other words, preemption is a 

high degree of priority to facilitate a safe movement of specific vehicles through the 

signal with some consideration to the resulting delays.  

The configuration and timing of traffic signal control, as well as physical 

design of streets, are often optimized to minimize average delay for all motor vehicles. 

However, since transit vehicles normally carry a higher number of passengers, this 

traffic signal control will not minimize the overall delay per person. Transit vehicles, 

therefore, need to be handled differently to minimize the overall delay per person. The 

transit lines sometimes use minor streets not the major arterial streets and have a 

different speed profile due to bus stops. Therefore, transit vehicles need to be 

prioritized to minimize the delay per person. There is also another important reason to 

“over compensate” transit vehicles; that is to promote travel by public transport to 

reduce pollution and congestion. 

The benefits of TSP include also reducing costs of bus operation by reducing 

the delay of bus or passengers at signalized intersections and reducing passenger’s 

waiting time at the bus stops. Thus, the required number of transit vehicles to serve the 

predicted transit demand is minimized. Other significant benefits are improving the 

service of on-schedule public transit and increasing the ridership and discouraging the 

use of private vehicles. Besides these advantages, however, there are common two 

negative impacts or costs on non-priority approaches and neighboring intersections, 
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such as increasing travel time in non-priority approaches and interruption on 

coordinated treatment at adjacent intersections.  

Research studies along with methodologies on the TSP technologies, TSP 

concepts (active/passive/adaptive), priority strategies, evaluation methods, and design 

criteria are discussed in the following sections. 

2.2.1 TSP Technologies 

The transit vehicle detection system is a principal component of the advanced 

transit signal priority systems as it detects transit vehicles, and transmits this 

information to the signal controller. There are different types of media for detection 

such as sound, light, radio frequencies, wireless, and so on. Advanced technologies 

like global positioning systems (GPS) is commonly used for transit priority. TSP may 

be implemented locally in a single intersection or a centralized signal system 

controlling by the traffic management center. The effectiveness of TSP relies on transit 

vehicle detection and location methods. Usually, there are three types of vehicle 

detection methods: point detectors, zone detectors, and transit vehicle movement 

detectors (Automatic Vehicle Location – AVL and Automatic Passenger Count - 

APC). In the following section, the research studies on connected vehicle technologies 

to control the traffic signal are presented.   

Ding et al. (2013) demonstrated a multimodal priority signal control system 

within an integrated traffic control framework using wireless communication, global 

positioning system, and connected vehicles. The framework has been developed and 

tested using a microscopic hardware-in-the-loop simulation (HILS) environment 

(based on VISSIM) and was demonstrated in a network of six intersections in Anthem, 

Arizona. The paper addresses the architecture of multiple priority requests signal 
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control system (the Priority Request Generator and the Priority Request Server) and 

the HILS environment (The setup of HILS and various wireless communications 

among different components of HILS). Also, the functions like emergency vehicle 

(EV) preemption and transit priority are presented. The developed model was 

demonstrated in a real network with three case studies (An EV from conflicting phase 

to the bus, two EVs on concurrent phases but conflicting to the bus, and two EVs from 

conflicting phases). The three broad components of priority signal control system are 

the On-Board Equipment (OBE), Road Side Equipment (RSE), and the Actuated 

Signal Controller (ASC). The vehicle detection system and priority request generator 

(PRG) is realized by the OBE, while the communication medium is wireless, and the 

RSE realizes the priority request server (PRS). There is also communication between 

the RSE and ASC to implement the priority timing strategy from the PRS. The 

assumption for case studies included: 1) A case without EV, where the maximum green 

time extension is set to (1+a) multiples of the maximum green time extension for the 

transit vehicle, (typically, the value of a is 0<a<0.5). This case had no allowed phase 

skipping, and actuated control on non-priority vehicle phases was available, 2) A case 

with EV, where the maximum green time extension is set equal to 240 seconds for EV 

requested phases, and additionally phases skipping be allowed. 

2.2.2 Priority Concepts 

At a traffic signal, the transit priority is granted in different methods. Among 

these methods are the active (conditional and unconditional) and passive priorities. Lin 

et al. (2015) presented a comprehensive review of existing TSP controls according to 

the application and theoretical aspects. Passive priority gives priority using historical 

data of transit vehicles arrivals, and Active priority uses a system for the transit 
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vehicles arrivals and detections at the intersection. The active control can be further 

categorized into rule-based and model-based. There are different types of TSP 

concepts as described below. 

Active Unconditional and Conditional Priority 

Conditional priority gives transit vehicles priority under certain limits and 

conditions like transit vehicle's occupancy, time headway, and delay. The main 

objective of this concept is to operate the network efficiently without affecting non-

transit vehicles. On the other hand, the unconditional priority provides priority to a 

transit vehicle whenever it is detected. The main aim of this concept is to reduce the 

transit vehicles’ travel times for a better service and to encourage people to use it. Both 

conditional and unconditional control strategies attempt to improve system 

performance. Conditional control is more sophisticated and requires additional 

infrastructure/sensors. 

Ekeila et al. (2009) presented the development and evaluation of a TSP control 

system in response to real-time traffic and transit conditions. Transit arrival time is 

defined with its upper and lower boundaries, and the implementation of the TSP 

decision is delayed to minimize the impact on cross street traffic. The Automatic 

Vehicle Location (AVL) system and the transit arrival prediction model are essential 

parts of the overall system. The TSP system by Ekeila et al. consists of three main 

components: a virtual detection system, a dynamic arrival prediction model, and a 

dynamic TSP algorithm. This system was evaluated through two case studies to 

compare its performance vis-a-vis some conventional TSP systems. The first case 

study entailed using a hypothetical four-legged intersection and the second one 

involved a Light Rail Transit (LRT) line with 17 signalized intersections on a corridor. 
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For both case studies, a virtual detection system was developed (in VISSIM), along 

with a linear travel-time arrival prediction model. Also, a dynamic TSP algorithm was 

developed to determine what TSP strategy to use and when to apply it. The results 

showed considerable time savings regarding transit delays.  There are many limitations 

for this work, such as the Delayed TSP decision is not well explained; no evaluation 

in a typical network of intersections; single (not multiple) transit priority to consider 

during a cycle with offset recovery time. 

Adaptive/Real-Time Priority 

Automatic Vehicle Location (AVL) based TSP system has the potential to 

overcome the typical shortcomings of traditional active or passive TSP (e.g., 

traditional active or passive TSP does provide priority to the transit vehicle, but  it fails 

to seize the opportunity to cross the intersection due to the lack of real-time location 

of transit vehicle). The real-time transit movement data from GPS can be used to 

estimate bus location as well as to predict bus arrival time to reach the bus stops and 

intersections. The accurate prediction of Transit's arrival time at an intersection can 

help to select the optimal time range to activate the traffic signal controller for priority 

service. A few of adaptive traffic signal control algorithms have been enhanced to 

embed TSP functions.  

Ahmed and Hawas (2015) presented the functional modules of a distributed 

adaptive traffic control system to handle boundary conditions of recurrent and non-

recurrent congestion with transit signal priority. The main objective of this model is to 

develop three functional modules (transit priority module, downstream blockage 

module, and Incident status module) to handle boundary conditions of recurrent and 

non-recurrent congestion with transit signal priority. The system employs multiple 
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objective functions to improve the overall transit productivity (throughput) and 

efficiency (delay times) for all vehicles under heavily congested traffic demand 

scenarios. For this, the control system uses the link detectors’ (upstream, mid-block, 

and downstream) data to determine the boundary conditions of all entry and exit links 

of the intersection.  

The transit signal priority module estimates the number of priority and non-

priority buses at every second using a GPS based bus detector device. The bus is 

considered as non-priority if it is bound to stop at some intermediate bus stop along 

the approach link. If the bus has already stopped or no bus stop along the approach 

link and the expected time of the bus to reach the stop line at the downstream end of 

the link is less than the green extension, then the bus is treated as a high priority bus 

only for actuated traffic control. The model by Ahmed and Hawas was thoroughly 

assessed with CORSIM micro-simulation for a grid network of 49 intersections with 

different types of signal phase settings. Various traffic demand flows starting from 

relatively low to high-traffic volume levels are adopted, and the directional movements 

on each link are estimated using User Equilibrium Assignment. The model has some 

limitations such as the number of required detectors on each link. Also, the initial 

results were only favorable for the pre-timed signal settings (with phase skipping 

strategy). There are also some inconsistencies among the set parameters within the 

control model and the CORSIM simulator.  

Ma et al. (2013) presented some integrated operation for signal timings and bus 

speed. The idea is to provide priority to buses at isolated intersections using real-time 

adjustment of bus speed through Connected Vehicles technology. A set of integrated 

operational rules (such as impacts of preceding bus analysis rules, priority requests 

generation rules, priority passing rules, and speed adjustment without priority rules) 



16 

 

 
 

are developed. The relevant rules are selected according to the passing and the arrival 

times windows for buses with and without schedule deviation with the objective of 

minimizing bus schedule deviation, bus fuel consumption, and emissions.  This model 

was designed and evaluated with a VISSIM-based simulation platform. The model 

outperforms the no priority and common priority strategies. A sensitivity analysis was 

conducted under different levels of transit and vehicular demands, as well as 

accounting for critical factors that may affect model performance such as available 

priority time (maximum red truncation time and maximum green extension time) and 

bus speed limits. Some of the model limitations include; 1) No near-side bus stops; 2) 

Only green extension and red truncation can be used to provide transit signal priority; 

3) There is an exclusive bus lane, and all buses will accept the recommend speed 

immediately and accurately. Furthermore, the model was tested at isolated 

intersections, and as such, it may underperform on corridor-wide or grid network.   

Lin et al. (2013) presented a headway-based transit signal priority (TSP) model 

for multiple bus requests from different routes to benefit both bus riders and passenger-

car users without increasing the total person delay on the arterial. The main objective 

of this model is to minimize the passenger waiting time at the next bus stop without 

significantly causing disruptions to the crossing street. This model utilizes the variable 

priority time technique to determine the duration of green extension for each 

intersection depending on the total person delay estimation and by considering the 

impacts of the downstream signal controller. To handle multiple priority requests 

based on headways, the model estimates the benefits of the bus passenger at the next 

bus stop, the in-bus passengers and the passenger-car users on the arterial before and 

after TSP control to determine the optimal priority time. The primary model 

assumptions are: 1) only grant the priority to traffic movements on the arterial; 2) no 
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change to the common cycle time; the extra green time of prioritized movements is 

equal to truncated green time of through movements on the cross street; 3) the green 

time should be long enough to clear the initial queue for each movement, and 4) the 

passenger cars have no effect on buses in the entry/exit into/from the bus stop. This 

model was tested in a hypothetical arterial with six intersections, with only two 

intersections operated with the function of TSP.  The results showed that the TSP 

control provides some benefits to transit vehicles with an increase of the cross-street 

passengers delay. Among the limitations of this model is that it applies only green 

extension strategy of TSP (of 15 seconds maximum).  

Mirchandani and Lucas (2004) presented a strategy, referred to as Categorized 

Arrivals-based Phase Re-optimization at Intersections (CAPRI), which integrates 

transit signal priority and rail/emergency preemption within a dynamic programming-

based real-time traffic adaptive signal control system like RHODES (Real-time 

Hierarchical Optimizing Distributed Effective System). The main objective of this 

paper is to enhance the RHODES by using varying weights for buses or transit vehicles 

based on the onboard number of passengers and its schedule. The weight is negative 

when the bus is earlier to its announced schedule and positive when it is late. This 

model was examined using a simulation environment. Results indicated a reduction in 

the variance of bus delays at the downstream bus stop when RHODES is implemented. 

The standard deviation for the delay decreased from 22.95 seconds (semi-actuated 

control- SAC) to 20.02 seconds (RHODES with no bus priority) and 18.65 seconds 

(RHODES-BP) at high cross street volumes. The reduction in bus delays on cross 

streets due to RHODES-BP is higher (4.46%) for relatively high cross street volumes 

(demand of 1100 vehicles/hour), with very little change in cross-street traffic delays 
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(16.24 versus 17.02 seconds). In evaluating the model, all intersections were 

considered isolated. 

Adaptive/Real-Time Priority with Optimization  

Adaptive/real-time priority with optimization control strategies predict the 

arrival of vehicles, and then, the optimization is done to minimize a cost function (like 

a weighted combination of stops and delays for all vehicles). Transit vehicles can be 

selectively detected and given a higher weight in the cost function. Therefore, the 

resulting signal timings will be more favorable towards the transit. Different routes, 

directions or late buses, can be given different weights to prioritize in different extents. 

In summary, this approach attempts to provide transit priority based on the 

optimization of performance criteria such as passenger delay, vehicle delay or some 

combinations of these measures.  

Feng et al. (2015) presented a real-time adaptive signal phase allocation 

algorithm using connected vehicle data to optimize the phase sequence and duration 

by solving a two-level optimization problem (minimization of total vehicle delay and 

queue length). The main objective of this paper is to improve the controlled 

optimization of phases (COP), which is based on a sequence of stages (used in the 

Real-time Hierarchical Optimization Distributed Effective System, RHODES, 

adaptive traffic control system). This algorithm applies the two-level optimization 

scheme to a dual ring controller. Both phase sequence and duration are optimized 

simultaneously. Given the current low penetration rates, the location and speed of 

unequipped vehicles should be estimated accurately. An algorithm called EVLS 

(Estimation of Location and Speed) is used to construct a complete prediction arrival 

table by segmenting the road near an intersection into three regions: queuing region, 
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slow-down region, and free-flow region. The two-level optimization algorithm assigns 

signal phase sequences and durations based on predicted vehicle arrivals. At the upper 

level, a dynamic program (DP) is applied to each barrier group.  

The calculation of the performance function of the upper level is passed to the 

lower level, which is formulated as a utility minimization problem (total vehicle delay 

or queue length based on different operational policies). The sequence of barrier 

groups is assumed to be fixed, but the order of phases within each ring in each barrier 

group can vary. A real-world intersection is modeled in VISSIM to validate the 

algorithm. Different scenarios with two different demand levels and four penetration 

rates (100%, 75%, 50%, and 25%) are tested. The results with the various market 

penetration rates and demand levels are compared to well-tuned fully actuated control. 

In general, minimization of total vehicle delay generates lower total vehicle delay 

compared to minimization of queue length. When the demand is higher, the difference 

is more significant. The algorithm outperforms actuated control by reducing total delay 

by as much as 16.33% in a high penetration rate case. 

Hu et al. (2015) presented a person-delay-based optimization method for a TSP 

logic that enables transit/signal cooperation and coordination among consecutive 

signals under the Connected Vehicle environment. A Coordinated TSP with 

Connected Vehicle (TSPCV-C) is proposed to secure the mobility benefit generated 

by the TSP logic along a corridor. The problem is formulated as a Binary Mixed 

Integer Linear Program (BMILP), solved by a standard branch-and-bound method, to 

minimize the person delay. The TSPCV-C is designed to be “conditional”; grants 

priority only when the bus is behind schedule and the grant of TSP causes no extra 

total person delay. The used assumptions include; 1) cycle length is fixed, 2) sequence 

of signal phases does not change, 3) general traffic rate is constant 4) a maximum of 
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one TSP is granted within the signal cycle. The optimization algorithm is designed to 

find a set of decision variables that minimize the total delay (including bus and general 

traffic users). This algorithm was evaluated using both analytical and microscopic 

traffic simulation approaches. Four scenarios were compared: without TSP (NTSP), 

conventional TSP (CTSP), TSP with Connected Vehicle (TSPCV), and Coordinated 

TSP with Connected Vehicle (TSPCV-C). Transit delay and total travel time of all 

travelers were used as the measures of effectiveness. The performance of TSPCV-C is 

compared against conventional TSP (CTSP) under four congestion levels (v/c ratios 

are 0.5, 0.7, 0.9, and 1.0) and five intersection spacing (0.14 to 0.54 miles with 0.1 

miles increment) cases. The results showed that the TSPCV-C greatly reduces bus 

delay for all congestion levels and intersection spacing cases. The TSPCV is not as 

efficient as TSPCV-C, but still, it can reduce delay up to 59% for not too closely spaced 

intersections. The TSPCV-C is recommended for intersections that are spaced less than 

0.5 miles away, and it can reduce the bus delay between 55% and 75% compared to 

the conventional TSP. No significant negative effects were observed at congestion 

levels below capacity. 

Dion and Hellinga (2002) presented a heuristic-based, distributed, real-time, 

traffic-responsive model named Signal Priority Procedure for Optimization in Real-

Time (SPPORT) considering the impacts of transit vehicles. The model accounts for 

the interference caused to the general traffic by transit vehicles (stopping in the right 

of way to board and discharge passengers), and the potential effects of priority passage 

of transit vehicles on other traffic. This model was evaluated with 12 scenarios in an 

isolated intersection considering transit vehicles (yes, no), and various temporal 

(constant, peaking) travel demands (low, medium, high). The model was also 

compared with both fixed-time and traffic actuated control. Among the model 
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limitations is the unrealistic setting of amber time (set to 2 seconds), which may create 

a dilemma for drivers (usually it should be 3-5 seconds). Also, the relative weights of 

priority were not considered in the sensitivity analysis. For the constant demand 

scenarios, the model performs worse than fixed timed signal control. The model is also 

reported to be time-consuming with short green extension settings.  

Ghanim and Abu-Lebdeh (2015) presented a real-time traffic signal 

optimization approach for a coordinated network, integrating transit signal priority 

using genetic algorithms (GA). The model is aimed at overcoming the uncertainty in 

transit vehicle arrival times and difficulties associated with incorporating a TSP system 

within a coordinated traffic signal control network. Artificial neural networks (ANN) 

applications are used to predict the bus travel time (dwell time at individual stops along 

the route).  

A Dynamic Signal Priority Optimization in Real-time Traffic (D-SPORT) 

control algorithm was developed with cost function formulation based on signal timing 

plans, ANN bus arrival prediction model and the GA optimization platform. The cost 

function combines weighted sub-functions of network general traffic performance, 

transit travel time, and transit schedule adherence. The ANN model predicts bus arrival 

times using the number of general traffic vehicles, observed average delay and travel 

time, average number of queued vehicles in through, right and left-turning traffic 

streams in the past 5 minutes, bus lateness, number of passengers in bus and at bus 

stop, and local signal time within signal cycle at which a bus is detected. The ANN 

model was trained, tested, and validated in a MATLAB environment using 8871 

datasets generated by VISSIM. The decision variables of the GA algorithm are the 

cycle length, green times, and offsets.  The model was tested in a simulation 

environment using VISSIM, using a network with two intersecting one-way streets 
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(two through lanes and one exclusive left-turn lane with same cross-streets without 

turning bay) under coordinated signal operation. The tested signal control scenarios 

are pre-timed with and without TSP, fully actuated traffic control with and without 

TSP, real time without TSP, and D-SPORT. The results indicated that D-SPORT could 

reduce traffic delay and stops by 5% to 90% for the general traffic along the major 

corridors depending on the congestion level and control type in the most experimental 

scenarios. The model does not have an adverse impact on crossing streets traffic. 

Concerning the transit traffic, the model resulted in reducing transit delay and number 

of stops by 15% to 85%. 

Zhou et al. (2007) presented an adaptive transit signal priority (TSP) model 

using a parallel genetic algorithm (PGA) to optimize the traffic signal control (phase 

plan, cycle length, and green splits) at isolated intersections considering the 

performance of both the transit and general vehicles. The model assigns weighting 

factors to individual transit vehicles that require TSP service. This weighting factor 

accounts for the passenger occupancy of the transit vehicle, the queuing conditions of 

all intersection movements, and the schedule lateness of the transit vehicle. The PGA 

searches for a near-optimal traffic signal timing solution to optimize the intersection 

average vehicle delay. This model was implemented and tested in a “star-like” network 

of one center and four adjacent intersections upstream the center intersection. The four 

adjacent intersections create traffic platoons and fluctuations. The simulation results 

showed that the PGA-based optimizer outperformed the fully actuated NEMA TSP 

control. Among the limitations are the use of single intersection for TSP evaluation, 

and also the huge computational resources needed for an arterial control.  
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2.2.3 Priority Strategies 

TSP implementation is done through several strategies, such as extending 

greens, altering phase sequences, and including distinct phases without disrupting the 

coordination between adjacent intersections. The characteristics of these strategies are 

dependent on the selected priority concept. In the remaining part of this section, we 

highlight some of these strategies.  

Passive Priority Strategies  

Passive priority strategies are based on the schedules of the transit vehicles. 

They are developed based on the assumption that transit vehicles adhere to the planned 

schedule. When transit volume is higher (exceeds 60 buses per hour), the passive TSP 

with arterial coordination can provide much better performance than others (Lin et al., 

2015). They are easy to implement and require low investment since no detection 

system is used. Passive priority strategies include green adjustment, phase splitting, 

cycle length reduction, transit coordination, metering vehicle, and queue jumps.  

Green adjustment is two types; extending the green phase and truncating the 

red phase. The signal timing is changed depending on the arrival time of a transit 

vehicle. In phase splitting strategy, the signal phase is split into two equal phases 

without affecting the cycle length and the green time of cross streets traffic. The 

appropriateness of this strategy usually depends on transit and non-transit vehicles 

volumes. The cycle length reduction strategy is like the phase splitting strategy. 

However, the cycle length is reduced to decreases the stopping time of the transit 

vehicles. The strategy is likely to lessen the efficiency of control (by increasing the 

loss time), as the all red clearance times and the start-up delays at the beginning of 

each phase will be same for reduced cycle length. In transit coordination strategy, the 
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offsets of the signals along the route of the transit vehicles are designed for signal 

coordination based on the schedule of the transit vehicles. Coordination is designed 

along the path of the transit vehicles if the transit vehicle path is not through an arterial. 

This strategy may not be effective due to the difficulty of predicting the dwell time at 

different stations along the route. A metering vehicle is an approach that limits the 

number of passenger cars to pass in the congested intersections or regions to increase 

the reliability and efficiency of transit vehicle operations. Finally, the queue jumps 

strategy is only suitable at intersections with designated transit vehicle lane(s). The 

transit vehicles are given early green times to jump the vehicle queues. 

Active Priority Strategies  

Active priority strategies are based on real-time conditions and are better than 

the passive strategies since they are responsive to traffic conditions. However, they 

require greater investment due to the essential implementation of a detection system. 

Active priority strategies include a green extension, red truncation or early green, 

phase insertion, phase rotation or substitution, and queue jumps. These strategies are 

like the ones used in the passive priority systems, but they are executed only when a 

transit vehicle is detected. 

Zhou and Gan (2009) presented a signal control design for queue jumper lanes 

with actuated TSP strategies and compared its performance with that of the general 

actuated mixed-lane TSP. The associated signal control designs for the TSP and queue 

jumper lanes include phasing, phase splits, multiple bus services, and coordination 

recovery and green reimbursement. The model was evaluated in a micro-simulation 

environment by comparing its performance with that of the general mixed-lane TSP 

under various traffic volumes and bus stop locations. The results showed that the 
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proposed TSP with queue jumper lanes could reduce more bus delays than can the 

commonly-used mixed-lane TSP, especially under high traffic volume conditions. 

Also, a nearside bus stop is superior to the far-side bus stop regarding bus delay 

(reduction of bus delay up to 25 percent) and overall intersection delay for the 

proposed design. Also, the impact of bus volumes on the general traffic on both major 

and minor streets is not significantly different from the mixed-lane TSP because of 

limiting the continuous calls for TSP to no more than two in one or two continuous 

signal cycles. The model is limited in the sense it accounts only for intersections with 

three phases (left turn are only permitted on the minor street).  For four phase 

intersections, the results can be entirely different, and a new strategy has to be 

developed for coordination recovery and green reimbursement. 

Green reallocation is another strategy that splits the original green times with 

respecting the phase transition sequence. Hu et al. (2015) demonstrated this strategy 

based on person-delay using optimization method for a TSP logic (Coordinated TSP 

with Connected Vehicle, TSPCV-C).  This model is composed of three major 

components; a transit detection component, a TSP timing plan and transit speed 

calculation component, and finally a logic assessment and implementation component. 

Signal Recovery/Compensation 

Applying transit priority strategies may adversely affect other traffic and signal 

coordination. Signal compensation and offset recovery could be used to recover these 

effects. The additional green time given to the desired phase is taken from other phases 

in the following cycles to keep the same signal cycle time. This can cause delays and 

queues on the other phases especially if the frequency of transit signal priority is more. 
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The implementation of this strategy depends on the incidence frequency and 

characteristics of priority requests.  

When a transit signal priority strategy is applied, the offsets of the signals may 

get altered, and that may disrupt the coordination of the signals on an arterial. The 

offset recovery is employed to recover the offset of the signal by adjusting the cycle 

lengths of the next two or three cycles. Signal recovery is usually applied on a network 

scale. 

During the implementation of TSP, coordination can be interrupted due to the 

alteration of signal settings at intersections. Therefore, the strategy to incorporate TSP 

into a coordinated arterial should be thoroughly examined. He et al. (2014) presented 

the mathematical optimization model formulation of coordinated-actuated traffic 

signal priority control using Mixed-Integer Linear Program (MILP). The model was 

examined using a microsimulation tool. The model is designed to handle the multiple 

priority requests from different modes of vehicles and pedestrians with coordination 

and actuation simultaneously. Vehicle-To-Infrastructure (V2I) communication is used 

for getting the real-time information from the priority vehicle. Signal coordination is 

achieved by integrating virtual coordination requests, and when the signal coordination 

is not fulfilled, a penalty is added to the objective function. Two assumptions were 

used; the sequence of phases in a ring is fixed, and an existing off-line optimized signal 

coordination plan is available. The model was examined with three coordinated control 

methods, two bus frequencies and four different scenarios of nominal traffic volume 

(from low to high) for sensitivity analysis. The simulation experiment showed better 

results than the state-of-practice strategies. Results also indicated that greater 

coordination weight might cause some adverse impact to buses and pedestrians. 
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Conflicting/Multiple Priority Requests  

Conflicting or multiple signal priority requests can occur. For instance, two 

transit lines crossing each other at an intersection can arrive at the same time requesting 

signal priority in different directions. Similarly, multiple priority requests of various 

modes of vehicles and pedestrians can occur. Also, buses on the same transit line 

initiate multiple priorities requests if they arrive successively with some time gaps, 

which results in calls at different stages of the traffic signal. Even two buses served by 

the same stage can cause various requests for signal priority if it is impossible for both 

buses to pass the intersection at the same green period. Typically, conventional 

controls, heuristic rules like first-come first served, are used to overcome this issue.  

Zamanipour et al. (2014) presented a mathematical optimization model 

formulation to present a unified decision framework for multimodal traffic signal 

control. They used relative importance for different modes based on the information 

collected from connected vehicles and traditional detection system. The model is 

aimed to handle the multiple priority requests of various modes of vehicles and 

pedestrians. A policy-based integrated priority control framework is developed. 

National Electrical Manufacturers Association (NEMA) dual-ring eight-phase 

controller is used assuming the sequence of phases in each ring is fixed and phase 

skipping is not allowed. This model was evaluated with using two modes; Transit and 

Trucks. The model, although tested in the simulation model, does not account for 

delays due to coordination and green time extensions. 

2.2.4 Evaluation 

Lin et al. (2015) presented a comprehensive review of existing TSP controls 

according to the application and theoretical aspects by considering priority control 
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methods, and system evaluations. This paper reviews three effective ways of system 

evaluations: analytical evaluation, simulation test, and field test. Moreover, this study 

analyzes field benefits of TSP in 24 cities around the world. 

A critical step of the implementation of TSP is its assessment. Bus performance 

and reliability can measure the effectiveness of a transit signal priority. Bus 

performance is measured by bus travel time, delay, and speed, while bus reliability is 

measured by headway or schedule adherence. Moreover, the performance of the 

general vehicles and overall intersection/network is used to evaluate TSP system. The 

general vehicles performance is measured by vehicle delay and cross street vehicle 

delay, and the overall intersection/network performance is measured by total delay and 

total passenger delay. These performance measures are commonly determined by 

traffic simulation, analytical modeling, or actual TSP implementation.  

Analytical Evaluation 

The effects of active transit priority are difficult to model analytically due to 

the stochastic nature of the transit arrivals, which can be described as “events” rather 

than traffic flow. Analytical evaluation is done using queueing theory and regression 

models, to assess the efficiency and reliability of TSP control, and identify influenced 

factors. 

Bagherian et al. (2015) presented an analytical method to enhance the 

evaluation of TSP at the network level using parameters such as traffic flow and signal 

characteristics. The model operational rules are: 1) pre-computed signal timing is 

utilized when no bus is approaching the intersection; 2) green extension (GE) would 

be granted if a bus is detected on an approach, the signal is green, the bus can pass the 

stop-line with this extension, and once the bus crosses the stop line, transition to the 
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next phase is triggered; 3) red truncation (RT) is granted if a bus is detected on an 

approach and the signal is red; 4) the amounts of GE or RT time are compensated in 

the next cycle; 5) both prioritizing and compensation are ignored if a bus is detected 

in the next cycle; and 6) the effect of opposing flow rate is reflected in signal timing 

(i.e., allocated green time for each phase). The SIDRA model for traffic analysis is 

used to obtain sequence and phase times, and to compare the delay values vis-à-vis 

those obtained from the TSP delay function. The TSP model was examined by two 

case studies; first, an isolated T-intersection is used to address both TSP strategy and 

model efficiency, and second using a corridor in Australia. The results indicated that 

the delay estimated by the delay function closely matches micro simulation results.  

Traffic Simulation Software  

The microsimulation techniques have been widely used to evaluate and assess 

the efficiency and effectiveness of signal timing settings (Lin et al., 2015). For the 

preliminary study and planning of large transportation projects, traffic simulation 

software can provide more depth and analyses of project’s impacts. Simulation 

technologies have replaced traditional mathematical models for understanding and 

foreseeing the dynamics of traffic movements and control operations. Currently, there 

are several popular micro-simulation models, such as AIMSUM, CORSIM, VISSIM, 

TRANSMODELLER, and PARAMICS; however, engineering (statistical) judgment 

with calibration is required for adopting the most appropriate, efficient simulation tool 

for the particular type of project. 
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2.2.5 Discussion  

This section summarizes the literature reviewed on various aspects of transit 

signal priority (TSP), such as the types of TSP concepts and strategies, the evaluations 

of these strategies, and the considerations for the planning and implementation of TSP.  

TSP concepts are commonly categorized as Passive Priority, Active Priority or 

Adaptive/Real-Time Priority with or without optimization. Passive priority uses a pre-

timed signal plan to favor bus operation without explicitly recognizing actual bus 

presence. Such passive priority strategies include green adjustment, phase splitting, 

cycle length reduction, transit coordination, metering vehicle, and queue jumps. Active 

priority alters the signal operation in response to the presence of a transit vehicle using 

detectors. Active priority strategies include a green extension, red truncation or early 

green, phase insertion, phase rotation or substitution, and the green reallocation (Hu et 

al., 2015). Depending on the location and capabilities of the bus detectors, active 

priority can also be classified as unconditional and conditional. Unconditional active 

priority grants priority to all transit priority requests; whereas, conditional active 

priority provides priority only to buses that meet certain predefined criteria, such as 

schedule or headway adherence, high passenger occupancy, or queue length of traffic. 

Based on real-time flow profiles of transit and general vehicles, adaptive priority 

develops signal timing plans to provide priority for transit vehicles while incurring the 

least delay to the transit passenger or total person (Lin et al., 2015). Adaptive priority 

entails using optimization models, Genetic algorithms and Artificial Neural Network 

(ANN) based control algorithm (Ghanim and Abu-Lebdeh, 2015).  

The evaluation of TSP strategies is commonly based on the traffic 

performance, including the assessment of bus performance, bus reliability (headway 
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or schedule adherence), general and cross street traffic performance and overall traffic 

performance. Also, evaluation methods can be categorized into three types: analytical 

evaluation, simulation test, and field test (Lin et al., 2015). In the majority of the 

literature, the TSP evaluation has been commonly reported with an improvement in 

transit performance (i.e., travel time, delay). However, the improvement gained 

regarding transit performance is typically accompanied by deterioration in the 

performance of the cross street traffic.  

TSP may be applied at an isolated intersection, on an arterial, and over a 

network of intersections. Only very few papers have reported the performance of TSP 

in a complex urban traffic network with many overlapping or conflicting bus routes 

(Ahmed and Hawas, 2015). Transit signal priority at an isolated intersection needs a 

detection system for active priority. In the case of passive priority, an efficient arrival 

prediction model is required to get information regarding transit vehicles. When 

applied along an arterial with a group of signalized intersections, it is common to 

consider the coordinating between the adjacent intersections. For a network-based 

application, complex and advanced transit detection systems are essential (such as the 

Automatic Vehicle Location (AVL) and Automatic Passenger Count (APC), 

Connected Vehicle (CV)), and should be coupled with the non-transit vehicle queue 

detectors (Ding et al., 2013). The real-time detection system monitors the transit 

vehicles continuously, and the signal controller integrates the monitored vehicle's 

information with the non-transit flow data to provide priority to the transit vehicles. At 

this level, various priority strategies and different optimization models can be applied 

to optimize the network performance.  

In general, TSP interrupts normal signal operations, and this creates delays to 

general traffic by serving priority requests. In some way, the performance of TSP 
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control strategies relies on transit vehicle detection system, which in turn influences 

TSP operations. Short or long detection ranges may lead to less efficient TSP 

operations. Short detection range technology enables transit identification too near 

from the intersection, while the long detection range transit vehicles to be located at a 

far distance from the intersection.  As such, short detection range implies late priority 

calls which would have limited lead time for treatment. On the other hand, long 

detection ranges can result in less predictability or inaccuracy of the transit vehicle’s 

arrival at the intersection, due to the uncertainties of transit movements like dwelling 

at stops. Another important aspect is the location of bus stops (a near side stop is 

located before the intersection, and a far side stop is located after the intersection). In 

the case of far side bus stop, the TSP operation depends on the detection of the bus 

itself, but for nearside bus stop, the TSP operations should additionally account for the 

dwelling time at the bus stop.  

Considering all these issues, Ahmed and Hawas (2015) developed an 

integrated traffic control system with TSP using a GPS based real-time bus detector 

system. The bus is considered as non-priority if it is bound to stop at some intermediate 

bus stop along the approach link. If the bus has already stopped or no bus stop along 

the approach link and its expected time to reach the stop line at the downstream end of 

the link is less than the green extension, then the bus is treated as a high priority bus. 

If the bus cannot reach the stop line within the green extension, the bus is regarded as 

a normal priority. This provides treatment to the issue of near or far side bus stop. Also, 

Ahmed and Hawas introduced mid-block detectors to overcome the problem of short 

or large detection range, but the impact of these detectors is not evaluated. 

Furthermore, despite the fact that the TSP system was tested with various signal 
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controllers (split, protected, dual), there is no adequate discussion of the implications 

(pros and cons) of integrating the TSP with the different controllers.  

The majority of the TSP systems in the literature lack some fundamental 

aspects that this research is attempting to address. First, the TSP s in literature have 

limited applicability to network operation (with overlapping and intersecting transit 

routes). Second, there is also another limitation because of the assumption that one 

point of transit vehicle’s detection is sufficient for the system to operate. As indicated 

earlier there is advantages and disadvantages of both short and long term detection. 

Each detection range requires specific technology (with pros and cons), and as such, 

coupling both detection techniques (and ranges) might provide an edge. Third, nearly 

all the presented TSP’s cannot be generalized to conditions beyond which the 

conditions they are calibrated for and tested. The robustness of a TSP system is verified 

if and only if it results in near optimal (or at least good) measures of performance in 

all conditions it may encounter in real life. A TSP working effectively for a specific 

traffic situation may not be as effective for another condition.  

The TSP system parameters are commonly selected to fit specific traffic 

conditions. It is natural as such that such systems should be re-calibrated each time 

they are deployed to different conditions (that the system was not optimized for). What 

makes it more challenging is the dynamics of traffic and the evolution of the traffic 

demand over the day. A TSP may operate effectively during specific hours but then 

fails to run at other times because its parameters are adjusted for only some specific 

conditions (but not all). Furthermore, TSP systems commonly include multiple 

parameters that affect the performance, and as such the recalibration is certainly a 

challenging, difficult multi-dimensional task. It is not clear from the literature how 

were most of the TSP systems calibrated and how parameters were estimated. 
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Apparently, it seems like a trial and error calibration approach. It is certainly unclear 

also how general ATMS systems (and specifically complex TSPs) are calibrated for 

real time operation to function effectively at various demand levels and network 

configurations. A rule of thumb is no TSP system fits all traffic conditions.  

Regardless of the TSP strategy and methodology to implement, one has to 

ensure the robustness of adopted solutions. Robustness can only be assured with 

extensive analytical, simulation or field tests under variant traffic conditions and 

network configurations. In addition to robustness, there is also need to minimize the 

recalibration requirement; it is illogical and impractical to calibrate the system for 

every condition it may encounter. In a real-time operational environment, this is 

certainly an impossible task.  In brief, there is a need to devise a methodology that can 

be used to assess the effectiveness of complex TSP based systems, calibrate its 

parameters to provide optimal (or at least close to optimal) control, and assess the 

robustness of its effective control under the varying conditions. The challenge of the 

devising such methodology is the complexity of the objective functions and the 

nonlinearity nature of it. Some of the TSP s found in the literature are even integrated 

with other advanced ATMS components such as incident detection and management 

(Ahmed and Hawas, 2015), which makes the calibration of parameters even more 

challenging. Some of the TSP s may have few parameters to calibrate, and some may 

have many. As such, no matter what methodology is used to calibrate these parameters, 

it should be functional with various TSP systems and parameters. In the remaining part 

of this thesis, we highlight the main features of the proposed solution methodology 

and demonstrate how it can be used for optimizing the parameters through various case 

studies and ensure consistency and robustness of solution effectiveness at different 

operating conditions. To demonstrate the methodology, the integrated system 
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developed by Ahmed and Hawas (2015) shall be used. Any other TSP algorithm can 

also be used instead; the Ahmed and Hawas (2015) was merely used because it is one 

of the most complicated TSP-based systems published recently, and it applies to all 

traffic control types (split, protected and dual).   

2.3 Integrated Traffic Signal Control System 

Traffic signals operate in pre-timed and actuated (semi-actuated and full-actuated) 

control modes. In pre-timed control, the control parameters (e.g. cycle length, phase 

splits, and phase sequence) are preset based on average traffic demand from historical 

data at different time periods of the day. In actuated control (based on the vehicle 

actuation), the control parameters (e.g. cycle length, phase splits, and sequence) vary 

in response to the current traffic situation. However, still, these control parameters 

depend on preset fixed parameters, such as unit extension, minimum, and maximum 

green. Therefore, these signal control systems can handle the recurrent congestion 

efficiently, but they do not have the ability to cope with non-recurrent congestion. 

Adaptive Traffic Control Systems (ATCSs) have been developed to adjust signal 

timing plans in dynamic real-time based on the current traffic situations, and 

transportation system capacity. According to a comprehensive study by Stevanovic 

(2010), each ATCS has unique features. This study identified several features to 

describe various adaptive traffic control logics. Among the potential features, the 

following functions can help in the identification of the distinctive working principles 

of each respective ATCS, as shown in Figure 2.1. This list does not include other 

features that are nearly as important (e.g. handling non-recurrent traffic conditions in 

urban streets). It is evident that none has the function of incident detection and  
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Figure 2.1: Features of various adaptive traffic control logics 
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management protocols. Therefore, an alternative control logic was developed by 

Ahmed and Hawas (2015) to combine incident detection and management protocols, 

transit signal priority, along with the recurrent congestion management into one 

integrated control system. 

The control system by Ahmed and Hawas (2015) may be best classified as 

heuristically-based system that reacts to specific triggering conditions (such as 

downstream signal congestion, incident detection, identification of priority transit 

vehicle(s) in the traffic stream) by penalizing some predefined objective function with 

a set of parameters corresponding to these conditions.  

The objective function of the controller is to maximize the throughput of 

passengers. This is not a typical optimization (maximization) process over a specific 

extended time-period, but rather an optimization at specific time instants (triggers). At 

any time (triggered by activating specific conditions), following the minimum green 

of the current phase, the system allocates the green to the phase (either current or the 

competing one) that has the estimated maximum queue of passengers. 

In estimating the queue of passengers for any phase, the model accounts of 

passengers on priority buses (increases the passenger queue with more priority buses). 

For instance, when a transit vehicle is detected, a transit vehicle parameter is activated 

to increase the value of the objective function for this traffic approach (and its 

corresponding signal phase) on which the transit vehicle is detected.  The model also 

accounts for downstream congestion status (decreases the passengers queue with 

downstream blockage conditions). If the congestion downstream a specific phase is 

reaching the capacity of approach, the upstream phase queue of passengers is 

readjusted to reduce the green time allocation of the phase(s) that are likely affected 
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by the downstream congestion. The model also reacts to incident alarms on a specific 

approach by increasing the passenger queue of the phase serving this approach to allow 

incident recovery.  

Ahmed and Hawas (2015) suggested that the system should undertake some 

actuation decisions of a currently running green phase based on the “establishment” of 

some boundary conditions, as shown in Figure 2.2. There are four modules, which are 

deployed to check the so-called boundary conditions. According to Ahmed and Hawas 

(2015),  the traffic regime state module estimates the congestion status of the upstream 

link to a signalized intersection, the incident status module determines the likelihood 

of an incident on the link, the transit priority module estimates if the link is flagged for 

transit priority based on the transit vehicle location and type, and the downstream 

blockage module scans all downstream links of the intersection and determines their 

recurrent blockage (spillback) conditions.  

The transit signal priority module estimates the number of priority buses and their 

type (normal or high). A bus will be flagged as no priority and as such will not be 

accounted for in the logic, if it is bound to stop at some intermediate bus stop along 

the approach link at time t. i.e., the bus is yet to stop. If the bus has already stopped (or 

no bus stop along the approach link), we check the expected time of the bus to reach 

the stop line at the downstream end of the link. If the bus is expected to reach the stop 

line within some interval,△ gi,Φk, the bus is treated as a high priority bus. If the bus is 

to reach the stop line beyond △ gi,Φk, the bus is treated as a normal priority one. △

gi,Φk is the pre-specified time extension period for the actuated signal. The logic 

identifies the numbers of no priority, normal and high priority buses, and is capable of 
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treating them differently by separate penalty values. Nonetheless, in this research, the 

penalty of both normal and high priority buses are set equal.  

 

The downstream blockage module declares if any downstream blockage condition 

exists (physical constraint on the downstream exit link(s) for an individual phase, 𝜙𝑗) 

at each detector data aggregation interval. This module checks the balance between 

the number of vehicles to be served for the time Δgi,Φk from the upstream approach 

link, and the available physical spaces on the downstream exit link. The presence of 

downstream blockage condition is indicated if the estimated number of vehicles to be 

served (from the upstream demand side) exceeds the number of vehicles that could be 

accommodated physically (with the downstream supply side), at the time t. It is to be 

noted that the available number of vehicles that could be accommodated on a 

downstream exit link is estimated considering the jam condition as the worst case 

scenario. 

The actuation module then estimates the so-called actuation index for each 

individual phase and then optimize to identify the next candidate phase set based on 

the signal control type (e.g. dual, protected, split). The controller then deploys the best-

identified candidate phase set.  

According to Ahmed and Hawas (2015), the proposed system operates in a manner 

similar to fully actuated signal (with split phase or protected phase or dual ring phase 

settings). The system has a continuously running actuation module which decides the 

“most deserving” phase set to go green from the inputs of the four modules at each 

control decision check point. While deploying the actuation module, the system also 

scans all feasible phase sets (including the current one).  The system then estimates the 

value of the so-called actuation index for all the feasible phase sets, and determines 
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the optimum (most deserving) candidate phase set; the one that possesses the 

maximum actuation index value, to serve green. 

Start

Determining the 

presence of boundary 

condition(s)

[for each of the 

candidate phase set]

Boundary condition 

present?

Operation Mode with 

current optimum candidate 

phase set

Φo=Φc 

Detector data

(Upstream approach link 

of each individual phase 

of intersection i)

Traffic Regime State Module

Incident Status Module

Transit Priority Module

Downstream Blockage 

Module

Detector data

(Downstream exit link 

of each individual phase 

of intersection i)

(at time t) 
Actuated Signal: 

Request to either extend green

 for current phase set or 

terminate current phase set at the end of its maximum green 

time?

    Pre-timed Signal: 

Request to switch to the next phase set?

Deploy actuation 

module

Continue with current 

phase set with green?

Optimization

(Identify new optimum phase set Φo out 

of all feasible candidate phase sets)

Start serving green to the most 

deserving candidate phase set

Yes

No

No

Yes

No

Yes

Yes

(t-1)

(t-1)

(t-1)

(t)

 

Figure 2.2: The architecture of the integrated traffic signal control system (source: 

Ahmed and Hawas, 2015) 
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 For the actuated controllers, the first check point is the pre-selected minimum 

green-time gi,Φc
min (of the current phase set Φ𝑐 at intersection i). If the actuation module 

identifies the currently running green phase set as the optimum (most deserving) 

candidate phase set at this first check point, then the green time is extended for a period 

of Δgi,Φc ,where Δgi,Φc is the adopted (pre-selected) green time extension seconds for 

the phase set Φ𝑐 at intersection i. The whole control system logic is repeated then (a 

loop) at each Δgi,Φc interval, which forms the consecutive check points and this 

process is constrained with some limiting conditions.  

 If the optimum (most deserving) candidate phase set is currently red flagged, then 

the current green phase set is truncated to switch to this optimum candidate phase with 

the maximum actuation index value. The control system logic is repeated when the 

current phase set reaches the first check point i.e. the minimum green time of a phase 

set. 

 In order to determine the optimum phase set Φ𝑜 at any time t, the actuation module 

acts as an optimization model with a maximization problem. At any time t at the 

intersection i, while the current green phase set is  Φ𝑐, the aim of this maximization 

problem is to search the best deserving candidate phase set Φ𝑘 out of  Ψ𝑐, which is a 

set of all feasible candidate phase sets while the current phase set is Φ𝑐.  The best 

candidate phase set is termed as the phase set(s) which would produce the maximum 

actuation index, 𝑍𝑖,Φ𝑘
𝑡 value(s).  The optimum phase set, Φ𝑜 is selected from either  

Φ𝑘∗1  or Φ𝑘∗2 (based on the type of control and the time with respect to maximum 

green), where, Φ𝑘∗1 and Φ𝑘∗2 refer the index of the best candidate phase set of the 

highest and second highest 𝑍𝑖,Φ𝑘
𝑡  values, respectively, given that the current green 

phase set is Φ𝑐 and the set of feasible candidate phase sets, Ψ𝑐.  
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 As any phase set consists of two individual phases (as per the dual ring operation 

phase settings format), the final adjusted virtual queue of passengers of the feasible 

phase set is estimated by summing the adjusted virtual queue of passengers of the two 

corresponding individual phases.  The phase set incurring the highest adjusted virtual 

queue of passengers is denoted as the optimum or most deserving candidate phase. 

 The base congestion indicator on the upstream of an individual phase j  denoted 

by 𝐽𝑖,𝜙𝑗
/,𝑡

 refers to the virtual queue of passengers on the upstream approach of that 

individual phase j at time t, and could be estimated from Eq. (2.1). This base 

congestion indicator (𝐽𝑖,𝜙𝑗
/,𝑡

) is estimated without any adjustment for the incident status 

on the upstream approach of that individual phase j at time t.  That is, Eq. (2.1) applies 

only to normal recurrent conditions; that is if no incident is detected on the upstream 

approach of phase j . 

𝐽𝑖,𝜙𝑗
/,𝑡

=

[
 
 
 
 
 
 
 (𝐶
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/
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𝑖,𝜙𝑗,𝑢
/

𝑉 }
]
 
 
 
 
 
 
 

 

          (2.1) 

 

Where 𝐶
𝑖,𝜙𝑗,𝑢

/
𝑐,𝑡

, 𝐶
𝑖,𝜙𝑗,𝑢

/
𝑏,𝑡

,and  𝐶
𝑖,𝜙𝑗,𝑢

/
𝑝,𝑡

 are the total vehicular counts of the cars, c, 

normal priority buses, b, and high priority buses, p, respectively, at time t on the 

upstream approach link, 𝑢/, relevant to phase, 𝜙𝑗 , of intersection i. 𝑂
𝑖,𝜙𝑗,𝑢

/
𝑐 , 𝑂

𝑖,𝜙𝑗,𝑢
/

𝑏 and 

𝑂
𝑖,𝜙𝑗,𝑢

/
𝑝

 are the average passenger occupancies of cars, c, normal priority buses, b, and 
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high priority buses, p, respectively. The parameters 𝛽
𝑖,𝜙𝑗,𝑢

/
𝑏  and 𝛽

𝑖,𝜙𝑗,𝑢
/

𝑝
 are coefficients 

for transit priority for normal and high priority buses, respectively. 𝑟
𝑖,𝜙𝑗,𝑢

/
𝑉,𝑡

 is the ratio 

of the vehicular queue length to the physical capacity of the corresponding link length 

𝑙𝑖,𝜙𝑗,𝑢/. 𝛽𝑖,𝜙𝑗,𝑢/
𝑉  is a coefficient for virtual queue of vehicles. 

If an incident is detected (𝑖. 𝑒.  𝐼
𝑖,𝜙𝑗,𝑢

/
𝑁,𝑡 = 1), the value of the base congestion 

indicator,   𝐽𝑖,𝜙𝑗
/,𝑡

 is adjusted (increased) by the incident penalty coefficient 𝛽
𝑖,𝜙𝑗,𝑢

/
𝑁   to 

account for the potential incident on the upstream approach, 𝑢/ , as shown in Eq. 

(2.2): 

𝐽𝑖,𝜙𝑗
𝑡 = (1 + 𝛽

𝑖,𝜙𝑗,𝑢
/

𝑁 × 𝐼
𝑖,𝜙𝑗,𝑢

/
𝑁,𝑡 ) × 𝐽𝑖,𝜙𝑗

/,𝑡
  (2.2) 

 The 𝐽𝑖,𝜙𝑗
𝑡  value (in Eq. 2.2) is further adjusted (decreased) as shown in Eq. (2.3) by 

applying a downstream blockage penalty coefficient 𝛽
𝑖,𝜙𝑗,𝑑

/
𝐵   to account for blockage 

on the downstream exit link of phase j .  This applies only if the indicator of the 

downstream congestion 𝐼
𝑖,𝜙𝑗,𝑑

/
𝐵,𝑡 = 1.  If the downstream congestion indicator; 𝐼

𝑖,𝜙𝑗,𝑑
/

𝐵,𝑡 =

0, the denominator value [(1 + 𝐼
𝑖,𝜙𝑗,𝑑

/
𝐵,𝑡 )

𝛽
𝑖,𝜙𝑗,𝑑

/
𝐵

] →1, and 𝐴𝑖,𝜙𝑗
𝑡 = 𝐽𝑖,𝜙𝑗

𝑡 .  The value of 

𝐴𝑖,𝜙𝑗
𝑡 is referred to as the actuation index of the individual phase j .  

𝐴𝑖,𝜙𝑗
𝑡 =

𝐽𝑖,𝜙𝑗
𝑡

[(1+𝐼
𝑖,𝜙𝑗,𝑑

/
𝐵,𝑡 )

𝛽
𝑖,𝜙𝑗,𝑑

/
𝐵

]

  (2.3) 
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Figure 2.3: Mathematical model of the Integrated Traffic Control System 

 

It is important to note though that all links of the network have detectors. That is, 

the downstream (exit) link of a phase is simultaneously an upstream link of another 

phase at the downstream intersection, and as such, it is naturally equipped with 

detectors. The congestion on the downstream link is estimated using the information 

extracted from the downstream (exit) link detectors as indicated in Eq. (2.3). The 

actuation index of a candidate phase set 𝑍𝑖,Φ𝑘
𝑡  is the sum of the actuation indexes of 
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the two concurrent individual phases of the candidate phase set, Φ𝑘, Φ𝑘 = {𝜙𝑘,1 ∪

𝜙𝑘,2}. 

𝑍𝑖,Φ𝑘
𝑡 = 𝐴

𝑖,𝜙𝑘,1
𝑡 + 𝐴

𝑖,𝜙𝑘,2
𝑡   (2.4) 

 

 The 𝑍𝑖,Φ𝑘
𝑡   index represents the final adjusted virtual queue of passengers 

considering the estimated impact of all the relevant boundary conditions which are 

represented by respective modules. The most deserving candidate phase set is the one 

of the maximum 𝑍𝑖,Φ𝑘
𝑡 value. 

Eq. (2.3) is introduced to penalize the links that have full or partial blockage; if 

one link is fully blocked, the upstream phases of this particular link will be “penalized” 

and as such lesser green times to these phases that feed vehicles to such blocked link. 

This will prevent any further blockage on the incident links, reduce the likelihood of 

full blockage and prevent spill backs from and along fully blocked incident links.  

Eqns. (2.1), (2.2) and (2.3) are all used to estimate the congestion indicator (base 

or adjusted), but their values will depend on the met identified boundary conditions. 

For instance, the transit priority parameters and terms in Eq. (2.1) accounts for priority 

buses. If a priority bus is detected, these terms will be processed and as such the base 

congestion indicator will give different results as compared to the case where no 

priority buses are detected.  The downstream congestion (in Eq. 2.3) as well is a 

boundary condition that is flagged by a blockage on downstream links (if and only if 

downstream exit links are flagged with blockage).  

2.4 Simulation-based optimization  

Contemporary simulation-based optimization methods can be categorized as 

discussed by Carson and Maria (1997) and shown in Figure 2.4 into Gradient-Based 
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Search, Stochastic Optimization, Response Surface Methodology, Heuristic Methods, 

A-Teams, and Statistical. Gradient-Based Search Methods estimate the response 

function gradient to assess the shape of the objective function and employ 

deterministic mathematical programming techniques. Also, commonly used gradient 

estimation methods are Finite Difference Estimation, Likelihood Ratio Estimators 

(Treiber and Kesting, 2013), Perturbation Analysis, and Frequency Domain 

Experiments.  

Stochastic optimization is the way of finding a local optimum for an objective 

function using an iterative method based on gradient estimation. It has two features 

relevant to the calibration of micro-simulation traffic models: (1) considering the 

presence of measurement errors in the objective function explicitly and (2) the results 

are usually faster to identify solutions than many other algorithms (Daamen et al., 

2015). Stochastic optimization has been used for the traffic simulation models by 

Balakrishna et al. (2007), Ma et al. (2007), Lee and Ozbay (2009), Vaze et al. (2009), 

Ciuffo and Punzo (2010), (Hale et al., 2015b), Mudigonda and Ozbay (2015), and Paz 

et al. (2015b).  

Response surface methodology is a process for fitting a regression model to the 

output variable(s) of a simulation model. More details about this method are presented 

in the following sections. The response surface methodology has been used for the 

optimization of transportation systems by Joshi et al. (1995), and Jafarzadeh-

Ghoushchi (2015).  

Heuristic (direct search) methods require function values to balance 

exploration with efficient global search strategies (Genetic Algorithms, Evolutionary 

Strategies, Simulated Annealing, Tabu Search, and Simplex Search). Genetic 

algorithms are the most widely used for calibrating microscopic traffic simulation 
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models (Daamen et al., 2015, Manjunatha et al., 2013, Vasconcelos et al., 2014a, 

2014b, Ma and Abdulhai, 2002, Schultz and Rilett, 2004, Kim et al., 2005, Ma et al., 

2007, Ciuffo and Punzo, 2010). Simulated annealing is a method for solving 

unconstrained and bound-constrained global optimization problems, and it has been 

used in numerous transportation applications by Chang et al. (2002), Chen et al. 

(2005), and Ciuffo and Punzo (2010). 

Asynchronous team (A-team) is a method that involves combining various 

problem solving strategies so that they can interact synergistically (Carson and Maria, 

1997, Abdalhaq and Baker, 2014, Paz and Molano, 2014, Hale et al., 2015a, Osorio 

and Chong, 2015, Osorio et al., 2015, Li et al., 2016, Paz et al., 2015a).    

OptQuest/Multistart algorithm is a type of the A-team methods, which is at the 

same time a scatter search heuristic and a gradient-based algorithm. A shortcoming of 

this approach is a large number of objective function evaluations (i.e., traffic 

simulations) it requires (Daamen et al., 2015). This has been applied in the microscopic 

traffic simulation models by Ciuffo et al. (2008), Ciuffo and Punzo (2010). 

The statistical methods include the Importance Sampling, Ranking and 

Selection, and Multiple Comparison. Additionally, Zhong (2016) used a cross-entropy 

method with probabilistic sensitivity analysis framework for calibrating microscopic 

traffic models.  

In simulation-based optimization, the best parameter values are chosen from a 

set of candidate parameter settings. In this research, Response Surface Methodology 

(RSM) will be used to get the best parameter configurations, as RSM requires a smaller 

number of simulation experiments than that of the Gradient-based method (Carson and 

Maria, 1997). The idea of RSM is to construct a mathematical surrogate model(s) to 

approximate the underlying function (Deng, 2007).  
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Methods

Gradient Based 
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Methods
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Surface 

Methodology
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Optimization

· Finite Difference Estimation
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A-Teams Statistical 
Methods

· Genetic Algorithms 
· Evolutionary Strategies
· Simulated Annealing
· Tabu Search
· Simplex Search 

· Importance Sampling
· Ranking and Selection
· Multiple Comparison

 

Figure 2.4: Simulation Optimization Methods (source: Carson and Maria, 1997) 
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RSM can be divided into two general methods; Central Composite Design 

(CCD) and Box–Behnken Design (BBD) (Fu, 2015). In this research study, Box–

Behnken method is used to get the optimum solutions (of the parameters vis-à-vis the 

specified MOE’s) as the BBD is slightly more efficient than the CCD (Ferreira et al., 

2007). The following sections provide more details about the RSM with different 

design methods and the procedure to optimize the responses.  
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Chapter 3: Methodology 

 

3.1 Introduction 

This chapter presents the methodology to calibrate the parameters of Integrated 

Traffic Signal Control System (Ahmed and Hawas, 2015) using the Response Surface 

Methodology (RSM). The parameters of Integrated Traffic Signal Control System are 

discussed in Section 3.2 briefly. Then, the features of RSM including the experimental 

design (Central Composite Design or Box–Behnken Design) methods and response 

optimization strategy are presented. Finally, the RSM procedures (design, data 

importing, model building for each response, and optimization) in Minitab are 

introduced.  

3.2 Parameters of Integrated Traffic Signal Control System 

To apply the Integrated Traffic Signal Control System developed by Ahmed 

and Hawas (2015) for real-time traffic signal control, there are parameters that must 

be calibrated and their values to be determined for optimal control, as they affect the 

estimates of the actuation index, 𝐴𝑖,𝜙𝑗
𝑡  as explained earlier. These parameters are:  

1. The coefficient for virtual queue of vehicles on the upstream approach 

link (β𝑉); an abbreviation of the coefficient of virtual queue of vehicles 

(𝛽
𝑖,𝜙𝑗,𝑢

/
𝑉 ) on the upstream approach link of phase 𝜙𝑗at intersection i. 

2. The coefficients for transit priority (β𝑏or β𝑝); abbreviations of 

coefficients for transit priority for high priority buses (𝛽
𝑖,𝜙𝑗,𝑢

/
𝑝

) and 

normal priority buses (𝛽
𝑖,𝜙𝑗,𝑢

/
𝑏 ) on the upstream approach,𝑢/, of phase 
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𝜙𝑗, at intersection i. In this study, it is assumed that both coefficients 

have equal values for simplicity. 

3. The downstream blockage penalty coefficient (β𝐵); an abbreviation of 

the coefficient for blockage on the downstream exit link (𝛽
𝑖,𝜙𝑗,𝑑

/
𝐵 ) of 

phase 𝜙𝑗at intersection i. 

4. The incident penalty coefficient (β𝑁); an abbreviation of the coefficient 

of incidents (𝛽
𝑖,𝜙𝑗,𝑢

/
𝑁 ) on the upstream approach,𝑢/, of phase 𝜙𝑗, at 

intersection i. 

In this study, we focus only on estimating the optimal control strategies for 

recurrent conditions. That is, no incident scenarios are considered. For more on 

incident situation control, the reader is referred to Ahmed and Hawas (2015). In typical 

recurrent congestion situations, the values of the parameters β𝑉, β𝑏or β𝑝, and β𝐵 

(while β𝑁 is not considered) are likely to affect the network performance as a result 

of different penalty values via the signal control. The performance of the traffic 

network is represented herein by three output variables or MOEs; these are: total 

number of bus trips served during a specific analysis period, N𝑏𝑢𝑠, total network travel 

time (in hrs), 𝑇𝑡 , and the trip mean travel time in seconds, 𝑡𝑚. Figure 3.1 shows the 

schematic presentation of the control system. It is to be noted that the mid-block of the 

figure (simulation) is acting herein as the medium for evaluating the MOE’s in 

response to the changes of the various control coefficients. The study adopts a 

simulation-based optimization approach to model the relationships between the control 

parameters and the resulting MOE’s. 

In brief, this study aims at studying the impact of these control parameters on 

the network MOE’s, to develop models for explaining the relationships between these 



52 

 

 

parameters and the resulting MOE’s for various signal control types and congestion 

conditions. One can regard the problem in hand as an optimization problem of input 

parameters β𝑉, β𝑏or β𝑝, and β𝐵, to maximize the total number bus trips, and to 

minimize the total and mean travel times. For simplicity, in this study both high and 

normal bus priority parameters β𝑏and β𝑝 are assumed equal.  

 

Simulation 
Model

Total Bus Trips, Nbus

Total Travel Time in hour, Tt

Mean Travel Time in sec, tm

Coefficient for virtual 

queue of vehicles, βV

Coefficients for transit 

priority, βb or βp

Downstream blockage 

penalty coefficient, βB

 

Figure 3.1: Schematic presentation of input parameters and resulting MOE’s 

 

Figures 3.2 and 3.3 show the 3D scatter plots for the responses of 𝑁𝑏𝑢𝑠 and 𝑡𝑚 

for various parameters of 𝛽𝑉, 𝛽𝑏or 𝛽𝑝, and 𝛽𝐵. The data for these plots are taken from 

the simulation of a specific network (that will be discussed later) operated by the 

integrated control system using different 135 input variable settings. Each setting is 

simulated ten times. That is, 1350 simulation runs were done to produce these data. 

The responses as drawn on the figures (total bus trips in Figure 3.2, and the mean travel 

time in Figure 3.3) are the average values of the ten simulation runs of each of the 135 

settings.  As apparent in figures 3.2 and 3.3, the responses are quite dispersed. It is not 

possible to identify the set (among these 135 settings) that correspond to the maximum 

total bus trips and simultaneously the least mean travel time. In Figure 3.2, the black 

dots refer to the bus trips of more than 160 (the maximum number of bus trips obtained 

from simulating the 1350 cases is 161.3). 

 



53 

 

 

 

Figure 3.2: Scatter 3D plot of 𝑁𝑏𝑢𝑠 for various parameters of 𝛽𝑉, 𝛽𝑏or 𝛽𝑝, and 𝛽𝐵 

for split actuated control under high traffic demand 

 

 

Figure 3.3: Scatter 3D plot of 𝑡𝑚 for various parameters of 𝛽𝑉, 𝛽𝑏or 𝛽𝑝, and 𝛽𝐵 for 

split actuated control under high traffic demand 
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In Figure 3.3, the black dots refer to the mean travel time of fewer than 830 

seconds (the least mean travel time was 809.4 seconds). The question then becomes 

whether is there a specific parameter set that can be used to obtain more than (or as 

close as possible) 161.3 bus trips and simultaneously have mean travel time fewer than 

830 seconds. Therefore, to identify the optimal setting, it is necessary to use some 

optimization method to satisfy all conditions. The Response Surface Methodology is 

chosen to perform this task.  

3.3 Response Surface Methodology (RSM) 

Response Surface Methodology (RSM) was originated and described by Box 

and Wilson (1951). RSM consists of techniques (mathematical and statistical), to 

define the relationships between the response and independent variables (inputs). It 

determines the effect (alone or in combination) of the independent variables on the 

processes. To analyze the consequences of the independent variables, RSM generates 

a metamodel. The graphical perspective of this metamodel has led to the 

term Response Surface Methodology.  

In this research study, the relationships between the responses or MOE’s (𝑁𝑏𝑢𝑠, 

 𝑇𝑡 and 𝑡𝑚) and the inputs parameters (β𝑉, β𝑏or β𝑝, and β𝐵)  are mathematically 

expressed by Eqs. (3.1 to 3.3): 

𝑁𝑏𝑢𝑠 = 𝑓𝑁𝑏𝑢𝑠(𝛽
𝑉,β𝑏or β𝑝, and β𝐵) + 𝜀𝑁𝑏𝑢𝑠    (3.1) 

𝑇𝑡 = 𝑓𝑇𝑡(𝛽
𝑉,β𝑏or β𝑝, and β𝐵) + 𝜀𝑇𝑡      (3.2) 

𝑡𝑚 = 𝑓𝑡𝑚(𝛽
𝑉,β𝑏or β𝑝, and β𝐵) + 𝜀𝑡𝑚     (3.3) 

N𝑏𝑢𝑠,  𝑇𝑡, and 𝑡𝑚 are the responses (MOE’s) of total bus trips, total network 

travel time, and trip mean travel time, respectively. 𝑓𝑁𝑏𝑢𝑠 , 𝑓𝑇𝑡, and 𝑓𝑡𝑚  represent the 
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unknown functions (metamodels) of responses (N𝑏𝑢𝑠,  𝑇𝑡, and 𝑡𝑚, respectively). 

β𝑉, β𝑏or β𝑝, and β𝐵 denote the input variables (coefficient for virtual queue of 

vehicles, coefficient for transit priority, and downstream blockage penalty coefficient, 

respectively.  𝜀𝑁𝑏𝑢𝑠 , 𝜀𝑇𝑡, and 𝜀𝑡𝑚  are some statistical errors that represent other sources 

of variability not accounted for by the functions.  The error terms are  assumed to 

follow a normal distribution with the mean of zero and some variance. 

3.3.1 Steps for RSM 

The application of RSM as an optimization technique are as follows (Bezerra 

et al., 2008):  

1. The selection of independent variables through screening and the delimitation 

of the experimental region, according to the objective and the experience of the 

researcher. In this research study, the three independent variables are 

previously selected (β𝑉, β𝑏or β𝑝, and β𝐵) as they relate to the parameters 

affecting the objective function (as explained earlier in Section 2.3). 

2. The choice of the experimental design and accomplishing the experiments 

according to the selected experimental matrix. In this research study, Box-

Behnken Design (BBD) is used.  

3. The mathematic-statistical treatment of the obtained experimental data through 

the fit of a polynomial function, using the p-value of 0.1;  

4. The evaluation of the model's fitness;  

5. The verification of the necessity and possibility of performing a displacement 

in direction to the optimal region; and  

6. Obtaining the optimum values for each studied variable. 
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3.4 Experimental Designs with Computer Simulation Models 

RSM can be applied to computer simulation models of physical systems 

(Myers et al., 2009). In such applications, RSM is used to build a metamodel of the 

system (being modeled by the computer simulation), and optimization is carried out 

on the metamodel. The assumption is that if the computer simulation model is a 

reliable representation of the real system, then the RSM optimization will result in an 

adequate determination of the optimum settings for the actual system. It is worthy to 

note traffic simulation models could be stochastic or deterministic. In the stochastic 

simulation models, the output responses are somehow random variables whereas 

deterministic models are typically mathematical functions that yield deterministic 

outputs (not random). In this research study, an experimental network is simulated by 

a stochastic model. 

The RSM approach is based on a philosophy of sequential experimentation, 

with the objective of approximating the response surface with a low-order polynomial 

function in a relatively small region of interest that contains the optimum solution.  

RSM can be carried out using either Central Composite Design (CCD) or Box–

Behnken Design methods (Fu, 2015), as discussed in the following sections.  

3.4.1 Box–Behnken Design 

Box-Behnken Design (BBD) suggests how to select points from the three-level 

factorial arrangement, which allows the efficient approximation of the first- and 

second-order coefficients of the mathematical model. BBD is more efficient and 

economical than the similar three-level full factorial designs (Bezerra et al., 2008). The 

BBD principal characteristics are:  
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1. The number of experiments (N) required in BBD is defined as 𝑁 =

2𝑘(𝑘 − 1) + 𝐶0, (where k and 𝐶0 are the number of factors and central points, 

respectively). In this study, k and 𝐶0 are both equal to three (3). Thus, the 

number of experiments will be 15 (𝑁 = 2 ∗ 3 ∗ (3 − 1) + 3). For comparison; 

the number of experiments for a Central Composite Design (CCD) is 𝑁 =

2𝑘 + 2𝑘 + 𝐶0, which would be 20 (𝑁 = 23 + 2 ∗ 3 + 6) with three factors and 

six central points. 

2. All factor levels have to be set only at three levels (−1, 0, +1) with equally 

spaced intervals between these levels. 
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Figure 3.4:  (a) The cube for BBD, and (b) three interlocking two-level full   factorial 

design (modified version of the source figure from Ferreira et al., 2007). 

 

For three factors, the BBD graphical representation can be seen in two forms 

(Ferreira et al., 2007):  

1. A cube that consists of the central point and the middle points of the edges, as 

can be seen in Figure 3.4a. 

http://www.sciencedirect.com/science/article/pii/S0003267007011671#fig1
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2. An illustration of three interlocking two-level full factorial designs and a 

central point, as shown in Figure 3.4b. 

 

Table 3.1: Coded factor levels for a BBD of three-variable matrices with 3 center 

points in a single block 

Experiment Point Type 𝛃𝐕 𝛃𝐛or 𝛃𝐩  𝛃𝐁 

1 Edge  −1 −1 0 

2 Edge  1 −1 0 

3 Edge  −1 1 0 

4 Edge  1 1 0 

5 Edge  −1 0 −1 

6 Edge  1 0 −1 

7 Edge  −1 0 1 

8 Edge  1 0 1 

9 Edge  0 −1 −1 

10 Edge  0 1 −1 

11 Edge  0 −1 1 

12 Edge  0 1 1 

13 Center  0 0 0 

14 Center  0 0 0 

15 Center  0 0 0 

 

Table 3.1 presents the coded values of the experimental matrices of BBD. For 

a BBD, the Minitab represents the settings with -1 for the low factor setting, 0 for the 

middle setting, and +1 for the high setting.  

The BBD is a good design for the RSM (Ferreira et al., 2007). It permits (i) 

estimation of the parameters of the full/ partial quadratic model with the building of 

sequential designs; (ii) detection of lack of fit of the model; and (iii) use of blocks. A 

http://www.sciencedirect.com/science/article/pii/S0003267007011671#fig1


59 

 

 

comparison between the BBD and other RSM designs (central composite, and three-

level full factorial design) has demonstrated that the BBD is slightly more efficient 

than the CCD, and much more efficient than the three-level full factorial designs 

(Ferreira et al., 2007). 

3.4.2 Central Composite Design 

The Central Composite Design (CCD) was presented by Box and Wilson 

(1951) and consists of the following parts: (1) a full factorial or fractional factorial 

design with an additional design, often a star design in which experimental points are 

at a distance α from its center; and (2) a central point (Bezerra et al., 2008). Figure 3.5 

illustrates the full CCD of three variables for optimization. 

 

β
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β
b 
or β

p

β
B

 

Figure 3.5: The CCD of three variables system 

 

The full CCD presents the following characteristics:  

1. The required number of experiments is 𝑁 = 2𝑘 + 2𝑘 + 𝐶0, where k is the 

factor number and 𝐶0 is the replicate number of the central point. In this 
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research study, (𝑁 = 23 + 2 ∗ 3 + 6) which 20 with three factors and six 

central points; 

2. α-values depend on the number of input variables and is calculated by for 

Spherical design (α = √k), and for Rotatable design (α = 2
k
4⁄  ) , where k is 

the number of factors; 

3. All factors are considered in five levels (−α, −1, 0, +1, +α). 

Table 3.2: The coded values of the CCD experimental matrices 

Experiment  Point Type 𝛃𝐕 𝛃𝐛or 𝛃𝐩 𝛃𝐁 

1 Corner -1 -1 1 

2 Corner 1 -1 -1 

3 Corner -1 1 1 

4 Corner 1 1 -1 

5 Corner 1 -1 1 

6 Corner -1 1 -1 

7 Corner -1 -1 -1 

8 Corner 1 1 1 

9 Axial 0 1.681793 0 

10 Axial 1.681793 0 0 

11 Axial 0 0 1.681793 

12 Axial 0 -1.68179 0 

13 Axial 0 0 -1.68179 

14 Axial -1.68179 0 0 

15 Center 0 0 0 

16 Center 0 0 0 

17 Center 0 0 0 

18 Center 0 0 0 

19 Center 0 0 0 

20 Center 0 0 0 
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Table 3.2 presents the coded values of the experimental matrices of CCD. For 

a CCD, Minitab represents the settings as follows: 

· -1 indicates the low factor level  

· 1 indicates the high level 

· 0 indicates the middle point between the low and high level 

· -1.68179 and 1.68179 indicate the low and high axial levels, respectively 

3.5 Response optimization 

The variable settings ( β𝑉, β𝑏or β𝑝, and β𝐵) are obtained using Minitab®'s 

Response Optimizer in accordance to some objective functions on the set of responses 

(𝑁𝑏𝑢𝑠, 𝑇𝑡 and 𝑡𝑚). Herein, the objectives are to maximize  𝑁𝑏𝑢𝑠 and to simultaneously 

minimize both 𝑇𝑡 and 𝑡𝑚. 

The so-called desirability function approach (as outlined by Derringer and 

Suich, 1980) is used the multi-objective simultaneous consideration of the responses. 

Initially, each response is converted into an individual desirability, which varies over 

the range from zero to one dimensionless scale. The individual desirabilities are, then, 

used to estimate the composite desirability (D) using the following geometric mean 

formula: 

𝐷 = (𝑑N𝑏𝑢𝑠 ∗ 𝑑𝑇𝑡 ∗ 𝑑𝑡𝑚)
1

3          (3.4) 

Where, 𝑑N𝑏𝑢𝑠is the individual desirability of total number of bus trips (N𝑏𝑢𝑠), 

𝑑𝑇𝑡  is the individual desirability of the network’s total travel time (𝑇𝑡), and  𝑑𝑡𝑚is the 

individual desirability of trip’s mean travel time (𝑡𝑚).  

The estimated composite desirability value depends on the specific set goal 

(lower, target, upper) of each individual desirability element (response), the weight 
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(𝑟) which defines the form shape of desirability function for each response, and the 

importance parameters (𝑤) of the various desirability items that are combined into a 

single composite desirability.  

Given the aimed objectives (e.g. maximize  𝑁𝑏𝑢𝑠 and to simultaneously 

minimize both 𝑇𝑡 and 𝑡𝑚), the individual desirabilities are stated, and overall the 

problem in hand is transformed into maximizing the composite desirability. The 

composite desirability unifies the individual desirabilities of all the response variables 

into a single measure and emphasis is placed on the response variables with the 

importance parameter (𝑤). The importance parameters reflect the relative importance 

of the individual desirabilities in estimating the composite one as shown in Equation 

3.8 (weighted geometric mean): 

  𝐷 = [(𝑑N𝑏𝑢𝑠)
𝑤𝑁𝑏𝑢𝑠 × (𝑑𝑇𝑡)

𝑤𝑇𝑡 × (𝑑𝑡𝑚)
𝑤𝑡𝑚]

1
3⁄
    (3.5) 

Where, 𝑤N𝑏𝑢𝑠is the importance parameter of N𝑏𝑢𝑠,  𝑤T𝑡is the importance 

parameter of 𝑇𝑡, and 𝑤t𝑚is the importance parameter of 𝑡𝑚. The importance parameter 

determines the influence of each response on the composite desirability. For instance, 

if the importance of 𝑑N𝑏𝑢𝑠 is 1, whereas the importance of 𝑑𝑇𝑡  is 2, then, 𝑑𝑇𝑡  will have 

a greater (not double) influence on the composite desirability. By default, Minitab® 

places equal importance on the responses and assigns each an importance value of one. 

In this research study, all importance parameters of individual desirability are set equal 

to one (1). That is, 𝑤N𝑏𝑢𝑠 = 𝑤𝑇𝑡 = 𝑤𝑡𝑚 = 1.   

The goal is interpreted with regard to the target parameter for the response. If 

the goal is minimizing a response, the desirability is one for all response values less 

than or equal to a specific lower bound target. Alternatively, if the goal is maximizing 

a response, then the desirability is one for all values equal to or above a specific upper 
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bound target. Finally, if the goal is to get the response at target (located between the 

lower and upper bound), then the desirability is one at the target.  
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Figure 3.6: The forms of individual desirability functions for different goals: 

maximization; (b) minimization; (c) a particular target value. 



64 

 

 

For example, if the goal for the response of the total bus trips (𝑦N𝑏𝑢𝑠) is a 

maximum value, the individual desirability function 𝑑N𝑏𝑢𝑠is defined as follows: 

𝑑N𝑏𝑢𝑠=

{
 
 

 
 

0  𝑦N𝑏𝑢𝑠 <  𝐿N𝑏𝑢𝑠

(
 𝑦N𝑏𝑢𝑠− 𝐿N𝑏𝑢𝑠

 𝑇N𝑏𝑢𝑠− 𝐿N𝑏𝑢𝑠
)
𝑟

 𝐿N𝑏𝑢𝑠 ≤  𝑦N𝑏𝑢𝑠 ≤  𝑇N𝑏𝑢𝑠

1  𝑦N𝑏𝑢𝑠 >  𝑇N𝑏𝑢𝑠

     (3.6) 

Where, the value of (
 𝑦N𝑏𝑢𝑠

− 𝐿N𝑏𝑢𝑠

 𝑇N𝑏𝑢𝑠− 𝐿N𝑏𝑢𝑠
)
𝑟

ranges from zero to one.  𝑟 is the weight 

that defines the functional form of the desirability function; if 𝑟 =  1, the desirability 

function is linear, as shown in Figure 3.6a.   𝐿N𝑏𝑢𝑠 and  𝑇N𝑏𝑢𝑠 are the lower bound and 

target values of the response (N𝑏𝑢𝑠), respectively. 

If the goal for the response is a minimum value (e.g. minimal network total 

travel time 𝑦𝑇𝑡), the individual desirability for the response 𝑑𝑇𝑡is defined as follows: 

𝑑𝑇𝑡=

{
 

 
1 𝑦𝑇𝑡 < 𝑇𝑇𝑡

(
𝑈𝑇𝑡−𝑦𝑇𝑡

𝑈𝑇𝑡−𝑇𝑇𝑡
)
𝑟

𝑇𝑇𝑡 ≤ 𝑦𝑇𝑡 ≤ 𝑈𝑇𝑡

0 𝑦𝑇𝑡 > 𝑈𝑇𝑡

        (3.7) 

Where, the value of (
𝑈𝑇𝑡−𝑦𝑇𝑡

𝑈𝑇𝑡−𝑇𝑇𝑡
)
𝑟

ranges from zero to one. 𝑟 is the weight that 

defines the functional form of the desirability function; if 𝑟 =  1, the desirability 

function is linear, as shown in Figure 3.6b. 𝑈T𝑡 and 𝑇𝑇𝑡 are the upper bound and target 

of the response (𝑇𝑡), respectively.  

Likewise, if the goal for the response is to achieve a specific target (e.g. trip 

mean trip time for the network 𝑦𝑡𝑚  is set to a target value 𝑇𝑡𝑚), the two-sided individual 

desirability is defined as follows: 
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𝑑𝑡𝑚 =

{
  
 

  
 

0 𝑦𝑡𝑚 < 𝐿𝑡𝑚

(
𝑦𝑡𝑚−𝐿𝑡𝑚

𝑇𝑡𝑚−𝐿𝑡𝑚
)
𝑟1

𝐿𝑡𝑚 ≤ 𝑦𝑡𝑚 ≤ 𝑇𝑡𝑚

(
𝑈𝑡𝑚−𝑦𝑡𝑚

𝑈𝑡𝑚−𝑇𝑡𝑚
)
𝑟2

𝑇𝑡𝑚 ≤ 𝑦𝑡𝑚 ≤ 𝑈𝑡𝑚

0 𝑦𝑡𝑚 > 𝑈𝑡𝑚

        (3.8) 

Where, the values of (
𝑦𝑡𝑚−𝐿𝑡𝑚

𝑇𝑡𝑚−𝐿𝑡𝑚
)
𝑟1

and (
𝑈𝑡𝑚−𝑦𝑡𝑚

𝑈𝑡𝑚−𝑇𝑡𝑚
)
𝑟2

 range from zero to one. 𝑟1 

and 𝑟2 are the desirability function weights (if 𝑟1 = 𝑟2 = 1, the desirability function is 

linear, as shown in Figure 3.6c, 𝐿𝑡𝑚 , 𝑈t𝑚 , and 𝑇𝑡𝑚  are the lower bound, upper bound 

and target values of the response (𝑡𝑚), respectively.  

It is important to note that in this research, the goal for a specific target value 

of any response is not used. The goals of maximizing the response (N𝑏𝑢𝑠) and 

minimizing the responses (𝑇𝑡, and 𝑡𝑚) are used. 

The weights of the desirability function (r1, r2, and r) define the shape of the 

individual desirability function as shown in Figure 3.6. Choosing 𝑟 >  1 places more 

emphasis on being close to the target value of the response and choosing 0 <  𝑟 <  1 

makes this less important (Myers et al., 2009). 

In summary, in maximizing a response, the desirability value increases as 

response values increase from the lower limit to the target, and it becomes one for all 

values at or above the set target. In minimizing a response, the desirability is one for 

all response values less than or equal to the target. If the goal is a specific target, then 

the desirability is one and only one at the target value, and it decreases as the response 

deviates more from the target in either direction. In conclusion, desirability is an 

objective function, which ranges from zero outside of the limits to one at the goal. The 

features of the goal can be modified by adjusting the weight and/or importance 

parameters.  



66 

 

 

For multiple responses and factors, all goals get united into composite a 

desirability function. It is worth noting that always trying to get a very high desirability 

value is not useful, as the value is completely dependent on how closely the lower and 

upper limits are set relative to the actual best set of conditions (Design-Expert, 2015). 

Rather, the goal of optimization is to find the best set of conditions for satisfying all 

the goals. That is, in this study, the aim is to find the best set parameters β𝑉, β𝑏or β𝑝, 

and β𝐵 that maximize  𝑁𝑏𝑢𝑠 and to simultaneously minimize both 𝑇𝑡 and 𝑡𝑚, regardless 

of the achieved composite desirability index. Achieving a maximum composite 

desirability index by itself is not the study objective.  

3.6 Response Surface Modeling in Minitab  

The steps of Response Surface Modelling design, data importing, model 

building for each response, and the optimization in Minitab are explained in Appendix 

A. First, it depicts the Response Surface Modelling design (Appendix A.1.1). Second, 

it shows the steps for building the RSM model for the responses, the analyses of the 

model terms (interactions between the factors and their squares) to identify the 

significant terms, as described in details in Appendix A.1.2. Finally, it depicts the steps 

of optimization of the responses considering the objective function(s) described in 

details in Appendix A.1.3.  
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Chapter 4: Experimental Models Setup, Data Generation, and Model 

Building Process  

 

This chapter summarizes simulation experimental setup for the integrated 

control system described in the previous chapter with the various signal control types 

(Split Actuated, Dual Actuated, and Protected Actuated). The network topologies 

together with the different traffic demand levels used for testing are described. The 

well-known TSIS-CORSIM (TSIS-CORSIM, 2010) is used for the simulation. The 

results of the simulation are then used, by Minitab® (Minitab, 2016), for the Response 

Surface modeling and optimization of the previously described coefficients. The data 

generation and the RSM building processes are also described briefly.  

4.1 Experimental Traffic Network 

A grid-type network of 49 intersections is used in this study. Due to the 

extensive set of simulation-based runs and the corresponding RSM optimization in this 

study, it is decided to focus the scope of this research on networks exhibiting high to 

very high traffic volume levels.  

The network consists of one short link (i.e. 300 m) and one long link (i.e. 600 

m) side by side, on alternatively in both vertical and horizontal dimensions, as shown 

in Figure 4.1. This is a typical grid network with a mix of non-uniform link lengths 

(next to each other). This network has seven (7) horizontal and seven (7) vertical 

arterials and the origin (O) and destination (D) are chosen from the Eastern, Western, 

Northern and Southern boundary link entrances and exits, respectively. In this 

network, there are 49 intersections and each intersection has four approach links (from 

the East, West, North, and South) and four exit links with three continuous lanes (all 

over the link length) and two additional left-turn lanes with 80 m storage length each. 
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The network has seven origins and destinations at each of the four boundary 

sides as shown in Figure 4.1.  

The adopted “car” trip distribution for any demand case is as follows: From 

any origin j on the Eastern boundary (OEj), 60% of the total originated trips are split 

equally among the destinations on the Western boundary (i.e. DW1to DW7). 

Furthermore, 20% of the total originated trips are split equally among the destinations 

on the Northern boundary (i.e. DN1to DN7). Finally, the remaining 20% of the total 

originated trips are split equally among the destinations on the Southern boundary (i.e. 

DS1to DS7). Similar directional distributions are followed for any origin j on the 

Western (Owj), Northern (ONj) and Southern (OSj) boundaries.  

Two different levels of traffic demand are configured based on the origin nodes 

traffic volumes and the characteristics of the bus routes. The adopted traffic demand 

conditions or cases are shown in Table 4.1. The demand cases of “E” and “F” 

correspond to the high and very high car traffic volume of 1000 and 1500 per hour, 

respectively. For the demand cases of “E”, from any origin j along the Eastern (OEj) 

or Western (Owj) or Northern (ONj) or Southern (OSj) boundaries, the hourly traffic 

volume is set as 1000 cars/hour. Therefore, the network demand for cars is 28,000 per 

hour (or 42,000 per the analysis period of 1.5 hours). For the demand cases of “F”, 

from any origin j along the Eastern (OEj) or Western (Owj) or Northern (ONj) or 

Southern (OSj) boundaries, the hourly traffic volume is set as 1,500 cars/hour. 

Therefore, the network demand for cars is 42,000 per hour (or 63,000 per the analysis 

period of 1.5 hours). The demand cases “E” and demand cases “F” are tested with the 

mean headway along the bus routes is 10 minutes and 5 minutes, respectively. Both 



69 

 

 

demand cases are tested with the maximum green time (of any individual phase or 

phase set) of 45 seconds.  

Table 4.1:Different Traffic Demand Case Scenarios 

Demand 

Case 

Car Demands (Cars/hour) Network 

Demand 

(Cars/1.5 

hours) as 

offered 

load 

Mean Bus 

Headway 

(in 

Minutes) 

for all 

Routes 

Maximum 

Green time for 

Phase/Phase 

Set 

(Seconds) 

Eastern 

(𝐎𝐄𝐣) 
Western 

(𝐎𝐰𝐣) 
Northern 

(𝐎𝐍𝐣) 
Southern 

(𝐎𝐒𝐣) 

E 1000 1000 1000 1000 42000 10 45 

F 1500 1500 1500 1500 63000 5 45 

 

 

As indicated in Figure 4.2, a fixed bus route network comprising 18 directional 

routes are introduced for the two demand case scenarios (Ahmed and Hawas, 2015). 

The devised integrated logic allows bus priority in grid networks in cross directions 

not only along specific arterials and bus routes operate with uniform headways. 

According to the demand of the car trips, proportionate levels of bus trip headway and 

bus occupancy are considered. The origins and destinations on the Eastern and 

Western boundaries are considered, as the bus flow directions shown in Figure 4.2. 

Some of the bus routes overlap on some of the links and some intersections have both 

left- and right-turning bus trips on their associated approach links. 
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Figure 4.1: Layout of hypothetical test bed network (Ahmed and Hawas, 2015) 
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Figure 4.2: Layout of bus route network (Ahmed and Hawas, 2015) 

 

4.2 Data Generation Process 

This section describes the steps of simulation-based data generation using the 

TSIS-CORSIM model: 

1. Selection of the input variables levels range. A range is set for each 

value of 𝛽𝑉, β𝑏or β𝑝, and β𝐵. 
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2. Designing the Response Surface Model (RSM) in Minitab for the 

selected variables; details are provided in the Appendix A.  

3. For each combination of 𝛽𝑉, β𝑏or β𝑝, and β𝐵 the simulation model is 

run for ten times (10) using different seeds. A folder is then created for 

each case according to the RSM design. 

4. Executing the Simulation model using TSIS-CORSIM. The various 

coefficients of 𝛽𝑉, β𝑏or β𝑝, and β𝐵 are modified in Visual Studio 

according to the case’s coefficients.  

5. Extracting the MOE’s (response variables) from the simulation; the 

total number of bus trips, the network total travel time (in hours), and 

the trip’s mean travel time (in seconds). 

6. Importing the response variables to Excel to estimate the MOE average 

response from the ten runs of each case. 

7. Importing the Excel data to Minitab to model each response for the 

input variables; details are provided in Appendix A.  

8. Optimizing the Response Surface Model for each response; details are 

provided in Appendix A.  

9. Interpreting the results and model analysis (based on the model 

significance and boundary values of the coefficients).  

4.3 Model Building Process 

An important step in RSM is to perform a displacement to the variables 

𝛽𝑉, β𝑏or β𝑝, and β𝐵 (change in the region) in the direction to the optimal region 

(Bezerra et al., 2008).  The steepest ascent method is commonly used to decide on the 

direction of displacement (Myers et al., 2009). In this research study, this was not 

followed in this calibration process of the RSM. The reason is that downstream 

blockage penalty coefficient (𝛽𝐵) was found to be insignificant in most of the studied 
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cases. Furthermore, the steepest ascent method requires the fitting of a first-order 

(linear) model with the factors (Myers et al., 2009).  

In this research study, the regions of the factors for the first model are initially 

chosen arbitrarily, yet guided by the preliminary findings of Ahmed and Hawas (2015), 

whom used a simplified Brute-Force search to identify the optimal coefficient values. 

The earlier study (Ahmed and Hawas, 2015) however was limited in the sense that it 

used a Brute-Force sequential process to identify the best value of one parameter at a 

time, while all others are kept fixed. This earlier approach could also lead to local (not 

global) optimal solutions, keeping in mind that the optimal values are strongly affected 

by the initial values of the parameters. Furthermore, deploying a Brute-Force search 

method was very time consuming and did not allow for verification of global optimal 

solution nor for model calibration of responses vis-à-vis the control parameters 

𝛽𝑉, β𝑏or β𝑝, and β𝐵.  

To overcome these limitations, the RSM is used to allow full consideration of 

interactions among the control parameters and to insure obtaining global optimal 

solutions. The findings of Ahmed and Hawas (2015) were used to specify the initial 

control parameter regions. The establishment of the RSM followed an iterative smart 

guided search. The initial control parameters were used to develop RSM. The 

“learning” from the established relationships of the first model were then used to 

specify (modify) the region of the control parameters, and as such developing a second 

RSM. The analysis of the 2nd model was then used to modify as needed the parameters’ 

ranges as needed. The later models are processed similarly considering the output of 

contour plot from the data of previous models. When the established model satisfies 

the objective functions properly (maximizing the network bus trips and simultaneously 
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minimizing the network travel time and the trip mean travel time), the model is 

thoroughly analyzed, and then verification stage is carried out to validate the results 

from the model.  Chapter 5 and Appendix A illustrate the process of model building 

through a step-by-step example.  
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Chapter 5: RSM Results and Analyses under the High Traffic (E) 

Demand Scenario 

 

This chapter summarizes the results and the analyses of the optimization of the 

calibrated RSM on the coefficients for the integrated control system described in 

Chapter 3 for the various control types (Split Actuated, Protected Actuated, and Dual 

Actuated) under the demand scenario designated as (E) and the associated network 

topology. The (E) letter herein refers to the traffic demand scenarios of “high” traffic 

volume as explained earlier in more details in Chapter 4.  

This chapter is divided into three subsections to demonstrate the results and 

analyses for the Split Actuated control, followed by the ones for the Protected Actuated 

control, and finally for the Dual Actuated control.  

5.1 Split Actuated Control 

The outputs for the Split Actuated control system are presented in Table 5.1 

for nine (9) RSM models, as discussed in Chapter 3 and Appendix A in details. Table 

5.1 summarizes the input variable ranges, the optimal settings, and the resulting 

composite desirability. The optimization results of the nine models are plotted in 

Figure 5.1 to Figure 5.9 for the three input parameters of coefficient for virtual queue 

of vehicles, 𝛽𝑉 (𝐵𝑄𝐿), coefficient for transit priority, 𝛽𝑏or 𝛽𝑝 (𝐵𝑇𝑃), and downstream 

blockage penalty coefficient, 𝛽𝐵 (𝐵𝐷𝐶), as well as the three responses of the total bus 

trips, 𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠), total network travel time, 𝑇𝑡 (𝑇𝑇𝑇), and the trip average travel 

time, 𝑡𝑚 (𝑀𝑇𝑇).  
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Table 5.1: Optimal values of split actuated control under “E” demand scenario 

Model 

NO. 

Factor ranges Optimal factor 

settings (𝛃𝑽, 

𝛃𝒃or 𝛃𝒑, 𝛃𝑩) 

Composite 

Desirability, 

𝑫 

𝛃𝑽 (𝑩𝑸𝑳) 𝛃𝒃or 𝛃𝒑 

(𝑩𝑻𝑷) 

𝛃𝑩 

(𝑩𝑫𝑪) 

1 -1000 – 15000 -2000 – 10000 -5 – 25 3040, -2000, 10 0.629 

2 2500 – 25000 1500 – 15000 -10 – 20 25000, 10363, -10 0.526 

3 1000 – 25000 5000 – 20000 -7 – 20 1000, 5000, -2.9 0.610 

4 500 – 5500 1000 – 19000 1 – 19 2924, 1000, 1 0.619 

5* 100 – 3500 9000 – 15000 5 – 15 100, 15000, 15 0.933 

6 2 – 200 2000 – 22000 2 – 20 2, 22000, 20 0.745 

7 2 – 200 1000 – 19000 1 – 19 2, 19000, 19 0.901 

8 2 – 200 500 – 15500 1 – 9 2, 14742, 1 0.863 

9 100 – 3000 1000 – 8000 1 – 5 100, 1000, 1 0.626 

* Little variation in responses and the models are not significant.  

 

Figures 5.1 and 5.2 illustrate the optimization plots for models 1 and 2 

considering the three input parameters and the three responses. The composite 

desirability of models 1 and 2 are 0.629 and 0.526, respectively. Only the 1st model 

considered possible negative values for  𝐵𝑄𝐿 and  𝐵𝑇𝑃 coefficients. It is worth noting 

that when such negative values are used simultaneously (for the coefficients of 𝐵𝑄𝐿 

and 𝐵𝑇𝑃 in model 1), the resulting 𝑇𝑟𝑖𝑝𝑠 are very low (almost zero), and as such, no 

further negative values were used anymore in other models.  
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Figure 5.1: Model 1 individual and composite desirability 𝐷 for the responses of 

𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠), 𝑇𝑡 (𝑇𝑇𝑇) and 𝑡𝑚 (𝑀𝑇𝑇) for various parameters of 𝛽𝑉 (𝐵𝑄𝐿), 𝛽𝑏or 𝛽𝑝 

(𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶), for split actuated control under “E” demand scenario 
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Figure 5.2: Model 2 individual and composite desirability 𝐷 for the responses of 

𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠), 𝑇𝑡 (𝑇𝑇𝑇) and 𝑡𝑚 (𝑀𝑇𝑇) for various parameters of 𝛽𝑉 (𝐵𝑄𝐿), 𝛽𝑏or 𝛽𝑝 

(𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶), for split actuated control under “E” demand scenario 

 

Figures 5.3, 5.4, 5.5 and 5.6 illustrate the optimization plots for models 3, 4, 5 

and 6. The composite desirability values of these models are 0.61, 0.62, 0.93, and 0.75, 

respectively. 
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Figure 5.3: Model 3 individual and composite desirability 𝐷 for the responses of 

𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠), 𝑇𝑡 (𝑇𝑇𝑇) and 𝑡𝑚 (𝑀𝑇𝑇) for various parameters of 𝛽𝑉 (𝐵𝑄𝐿), 𝛽𝑏or 𝛽𝑝 

(𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶), for split actuated control under “E” demand scenario 

 

Figure 5.4: Model 4 individual and composite desirability 𝐷 for the responses of 

𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠), 𝑇𝑡 (𝑇𝑇𝑇) and 𝑡𝑚 (𝑀𝑇𝑇) for various parameters of 𝛽𝑉 (𝐵𝑄𝐿), 𝛽𝑏or 𝛽𝑝 

(𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶), for split actuated control under “E” demand scenario 
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Figure 5.5: Model 5 individual and composite desirability 𝐷 for the responses of 

𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠), 𝑇𝑡 (𝑇𝑇𝑇) and 𝑡𝑚 (𝑀𝑇𝑇) for various parameters of 𝛽𝑉 (𝐵𝑄𝐿), 𝛽𝑏or 𝛽𝑝 

(𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶), for split actuated control under “E” demand scenario 

 

Figure 5.6: Model 6 individual and composite desirability 𝐷 for the responses of 

𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠), 𝑇𝑡 (𝑇𝑇𝑇) and 𝑡𝑚 (𝑀𝑇𝑇) for various parameters of 𝛽𝑉 (𝐵𝑄𝐿), 𝛽𝑏or 𝛽𝑝 

(𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶), for split actuated control under “E” demand scenario 
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Figures 5.7, 5.8, and 5.9 illustrate the optimization plots for models 7, 8 and 9. 

The composite desirability values of these models are 0.90, 0.86, and 0.63, 

respectively. 

 

 

Figure 5.7: Model 7 individual and composite desirability 𝐷 for the responses of 

𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠), 𝑇𝑡 (𝑇𝑇𝑇) and 𝑡𝑚 (𝑀𝑇𝑇) for various parameters of 𝛽𝑉 (𝐵𝑄𝐿), 𝛽𝑏or 𝛽𝑝 

(𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶), for split actuated control under “E” demand scenario 
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Figure 5.8: Model 8 individual and composite desirability 𝐷 for the responses of 

𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠), 𝑇𝑡 (𝑇𝑇𝑇) and 𝑡𝑚 (𝑀𝑇𝑇) for various parameters of 𝛽𝑉 (𝐵𝑄𝐿), 𝛽𝑏or 𝛽𝑝 

(𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶), for split actuated control under “E” demand scenario 

 

Figure 5.9: Model 9 individual and composite desirability 𝐷 for the responses of 

𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠), 𝑇𝑡 (𝑇𝑇𝑇) and 𝑡𝑚 (𝑀𝑇𝑇) for various parameters of 𝛽𝑉 (𝐵𝑄𝐿), 𝛽𝑏or 𝛽𝑝 

(𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶), for split actuated control under “E” demand scenario 
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A contour plot was developed for the three responses of 𝑁𝑏𝑢𝑠 (Trips), 𝑇𝑡 (TTT) 

and 𝑡𝑚 (MTT) for various parameters of 𝛽𝑉 (BQL), 𝛽𝑏or 𝛽𝑝 (BTP), and 𝛽𝐵 (BDC) as 

shown in Figure 5.10. The data for the contour plot was taken from a total of 135 input 

variable settings (data of models 1 to 9). These variant input settings correspond to a 

total of 1350 simulation runs, as each parameter setting is executed for 10 multiple 

runs.  



84  

 

 
 

   

   

   

Figure 5.10: Contour plot of the three responses of 𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠), 𝑇𝑡 (𝑇𝑇𝑇) and 𝑡𝑚 (𝑀𝑇𝑇) for various parameters of 𝛽𝑉 (𝐵𝑄𝐿), 𝛽𝑏or 𝛽𝑝 (𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶) for split actuated control and demand case “E” 
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5.1.1 Analysis 

None of the above models resulted in acceptable desirability levels (within the 

model input range) using the set three objective functions (maximizing of 𝑁𝑏𝑢𝑠 

(𝑇𝑟𝑖𝑝𝑠), while simultaneously minimizing both 𝑇𝑡 (𝑇𝑇𝑇) and 𝑡𝑚 (𝑀𝑇𝑇)). The 

optimum values of the coefficients are mostly border values (upper bound or lower 

bound of the specified regions). Furthermore, the variability of the responses is very 

little, for instance 𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠) are 150 – 160, 𝑇𝑡 (𝑇𝑇𝑇) is 8000 – 8300 hours and 𝑡𝑚 

(𝑀𝑇𝑇) is 810 – 860 seconds.   

Further analysis is done for the all the models using only either double or single 

objective function(s). The conducted analyses still led to optimal solutions at the 

borders of the parameter regions. Only model 9 has shown good performance, and it 

is discussed hereafter.  

 

 

  

Figure 5.11: Optimization of 𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠) for various parameters of 𝛽𝑉 (𝐵𝑄𝐿), 

𝛽𝑏or 𝛽𝑝 (𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶), for split actuated control under “E” demand scenario 

 

First, the optimization is done only using one objective function (maximizing 

of 𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠)) as shown in Figure 5.11. The resulting optimal variable setting is 

presented in Table 5.2. This setting is 100, 5030, and 3.75 for the 𝛽𝑉 (𝐵𝑄𝐿), 𝛽𝑏or 𝛽𝑝 
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(𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶), respectively, with the response 𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠) of 161.34, and 

0.291 (95% CI = 160.7, 162.1) standard error (SE). 

 

Table 5.2: Optimal variable setting of coefficients for the response of 𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠) 
for split actuated control with demand case “E” 

Coefficients Responses 

𝛽𝑉 (𝐵𝑄𝐿) 𝛽𝑏or 𝛽𝑝 

(𝐵𝑇𝑃) 

𝛽𝐵 (𝐵𝐷𝐶) 𝑁𝑏𝑢𝑠 
(𝑇𝑟𝑖𝑝𝑠) 

SE (95% CI) 

100 5030 3.75 161.339 0.291 (160.7, 162.1) 

 

The optimization is done afterward considering two objective functions 

(maximizing of 𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠), while simultaneously minimizing 𝑡𝑚 (𝑀𝑇𝑇)), as shown 

in Figure 5.12. The resulting optimal parameter setting is presented in Table 5.3. This 

setting is 305, 1000, and 2.91 for 𝛽𝑉 (𝐵𝑄𝐿), 𝛽𝑏or 𝛽𝑝 (𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶), 

respectively. The optimal responses are 159.9 for 𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠) with a standard error 

(SE) of 0.4 (95% CI = 159, 160.8) and 834.7 seconds for 𝑡𝑚 (𝑀𝑇𝑇) with a standard 

error (SE) of 3.4 (95% CI = 827.0, 842.4). 

 

 

Table 5.3: Optimal variable setting of coefficients for the responses of 𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠) 
and 𝑡𝑚 (𝑀𝑇𝑇) for split actuated control with demand case “E” 

Coefficients Responses 

𝛽𝑉 (𝐵𝑄𝐿) 𝛽𝑏or 𝛽𝑝 

(𝐵𝑇𝑃) 

𝛽𝐵 (𝐵𝐷𝐶) 𝑁𝑏𝑢𝑠 
(𝑇𝑟𝑖𝑝𝑠) 

SE  

(95% CI) 
𝑡𝑚 (𝑀𝑇𝑇) 

(seconds) 

SE  

(95% CI) 

305 1000 2.1 159.9 0.4 (159, 

160.8) 

834.71 3.4 (827.0, 

842.4)   
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Figure 5.12: Optimization of 𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠), and 𝑡𝑚 (𝑀𝑇𝑇) for various parameters of 

𝛽𝑉 (𝐵𝑄𝐿), 𝛽𝑏or 𝛽𝑝 (𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶), for split actuated control under “E” 

demand scenario 

 

RSM Statistics (ANOVA table)  

Regardless of the number and nature of used objective function(s) to identify 

the optimal setting (single, dual or triple), the model itself is the same. Only the optimal 

settings vary according to the preset objective function(s). For the 9th model (with 

design explained in Table 5.1), the response surface model of 𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠) is 

significant (R-square = 94.56%), as p-value for each parameter is less than 0.01, as 

shown in Table 5.4. Only 𝛽𝐵 (𝐵𝐷𝐶) is not significant with a p-value greater than 0.1. 

There is a supporting evidence that there is little variation with different values of 𝛽𝐵 

(𝐵𝐷𝐶) as shown in the contour plots of Figure 5.10. This may be attributed to the 

prevailing traffic conditions under the E demand level, as the downstream approaches 
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may not likely to be flagged as congested (the necessary condition to apply the 

downstream congestion adjustment as explained in Chapter 2- Equation 2.3).  

 

Table 5.4: Summary of ANOVA for 𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠) versus various 𝛽𝑉 (𝐵𝑄𝐿), 𝛽𝑏or 𝛽𝑝 

(𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶) for split actuated control of “E” demand scenario  

Source 

Sum of 

Squares df 

Mean 

Square F 

Linear  27.2125 3 9.0708 39** 

 β𝑉 10.58 1 10.58 45.49** 

 β𝑝 16.5312 1 16.5312 71.07** 

 β𝐵 0.1013 1 0.1013 0.44* 

Square β𝑝*β𝑝 2.8934 1 2.8934 12.44** 

2-Way Interaction β𝑉*β𝑝 6.25 1 6.25 26.87** 

Lack-of-Fit  2.0467 7 0.2924 12.53* 

Total  38.4493 14   

*p > 0.1 

**p < 0.1 

 

 

The second order regression equation of 𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠) versus 𝛽𝑉 (𝐵𝑄𝐿), 

𝛽𝑏or 𝛽𝑝 (𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶) is: 

𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠)  (Split Actuated Control under “E” Demand Scenario) 

=  159.518 −  0.001901 β𝑉  +  0.000676 β𝑝 +  0.0563 β𝐵 

− 0.0000001𝛽𝑝 ∗ 𝛽𝑝 +  0.0000001𝛽𝑉 ∗ 𝛽𝑝 

 

Additionally, the response model of 𝑡𝑚 (𝑀𝑇𝑇) is significant (R-square = 

80.94%), as p-value for each parameter is less than 0.1, as shown in Table 5.5. Only 

𝛽𝐵 (𝐵𝐷𝐶) is not significant with a p-value greater than 0.1.  
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Table 5.5: Summary of ANOVA for 𝑡𝑚 (𝑀𝑇𝑇) versus various 𝛽𝑉 (𝐵𝑄𝐿), 𝛽𝑏or 𝛽𝑝 

(𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶) for split actuated control of “E” demand scenario 

Source Sum of Squares df Mean Square F 

Linear  442.406 3 147.469 7.08** 

 β𝑉 66.387 1 66.387 3.19** 

 β𝑝 375.58 1 375.58 18.04** 

 β𝐵 0.44 1 0.44 0.02* 

Square β𝑝*β𝑝 218.051 1 218.051 10.47** 

2-Way Interaction β𝑉*β𝑝 135.185 1 135.185 6.49** 

Lack-of-Fit  145.159 7 20.737 0.98* 

Total  983.01 14   

*p > 0.1 

**p < 0.1 

 

 

The second order regression equation of 𝑡𝑚 (𝑀𝑇𝑇) versus 𝛽𝑉 (𝐵𝑄𝐿), 𝛽𝑏or 𝛽𝑝 

(𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶) is:  

𝑡𝑚 (𝑀𝑇𝑇) (Split Actuated Control under “E” Demand Scenario) (seconds) 

=  831.12 −  0.00714 β𝑉  +  0.00580 β𝑝  +  0.117 β𝐵 

− 0.000001 𝛽𝑝 ∗ 𝛽𝑝  +  0.000001 𝛽𝑉 ∗ 𝛽𝑝 

 

Finally, the response model of 𝑇𝑡 (𝑇𝑇𝑇) is significant (R-square = 87.19%), as 

the p-value for each parameter is less than 0.1 shown in Table 5.6.  Only 𝛽𝐵 (𝐵𝐷𝐶) is 

not significant with a p-value greater than 0.1.  
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Table 5.6: Summary of ANOVA for 𝑇𝑡 (𝑇𝑇𝑇) versus various 𝛽𝑉 (𝐵𝑄𝐿), 𝛽𝑏or 𝛽𝑝 

(𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶) for split actuated control of “E” demand scenario 

Source 

Sum of 

Squares df 

Mean 

Square F 

Linear  18218.8 3 6072.9 7.87** 

 β𝑉 3532.5 1 3532.5 4.58** 

 β𝑝 14597.6 1 14597.6 18.93** 

 β𝐵 88.6 1 88.6 0.11* 

Square  16767.4 2 8383.7 10.87** 

 β𝑝 ∗ β𝑝 15026.3 1 15026.3 19.48** 

 β𝐵 ∗ β𝐵 2537.6 1 2537.6 3.29** 

2-Way Interaction β𝑉* β𝑝 6993.5 1 6993.5 9.07** 

Lack-of-Fit  4224.9 6 704.1 0.72* 

Total  48149.6 14   

*p > 0.1 

**p < 0.1 

 

 

The second order regression equation of 𝑇𝑡 (𝑇𝑇𝑇) versus 𝛽𝑉 (𝐵𝑄𝐿), 𝛽𝑏or 𝛽𝑝 

(𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶) is:  

𝑇𝑡 (𝑇𝑇𝑇) (Split Actuated Control under “E” Demand Scenario) (hours) =

 8093.3 −  0.0516 𝛽𝑉  +  0.0462  𝛽𝑝  +  40.9 𝛽𝐵 

− 0.000005  𝛽𝑝 ∗  𝛽𝑝  −  6.53 𝛽𝐵 ∗ 𝛽𝐵  +  0.000008 𝛽𝑉 ∗  𝛽𝑝 

 

5.1.2 Optimum selection (model validation) 

For different objective functions, different optimal settings are obtained. In 

specific, herein we refer to the optimum settings of the coefficients of  𝛽𝑉 (𝐵𝑄𝐿), 

𝛽𝑏or 𝛽𝑝 (𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶) related to the solutions: 

I. where only 𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠) is maximized (as indicated in Table 5.2) 
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II. where 𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠) is maximized and 𝑡𝑚 (𝑀𝑇𝑇) is minimized (as 

indicated in Table 5.3)  

In order to select only one set of values to generalize its use with the split 

actuated controller under the E demand scenario, a verification/validation process is 

deployed. The validation process entails running the simulation with the identified 

values (in Tables 5.2 and 5.3). Each dataset was used in ten (10) multiple runs and the 

resulting responses were then averaged and reported as shown in Table 5.7. The 

resulting average 𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠), 𝑡𝑚 (𝑀𝑇𝑇) and 𝑇𝑡 (𝑇𝑇𝑇) of the 10 simulation runs (as 

shown in Table 5.7) lie within the 95% confidence interval (corresponding values) 

extracted from the response surface model (as shown in Table 5.2 for variable setting 

I, and Table 5.3 for variable setting II).  

The 2nd set of variables (II) (𝛽𝑉 (𝐵𝑄𝐿) =  305, 𝛽𝑏or 𝛽𝑝 (𝐵𝑇𝑃) =  1000, and 

𝛽𝐵 (𝐵𝐷𝐶)= 2.1) is selected as the default general setting of the split actuated 

controller under the demand case “E”. The set results in higher values of 𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠) 

and lesser values of 𝑡𝑚 (𝑀𝑇𝑇) and 𝑇𝑡 (𝑇𝑇𝑇) as shown in Table 5.7.  

It is worth noting that the total network travel time 𝑇𝑡 (𝑇𝑇𝑇) was not explicitly 

used an optimization criterion in any of the above two solutions (I and II). Nonetheless, 

it is legitimate to say that 𝑇𝑡 (𝑇𝑇𝑇) was implicitly accounted in obtaining the optimal 

settings II; as it directly relates to the trip’s average travel time, 𝑡𝑚 (𝑀𝑇𝑇) through the 

formula tm= 
Tt

Ntrips
∗ 3600, where Ntrips is the total number of vehicles in the network. 

That is, explicit minimization of 𝑡𝑚 (𝑀𝑇𝑇) implies implicit minimization (not explicit) 

of 𝑇𝑡 (𝑇𝑇𝑇).  
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Table 5.7: Optimal variable settings of 𝛽𝑉 (𝐵𝑄𝐿), 𝛽𝑏or 𝛽𝑝 (𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶) and 

corresponding simulation-based MOE’s (𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠), 𝑡𝑚 (𝑀𝑇𝑇) (seconds), 𝑇𝑡 
(𝑇𝑇𝑇) (hours)) for split actuated control of “E” demand scenario 

Variable Settings  

Coefficients Responses 

𝛽𝑉 

(𝐵𝑄𝐿) 

𝛽𝑏or 𝛽𝑝 

(𝐵𝑇𝑃) 

𝛽𝐵 

(𝐵𝐷𝐶) 

𝑁𝑏𝑢𝑠 
(𝑇𝑟𝑖𝑝𝑠) 

𝑡𝑚 (𝑀𝑇𝑇) 

(seconds) 
𝑇𝑡 

(𝑇𝑇𝑇) 

(hours) 

I. (only 𝑁𝑏𝑢𝑠 
(𝑇𝑟𝑖𝑝𝑠) is 

maximized) 

100 5030 3.75 160.9 839.26 8205.25 

II. (𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠) 

is maximized and 

𝑡𝑚 (𝑀𝑇𝑇) is 

minimized) 

305 1000 2.1 161.0 838.26 8190.57 

 

 

5.2 Protected Actuated Control 

The outputs for the Protected Actuated control system is presented in Table 5.8 

for three (3) RSM models, as discussed in Chapter 3 and Appendix A in details. Table 

5.8 summarizes the input variable ranges, the optimal variable setting, and the resulting 

composite desirability. The optimization results of the three models are plotted in 

Figure 5.13 to 5.15 for three input parameters of coefficient for virtual queue of 

vehicles, 𝛽𝑉 (𝐵𝑄𝐿), coefficient for transit priority, 𝛽𝑏or 𝛽𝑝 (𝐵𝑇𝑃), and downstream 

blockage penalty coefficient, 𝛽𝐵 (𝐵𝐷𝐶), as well as the three responses of the total bus 

trips, 𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠), total network travel time, 𝑇𝑡 (𝑇𝑇𝑇), and the trip average travel 

time, 𝑡𝑚 (𝑀𝑇𝑇). 
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Table 5.8: Optimal values of protected actuated control under “E” demand scenario 

Model 

NO. 

Factor ranges Optimal factor 

settings (𝛃𝑽, 

𝛃𝒃or 𝛃𝒑, 𝛃𝑩) 

Composite 

Desirability, 

𝑫 
𝛃𝑽 (𝑩𝑸𝑳) 𝛃𝒃or 𝛃𝒑 

(𝑩𝑻𝑷) 

𝛃𝑩 

(𝑩𝑫𝑪) 

1 2 – 3000 1000 – 15000 1 – 10 3000, 14434, 1 0.941 

2 1000 – 6000 2000 – 20000 2 – 8 1000, 16545, 2 0.963 

3 100 – 4000 3000 – 18000 3 – 6 4000, 18000, 3 0.916 

 

Figure 5.13, 5.14, and 5.15 depict the optimization plots for models 1, 2, and 3 

considering the three input parameters and the three responses. The composite 

desirability values of these models are 0.941, 0.963, and 0.916, respectively.  

 

 

Figure 5.13: Model 1 individual and composite desirability 𝐷 for the responses of 

𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠), 𝑇𝑡 (𝑇𝑇𝑇) and 𝑡𝑚 (𝑀𝑇𝑇) for various parameters of 𝛽𝑉 (𝐵𝑄𝐿), 𝛽𝑏or 𝛽𝑝 

(𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶), for protected actuated control under “E” demand scenario 



94  

 

 

 

Figure 5.14: Model 2 individual and composite desirability 𝐷 for the responses of 

𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠), 𝑇𝑡 (𝑇𝑇𝑇) and 𝑡𝑚 (𝑀𝑇𝑇) for various parameters of 𝛽𝑉 (𝐵𝑄𝐿), 𝛽𝑏or 𝛽𝑝 

(𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶), for protected actuated control under “E” demand scenario 

 

Figure 5.15: Model 3 individual and composite desirability 𝐷 for the responses of 

𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠), 𝑇𝑡 (𝑇𝑇𝑇) and 𝑡𝑚 (𝑀𝑇𝑇) for various parameters of 𝛽𝑉 (𝐵𝑄𝐿), 𝛽𝑏or 𝛽𝑝 

(𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶), for protected actuated control under “E” demand scenario 
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A contour plot was developed for the three responses of 𝑁𝑏𝑢𝑠 (Trips), 𝑇𝑡 (TTT) 

and 𝑡𝑚 (MTT) for various parameters of 𝛽𝑉 (BQL), 𝛽𝑏or 𝛽𝑝 (BTP), and 𝛽𝐵 (BDC) as 

shown in Figure 5.16. The data of the control plots were taken from a total of 45 input 

variable settings (data of models 1 to 3). These variant input settings correspond to a 

total of 450 simulation runs, as each parameter setting is executed for 10 multiple runs.  
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Figure 5.16: Contour plot of the three responses of 𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠), 𝑇𝑡 (𝑇𝑇𝑇) and 𝑡𝑚 (𝑀𝑇𝑇) for various parameters of 𝛽𝑉 (𝐵𝑄𝐿), 𝛽𝑏or 𝛽𝑝 (𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶) for protected actuated control and demand case “E”
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5.2.1 Analysis 

The multi-objective optimization methodology (maximizing of 𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠), 

while simultaneously minimizing both 𝑇𝑡 (𝑇𝑇𝑇) and 𝑡𝑚 (𝑀𝑇𝑇)) is used to solve these 

three models by the composite desirability function, as described in Chapter 3. None 

of the above models resulted in acceptable desirability levels (within the model input 

range) using the set three objective functions (maximizing of 𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠), while 

simultaneously minimizing both 𝑇𝑡 (𝑇𝑇𝑇) and 𝑡𝑚 (𝑀𝑇𝑇)). The optimum values of the 

coefficients are mostly border values (upper bound or lower bound of the specified 

regions).   

Further analysis is done for the all the models using only either double or single 

objective function(s). The conducted analyses still led to optimal solutions at the 

borders of the parameter regions. Only model 3 has shown good performance only for 

the double objective functions (maximizing of 𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠), while simultaneously 

minimizing 𝑡𝑚 (𝑀𝑇𝑇)) and it is discussed hereafter.  

The optimization is done only using two objective functions (maximizing of 

𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠), while simultaneously minimizing 𝑡𝑚 (𝑀𝑇𝑇)) as shown in Figure 5.17. 

The resulting optimal variable setting is presented in Table 5.9. This setting is 2503, 

17242, and 3 for 𝛽𝑉 (𝐵𝑄𝐿), 𝛽𝑏or 𝛽𝑝 (𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶), respectively. The optimal 

responses are 100.3 for 𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠) with a standard error (SE) of 0.6 (95% CI = 99.0, 

101.6) and 999.3 seconds for 𝑡𝑚 (𝑀𝑇𝑇) with a standard error (SE) of 3.9 (95% CI = 

990.5, 1008.1). 
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Figure 5.17: Optimization of 𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠), and 𝑡𝑚 (𝑀𝑇𝑇) for various parameters of 

𝛽𝑉 (𝐵𝑄𝐿), 𝛽𝑏or 𝛽𝑝 (𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶), for protected actuated control under “E” 

demand scenario 

 

Table 5.9: Optimal variable setting of coefficients for the response of 𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠) 
and 𝑡𝑚 (𝑀𝑇𝑇) for protected actuated control with demand case “E”  

Coefficients Responses 

𝛽𝑉 

(𝐵𝑄𝐿) 

𝛽𝑏or 𝛽𝑝 

(𝐵𝑇𝑃) 

𝛽𝐵 

(𝐵𝐷𝐶) 

𝑁𝑏𝑢𝑠 
(𝑇𝑟𝑖𝑝𝑠) 

SE  

(95% CI) 
𝑡𝑚 (𝑀𝑇𝑇) 

(seconds) 

SE  

(95% CI) 

2503 17242 3 100.3 0.6 (99.0, 

101.6) 

999.3 3.9 (990.5, 

1008.1)   

 

RSM Statistics (ANOVA table)  

Regardless of the number and nature of used objective function(s) to identify 

the optimal setting (single, dual or triple), the model itself is the same. Only the optimal 

settings vary according to the preset objective function(s). In 3rd model (with design 
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explained in Table 5.8), the response surface model of total bus trips is significant (R-

square = 86.42%), as shown in Table 5.10. 𝛽𝐵 (𝐵𝐷𝐶) and its square effect are not 

significant with a p-value greater than 0.1. 

Table 5.10: Summary of ANOVA for 𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠) versus various 𝛽𝑉 (𝐵𝑄𝐿), 

𝛽𝑏or 𝛽𝑝 (𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶) for protected actuated control of “E” demand 

scenario 

Source 

Sum of 

Squares df 

Mean 

Square F 

Linear  31.163 3 10.3877 12.8** 

 β𝑉 19.0159 1 19.0159 23.43** 

 β𝑝 12.005 1 12.005 14.79** 

 β𝐵 0.142 1 0.142 0.18* 

Square  4.6465 2 2.3232 2.86** 

 β𝑝*β𝑝 3.677 1 3.677 4.53** 

 β𝐵*β𝐵 0.7143 1 0.7143 0.88* 

2-Way Interaction β𝑉*β𝑝 5.5225 1 5.5225 6.8** 

Lack-of-Fit  5.1059 6 0.851 1.23* 

Total  47.8246 14   
*p > 0.1 

**p < 0.1 

 

The second order regression equation of 𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠) versus 𝛽𝑉 (𝐵𝑄𝐿), 

𝛽𝑏or 𝛽𝑝 (𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶) is: 

𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠)  (Protected Actuated Control under “E” Demand Scenario) 

=  103.06 −  0.001634 𝛽𝑉  +  0.000370  𝛽𝑝  −  1.67 𝛽𝐵 

− 0.0000001  𝛽𝑝 ∗  𝛽𝑝 +  0.195 𝛽𝐵 ∗ 𝛽𝐵  +  0.0000001 𝛽𝑉 ∗  𝛽𝑝 

 

Additionally, the response model of 𝑡𝑚 (𝑀𝑇𝑇) is significant (R-square = 

89.26%), as shown in Table 5.11. Only 𝛽𝑝 (𝐵𝑇𝑃) is not significant with a p-value 

greater than 0.1. 
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Table 5.11: Summary of ANOVA for 𝑡𝑚 (𝑀𝑇𝑇) versus various  𝛽𝑉 (𝐵𝑄𝐿), 𝛽𝑏or 𝛽𝑝 

(𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶) for protected actuated control of “E” demand scenario 

Source 

Sum of 

Squares df 

Mean 

Square F 

Linear  2802.64 3 934.21 22.98** 

 β𝑉 614.87 1 614.87 15.13** 

 β𝑝 30.67 1 30.67 0.75* 

 β𝐵 2157.1 1 2157.1 53.06** 

Square β𝑉*β𝑉 96.75 1 96.75 2.38** 

2-Way Interaction β𝑉*β𝑝 142.62 1 142.62 3.51** 

Lack-of-Fit  170.18 7 24.31 0.25* 

Total  3407.87 14   
*p > 0.1 

**p < 0.1 

 

 

The second order regression equation of 𝑡𝑚 (𝑀𝑇𝑇) versus 𝛽𝑉 (𝐵𝑄𝐿), 𝛽𝑏or 𝛽𝑝 

(𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶) is: 

𝑡𝑚 (𝑀𝑇𝑇) (Protected Actuated Control under “E” Demand Scenario) 

 (seconds)  =  980.03 −  0.00570 𝛽𝑉   +  0.000576  𝛽𝑝   +  10.95 𝛽𝐵 

+ 0.000001 𝛽𝑉 ∗ 𝛽𝑉  −  0.0000001 𝛽𝑉 ∗  𝛽𝑝 

 

Finally, the response model of 𝑇𝑡 (𝑇𝑇𝑇)  is significant (R-square = 93.35%), as 

shown in Table 5.12. Only 𝛽𝑝 (𝐵𝑇𝑃) is not significant with a p-value greater than 0.1. 

Table 5.12: Summary of ANOVA for 𝑇𝑡 (𝑇𝑇𝑇) versus various 𝛽𝑉 (𝐵𝑄𝐿), 𝛽𝑏or 𝛽𝑝 

(𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶) for protected actuated control of “E” demand scenario 

Source 

Sum of 

Squares df 

Mean 

Square F 

Linear  41253.4 3 13751.1 45.3** 

 β𝑉 2041 1 2041 6.72** 

 β𝑝 428.1 1 428.1 1.41* 

 β𝐵 38784.3 1 38784.3 127.77** 

Square β𝑝 ∗ β𝑝 1348.7 1 1348.7 4.44** 

Lack-of-Fit  1986.5 8 248.3 0.47* 

Total  45637.6 14   
*p > 0.1 

**p < 0.1 
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The second order regression equation of 𝑇𝑡 (𝑇𝑇𝑇) versus 𝛽𝑉 (𝐵𝑄𝐿), 𝛽𝑏or 𝛽𝑝 

(𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶) is:  

𝑇𝑡 (𝑇𝑇𝑇) (Protected Actuated Control under “E” Demand Scenario) (hours) =

 3329.4 −  0.00819 𝛽𝑉  +  0.00807  𝛽𝑝  +  46.42 𝛽𝐵 

− 0.0000001  𝛽𝑝 ∗  𝛽𝑝 

 

5.2.2 Optimum selection (model validation) 

In order to select the set of values to generalize its use with the protected 

actuated controller under the E demand scenario, a verification/validation process is 

deployed. The validation process entails running the simulation with the identified 

values (in Table 5.9). The dataset was used in ten (10) multiple runs and the resulting 

responses were then averaged and reported as shown in Table 5.13. The resulting 

average 𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠), 𝑡𝑚 (𝑀𝑇𝑇) and 𝑇𝑡 (𝑇𝑇𝑇) of the 10 simulation runs (as shown in 

Table 5.13) lie within the 95% confidence interval (corresponding values) extracted 

from the response surface model (as shown in Table 5.9). Therefore, the set of 

variables (𝛽𝑉 (𝐵𝑄𝐿) =  2503, 𝛽𝑏or 𝛽𝑝 (𝐵𝑇𝑃) =  17242, and 𝛽𝐵 (𝐵𝐷𝐶)= 3) is 

selected as the default general setting of the protected actuated controller under the 

demand case “E”.  

Table 5.13: Optimal variable settings of 𝛽𝑉 (𝐵𝑄𝐿), 𝛽𝑏or 𝛽𝑝 (𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶) 

and corresponding simulation-based MOE’s (𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠), 𝑡𝑚 (𝑀𝑇𝑇) (seconds), 𝑇𝑡 
(𝑇𝑇𝑇) (hours)) for protected actuated control of “E” demand scenario 

Coefficients Responses 

𝛽𝑉 

(𝐵𝑄𝐿) 

𝛽𝑏or 𝛽𝑝 

(𝐵𝑇𝑃) 

𝛽𝐵 

(𝐵𝐷𝐶) 

𝑁𝑏𝑢𝑠 
(𝑇𝑟𝑖𝑝𝑠) 

𝑡𝑚 (𝑀𝑇𝑇) 

(seconds) 

𝑇𝑡 (𝑇𝑇𝑇) 

(hours) 

2503 17242 3 100.1 1012.7 3536.98 
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It is worth noting that the total network travel time 𝑇𝑡 (𝑇𝑇𝑇) was not explicitly 

used an optimization criterion in the above solution. Nonetheless, it is legitimate to say 

that 𝑇𝑡 (𝑇𝑇𝑇) was implicitly accounted in obtaining the optimal settings; as it directly 

relates to the trip’s average travel time, 𝑡𝑚 (𝑀𝑇𝑇) through the formula tm= 
Tt

Ntrips
∗

3600, where Ntrips is the total number of vehicles in the network. That is, explicit 

minimization of 𝑡𝑚 (𝑀𝑇𝑇) implies implicit minimization (not explicit) of 𝑇𝑡 (𝑇𝑇𝑇).  

5.3 Dual Actuated Control 

The outputs of the Dual Actuated control system are presented in the Table 

5.14 for five (5) RSM models, as discussed in Chapter 3 and Appendix A in details. 

Table 5.14 summarizes the input variable ranges, the optimal variable setting, and the 

resulting composite desirability. The optimization results of the five models are plotted 

in Figure 5.18 to 5.22 for three input parameters of coefficient for virtual queue of 

vehicles, 𝛽𝑉 (𝐵𝑄𝐿), coefficient for transit priority, 𝛽𝑏or 𝛽𝑝 (𝐵𝑇𝑃), and downstream 

blockage penalty coefficient, 𝛽𝐵 (𝐵𝐷𝐶), as well as the three responses of the total bus 

trips, 𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠), total network travel time, 𝑇𝑡 (𝑇𝑇𝑇), and the trip average travel 

time, 𝑡𝑚 (𝑀𝑇𝑇). 

Table 5.14: Optimal values of dual actuated control under “E” demand scenario 

Model 

NO. 

Factor ranges Optimal factor 

settings (𝛃𝑽, 

𝛃𝒃or 𝛃𝒑, 𝛃𝑩) 

Composite 

Desirability, 

𝑫 

𝛃𝑽 (𝑩𝑸𝑳) 𝛃𝒃or 𝛃𝒑 

(𝑩𝑻𝑷) 

𝛃𝑩 

(𝑩𝑫𝑪) 

1 100 – 5000 1000 – 20000 1 – 10 100, 1000, 10 0.973  

2 1 – 3000 500 – 15000 2 – 20 2547.96, 15000, 20 0.994 

3 1000 – 4000 2000 – 10000 3 – 30 1000, 10000, 3 0.916  

4 500 – 6000 3000 – 30000 4 – 40 6000, 30000, 40 0.983 

5 2 – 3500  2500 – 13000  5 – 34  1839.3, 13000, 5 0.933 
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Figure 5.18 to 5.22 depict the optimization plots for the models 1 to 5, 

respectively, considering the three input parameters and the three responses. The 

composite desirability values of the models 1 to 5 are 0.973, 0.994, 0.916, 0.983, and 

0.933, respectively.  

 

 

Figure 5.18: Model 1 individual and composite desirability 𝐷 for the responses of 

𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠), 𝑇𝑡 (𝑇𝑇𝑇) and 𝑡𝑚 (𝑀𝑇𝑇) for various parameters of 𝛽𝑉 (𝐵𝑄𝐿), 𝛽𝑏or 𝛽𝑝 

(𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶), for dual actuated control under “E” demand case  
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Figure 5.19: Model 2 individual and composite desirability 𝐷 for the responses of 

𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠), 𝑇𝑡 (𝑇𝑇𝑇) and 𝑡𝑚 (𝑀𝑇𝑇) for various parameters of 𝛽𝑉 (𝐵𝑄𝐿), 𝛽𝑏or 𝛽𝑝 

(𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶), for dual actuated control under “E” demand case” 

 

Figure 5.20: Model 3 individual and composite desirability 𝐷 for the responses of 

𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠), 𝑇𝑡 (𝑇𝑇𝑇) and 𝑡𝑚 (𝑀𝑇𝑇) for various parameters of 𝛽𝑉 (𝐵𝑄𝐿), 𝛽𝑏or 𝛽𝑝 

(𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶), for dual actuated control under “E” demand case 
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Figure 5.21: Model 4 individual and composite desirability 𝐷 for the responses of 

𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠), 𝑇𝑡 (𝑇𝑇𝑇) and 𝑡𝑚 (𝑀𝑇𝑇) for various parameters of 𝛽𝑉 (𝐵𝑄𝐿), 𝛽𝑏or 𝛽𝑝 

(𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶), for dual actuated control under “E” demand case 

 

Figure 5.22: Model 5 individual and composite desirability 𝐷 for the responses of 

𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠), 𝑇𝑡 (𝑇𝑇𝑇) and 𝑡𝑚 (𝑀𝑇𝑇) for various parameters of 𝛽𝑉 (𝐵𝑄𝐿), 𝛽𝑏or 𝛽𝑝 

(𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶), for dual actuated control under “E” demand case 
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A contour plot was developed for the three responses of 𝑁𝑏𝑢𝑠 (Trips), 𝑇𝑡 (TTT) 

and 𝑡𝑚 (MTT) for various parameters of 𝛽𝑉 (BQL), 𝛽𝑏or 𝛽𝑝 (BTP), and 𝛽𝐵 (BDC) as 

shown in Figure 5.23. The data for the control plot is taken from a total of 75 input 

variable settings (data of models 1 to 5). These variant input settings correspond to a 

total of 750 simulation runs, as each parameter setting is executed for 10 multiple runs.  
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Figure 5.23: Contour plot of the three responses of 𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠), 𝑇𝑡 (𝑇𝑇𝑇) and 𝑡𝑚 (𝑀𝑇𝑇) for various parameters of 𝛽𝑉 (𝐵𝑄𝐿), 𝛽𝑏or 𝛽𝑝 (𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶) for dual actuated control and demand case “E”
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5.3.1 Analysis 

The multi-objective optimization methodology (maximizing of 𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠), 

while simultaneously minimizing both 𝑇𝑡 (𝑇𝑇𝑇) and 𝑡𝑚 (𝑀𝑇𝑇)) is used to solve these 

five models by the composite desirability function, as described in Chapter 3. None of 

the above models resulted in acceptable desirability levels (within the model input 

range) using the set three objective functions (maximizing of 𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠), while 

simultaneously minimizing both 𝑇𝑡 (𝑇𝑇𝑇) and 𝑡𝑚 (𝑀𝑇𝑇)). The optimum values of the 

coefficients are mostly border values (upper bound or lower bound of the specified 

regions).   

Further analysis is done for the all the models using only either double or single 

objective function(s). The conducted analyses still led to optimal solutions at the 

borders of the parameter regions. Only model 3 has shown good performance, and it 

is discussed hereafter.  

First, the optimization is done only using one objective function (maximizing 

of 𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠)) as shown in Figure 5.24. The resulting optimal variable setting is 

presented in Table 5.15. This setting is 1274, 9941, and 5 for the 𝛽𝑉 (𝐵𝑄𝐿), 𝛽𝑏or 𝛽𝑝 

(𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶), respectively, with the response 𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠) of 155.7, and 

0.146 (95% CI = 155.4, 156.0) standard error (SE). 
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 Figure 5.24: Optimization of 𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠) for various parameters of 𝛽𝑉 (𝐵𝑄𝐿), 

𝛽𝑏or 𝛽𝑝 (𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶), for dual actuated control under “E” demand scenario 

 

Table 5.15: Optimal variable setting of coefficients for the response of 𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠) 
for dual actuated control with demand case “E” 

Coefficients Responses 

𝛽𝑉 (𝐵𝑄𝐿) 𝛽𝑏or 𝛽𝑝 

(𝐵𝑇𝑃) 

𝛽𝐵 (𝐵𝐷𝐶) 𝑁𝑏𝑢𝑠 
(𝑇𝑟𝑖𝑝𝑠) 

SE (95% CI) 

1274 9941 5 155.7 0.146 (155.4, 156.0) 

 

The optimization is done afterward considering two objective functions 

(maximizing of 𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠), while simultaneously minimizing 𝑡𝑚 (𝑀𝑇𝑇)), as shown 

in Figure 5.25. The resulting optimal variable setting is presented in Table 5.16. This 

setting is 2652, 11727, and 34 for 𝛽𝑉 (𝐵𝑄𝐿), 𝛽𝑏or 𝛽𝑝 (𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶), 

respectively. The optimal responses are 155.6 for 𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠) with a standard error 

(SE) of 0.16 (95% CI = 155.25, 155.99) and 687.19 seconds for 𝑡𝑚 (𝑀𝑇𝑇) with a 

standard error (SE) of 2.42 (95% CI = 681.6, 692.8). 
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Figure 5.25: Optimization of 𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠), and 𝑡𝑚 (𝑀𝑇𝑇) for various parameters of 

𝛽𝑉 (𝐵𝑄𝐿), 𝛽𝑏or 𝛽𝑝 (𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶), for dual actuated control under “E” 

demand scenario 

 

Table 5.16: Optimal variable setting of coefficients for the response for dual actuated 

control of “E” demand scenario 

Coefficients Responses 

𝛽𝑉 

(𝐵𝑄𝐿) 

𝛽𝑏or 𝛽𝑝 

(𝐵𝑇𝑃) 

𝛽𝐵 

(𝐵𝐷𝐶) 

𝑁𝑏𝑢𝑠 
(𝑇𝑟𝑖𝑝𝑠) 

SE  

(95% CI) 
𝑡𝑚 (𝑀𝑇𝑇) 

(seconds) 

SE  

(95% CI) 

2652 11727 34 155.6 0.16 (155.25, 

155.99) 

687.19 2.42 (681.6, 

692.8) 

 

RSM Statistics (ANOVA table)  

Regardless of the number and nature of used objective function(s) to identify 

the optimal setting (single, dual or triple), the model itself is the same. Only the optimal 

settings vary according to the preset objective function(s). In 5th model, the response 
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surface model of 𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠) is significant (R-square = 82.40%), as shown in Table 

5.17.  

Table 5.17: Summary of ANOVA for 𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠) versus various 𝛽𝑉 (𝐵𝑄𝐿), 

𝛽𝑏or 𝛽𝑝 (𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶) for dual actuated control of “E” demand scenario 

Source 

Sum of 

Squares df 

Mean 

Square F 

Linear  0.5025 3 0.1675 2.66** 

 β𝑉 0.02 1 0.02 0.32* 

 β𝑝 0.45125 1 0.45125 7.17** 

 β𝐵 0.03125 1 0.03125 0.5* 

Square  1.36423 2 0.68212 10.84** 

 β𝑉*β𝑉 1.14727 1 1.14727 18.24** 

 β𝑝*β𝑝 0.2928 1 0.2928 4.65** 

2-Way Interaction β𝑉*β𝐵 0.49 1 0.49 7.79** 

Lack-of-Fit  0.3966 6 0.0661 1.24* 

Total  2.86 14   
*p > 0.1 

**p < 0.1 

 

 

The second order regression equation of 𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠) versus 𝛽𝑉 (𝐵𝑄𝐿), 

𝛽𝑏or 𝛽𝑝 (𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶) is: 

𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠)  (Dual Actuated Control under “E” Demand Scenario) 

=  154.53 +  0.000396 𝛽𝑉  +  0.000203  𝛽𝑝  −  0.0285 𝛽𝐵   

− 0.0000001 𝛽𝑉 ∗ 𝛽𝑉 −  0.0000001  𝛽𝑝 ∗ 𝛽𝑝  +  0.000014 𝛽𝑉 ∗ 𝛽𝐵 

 

Additionally, the response model of 𝑡𝑚 (𝑀𝑇𝑇) is significant (R-square = 

82.67%), as shown in Table 5.18.  
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Table 5.18: Summary of ANOVA for 𝑡𝑚 (𝑀𝑇𝑇) versus various 𝛽𝑉 (𝐵𝑄𝐿), 𝛽𝑏or 𝛽𝑝 

(𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶) for dual actuated control of “E” demand scenario 

Source 

Sum of 

Squares df 

Mean 

Square F 

Linear  558.055 3 186.018 10.87** 

 β𝑉 551.51 1 551.51 32.22** 

 β𝑝 0.012 1 0.012 0* 

 β𝐵 6.533 1 6.533 0.38* 

Square  176.896 2 88.448 5.17** 

 β𝑉*β𝑉 106.517 1 106.517 6.22** 

 β𝐵*β𝐵 58.226 1 58.226 3.4** 

Lack-of-Fit  37.842 7 5.406 0.09* 

Total  889.007 14   
*p > 0.1 

**p < 0.1 

 

 

The second order regression equation of 𝑡𝑚 (𝑀𝑇𝑇) versus 𝛽𝑉 (𝐵𝑄𝐿), 𝛽𝑏or 𝛽𝑝 

(𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶) is:  

𝑡𝑚 (𝑀𝑇𝑇) (Dual Actuated Control under “E” Demand Scenario) (seconds) =

 698.47 −  0.01088 𝛽𝑉  +  0.000007  𝛽𝑝  +  0.797 𝛽𝐵 

+ 0.000002 𝛽𝑉 ∗ 𝛽𝑉  −  0.0188 𝛽𝐵 ∗ 𝛽𝐵 

 

Finally, the response model of 𝑇𝑡 (𝑇𝑇𝑇) is significant (R-square = 84.89%), as 

shown in Table 5.19. Only 𝛽𝐵 (𝐵𝐷𝐶) is not significant. 
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Table 5.19: Summary of ANOVA for 𝑇𝑡 (𝑇𝑇𝑇) versus various 𝛽𝑉 (𝐵𝑄𝐿), 𝛽𝑏or 𝛽𝑝 

(𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶) for dual actuated control of “E” demand scenario 

Source 

Sum of 

Squares df 

Mean 

Square F 

Linear  27341.2 3 9113.7 10.81** 

 β𝑉 27181.5 1 27181.5 32.24** 

 β𝑝 9.5 1 9.5 0.01* 

 β𝐵 150.2 1 150.2 0.18* 

Square  10568 3 3522.7 4.18** 

  β𝑉* β𝑉 3034.1 1 3034.1 3.6** 

 β𝑝 ∗ β𝑝 2545.2 1 2545.2 3.02** 

 β𝐵 ∗ β𝐵 4431.5 1 4431.5 5.26** 

Lack-of-Fit  179.2 6 29.9 0.01* 

Total  44654.4 14   
*p > 0.1 

**p < 0.1 

 

The second order regression equation of 𝑇𝑡 (𝑇𝑇𝑇) versus 𝛽𝑉 (𝐵𝑄𝐿), 𝛽𝑏or 𝛽𝑝 

(𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶) is: 

𝑇𝑡 (𝑇𝑇𝑇) (𝐷𝑢𝑎𝑙 𝐴𝑐𝑡𝑢𝑎𝑡𝑒𝑑 𝐶𝑜𝑛𝑡𝑟𝑜𝑙 𝑢𝑛𝑑𝑒𝑟 "𝐸" 𝐷𝑒𝑚𝑎𝑛𝑑 𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜) (hours)  

=  6911.8 −  0.0661 𝛽𝑉  +  0.01497  𝛽𝑝  +  6.73 𝛽𝐵  

+ 0.000009 𝛽𝑉 ∗ 𝛽𝑉  −  0.000001  𝛽𝑝 ∗  𝛽𝑝  −  0.1648 𝛽𝐵 ∗ 𝛽𝐵. 

 

5.3.2 Optimum selection (model validation) 

For different objective functions, different optimal settings are obtained. In 

specific, herein we refer to the optimum settings of the coefficients of  𝛽𝑉 (𝐵𝑄𝐿), 

𝛽𝑏or 𝛽𝑝 (𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶) related to the solutions: 

I. where only 𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠) is maximized (as indicated in Table 5.15) 

II. where 𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠) is maximized and 𝑡𝑚 (𝑀𝑇𝑇) is minimized (as 

indicated in Table 5.16)  
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In order to select only one set of values to generalize its use with the dual 

actuated controller under the E demand scenario, a verification/validation process is 

deployed. The validation process entails running the simulation with the identified 

values (in Tables 5.15 and 5.16). Each dataset was used in ten (10) multiple runs and 

the resulting responses were then averaged and reported as shown in Table 5.20. The 

resulting average 𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠), 𝑡𝑚 (𝑀𝑇𝑇) and 𝑇𝑡 (𝑇𝑇𝑇) of the 10 simulation runs (as 

shown in Table 5.20) lie within the 95% confidence interval (corresponding values) 

extracted from the response surface model (as shown in Table 5.15 for variable setting 

I, and Table 5.16 for variable setting II).  

The 2nd set of variables (II) (𝛽𝑉 (𝐵𝑄𝐿) =  2652, 𝛽𝑏or 𝛽𝑝 (𝐵𝑇𝑃) =  11727, 

and 𝛽𝐵 (𝐵𝐷𝐶)= 34) is selected as the default general setting of the dual actuated 

controller under the demand case “E”. The set results nearly same values of 𝑁𝑏𝑢𝑠 

(𝑇𝑟𝑖𝑝𝑠), but lesser values of 𝑡𝑚 (𝑀𝑇𝑇) and 𝑇𝑡 (𝑇𝑇𝑇) as shown in Table 5.20.  

Table 5.20: Optimal variable settings of 𝛽𝑉 (𝐵𝑄𝐿), 𝛽𝑏or 𝛽𝑝 (𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶) 

and corresponding simulation-based MOE’s (𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠), 𝑡𝑚 (𝑀𝑇𝑇) (seconds), 𝑇𝑡 
(𝑇𝑇𝑇) (hours)) for dual actuated control of “E” demand scenario 

Variable Settings  

Coefficients Responses 

𝛽𝑉 

(𝐵𝑄𝐿) 

𝛽𝑏or 𝛽𝑝 

(𝐵𝑇𝑃) 

𝛽𝐵 

(𝐵𝐷𝐶) 

𝑁𝑏𝑢𝑠 
(𝑇𝑟𝑖𝑝𝑠) 

𝑡𝑚 (𝑀𝑇𝑇) 

(seconds) 

𝑇𝑡 (𝑇𝑇𝑇) 

(hours) 

I. (only 𝑁𝑏𝑢𝑠 
(𝑇𝑟𝑖𝑝𝑠) is 

maximized) 

1274 9941 5 155.5 701.56 6993.85 

II. (𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠) 

is maximized and 

𝑡𝑚 (𝑀𝑇𝑇) is 

minimized) 

2652 11727 34 155.2 688.71 6901.98 

 

It is worth noting that the total network travel time 𝑇𝑡 (𝑇𝑇𝑇) was not explicitly 

used an optimization criterion in any of the above two solutions (I and II). Nonetheless, 

it is legitimate to say that 𝑇𝑡 (𝑇𝑇𝑇) was implicitly accounted in obtaining the optimal 
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settings II; as it directly relates to the trip’s average travel time, 𝑡𝑚 (𝑀𝑇𝑇) through the 

formula tm= 
Tt

Ntrips
∗ 3600, where Ntrips is the total number of vehicles in the network. 

That is, explicit minimization of 𝑡𝑚 (𝑀𝑇𝑇) implies implicit minimization (not explicit) 

of 𝑇𝑡 (𝑇𝑇𝑇). 

5.4 Discussion  

The optimal variable settings for various controls and their responses with 

characteristics are discussed in this section. The selected optimal variable settings for 

the Split Actuated control, Protected Actuated control, and Dual Actuated control 

under the demand scenario “E” (‘E’ refers to the traffic demand scenario of “high” 

traffic volume) are presented in Table 5.21. Also, the corresponding simulation-based 

MOE’s (𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠), 𝑡𝑚 (𝑀𝑇𝑇) (seconds), 𝑇𝑡 (𝑇𝑇𝑇) (hours)) for each setting are 

shown. From these settings, the split actuated and dual actuated control performed 

better than the protected actuated, as they delivered more total bus trips (𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠)) 

with less average travel time per trip (𝑡𝑚 (𝑀𝑇𝑇)). In addition, the dual actuated control 

has shown best performance considering the average travel time per trip (688.71 

seconds vs. 838.26 seconds); although, it has less total bus trips (155.2 vs. 161) than 

the split actuated control.  
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Table 5.21: Optimal variable settings of 𝛽𝑉 (𝐵𝑄𝐿), 𝛽𝑏or 𝛽𝑝 (𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶) 

and corresponding simulation-based MOE’s (𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠), 𝑡𝑚 (𝑀𝑇𝑇) (seconds), 𝑇𝑡 
(𝑇𝑇𝑇) (hours)) for various controls of “E” demand scenario 

Control  

Coefficients Responses 

𝛽𝑉 

(𝐵𝑄𝐿) 

𝛽𝑏or 𝛽𝑝 

(𝐵𝑇𝑃) 

𝛽𝐵 

(𝐵𝐷𝐶) 

𝑁𝑏𝑢𝑠 
(𝑇𝑟𝑖𝑝𝑠) 

𝑡𝑚 (𝑀𝑇𝑇) 

(seconds) 

𝑇𝑡 (𝑇𝑇𝑇) 

(hours) 

Split 

Actuated  
305 1000 2.1 161.0 838.26 8190.57 

Protected 

Actuated 
2503 17242 3 100.1 1012.7 3536.98 

Dual 

Actuated 
2652 11727 34 155.2 688.71 6901.98 

 

In general, optimization deals with finding the best outputs (MOEs) by 

selecting the input variable settings and often in simulation-based optimization, the 

input variable settings follow a ratio among them to yield the similar output(s), as they 

have a similar effect on output(s). Therefore, the effect of various input variable 

settings using the selected optimal input variable settings is discussed in this section.  

As indicated in Chapter 1, the typical notion of a robust system is one that 

performs well across a range of (traffic, geometry, weather, etc.) conditions. The 

robustness of the system must be ensured at various levels of congestion and across 

different control types (namely three levels). At the first level, the purpose is to ensure 

that for each control type (e.g. dual, protected or split) the sensitivity of relative ratios 

of the parameters. The idea is to check whether there is a specific relative ratio among 

the parameters that makes the specific control type (dual, protected or split) robust 

under one specific traffic condition.  

 Here, the “robustness” is examined in the context of the degree of sensitivity 

of the control system performance as a function of the scale of the input variable, while 

holding the relative ratio between these variables constant. The conclusion from this 

analysis is that the system is robust because (for most cases) performance of the system 

remains relatively constant regardless of the absolute magnitude of the parameter 
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values as long as the relative ratios of the parameter values remain constant. The other 

two levels of robustness checking are summarized in Chapter 7.  

More specifically, this section focuses on testing the “robustness” of the 

various controllers under fixed relative proportions among the various inputs. That is, 

will the performance of a specific controller change if the absolute values of the 

penalty coefficients (inputs) change, but the relative proportions among these penalties 

remain the same? It is believed that no matter what are the absolute values of these 

penalty coefficients, what determines the optimal setting is a specific “relative” 

proportion among them for each specific controller. If the controller performance does 

not change with the change of the absolute penalty values (while keeping the relative 

proportions fixed), this is a reflection of system robustness.      

In the remaining part of this section, the robustness testing of the split actuated 

control is presented first, followed by the ones for the protected actuated control, and 

finally for the dual actuated control. 

5.4.1 Split Actuated Control 

The selected optimal variable settings (𝛽𝑉 (𝐵𝑄𝐿) =  305, 𝛽𝑏or 𝛽𝑝 (𝐵𝑇𝑃) =

 1000, and 𝛽𝐵 (𝐵𝐷𝐶)= 2.1) for split actuated controls under “E” demand scenario is 

presented in Table 5.22.  These absolute values if rounded would result in the relative 

ratios of 150:495:1 (𝛽𝑉 (𝐵𝑄𝐿) ∶ 𝛽𝑏or 𝛽𝑝 (𝐵𝑇𝑃): 𝛽𝐵 (𝐵𝐷𝐶)). Using this fixed relative 

ratio, several input variable settings were developed and simulated. Each setting as 

indicated in Table 5.23 was simulated 100 times, and the average MOE’s of these runs 

were reported. The results of the various settings (with the same relative ratio) are 

shown in Table 5.23. The results (in Table 5.23) show that the responses using this 
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fixed ratio are more or less similar, and closely identical to the responses obtained with 

the selected optimal input variable settings (Table 5.22).  

Table 5.22: Selected optimal variable settings of 𝛽𝑉 (𝐵𝑄𝐿), 𝛽𝑏or 𝛽𝑝 (𝐵𝑇𝑃), and 𝛽𝐵 

(𝐵𝐷𝐶) and corresponding simulation-based MOE’s (𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠), 𝑡𝑚 (𝑀𝑇𝑇) 

(seconds), 𝑇𝑡 (𝑇𝑇𝑇) (hours)) for split actuated controls of “E” demand scenario 

Coefficients Responses 

𝛽𝑉 

(𝐵𝑄𝐿) 

𝛽𝑏or 𝛽𝑝 

(𝐵𝑇𝑃) 

𝛽𝐵 

(𝐵𝐷𝐶) 

𝑁𝑏𝑢𝑠 
(𝑇𝑟𝑖𝑝𝑠) 

𝑡𝑚 (𝑀𝑇𝑇) 

(seconds) 

𝑇𝑡 (𝑇𝑇𝑇) 

(hours) 

305 1000 2.1 161.0 838.26 8190.57 

 

Table 5.23: Several variable settings with the ratio of optimal variable settings of 𝛽𝑉 

(𝐵𝑄𝐿), 𝛽𝑏or 𝛽𝑝 (𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶) and corresponding simulation-based (from 

100 runs) MOE’s (𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠), 𝑡𝑚 (𝑀𝑇𝑇) (seconds), 𝑇𝑡 (𝑇𝑇𝑇) (hours)) for split 

actuated controls of “E” demand scenario 

Coefficients Responses 

𝛽𝑉 

(𝐵𝑄𝐿) 

𝛽𝑏or 𝛽𝑝 

(𝐵𝑇𝑃) 

𝛽𝐵 

(𝐵𝐷𝐶) 

𝑁𝑏𝑢𝑠 
(𝑇𝑟𝑖𝑝𝑠) 

𝑡𝑚 (𝑀𝑇𝑇) 

(seconds) 

𝑇𝑡 (𝑇𝑇𝑇) 

(hours) 

150 495 1 160.1 842.5 8223.0 

450 1485 3 160.6 842.8 8223.5 

750 2475 5 160.5 844.0 8241.3 

1500 4950 10 160.4 842.2 8229.0 

3000 9900 20 160.5 842.8 8232.8 

 

Figure 5.26 shows the rolling average of 10 runs of total bus trips (Trips) from 

100 simulation runs for several variable settings using the ratio of optimal variable 

settings of 𝛽𝑉 (𝐵𝑄𝐿), 𝛽𝑏or 𝛽𝑝 (𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶) for split actuated controls under 

“E” demand scenario. There is a similarity among the several variable settings, with 

the total bus trips (Trips) ranges from 159.6 to 161.5, which are close to the response 

(total bus trips=161.0) of selected optimal variable settings of 𝛽𝑉 (𝐵𝑄𝐿), 𝛽𝑏or 𝛽𝑝 

(𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶). The variations of the three responses under the various tested 

scenarios (Table 5.23) is almost negligible, and it clearly indicates the robustness of 
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the split actuated controllers using the fixed relative ratio of 150:495:1 for the 𝛽𝑉 

(𝐵𝑄𝐿): 𝛽𝑏or 𝛽𝑝 (𝐵𝑇𝑃): 𝛽𝐵 (𝐵𝐷𝐶).    

 

 

Figure 5.26: Ten runs rolling average of total bus trips (Trips) for several variable 

settings with the fixed ratio of optimal variable settings of 𝛽𝑉 (𝐵𝑄𝐿), 𝛽𝑏or 𝛽𝑝 

(𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶) for the split actuated controller of “E” demand scenario 

 

5.4.2 Protected Actuated Control 

The selected optimal variable settings (𝛽𝑉 (𝐵𝑄𝐿) =  2503, 𝛽𝑏or 𝛽𝑝 (𝐵𝑇𝑃) =

 17242, and 𝛽𝐵 (𝐵𝐷𝐶)= 3) for protected actuated controls under “E” demand scenario 

is presented in Table 5.24. These absolute values if rounded would result in the relative 

ratios of 830:5810:1 (𝛽𝑉 (𝐵𝑄𝐿) ∶ 𝛽𝑏or 𝛽𝑝 (𝐵𝑇𝑃): 𝛽𝐵 (𝐵𝐷𝐶)).  

Using this fixed relative ratio, several input variable settings were developed 

and simulated. Each setting as indicated in Table 5.25 was simulated 100 times, and 

the average MOE’s of these runs were reported. The results of the various settings 

(with the same relative ratio) are shown in Table 5.25. The results (in Table 5.25) 

indicate that the responses using this fixed ratio are more or less similar, and closely 
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identical to the responses obtained with the selected optimal input variable settings 

(Table 5.24).  

Table 5.24: Selected optimal variable settings of 𝛽𝑉 (𝐵𝑄𝐿), 𝛽𝑏or 𝛽𝑝 (𝐵𝑇𝑃), and 𝛽𝐵 

(𝐵𝐷𝐶) and corresponding simulation-based MOE’s (𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠), 𝑡𝑚 (𝑀𝑇𝑇) 

(seconds), 𝑇𝑡 (𝑇𝑇𝑇) (hours)) for protected actuated controls of “E” demand scenario 

Coefficients Responses 

𝛽𝑉 

(𝐵𝑄𝐿) 

𝛽𝑏or 𝛽𝑝 

(𝐵𝑇𝑃) 

𝛽𝐵 

(𝐵𝐷𝐶) 

𝑁𝑏𝑢𝑠 
(𝑇𝑟𝑖𝑝𝑠) 

𝑡𝑚 (𝑀𝑇𝑇) 

(seconds) 

𝑇𝑡 (𝑇𝑇𝑇) 

(hours) 

2503 17242 3 100.1 1012.7 3536.98 

 

Table 5.25: Several variable settings with the ratio of optimal variable settings of 𝛽𝑉 

(𝐵𝑄𝐿), 𝛽𝑏or 𝛽𝑝 (𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶) and corresponding simulation-based (from 

100 runs) MOE’s (𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠), 𝑡𝑚 (𝑀𝑇𝑇) (seconds), 𝑇𝑡 (𝑇𝑇𝑇) (hours)) for 

protected actuated controls of “E” demand scenario 

Coefficients Responses 

𝛽𝑉 

(𝐵𝑄𝐿) 

𝛽𝑏or 𝛽𝑝 

(𝐵𝑇𝑃) 

𝛽𝐵 

(𝐵𝐷𝐶) 

𝑁𝑏𝑢𝑠 
(𝑇𝑟𝑖𝑝𝑠) 

𝑡𝑚 (𝑀𝑇𝑇) 

(seconds) 

𝑇𝑡 (𝑇𝑇𝑇) 

(hours) 

830 5810 1 99.1 1015.99 3493.65 

2490 17430 3 99.9 1013.1 3489.1 

4150 29050 5 99.8 1029.26 3572.93 

8300 58100 10 100.3 1101.5 3896.7 

16600 116200 20 100.2 1116.1 3947.7 

 

Figure 5.27 shows the rolling average of 10 runs of total bus trips (Trips) from 

100 simulation runs for several variable settings using the ratio of optimal variable 

settings of 𝛽𝑉 (𝐵𝑄𝐿), 𝛽𝑏or 𝛽𝑝 (𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶) for protected actuated controls 

under “E” demand scenario. There is a similarity among the several variable settings, 

with the total bus trips (Trips) ranges from 95.4 to 104.3, which are close to the 

response (total bus trips=100.1) of selected optimal variable settings of 𝛽𝑉 (𝐵𝑄𝐿), 

𝛽𝑏or 𝛽𝑝 (𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶). The variations of the three responses under the various 

tested scenarios (Table 5.25) is moderate, and it clearly indicates a moderate level of 
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robustness of the protected actuated controllers using the fixed relative ratio of 

830:5810:1 for the 𝛽𝑉 (𝐵𝑄𝐿): 𝛽𝑏or 𝛽𝑝 (𝐵𝑇𝑃): 𝛽𝐵 (𝐵𝐷𝐶). 

 

 

Figure 5.27: Ten runs rolling average of total bus trips (Trips) for several variable 

settings with the fixed ratio of optimal variable settings of 𝛽𝑉 (𝐵𝑄𝐿), 𝛽𝑏or 𝛽𝑝 

(𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶) for the protected actuated controller of “E” demand scenario 

 

5.4.3 Dual Actuated Control 

The selected optimal variable settings (𝛽𝑉 (𝐵𝑄𝐿) =  2652, 𝛽𝑏or 𝛽𝑝 (𝐵𝑇𝑃) =

 11727, and 𝛽𝐵 (𝐵𝐷𝐶)= 34) for dual actuated controls under “E” demand scenario is 

presented in Table 5.26.  These absolute values if rounded would result in the relative 

ratios of 80:350:1 (𝛽𝑉 (𝐵𝑄𝐿) ∶ 𝛽𝑏or 𝛽𝑝 (𝐵𝑇𝑃): 𝛽𝐵 (𝐵𝐷𝐶)).  

Table 5.26: Selected optimal variable settings of 𝛽𝑉 (𝐵𝑄𝐿), 𝛽𝑏or 𝛽𝑝 (𝐵𝑇𝑃), and 𝛽𝐵 

(𝐵𝐷𝐶) and corresponding simulation-based MOE’s (𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠), 𝑡𝑚 (𝑀𝑇𝑇) 

(seconds), 𝑇𝑡 (𝑇𝑇𝑇) (hours)) for dual actuated controls of “E” demand scenario 

Coefficients Responses 

𝛽𝑉 

(𝐵𝑄𝐿) 

𝛽𝑏or 𝛽𝑝 

(𝐵𝑇𝑃) 

𝛽𝐵 

(𝐵𝐷𝐶) 

𝑁𝑏𝑢𝑠 
(𝑇𝑟𝑖𝑝𝑠) 

𝑡𝑚 (𝑀𝑇𝑇) 

(seconds) 

𝑇𝑡 (𝑇𝑇𝑇) 

(hours) 

2652 11727 34 155.2 688.71 6901.98 
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Using this fixed relative ratio, several input variable settings were developed 

and simulated. Each setting as indicated in Table 5.27 was simulated 100 times, and 

the average MOE’s of these runs were reported. The results of the various settings 

(with the same relative ratio) are shown in Table 5.27. The results (in Table 5.27) 

indicate that the responses using this fixed ratio are more or less similar, and closely 

identical to the responses obtained with the selected optimal input variable settings 

(Table 5.26). 

Table 5.27: Several variable settings with the ratio of optimal variable settings of 𝛽𝑉 

(𝐵𝑄𝐿), 𝛽𝑏or 𝛽𝑝 (𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶) and corresponding simulation-based (from 

100 runs) MOE’s (𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠), 𝑡𝑚 (𝑀𝑇𝑇) (seconds), 𝑇𝑡 (𝑇𝑇𝑇) (hours)) for dual 

actuated controls of “E” demand scenario 

Coefficients Responses 

𝛽𝑉 

(𝐵𝑄𝐿) 

𝛽𝑏or 𝛽𝑝 

(𝐵𝑇𝑃) 

𝛽𝐵 

(𝐵𝐷𝐶) 

𝑁𝑏𝑢𝑠 
(𝑇𝑟𝑖𝑝𝑠) 

𝑡𝑚 (𝑀𝑇𝑇) 

(seconds) 

𝑇𝑡 (𝑇𝑇𝑇) 

(hours) 

80 350 1 155.4 693.70 6947.05 

240 1050 3 155.3 692.98 6938.53 

400 1750 5 155.5 692.33 6935.31 

800 3500 10 155.1 693.34 6938.64 

1600 7000 20 155.6 692.97 6936.31 

 

Figure 5.28 shows the rolling average of 10 runs of total bus trips (Trips) from 

100 simulation runs for several variable settings using the ratio of optimal variable 

settings of 𝛽𝑉 (𝐵𝑄𝐿), 𝛽𝑏or 𝛽𝑝 (𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶) for dual actuated controls under 

“E” demand scenario. There is a similarity among the several variable settings, with 

the total bus trips (Trips) ranges from 154.3 to 156.4, which are close to the response 

(total bus trips=155.2) of selected optimal variable settings of 𝛽𝑉 (𝐵𝑄𝐿), 𝛽𝑏or 𝛽𝑝 

(𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶). The variations of the three responses under the various tested 

scenarios (Table 5.27) is almost negligible, and it clearly indicates the robustness of 
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the dual actuated controllers using the fixed relative ratio of 80:350:1 for the 𝛽𝑉 (𝐵𝑄𝐿): 

𝛽𝑏or 𝛽𝑝 (𝐵𝑇𝑃): 𝛽𝐵 (𝐵𝐷𝐶). 

 

Figure 5.28: Ten runs rolling average of total bus trips (Trips) for several variable 

settings with the fixed ratio of optimal variable settings of 𝛽𝑉 (𝐵𝑄𝐿), 𝛽𝑏or 𝛽𝑝 

(𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶) for the dual actuated controller of “E” demand scenario 
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Chapter 6: RSM Results and Analyses under the Very High Traffic (F) 

Demand Scenario 

 

This chapter summarizes the results and the analyses of the optimization of the 

calibrated RSM on the coefficients for the integrated control system described in 

Chapter 3 for the various control types (Split Actuated, Protected Actuated, and Dual 

Actuated) under the demand scenario designated as (F) and the associated network 

topology. The (F) letter herein refers to the traffic demand scenarios of “very high” 

traffic volume as explained earlier in more details in Chapter 4.  

This chapter is divided into three subsections to demonstrate the results and 

analyses for the Split Actuated control, followed by the ones for the Protected Actuated 

control, and finally for the Dual Actuated control.  

6.1 Split Actuated Control 

The output of the Split Actuated control system is presented in Table 6.1 for 

two (2) RSM models, as discussed in Chapter 3 and Appendix A in details. Table 6.1 

summarizes the input variable ranges, the optimal settings, and the resulting composite 

desirability. The optimization results of the two models are plotted in Figures 6.1 and 

6.2 for the three input parameters of coefficient for virtual queue of vehicles, 𝛽𝑉 

(𝐵𝑄𝐿), coefficient for transit priority, 𝛽𝑏or 𝛽𝑝 (𝐵𝑇𝑃), and downstream blockage 

penalty coefficient, 𝛽𝐵 (𝐵𝐷𝐶), as well as the three responses of the total bus trips, 𝑁𝑏𝑢𝑠 

(𝑇𝑟𝑖𝑝𝑠), total network travel time, 𝑇𝑡 (𝑇𝑇𝑇), and the trip average travel time, 𝑡𝑚 

(𝑀𝑇𝑇). 
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Table 6.1: Optimal values of split actuated control under “F” demand scenario 

Model 

NO. 

Factor ranges Optimal factor 

settings (𝛃𝑽, 

𝛃𝒃or 𝛃𝒑, 𝛃𝑩) 

Composite 

Desirability, 

𝑫 

𝛃𝑽 (𝑩𝑸𝑳) 𝛃𝒃or 𝛃𝒑 

(𝑩𝑻𝑷) 

𝛃𝑩 (𝑩𝑫𝑪) 

1 100 – 3000 1000 – 8000 1 – 5 100, 8000, 1.32 0.792 

2 1 – 3000 1000 – 8000 1 – 5 1, 4818.18, 1.20 0.887 

 

Figures 6.1 and 6.2 depict the optimization plot for the models 1 and 2 

considering the three input parameters and the three responses. The composite 

desirability values of models 1 and 2 are 0.792 and 0.887, respectively.  

 

 

Figure 6.1: Model 1 individual and composite desirability 𝐷 for the responses of 

𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠), 𝑇𝑡 (𝑇𝑇𝑇) and 𝑡𝑚 (𝑀𝑇𝑇) for various parameters of 𝛽𝑉 (𝐵𝑄𝐿), 𝛽𝑏or 𝛽𝑝 

(𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶), for split actuated control under “F” demand scenario 
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Figure 6.2: Model 2 individual and composite desirability 𝐷 for the responses of 

𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠), 𝑇𝑡 (𝑇𝑇𝑇) and 𝑡𝑚 (𝑀𝑇𝑇) for various parameters of 𝛽𝑉 (𝐵𝑄𝐿), 𝛽𝑏or 𝛽𝑝 

(𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶), for split actuated control under “F” demand scenario 

 

A contour plot was developed for the three responses of 𝑁𝑏𝑢𝑠 (Trips), 𝑇𝑡 (TTT) 

and 𝑡𝑚 (MTT) for various parameters of 𝛽𝑉 (BQL), 𝛽𝑏or 𝛽𝑝 (BTP), and 𝛽𝐵 (BDC) as 

shown in Figure 6.3. The data for the contour plot were taken from a total of 15 coded 

input variable settings for each model as indicated in Chapter 3 according to the Box-

Behnkan design (Table 3.1) (a total of 30 input settings for models 1 and 2). These 

variant input settings correspond to a total of 300 simulation runs, as each parameter 

setting is executed for 10 multiple runs.  
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Figure 6.3: Contour plot of the three responses of 𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠), 𝑇𝑡 (𝑇𝑇𝑇) and 𝑡𝑚 (𝑀𝑇𝑇) for various parameters of 𝛽𝑉 (𝐵𝑄𝐿), 𝛽𝑏or 𝛽𝑝 (𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶) for split actuated control and demand case “F” 
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6.1.1 Analysis 

The multi-objective optimization methodology (maximizing of 𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠), 

while simultaneously minimizing both 𝑇𝑡 (𝑇𝑇𝑇) and 𝑡𝑚 (𝑀𝑇𝑇)) is used to solve these 

two models by the composite desirability function, as described in Chapter 3. The 

second model satisfied the proper desirability within the input variable levels, as the 

optimum values of the coefficients are within the border (upper bound or lower bound) 

as shown in Figure 6.2, except for the coefficient for virtual queue of vehicles and it is 

lowest positive value. Further analysis is done for the second model using only either 

double or single objective function(s) and it is discussed hereafter.  

First, the optimization is done considering two objective functions 

(maximizing of 𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠), while simultaneously minimizing 𝑡𝑚 (𝑀𝑇𝑇)), as shown 

in Figure 6.4 and the optimal variable setting is presented in Table 6.2. The results are  

similar to the earlier ones shown in Figure 6.2. This setting is 1, 4818.18, and 1.20 for  

𝛽𝑉 (𝐵𝑄𝐿), 𝛽𝑏or 𝛽𝑝 (𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶), respectively. The optimal responses are 

167.84 for 𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠) with a standard error (SE) of 1.35 (95% CI = 164.53, 171.15) 

and 1389.8 seconds for 𝑡𝑚 (𝑀𝑇𝑇) with a standard error (SE) of 14.4 (95% CI = 1356.6, 

1423.0). 
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Figure 6.4: Optimization of 𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠), and 𝑡𝑚 (𝑀𝑇𝑇) for various parameters of 

𝛽𝑉 (𝐵𝑄𝐿), 𝛽𝑏or 𝛽𝑝 (𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶), for split actuated control under “F” 

demand scenario 

 

Table 6.2: Optimal variable setting of coefficients for the response for split actuated 

control of “F” demand scenario 

Coefficients Responses 

𝛽𝑉 

(𝐵𝑄𝐿) 

𝛽𝑏or 𝛽𝑝 

(𝐵𝑇𝑃) 

𝛽𝐵 

(𝐵𝐷𝐶) 

𝑁𝑏𝑢𝑠 
(𝑇𝑟𝑖𝑝𝑠) 

SE  

(95% CI) 
𝑡𝑚 (𝑀𝑇𝑇) 

(seconds) 

SE  

(95% CI) 

1 4818.18 1.20 167.84 1.35 (164.53, 

171.15) 

1389.8 14.4 (1356.6, 

1423.0) 

 

The optimization is done afterward considering only one objective function 

(maximizing of 𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠)) as shown in Figure 6.5. The resulting optimal variable 

setting is presented in Table 6.3. This setting is 1, 4818.18, and 3.67 for the 𝛽𝑉 (𝐵𝑄𝐿), 

𝛽𝑏or 𝛽𝑝 (𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶), respectively, with the response 𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠) of 177.05 

and 1.08 (95% CI = 174.41, 179.70) standard error (SE).  
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Figure 6.5: Optimization of 𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠) for various parameters of 𝛽𝑉 (𝐵𝑄𝐿), 

𝛽𝑏or 𝛽𝑝 (𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶), for split actuated control under “F” demand scenario 

 

Table 6.3: Optimal variable setting of coefficients for the response of 𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠) 
for split actuated control with demand case “F” 

Coefficients Responses 

𝛽𝑉 (𝐵𝑄𝐿) 𝛽𝑏or 𝛽𝑝 

(𝐵𝑇𝑃) 

𝛽𝐵 (𝐵𝐷𝐶) 𝑁𝑏𝑢𝑠 
(𝑇𝑟𝑖𝑝𝑠) 

SE (95% CI) 

1 4818.18 3.67 177.05 1.08 (174.41, 179.70) 

 

RSM Statistics (ANOVA table) 

Regardless of the number and nature of used objective function(s) to identify 

the optimal setting (single, dual or triple), the model itself is the same. Only the optimal 

settings vary according to the preset objective function(s). In 2nd model (with design 

explained in Table 6.1), the response surface model of 𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠) is statistically 

significant (R-square = 94.56%), as p-value for each parameter is less than 0.1, as 

shown in Table 6.4, except the square of coefficient for virtual queue of vehicles (β𝑉 ∗

β𝑉, p-value = 0.117). 
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Table 6.4: Summary of ANOVA for 𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠) versus various 𝛽𝑉 (𝐵𝑄𝐿), 𝛽𝑏or 𝛽𝑝 

(𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶) for split actuated control of “F” demand scenario 

Source 

Sum of 

Squares df 

Mean 

Square F 

Linear  527.142 3 175.714 61.52** 

 β𝑉 147.061 1 147.061 45.49** 

 β𝑝 77.501 1 77.501 71.07** 

 β𝐵 302.580 1 302.580 0.44** 

Square  188.468 3 62.823     22.00** 

 β𝑉 ∗ β𝑉 9.551 1 9.551 3.34* 

 β𝑝 * β𝑝 46.314 1 46.314 16.22** 

 β𝐵 ∗ β𝐵 133.663 1 133.663 46.8** 

2-Way Interaction  40.263 2 20.131 7.05** 

 β𝑉* β𝑝 23.04 1 23.04 8.07** 

 β𝑉* β𝐵 17.223 1 17.223 6.03** 

Lack-of-Fit  11.850 4 2.963 1.12* 

Total  773.009 14   

*p > 0.1 

**p < 0.1 

 

 

The second order regression equation of 𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠) versus 𝛽𝑉 (𝐵𝑄𝐿), 

𝛽𝑏or 𝛽𝑝 (𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶) is: 

 𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠)  (Split Actuated Control under “F” Demand Scenario) =

149.92 − 0.00914 β𝑉 + 0.002805 β𝑝 + 11.06 β𝐵 + 0.000001𝛽𝑉 ∗ 𝛽𝑉 −

0.0000001𝛽𝑝 ∗ 𝛽𝑝 −  1.504𝛽𝐵 ∗ 𝛽𝐵 +  0.0000001𝛽𝑉𝛽𝑝 +  0.000692𝛽𝑉𝛽𝐵  

 

Additionally, the response model of 𝑡𝑚 (𝑀𝑇𝑇) is significant (R-square = 

93.91%), as p-value for each parameter is less than 0.1 as shown in Table 6.5, except 

the β𝑝(BTP), as p-value greater than 0.1. 
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Table 6.5: Summary of ANOVA for 𝑡𝑚 (𝑀𝑇𝑇) versus various 𝛽𝑉 (𝐵𝑄𝐿), 𝛽𝑏or 𝛽𝑝 

(𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶) for split actuated control of “F” demand scenario 

Source 

Sum of 

Squares df 

Mean 

Square F 

Linear  26876 3 8958.7 18.86** 

 β𝑉 5609.4 1 5609.4 11.81** 

 β𝑝 289 1 289 0.61* 

 β𝐵 20977.5 1 20977.5 44.15** 

Square  31749.3 3 10583.1 22.28** 

 β𝑉 ∗ β𝑉 8654.7 1 8654.7 18.22** 

 β𝑝 * β𝑝 2196.1 1 2196.1 4.62** 

 β𝐵 ∗ β𝐵 24286.9 1 24286.9 51.12** 

Lack-of-Fit  3157.8 6 526.3 1.64* 

Total  62426.1 14   

*p > 0.1 

**p < 0.1 

 

 

The second order regression equation of 𝑡𝑚 (𝑀𝑇𝑇) versus 𝛽𝑉 (𝐵𝑄𝐿), 𝛽𝑏or 𝛽𝑝 

(𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶) is:  

𝑡𝑚 (𝑀𝑇𝑇) (Split Actuated Control under “F” Demand Scenario) (seconds) 

=  1193.6 +  0.0823 β𝑉  +  0.01964 β𝑝  +  147.3 β𝐵 

− 0.000022 𝛽𝑉 ∗ 𝛽𝑉 −  0.000002 𝛽𝑝 ∗ 𝛽𝑝 − 20.28 𝛽𝐵 ∗ 𝛽𝐵 

 

Finally, the response model of 𝑇𝑡 (𝑇𝑇𝑇) is significant (R-square = 94.57%), as 

p-value for each parameter is less than 0.1, as shown in Table 6.6, except the 

interaction between the coefficient for virtual queue of vehicles and coefficient for 

transit priority (β𝑉* β𝑝, p-value = 0.16). 
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Table 6.6: Summary of ANOVA for 𝑇𝑡 (𝑇𝑇𝑇) versus various 𝛽𝑉 (𝐵𝑄𝐿), 𝛽𝑏or 𝛽𝑝 

(𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶) for split actuated control of “F” demand scenario 

Source 

Sum of 

Squares df 

Mean 

Square F 

Linear  8161969 3 2720656 33.04** 

 β𝑉 3752929 1 3752929 45.58** 

 β𝑝 466049 1 466049 5.66** 

 β𝐵 3942991 1 3942991 47.89** 

Square  3120424 2 1560212 18.95** 

 β𝑉 ∗ β𝑉 1098124 1 1098124 13.34** 

 β𝐵 ∗ β𝐵 2229928 1 2229928 27.08** 

2-Way Interaction β𝑉* β𝑝 192960 1 192960 2.34* 

Lack-of-Fit  588067 6 98011 2.78* 

Total  12134027 14   

*p > 0.1 

**p < 0.1 

 

 

The second order regression equation of 𝑇𝑡 (𝑇𝑇𝑇) versus 𝛽𝑉 (𝐵𝑄𝐿), 𝛽𝑏or 𝛽𝑝 

(𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶) is:  

𝑇𝑡 (𝑇𝑇𝑇) (Split Actuated Control under “F” Demand Scenario) (hours) =

6696 +  1.371 𝛽𝑉 −  0.0062  𝛽𝑝  +  1513 𝛽𝐵 

− 0.000242  𝛽𝑉 ∗  𝛽𝑉  − 193.7 𝛽𝐵 ∗ 𝛽𝐵 −  0.000042 𝛽𝑉 ∗  𝛽𝑝 

6.1.2 Optimum selection (model validation) 

For different objective functions, different optimal settings are obtained. In 

specific, herein we refer to the optimum settings of the coefficients of  𝛽𝑉 (𝐵𝑄𝐿), 

𝛽𝑏or 𝛽𝑝 (𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶) related to the solutions: 

III. where 𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠) is maximized and 𝑡𝑚 (𝑀𝑇𝑇) is minimized (as 

indicated in Table 6.2)  

IV. where only 𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠) is maximized (as indicated in Table 6.3) 
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To select only one set of values, to generalize its use with the split actuated 

controller under the “F” demand scenario), a verification/validation process is 

deployed. The validation process entails running the simulation with the identified 

values (in Tables 6.2 and 6.3). Each dataset was used in ten (10) multiple runs and the 

resulting responses were then averaged and reported as shown in Table 6.7. The 

resulting average 𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠), 𝑡𝑚 (𝑀𝑇𝑇) and 𝑇𝑡 (𝑇𝑇𝑇) of the 10 simulation runs (as 

shown in Table 6.7) lie within the 95% confidence interval (corresponding values) 

extracted from the response surface model (as shown in Table 6.2 for variable setting 

I, and Table 6.3 for variable setting II). 

Table 6.7: Optimal variable settings of 𝛽𝑉 (𝐵𝑄𝐿), 𝛽𝑏or 𝛽𝑝 (𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶) and 

corresponding simulation-based MOE’s (𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠), 𝑡𝑚 (𝑀𝑇𝑇) (seconds), 𝑇𝑡 
(𝑇𝑇𝑇) (hours)) for split actuated control of “F” demand scenario 

Variable Setting  

Coefficients Responses 

𝛽𝑉 

(𝐵𝑄𝐿) 

𝛽𝑏or 𝛽𝑝 

(𝐵𝑇𝑃) 

𝛽𝐵 

(𝐵𝐷𝐶) 

𝑁𝑏𝑢𝑠 
(𝑇𝑟𝑖𝑝𝑠) 

𝑡𝑚 (𝑀𝑇𝑇) 

(seconds) 
𝑇𝑡 

(𝑇𝑇𝑇) 

(hours) 

I. (𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠) is 

maximized and 

𝑡𝑚 (𝑀𝑇𝑇) is 

minimized) 

1 4818.18 1.2 163.2 1393.9 8408.5 

II. (only 𝑁𝑏𝑢𝑠 
(𝑇𝑟𝑖𝑝𝑠) is 

maximized) 

1 4818.18 3.2 175.1 1462.2 9335.6 

 

The 2nd set of variables (II) (𝛽𝑉 (𝐵𝑄𝐿) =  1, 𝛽𝑏or 𝛽𝑝 (𝐵𝑇𝑃) =  4818.18, and 

𝛽𝐵 (𝐵𝐷𝐶)= 3.2) is selected as the default general setting of the split actuated 

controller under the demand case “F”. The set has nearly 12 more total bus trips. It is 

usual that with more trips, the average travel time and total travel time in the network 

will increase.  
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6.2 Protected Actuated Control 

The outputs for the Protected Actuated control system are presented in Table 

6.8 for two (2) RSM models, as discussed in Chapter 3 and Appendix A in details. 

Table 6.8 summarizes the input variable ranges, the optimal variable setting, and the 

resulting composite desirability. The optimization results of the two models are plotted 

in Figures 6.6, and 6.7 for three input parameters of coefficient for virtual queue of 

vehicles, 𝛽𝑉 (𝐵𝑄𝐿), coefficient for transit priority, 𝛽𝑏or 𝛽𝑝 (𝐵𝑇𝑃), and downstream 

blockage penalty coefficient, 𝛽𝐵 (𝐵𝐷𝐶), as well as the three responses of the total bus 

trips, 𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠), total network travel time, 𝑇𝑡 (𝑇𝑇𝑇), and the trip average travel 

time, 𝑡𝑚 (𝑀𝑇𝑇). 

Table 6.8: Optimal values of protected actuated control under “F” demand scenario 

Model 

NO. 

Factor ranges Optimal factor 

settings (𝛃𝑽, 

𝛃𝒃or 𝛃𝒑, 𝛃𝑩) 

Composite 

Desirability, 

𝑫 
𝛃𝑽 (𝑩𝑸𝑳) 𝛃𝒃or 𝛃𝒑 

(𝑩𝑻𝑷) 

𝛃𝑩 

(𝑩𝑫𝑪) 

1 100 – 4000 3000 – 18000 3 – 6 100, 9212.12, 3 0.891 

2 1 – 5000 3000 – 18000 1 – 5 1, 10575, 1.52 0.836 

 

Figures 6.6, and 6.7 depict the optimization plots for models 1, and 2 

considering the three input parameters and the three responses. The composite 

desirability values of these models are 0. 891, and 0.836, respectively.  
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Figure 6.6: Model 1 individual and composite desirability 𝐷 for the responses of 

𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠), 𝑇𝑡 (𝑇𝑇𝑇) and 𝑡𝑚 (𝑀𝑇𝑇) for various parameters of 𝛽𝑉 (𝐵𝑄𝐿), 𝛽𝑏or 𝛽𝑝 

(𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶), for protected actuated control under “F” demand scenario 

 

Figure 6.7: Model 2 individual and composite desirability 𝐷 for the responses of 

𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠), 𝑇𝑡 (𝑇𝑇𝑇) and 𝑡𝑚 (𝑀𝑇𝑇) for various parameters of 𝛽𝑉 (𝐵𝑄𝐿), 𝛽𝑏or 𝛽𝑝 

(𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶), for protected actuated control under “F” demand scenario 
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A contour plot was developed for the three responses of 𝑁𝑏𝑢𝑠 (Trips), 𝑇𝑡 (TTT) 

and 𝑡𝑚 (MTT) for various parameters of 𝛽𝑉 (BQL), 𝛽𝑏or 𝛽𝑝 (BTP), and 𝛽𝐵 (BDC) as 

shown in Figure 6.15. The data for the contour plot were taken from a total of 15 coded 

input variable settings for each model as indicated in Chapter 3 according to the Box-

Behnkan design (Table 3.1) (a total of 30 input settings for models 1 and 2). These 

variant input settings correspond to a total of 300 simulation runs, as each parameter 

setting is executed for 10 multiple runs.  
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Figure 6.8: Contour plot of the three responses of 𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠), 𝑇𝑡 (𝑇𝑇𝑇) and 𝑡𝑚 (𝑀𝑇𝑇) for various parameters of 𝛽𝑉 (𝐵𝑄𝐿), 𝛽𝑏or 𝛽𝑝 (𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶) for protected actuated control and demand case “F”
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6.2.1 Analysis 

The multi-objective optimization methodology (maximizing of 𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠), 

while simultaneously minimizing both 𝑇𝑡 (𝑇𝑇𝑇) and 𝑡𝑚 (𝑀𝑇𝑇)) is used to solve these 

two models by the composite desirability function, as described in Chapter 3. None of 

the above models resulted in acceptable desirability levels (within the model input 

range) using the set three objective functions (maximizing of 𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠), while 

simultaneously minimizing both 𝑇𝑡 (𝑇𝑇𝑇) and 𝑡𝑚 (𝑀𝑇𝑇)). The optimum values of the 

coefficients are mostly border values (upper bound or lower bound of the specified 

regions).   

Further analysis is done for the all the models using only either double or single 

objective function(s). The conducted analyses still indicated the optimal solutions at 

the borders of the parameter regions. Only model 2 has shown good performance, and 

it is discussed hereafter.  

First, the optimization is done considering two objective functions 

(maximizing of 𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠), while simultaneously minimizing 𝑡𝑚 (𝑀𝑇𝑇)), as shown 

in Figure 6.9. The resulting optimal variable setting is presented in Table 6.9. This 

setting is 303.97, 10727.27, and 1.69 for 𝛽𝑉 (𝐵𝑄𝐿), 𝛽𝑏or 𝛽𝑝 (𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶), 

respectively. The optimal responses are 124.18 for 𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠) with a standard error 

(SE) of 0.32 (95% CI = 123.5, 124.9) and 1395.8 seconds for 𝑡𝑚 (𝑀𝑇𝑇) with a standard 

error (SE) of 6.71 (95% CI = 1380.3, 1411.2). 
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Figure 6.9: Optimization of 𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠), and 𝑡𝑚 (𝑀𝑇𝑇) for various parameters of 

𝛽𝑉 (𝐵𝑄𝐿), 𝛽𝑏or 𝛽𝑝 (𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶), for protected actuated control under “F” 

demand scenario 

 

Table 6.9: Optimal variable setting of coefficients for the response of 𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠) 
and 𝑡𝑚 (𝑀𝑇𝑇) for protected actuated control with demand case “F”  

Coefficients Responses 

𝛽𝑉 

(𝐵𝑄𝐿) 

𝛽𝑏or 𝛽𝑝 

(𝐵𝑇𝑃) 

𝛽𝐵 

(𝐵𝐷𝐶) 

𝑁𝑏𝑢𝑠 
(𝑇𝑟𝑖𝑝𝑠) 

SE  

(95% CI) 
𝑡𝑚 (𝑀𝑇𝑇) 

(seconds) 

SE  

(95% CI) 

303.97 10727.27 1.69 124.18 0.32 

(123.5, 

124.9) 

1395.8 6.71 

(1380.3, 

1411.2)   

 

The optimization is done afterward considering only one objective function 

(maximizing of 𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠)) as shown in Figure 6.10. The resulting optimal variable 

setting is presented in Table 6.10. This setting is 1, 9818.18, and 1 for the 𝛽𝑉 (𝐵𝑄𝐿), 

𝛽𝑏or 𝛽𝑝 (𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶), respectively, with the response 𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠) of 124.66 

and 0.38 (95% CI = 123.8, 125.5) standard error (SE).  
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Figure 6.10: Optimization of 𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠) for various parameters of 𝛽𝑉 (𝐵𝑄𝐿), 

𝛽𝑏or 𝛽𝑝 (𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶), for split actuated control under “F” demand scenario 

 

Table 6.10: Optimal variable setting of coefficients for the response of 𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠) 
for split actuated control with demand case “F” 

Coefficients Responses 

𝛽𝑉 (𝐵𝑄𝐿) 𝛽𝑏or 𝛽𝑝 

(𝐵𝑇𝑃) 

𝛽𝐵 (𝐵𝐷𝐶) 𝑁𝑏𝑢𝑠 
(𝑇𝑟𝑖𝑝𝑠) 

SE (95% CI) 

1 9818.18 1 124.66 0.38 (123.8, 125.5) 

 

RSM Statistics (ANOVA table)  

Regardless of the number and nature of used objective function(s) to identify 

the optimal setting (single, dual or triple), the model itself is the same. Only the optimal 

settings vary according to the preset objective function(s). In 2nd model (with design 

explained in Table 6.8), the response surface model of total bus trips is significant (R-

square = 95.59%), as shown in Table 6.11. Only 𝛽𝐵 (𝐵𝐷𝐶) is not significant with a p-

value greater than 0.1. 
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Table 6.11: Summary of ANOVA for 𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠) versus various 𝛽𝑉 (𝐵𝑄𝐿), 

𝛽𝑏or 𝛽𝑝 (𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶) for protected actuated control of “F” demand scenario 

Source 

Sum of 

Squares df 

Mean 

Square F 

Linear  33.0422 3 11.0141 33.59** 

 β𝑉 27.4259 1 27.4259 83.64** 

 β𝑝 5.2963 1 5.2963 16.15** 

 β𝐵 0.32 1 0.32 0.98* 

Square  12.5219 2 6.261 19.1** 

 β𝑉*β𝑉 1.8907 1 1.8907 5.77** 

 β𝑝*β𝑝 9.9478 1 9.9478 30.34** 

2-Way Interaction β𝑉*β𝑝 7.5625 1 7.5625 23.06** 

Lack-of-Fit  2.1364 6 0.3561 1.46* 

Total  59.5 14   
*p > 0.1 

**p < 0.1 

 

 

The second order regression equation of 𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠) versus 𝛽𝑉 (𝐵𝑄𝐿), 

𝛽𝑏or 𝛽𝑝 (𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶) is: 

𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠)  (Protected Actuated Control under “F” Demand Scenario) 

=  121.94 −  0.002076 𝛽𝑉  +  0.000573  𝛽𝑝  −  0.1𝛽𝐵 

+ 0.0000001 𝛽𝑉 ∗ 𝛽𝑉 −  0.0000001  𝛽𝑝 ∗  𝛽𝑝  +  0.0000001 𝛽𝑉 ∗  𝛽𝑝 

 

Additionally, the response model of 𝑡𝑚 (𝑀𝑇𝑇) is significant (R-square = 

77.02%), as shown in Table 6.12. Only 𝛽𝑝 (𝐵𝑇𝑃) is not significant with a p-value 

greater than 0.1. 
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Table 6.12: Summary of ANOVA for 𝑡𝑚 (𝑀𝑇𝑇) versus various  𝛽𝑉 (𝐵𝑄𝐿), 𝛽𝑏or 𝛽𝑝 

(𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶) for protected actuated control of “F” demand scenario 

Source 

Sum of 

Squares df 

Mean 

Square F 

Linear  3500.9 3 1166.97 8.24** 

 β𝑉 1691.63 1 1691.63 11.94** 

 β𝑝 19.77 1 19.77 0.14* 

 β𝐵 2113.49 1 2113.49 14.92** 

Square  1558.09 2 779.05 5.5** 

 β𝑉*β𝑉 503.42 1 503.42 3.55** 

 β𝐵*β𝐵 1155.69 1 1155.69 8.16** 

2-Way Interaction β𝑉*β𝐵 586.62 1 586.62 4.14** 

Lack-of-Fit  719.97 6 120 0.58* 

Total  4931.66 14   
*p > 0.1 

**p < 0.1 

 

 

The second order regression equation of 𝑡𝑚 (𝑀𝑇𝑇) versus 𝛽𝑉 (𝐵𝑄𝐿), 𝛽𝑏or 𝛽𝑝 

(𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶) is: 

𝑡𝑚 (𝑀𝑇𝑇) (Protected Actuated Control under “F” Demand Scenario) 

 (seconds) =  1413.5 −  0.00576 𝛽𝑉  −  0.00021  𝛽𝑝  −  14.96 𝛽𝐵 

+ 0.000002 𝛽𝑉 ∗ 𝛽𝑉 + 4.41𝛽𝐵 ∗ 𝛽𝐵 −  0.00242 𝛽𝑉 ∗  𝛽𝐵 

 

 

Finally, the response model of 𝑇𝑡 (𝑇𝑇𝑇)  is significant (R-square = 66.91%), as 

shown in Table 6.13. Only 𝛽𝑝 (𝐵𝑇𝑃) is not significant with a p-value greater than 0.1. 
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Table 6.13: Summary of ANOVA for 𝑇𝑡 (𝑇𝑇𝑇) versus various 𝛽𝑉 (𝐵𝑄𝐿), 𝛽𝑏or 𝛽𝑝 

(𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶) for protected actuated control of “F” demand scenario 

Source 

Sum of 

Squares df 

Mean 

Square F 

Linear  26734.3 3 8911.4 4.17** 

 β𝑉 7232.9 1 7232.9 3.39** 

 β𝑝 19 1 19 0.01* 

 β𝐵 19482.5 1 19482.5 9.13** 

Square β𝐵 ∗ β𝐵 5462.3 1 5462.3 2.56** 

Lack-of-Fit  4933.5 8 616.7 0.08* 

Total  64506.9 14   
*p > 0.1 

**p < 0.1 

 

 

The second order regression equation of 𝑇𝑡 (𝑇𝑇𝑇) versus 𝛽𝑉 (𝐵𝑄𝐿), 𝛽𝑏or 𝛽𝑝 

(𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶) is:  

𝑇𝑡 (𝑇𝑇𝑇) (Protected Actuated Control under “F” Demand Scenario) (hours) =

 3718.8 −  0.01203 𝛽𝑉 −  0.00021  𝛽𝑝 −  26.5 𝛽𝐵 + 9.56  𝛽𝐵 ∗  𝛽𝐵 

 

6.2.2 Optimum selection (model validation) 

For different objective functions, different optimal settings are obtained. In 

specific, herein we refer to the optimum settings of the coefficients of  𝛽𝑉 (𝐵𝑄𝐿), 

𝛽𝑏or 𝛽𝑝 (𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶) related to the solutions: 

I. where 𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠) is maximized and 𝑡𝑚 (𝑀𝑇𝑇) is minimized (as 

indicated in Table 6.9)  

II. where only 𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠) is maximized (as indicated in Table 6.10) 

To select the set of values, to generalize its use with the protected actuated 

controller under the “F” demand scenario, a verification/validation process is 

deployed. The validation process entails running the simulation with the identified 
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values (in Tables 6.9 and 6.10). The dataset was used in ten (10) multiple runs and the 

resulting responses were then averaged and reported as shown in Table 6.14. The 

resulting average 𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠), 𝑡𝑚 (𝑀𝑇𝑇) and 𝑇𝑡 (𝑇𝑇𝑇) of the 10 simulation runs (as 

shown in Table 6.14) lie within the 95% confidence interval (corresponding values) 

extracted from the response surface model (as shown in Table 6.9 for variable setting 

I, and Table 6.10 for variable setting II). 

Table 6.14: Optimal variable settings of 𝛽𝑉 (𝐵𝑄𝐿), 𝛽𝑏or 𝛽𝑝 (𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶) 

and corresponding simulation-based MOE’s (𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠), 𝑡𝑚 (𝑀𝑇𝑇) (seconds), 𝑇𝑡 
(𝑇𝑇𝑇) (hours)) for protected actuated control of “F” demand scenario 

Variable Setting  

Coefficients Responses 

𝛽𝑉 

(𝐵𝑄𝐿) 

𝛽𝑏or 𝛽𝑝 

(𝐵𝑇𝑃) 

𝛽𝐵 

(𝐵𝐷𝐶) 

𝑁𝑏𝑢𝑠 
(𝑇𝑟𝑖𝑝𝑠) 

𝑡𝑚 (𝑀𝑇𝑇) 

(seconds) 
𝑇𝑡 

(𝑇𝑇𝑇) 

(hours) 

I. (𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠) 
is maximized and 

𝑡𝑚 (𝑀𝑇𝑇) is 

minimized) 

303.97 10727.27 1.69 124.8 1391.8 3750.8 

II. (only 𝑁𝑏𝑢𝑠 
(𝑇𝑟𝑖𝑝𝑠) is 

maximized) 

1 9818.18 1 124.7 1401.5 3720.4 

 

The 1st set of variables (I) (𝛽𝑉 (𝐵𝑄𝐿) =  303.97, 𝛽𝑏or 𝛽𝑝 (𝐵𝑇𝑃) =

 10727.27, and 𝛽𝐵 (𝐵𝐷𝐶)= 1.69) is selected as the default general setting of the dual 

actuated controller under the demand case “F”. The set has similar total bus trips (𝑁𝑏𝑢𝑠) 

but less average travel time (𝑡𝑚).  

It is worth noting that the total network travel time 𝑇𝑡 (𝑇𝑇𝑇) was not explicitly 

used an optimization criterion in the above solution. Nonetheless, it is legitimate to say 

that 𝑇𝑡 (𝑇𝑇𝑇) was implicitly accounted in obtaining the optimal settings; as it directly 

relates to the trip’s average travel time, 𝑡𝑚 (𝑀𝑇𝑇) through the formula tm= 
Tt

Ntrips
∗
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3600, where Ntrips is the total number of vehicles in the network. That is, explicit 

minimization of 𝑡𝑚 (𝑀𝑇𝑇) implies implicit minimization (not explicit) of 𝑇𝑡 (𝑇𝑇𝑇).  

6.3 Dual Actuated Control 

The outputs of the Dual Actuated control system are presented in the Table 

6.15 for three (3) RSM models, as discussed in Chapter 3 and Appendix A in details. 

Table 6.15 summarizes the input variable ranges, the optimal variable setting, and the 

resulting composite desirability. The optimization results of the three models are 

plotted in Figure 6.11 to 6.13 for three input parameters of coefficient for virtual queue 

of vehicles, 𝛽𝑉 (𝐵𝑄𝐿), coefficient for transit priority, 𝛽𝑏or 𝛽𝑝 (𝐵𝑇𝑃), and downstream 

blockage penalty coefficient, 𝛽𝐵 (𝐵𝐷𝐶), as well as the three responses of the total bus 

trips, 𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠), total network travel time, 𝑇𝑡 (𝑇𝑇𝑇), and the trip average travel 

time, 𝑡𝑚 (𝑀𝑇𝑇). 

Table 6.15: Optimal values of dual actuated control under “F” demand scenario 

Model 

NO. 

Factor ranges Optimal factor 

settings (𝛃𝑽, 𝛃𝒃or 𝛃𝒑, 

𝛃𝑩) 

Composite 

Desirability, 

𝑫 

𝛃𝑽 (𝑩𝑸𝑳) 𝛃𝒃or 𝛃𝒑 

(𝑩𝑻𝑷) 

𝛃𝑩 

(𝑩𝑫𝑪) 

1 2 – 3500 2500 – 13000 5 – 34 3500, 3380.29, 5 0.751  

2 1 – 5000 2500 – 13000 1 – 25 5000, 2500, 9.48 0.586 

3 1 – 2500 2000 – 10000 1 – 11 1767.97, 2000, 5.55 0.629  

 

Figures 6.11 to 6.13 depict the optimization plots for the models 1 to 3, 

respectively, considering the three input parameters and the three responses. The 

composite desirability values of the models 1 to 3 are 0.751, 0.586, and 0.629, 

respectively.  
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Figure 6.11: Model 1 individual and composite desirability 𝐷 for the responses of 

𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠), 𝑇𝑡 (𝑇𝑇𝑇) and 𝑡𝑚 (𝑀𝑇𝑇) for various parameters of 𝛽𝑉 (𝐵𝑄𝐿), 𝛽𝑏or 𝛽𝑝 

(𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶), for dual actuated control under “F” demand case 

  

Figure 6.12: Model 2 individual and composite desirability 𝐷 for the responses of 

𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠), 𝑇𝑡 (𝑇𝑇𝑇) and 𝑡𝑚 (𝑀𝑇𝑇) for various parameters of 𝛽𝑉 (𝐵𝑄𝐿), 𝛽𝑏or 𝛽𝑝 

(𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶), for dual actuated control under “F” demand case” 
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Figure 6.13: Model 3 individual and composite desirability 𝐷 for the responses of 

𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠), 𝑇𝑡 (𝑇𝑇𝑇) and 𝑡𝑚 (𝑀𝑇𝑇) for various parameters of 𝛽𝑉 (𝐵𝑄𝐿), 𝛽𝑏or 𝛽𝑝 

(𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶), for dual actuated control under “F” demand case 

 

A contour plot was developed for the three responses of 𝑁𝑏𝑢𝑠 (Trips), 𝑇𝑡 (TTT) 

and 𝑡𝑚 (MTT) for various parameters of 𝛽𝑉 (BQL), 𝛽𝑏or 𝛽𝑝 (BTP), and 𝛽𝐵 (BDC) as 

shown in Figure 6.14. The data for the contour plot were taken from a total of 15 coded 

input variable settings for each model as indicated in Chapter 3 according to the Box-

Behnkan design (Table 3.1) (a total of 45 input settings for models 1 to 3). These 

variant input settings correspond to a total of 450 simulation runs, as each parameter 

setting is executed for 10 multiple runs. 
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Figure 6.14: Contour plot of the three responses of 𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠), 𝑇𝑡 (𝑇𝑇𝑇) and 𝑡𝑚 (𝑀𝑇𝑇) for various parameters of 𝛽𝑉 (𝐵𝑄𝐿), 𝛽𝑏or 𝛽𝑝 (𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶) for dual actuated control and demand case “F”
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6.3.1 Analysis 

The multi-objective optimization methodology (maximizing of 𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠), 

while simultaneously minimizing both 𝑇𝑡 (𝑇𝑇𝑇) and 𝑡𝑚 (𝑀𝑇𝑇)) is used to solve these 

three models by the composite desirability function, as described in Chapter 3. None 

of the above models resulted in acceptable desirability levels (within the model input 

range) using the set three objective functions (maximizing of 𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠), while 

simultaneously minimizing both 𝑇𝑡 (𝑇𝑇𝑇) and 𝑡𝑚 (𝑀𝑇𝑇)). The optimum values of the 

coefficients are mostly border values (upper bound or lower bound of the specified 

regions).   

Further analysis is done for the all the models using either double or single 

objective function(s). The conducted analyses still indicated optimal solutions at the 

borders of the parameter regions. Only model 3 has shown good performance, and it 

is discussed hereafter.  

First, the optimization is done only considering one objective function 

(maximizing of 𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠)) as shown in Figure 6.15. The resulting optimal variable 

setting is presented in Table 6.16. This setting is 1389.3, 6848.48, and 4.54 for the 𝛽𝑉 

(𝐵𝑄𝐿), 𝛽𝑏or 𝛽𝑝 (𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶), respectively, with the response 𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠) 

of 207.6, and 1.22 (95% CI = 204.82, 210.43) standard error (SE). 
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Figure 6.15: Optimization of 𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠) for various parameters of 𝛽𝑉 (𝐵𝑄𝐿), 

𝛽𝑏or 𝛽𝑝 (𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶), for dual actuated control under “F” demand scenario 

 

Table 6.16: Optimal variable setting of coefficients for the response of 𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠) 
for dual actuated control with demand case “F” 

Coefficients Responses 

𝛽𝑉 (𝐵𝑄𝐿) 𝛽𝑏or 𝛽𝑝 

(𝐵𝑇𝑃) 

𝛽𝐵 (𝐵𝐷𝐶) 𝑁𝑏𝑢𝑠 
(𝑇𝑟𝑖𝑝𝑠) 

SE (95% CI) 

1389.3 6848.48 4.54 207.6 1.22 (204.8, 210.4) 

 

The optimization is done afterward considering two objective functions 

(maximizing of 𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠), while simultaneously minimizing 𝑡𝑚 (𝑀𝑇𝑇)), as shown 

in Figure 6.16. The resulting optimal variable setting is presented in Table 6.17. This 

setting is 1767.97, 5151.5, and 5.24 for 𝛽𝑉 (𝐵𝑄𝐿), 𝛽𝑏or 𝛽𝑝 (𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶), 

respectively. The optimal responses are 206.8 for 𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠) with a standard error 

(SE) of 1.19 (95% CI = 204.1, 209.5) and 1405.4 seconds for 𝑡𝑚 (𝑀𝑇𝑇) with a standard 

error (SE) of 4.40 (95% CI = 1395.4, 1415.4). 



152  

 

 
 

 

Figure 6.16: Optimization of 𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠), and 𝑡𝑚 (𝑀𝑇𝑇) for various parameters of 

𝛽𝑉 (𝐵𝑄𝐿), 𝛽𝑏or 𝛽𝑝 (𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶), for dual actuated control under “F” 

demand scenario 

 

Table 6.17: Optimal variable setting of coefficients for the response for dual actuated 

control of “F” demand scenario 

Coefficients Responses 

𝛽𝑉 

(𝐵𝑄𝐿) 

𝛽𝑏or 𝛽𝑝 

(𝐵𝑇𝑃) 

𝛽𝐵 

(𝐵𝐷𝐶) 

𝑁𝑏𝑢𝑠 
(𝑇𝑟𝑖𝑝𝑠) 

SE  

(95% CI) 
𝑡𝑚 (𝑀𝑇𝑇) 

(seconds) 

SE  

(95% CI) 

1767.97 5151.5 5.24 206.8 1.19 (204.1, 

209.5) 

1405.4 4.40 (1395.4, 

1415.4) 

 

RSM Statistics (ANOVA table)  

Regardless of the number and nature of used objective function(s) to identify 

the optimal setting (single, dual or triple), the model itself is the same. Only the optimal 

settings vary according to the preset objective function(s). In 3rd model, the response 
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surface model of 𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠) is significant (R-square = 77.71%), as shown in Table 

6.18.  

 

Table 6.18: Summary of ANOVA for 𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠) versus various 𝛽𝑉 (𝐵𝑄𝐿), 

𝛽𝑏or 𝛽𝑝 (𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶) for dual actuated control of “F” demand scenario 

Source 

Sum of 

Squares df 

Mean 

Square F 

Linear  47.695 3 15.898 3.29** 

 β𝑉 3.125 1 3.125 0.65* 

 β𝑝 10.125 1 10.125 2.09* 

 β𝐵 34.445 1 34.445 7.12** 

Square  87.216 3 29.072 6.01** 

 β𝑉*β𝑉 31.159 1 31.159 6.44** 

 β𝑝*β𝑝 25.056 1 25.056 5.18** 

 β𝐵*β𝐵 44.075 1 44.075 9.11** 

Lack-of-Fit  16.755 6 2.792 0.25* 

Total  173.6 14   
*p > 0.1 

**p < 0.1 

 

The second order regression equation of 𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠) versus 𝛽𝑉 (𝐵𝑄𝐿), 

𝛽𝑏or 𝛽𝑝 (𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶) is: 

𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠)  (Dual Actuated Control under “F” Demand Scenario) 

=  193.59 +  0.00515 𝛽𝑉  +  0.002235  𝛽𝑝 + 1.243 𝛽𝐵   

− 0.000002 𝛽𝑉 ∗ 𝛽𝑉 −  0.0000001  𝛽𝑝 ∗ 𝛽𝑝 −  0.1382 𝛽𝐵 ∗ 𝛽𝐵 

 

Additionally, the response model of 𝑡𝑚 (𝑀𝑇𝑇) is significant (R-square = 

62.75%), as shown in Table 6.19.  

 

 

 



154  

 

 
 

Table 6.19: Summary of ANOVA for 𝑡𝑚 (𝑀𝑇𝑇) versus various 𝛽𝑉 (𝐵𝑄𝐿), 𝛽𝑏or 𝛽𝑝 

(𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶) for dual actuated control of “F” demand scenario 

Source 

Sum of 

Squares df 

Mean 

Square F 

Linear  1604.96 3 534.99 3.68** 

 β𝑉 1384.32 1 1384.32 9.53** 

 β𝑝 146.85 1 146.85 1.01* 

 β𝐵 73.79 1 73.79 0.51* 

 β𝑉*β𝑉 455.81 1 455.81 3.14** 

 β𝑉*β𝑝 140.8 1 140.8 0.97* 

Lack-of-Fit  716.73 7 102.39 0.35* 

Total  3508.24 14   
*p > 0.1 

**p < 0.1 

 

The second order regression equation of 𝑡𝑚 (𝑀𝑇𝑇) versus 𝛽𝑉 (𝐵𝑄𝐿), 𝛽𝑏or 𝛽𝑝 

(𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶) is:  

𝑡𝑚 (𝑀𝑇𝑇) (Dual Actuated Control under “F” Demand Scenario) (seconds) =

 14440.3 −  0.0354 𝛽𝑉 −  0.00041  𝛽𝑝 −  0.607 𝛽𝐵 

+ 0.000007 𝛽𝑉 ∗ 𝛽𝑉 +  0.000001 𝛽𝑉 ∗ 𝛽𝑝 

 

Finally, the response model of 𝑇𝑡 (𝑇𝑇𝑇) is significant (R-square =54.49%), as 

shown in Table 6.20. 
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Table 6.20: Summary of ANOVA for 𝑇𝑡 (𝑇𝑇𝑇) versus various 𝛽𝑉 (𝐵𝑄𝐿), 𝛽𝑏or 𝛽𝑝 

(𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶) for dual actuated control of “F” demand scenario 

Source 

Sum of 

Squares df 

Mean 

Square F 

Linear  175291 3 58430 1.29* 

 β𝑉 110 1 110 0* 

 β𝑝 40086 1 40086 0.89* 

 β𝐵 135095 1 135095 2.99** 

Square  312028 2 156014 3.45** 

 β𝑝 ∗ β𝑝 188109 1 188109 4.16** 

 β𝐵 ∗ β𝐵 146002 1 146002 3.23** 

Lack-of-Fit  143542 7 20506 0.16* 

Total  894250 14   
*p > 0.1 

**p < 0.1 

 

The second order regression equation of 𝑇𝑡 (𝑇𝑇𝑇) versus 𝛽𝑉 (𝐵𝑄𝐿), 𝛽𝑏or 𝛽𝑝 

(𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶) is: 

𝑇𝑡 (𝑇𝑇𝑇) (𝐷𝑢𝑎𝑙 𝐴𝑐𝑡𝑢𝑎𝑡𝑒𝑑 𝐶𝑜𝑛𝑡𝑟𝑜𝑙 𝑢𝑛𝑑𝑒𝑟 "𝐹" 𝐷𝑒𝑚𝑎𝑛𝑑 𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜) (hours)  

=  12250 +  0.003 𝛽𝑉  +  0.1865  𝛽𝑝  +  69.2 𝛽𝐵  

− 0.000014  𝛽𝑝 ∗  𝛽𝑝  −  7.93 𝛽𝐵 ∗ 𝛽𝐵. 

 

6.3.2 Optimum selection (model validation) 

For different objective functions, different optimal settings are obtained. In 

specific, herein we refer to the optimum settings of the coefficients of  𝛽𝑉 (𝐵𝑄𝐿), 

𝛽𝑏or 𝛽𝑝 (𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶) related to the solutions: 

III. where only 𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠) is maximized (as indicated in Table 6.16) 

IV. where 𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠) is maximized and 𝑡𝑚 (𝑀𝑇𝑇) is minimized (as 

indicated in Table 6.17)  
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To select only one set of values, to generalize its use with the dual actuated 

controller under the “F” demand scenario, a verification/validation process is 

deployed. The validation process entails running the simulation with the identified 

values (in Tables 6.16 and 6.17). Each dataset was used in ten (10) multiple runs and 

the resulting responses were then averaged and reported as shown in Table 6.21. The 

resulting average 𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠), 𝑡𝑚 (𝑀𝑇𝑇) and 𝑇𝑡 (𝑇𝑇𝑇) of the 10 simulation runs (as 

shown in Table 6.21) lie within the 95% confidence interval (corresponding values) 

extracted from the response surface model (as shown in Table 6.16 for variable setting 

I, and Table 6.17 for variable setting II).  

The 1st set of variables (I) (𝛽𝑉 (𝐵𝑄𝐿) =  1389.3, 𝛽𝑏or 𝛽𝑝 (𝐵𝑇𝑃) =  6848.48, 

and 𝛽𝐵 (𝐵𝐷𝐶)= 4.54) is selected as the default general setting of the dual actuated 

controller under the demand case “F”. The set results more values of 𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠), as 

well as less values of 𝑡𝑚 (𝑀𝑇𝑇) and 𝑇𝑡 (𝑇𝑇𝑇) than another set as shown in Table 6.21.  

 

Table 6.21: Optimal variable settings of 𝛽𝑉 (𝐵𝑄𝐿), 𝛽𝑏or 𝛽𝑝 (𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶) 

and corresponding simulation-based MOE’s (𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠), 𝑡𝑚 (𝑀𝑇𝑇) (seconds), 𝑇𝑡 
(𝑇𝑇𝑇) (hours)) for dual actuated control of “F” demand scenario 

Variable Settings  

Coefficients Responses 

𝛽𝑉 

(𝐵𝑄𝐿) 

𝛽𝑏or 𝛽𝑝 

(𝐵𝑇𝑃) 

𝛽𝐵 

(𝐵𝐷𝐶) 

𝑁𝑏𝑢𝑠 
(𝑇𝑟𝑖𝑝𝑠) 

𝑡𝑚 (𝑀𝑇𝑇) 

(seconds) 

𝑇𝑡 (𝑇𝑇𝑇) 

(hours) 

I. (only 𝑁𝑏𝑢𝑠 
(𝑇𝑟𝑖𝑝𝑠) is 

maximized) 

1389.3 6848.48 4.54 206.1 1418.4 13075.3 

II. (𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠) 

is maximized 

and 𝑡𝑚 (𝑀𝑇𝑇) is 

minimized) 

1767.97 5151.5 5.24 204.5 1423.1 13085.9 

 

It is worth noting that the total network travel time 𝑇𝑡 (𝑇𝑇𝑇) was not explicitly 

used an optimization criterion in any of the above two solutions (I and II). Nonetheless, 
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it is legitimate to say that 𝑇𝑡 (𝑇𝑇𝑇) was implicitly accounted in obtaining the optimal 

settings II; as it directly relates to the trip’s average travel time, 𝑡𝑚 (𝑀𝑇𝑇) through the 

formula tm= 
Tt

Ntrips
∗ 3600, where Ntrips is the total number of vehicles in the network. 

That is, explicit minimization of 𝑡𝑚 (𝑀𝑇𝑇) implies implicit minimization (not explicit) 

of 𝑇𝑡 (𝑇𝑇𝑇). 

6.4 Discussion  

The optimal variable settings for various controls and their responses with 

characteristics are discussed in this section. The selected optimal variable settings for 

the Split Actuated control, Protected Actuated control, and Dual Actuated control 

under the demand scenario “F” (“F” refers to the traffic demand scenario of “very 

high” traffic volume) are presented in Table 6.22. Also, the corresponding simulation-

based MOE’s (𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠), 𝑡𝑚 (𝑀𝑇𝑇) (seconds), 𝑇𝑡 (𝑇𝑇𝑇) (hours)) for each setting 

are shown. From these settings, the dual actuated control has shown best performance, 

as it delivered more total bus trips (𝑁𝑏𝑢𝑠) with similar or less average travel time per 

trip (𝑡𝑚). In addition, the split actuated control has shown better performance than 

protected actuated control considering the total bus trips (𝑁𝑏𝑢𝑠) (175.1 vs. 124.8), 

although it required more average travel time per trip (𝑡𝑚) (1462.2 vs. 1391.8).  
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Table 6.22: Optimal variable settings of 𝛽𝑉 (𝐵𝑄𝐿), 𝛽𝑏or 𝛽𝑝 (𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶) 

and corresponding simulation-based MOE’s (𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠), 𝑡𝑚 (𝑀𝑇𝑇) (seconds), 𝑇𝑡 
(𝑇𝑇𝑇) (hours)) for various controls of “F” demand scenario 

Control  

Coefficients Responses 

𝛽𝑉 

(𝐵𝑄𝐿) 

𝛽𝑏or 𝛽𝑝 

(𝐵𝑇𝑃) 

𝛽𝐵 

(𝐵𝐷𝐶) 

𝑁𝑏𝑢𝑠 
(𝑇𝑟𝑖𝑝𝑠) 

𝑡𝑚 (𝑀𝑇𝑇) 

(seconds) 

𝑇𝑡 (𝑇𝑇𝑇) 

(hours) 

Split 

Actuated  
1 4818.18 3.2 175.1 1462.2 9335.6 

Protected 

Actuated 
303.97 10727.27 1.69 124.8 1391.8 3750.8 

Dual 

Actuated 
1389.3 6848.48 4.54 206.1 1418.4 13075.3 

 

In general, optimization deals with finding the best outputs (MOEs) by 

selecting the input variable settings and often in simulation-based optimization, the 

input variable settings follow a ratio among them to yield the similar output(s), as they 

have a similar effect on output(s). Therefore, the effect of various input variable 

settings using the selected optimal input variable settings is discussed in this section.  

As indicated in Chapter 1 and Chapter 5, the typical notion of a robust system 

is one that performs well across a range of (traffic, geometry, weather, etc.) conditions. 

The robustness of the system must be ensured at various levels of congestion and 

across different control types (namely three levels). At the first level, the purpose is to 

ensure that for each control type (e.g. dual, protected or split) the sensitivity of relative 

ratios of the parameters. 

 Here, the “robustness” is examined in the context of the degree of sensitivity 

of the control system performance as a function of the scale of the input variable, while 

holding the relative ratio between these variables constant. The conclusion from this 

analysis is that the system is robust because (for most cases) performance of the system 

remains relatively constant regardless of the absolute magnitude of the parameter 

values as long as the relative ratios of the parameter values remain constant. The other 

two levels of robustness checking are summarized in Chapter 7.  
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More specifically, this section focuses on testing the “robustness” of the 

various controllers under fixed relative proportions among the various inputs. That is, 

will the performance of a specific controller change if the absolute values of the 

penalty coefficients (inputs) change, but the relative proportions among these penalties 

remain the same? It is believed that no matter what are the absolute values of these 

penalty coefficients, what determines the optimal setting is a specific “relative” 

proportion among them for each specific controller. If the controller performance does 

not change with the change of the absolute penalty values (while keeping the relative 

proportions fixed), this reflects system robustness.      

In the remaining part of this section, the robustness testing of the split actuated 

control is presented first, followed by the ones for the protected actuated control, and 

finally for the dual actuated control. 

6.4.1 Split Actuated Control 

The selected optimal variable settings (𝛽𝑉 (𝐵𝑄𝐿) =  1, 𝛽𝑏or 𝛽𝑝 (𝐵𝑇𝑃) =

 4818.18, and 𝛽𝐵 (𝐵𝐷𝐶)= 3.2) for split actuated controls under “F” demand scenario 

is presented in Table 6.23.  These absolute values if rounded would result in the relative 

ratios of 0.3:1505.7:1 (𝛽𝑉 (𝐵𝑄𝐿) ∶ 𝛽𝑏or 𝛽𝑝 (𝐵𝑇𝑃): 𝛽𝐵 (𝐵𝐷𝐶)). Using this fixed 

relative ratio, several input variable settings were developed and simulated. Each 

setting as indicated in Table 6.24 was simulated 100 times, and the average MOE’s of 

these runs were reported. The results of the various settings (with the same relative 

ratio) are shown in Table 6.24. The results (in Table 6.24) show that the responses 

using this fixed ratio are not similar (increasing towards the higher absolute values, 

especially at 6.3, 30113.6, 20 (𝛽𝑉 (𝐵𝑄𝐿) ∶ 𝛽𝑏or 𝛽𝑝 (𝐵𝑇𝑃): 𝛽𝐵 (𝐵𝐷𝐶)), and decreasing 
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towards the lower absolute values at 0.3, 1505.7, 1 (𝛽𝑉 (𝐵𝑄𝐿) ∶ 𝛽𝑏or 𝛽𝑝 (𝐵𝑇𝑃): 𝛽𝐵 

(𝐵𝐷𝐶)). 

 

Table 6.23: Selected optimal variable settings of 𝛽𝑉 (𝐵𝑄𝐿), 𝛽𝑏or 𝛽𝑝 (𝐵𝑇𝑃), and 𝛽𝐵 

(𝐵𝐷𝐶) and corresponding simulation-based MOE’s (𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠), 𝑡𝑚 (𝑀𝑇𝑇) 

(seconds), 𝑇𝑡 (𝑇𝑇𝑇) (hours)) for split actuated controls of “F” demand scenario 

Coefficients Responses 

𝛽𝑉 

(𝐵𝑄𝐿) 

𝛽𝑏or 𝛽𝑝 

(𝐵𝑇𝑃) 

𝛽𝐵 

(𝐵𝐷𝐶) 

𝑁𝑏𝑢𝑠 
(𝑇𝑟𝑖𝑝𝑠) 

𝑡𝑚 (𝑀𝑇𝑇) 

(seconds) 

𝑇𝑡 (𝑇𝑇𝑇) 

(hours) 

1 4818.18 3.2 175.1 1462.2 9335.6 

 

Table 6.24: Several variable settings with the ratio of optimal variable settings of 𝛽𝑉 

(𝐵𝑄𝐿), 𝛽𝑏or 𝛽𝑝 (𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶) and corresponding simulation-based (from 

100 runs) MOE’s (𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠), 𝑡𝑚 (𝑀𝑇𝑇) (seconds), 𝑇𝑡 (𝑇𝑇𝑇) (hours)) for split 

actuated controls of “F” demand scenario 

Coefficients Responses 

𝛽𝑉 

(𝐵𝑄𝐿) 

𝛽𝑏or 𝛽𝑝 

(𝐵𝑇𝑃) 

𝛽𝐵 

(𝐵𝐷𝐶) 

𝑁𝑏𝑢𝑠 
(𝑇𝑟𝑖𝑝𝑠) 

𝑡𝑚 (𝑀𝑇𝑇) 

(seconds) 

𝑇𝑡 (𝑇𝑇𝑇) 

(hours) 

0.3 1505.7 1 162.8 1365.2 8136.2 

0.9 4517.1 3 173.2 1466.1 9357.5 

1.6 7528.4 5 173.6 1442.0 9302.0 

3.1 15056.8 10 173.6 1453.3 9360.6 

6.3 30113.6 20 184.7 1549.9 10665.8 

 

Figure 6.17 shows the rolling average of 10 runs of total bus trips (Trips) from 

100 simulation runs for several variable settings using the ratio of optimal variable 

settings of 𝛽𝑉 (𝐵𝑄𝐿), 𝛽𝑏or 𝛽𝑝 (𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶) for split actuated controls under 

“F” demand scenario. If the least and highest values are excluded, there is a similarity 

among the several variable settings. The total bus trips (Trips) ranges from 156.6 to 

191.1.   
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Figure 6.17: Ten runs rolling average of total bus trips (Trips) for several variable 

settings with the fixed ratio of optimal variable settings of 𝛽𝑉 (𝐵𝑄𝐿), 𝛽𝑏or 𝛽𝑝 

(𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶) for the split actuated controller of “F” demand scenario 

 

6.4.2 Protected Actuated Control 

The selected optimal variable settings (𝛽𝑉 (𝐵𝑄𝐿) =  303.97, 𝛽𝑏or 𝛽𝑝 

(𝐵𝑇𝑃) =  10727.27, and 𝛽𝐵 (𝐵𝐷𝐶)= 1.69) for protected actuated controls under “F” 

demand scenario is presented in Table 6.25. These absolute values if rounded would 

result in the relative ratios of 179.9:6347.5:1 (𝛽𝑉 (𝐵𝑄𝐿) ∶ 𝛽𝑏or 𝛽𝑝 (𝐵𝑇𝑃): 𝛽𝐵 (𝐵𝐷𝐶)).  

Using this fixed relative ratio, several input variable settings were developed 

and simulated. Each setting as indicated in Table 6.26 was simulated 100 times, and 

the average MOE’s of these runs were reported. The results of the various settings 

(with the same relative ratio) are shown in Table 6.26. The results (in Table 6.26) 

indicate that the responses using this fixed ratio are more or less similar, and closely 

identical to the responses obtained with the selected optimal input variable settings 

(Table 6.25).  
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Table 6.25: Selected optimal variable settings of 𝛽𝑉 (𝐵𝑄𝐿), 𝛽𝑏or 𝛽𝑝 (𝐵𝑇𝑃), and 𝛽𝐵 

(𝐵𝐷𝐶) and corresponding simulation-based MOE’s (𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠), 𝑡𝑚 (𝑀𝑇𝑇) 

(seconds), 𝑇𝑡 (𝑇𝑇𝑇) (hours)) for protected actuated controls of “F” demand scenario 

Coefficients Responses 

𝛽𝑉 

(𝐵𝑄𝐿) 

𝛽𝑏or 𝛽𝑝 

(𝐵𝑇𝑃) 

𝛽𝐵 

(𝐵𝐷𝐶) 

𝑁𝑏𝑢𝑠 
(𝑇𝑟𝑖𝑝𝑠) 

𝑡𝑚 (𝑀𝑇𝑇) 

(seconds) 

𝑇𝑡 (𝑇𝑇𝑇) 

(hours) 

303.97 10727.27 1.69 124.8 1391.8 3750.8 

 

Table 6.26: Several variable settings with the ratio of optimal variable settings of 𝛽𝑉 

(𝐵𝑄𝐿), 𝛽𝑏or 𝛽𝑝 (𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶) and corresponding simulation-based (from 

100 runs) MOE’s (𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠), 𝑡𝑚 (𝑀𝑇𝑇) (seconds), 𝑇𝑡 (𝑇𝑇𝑇) (hours)) for 

protected actuated controls of “F” demand scenario 

Coefficients Responses 

𝛽𝑉 

(𝐵𝑄𝐿) 

𝛽𝑏or 𝛽𝑝 

(𝐵𝑇𝑃) 

𝛽𝐵 

(𝐵𝐷𝐶) 

𝑁𝑏𝑢𝑠 
(𝑇𝑟𝑖𝑝𝑠) 

𝑡𝑚 (𝑀𝑇𝑇) 

(seconds) 

𝑇𝑡 (𝑇𝑇𝑇) 

(hours) 

179.9 6347.5 1 123.9 1398.1 3734.9 

539.6 19042.5 3 124.2 1397.8 3767.5 

899.3 31737.5 5 124.2 1429.3 3937.8 

1798.6 63475.0 10 126.2 1530.6 4407.5 

3597.3 126949.9 20 126.1 1557.4 4528.0 

 

Figure 6.18 shows the rolling average of 10 runs of total bus trips (Trips) from 

100 simulation runs for several variable settings using the ratio of optimal variable 

settings of 𝛽𝑉 (𝐵𝑄𝐿), 𝛽𝑏or 𝛽𝑝 (𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶) for protected actuated controls 

under “F” demand scenario. There is a similarity among the several variable settings, 

with the total bus trips (Trips) ranges from 119.7 to 128.9, which are close to the 

response (total bus trips=124.8) of selected optimal variable settings of 𝛽𝑉 (𝐵𝑄𝐿), 

𝛽𝑏or 𝛽𝑝 (𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶). However, the values of the three responses under the 

various tested scenarios (Table 6.26) indicate some moderate variations, and some 

moderate level of robustness of the protected actuated controllers using the fixed 

relative ratio of 179.9:6347.5:1 for the 𝛽𝑉 (𝐵𝑄𝐿): 𝛽𝑏or 𝛽𝑝 (𝐵𝑇𝑃): 𝛽𝐵 (𝐵𝐷𝐶). 
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Figure 6.18: Ten runs rolling average of total bus trips (Trips) for several variable 

settings with the fixed ratio of optimal variable settings of 𝛽𝑉 (𝐵𝑄𝐿), 𝛽𝑏or 𝛽𝑝 

(𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶) for the protected actuated controller of “F” demand scenario 

 

6.4.3 Dual Actuated Control 

The selected optimal variable settings (𝛽𝑉 (𝐵𝑄𝐿) =  1389.3, 𝛽𝑏or 𝛽𝑝 

(𝐵𝑇𝑃) =  6448.48, and 𝛽𝐵 (𝐵𝐷𝐶)= 4.54) for dual actuated controls under “F” 

demand scenario is presented in Table 6.27.  These absolute values if rounded would 

result in the relative ratios of 306:1508.5:1 (𝛽𝑉 (𝐵𝑄𝐿) ∶ 𝛽𝑏or 𝛽𝑝 (𝐵𝑇𝑃): 𝛽𝐵 (𝐵𝐷𝐶)).  

Using this fixed relative ratio, several input variable settings were developed 

and simulated. Each setting as indicated in Table 6.28 was simulated 100 times, and 

the average MOE’s of these runs were reported. The results of the various settings 

(with the same relative ratio) are shown in Table 6.28. The results (in Table 6.28) show 

that the responses using this fixed ratio are nearly close to a great extent to the 

responses obtained with the selected optimal input variable settings (Table 6.27). 
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Table 6.27: Selected optimal variable settings of 𝛽𝑉 (𝐵𝑄𝐿), 𝛽𝑏or 𝛽𝑝 (𝐵𝑇𝑃), and 𝛽𝐵 

(𝐵𝐷𝐶) and corresponding simulation-based MOE’s (𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠), 𝑡𝑚 (𝑀𝑇𝑇) 

(seconds), 𝑇𝑡 (𝑇𝑇𝑇) (hours)) for dual actuated controls of “F” demand scenario 

Coefficients Responses 

𝛽𝑉 

(𝐵𝑄𝐿) 

𝛽𝑏or 𝛽𝑝 

(𝐵𝑇𝑃) 

𝛽𝐵 

(𝐵𝐷𝐶) 

𝑁𝑏𝑢𝑠 
(𝑇𝑟𝑖𝑝𝑠) 

𝑡𝑚 (𝑀𝑇𝑇) 

(seconds) 

𝑇𝑡 (𝑇𝑇𝑇) 

(hours) 

1389.3 6848.48 4.54 206.1 1418.4 13075.3 

 

Table 6.28: Several variable settings with the ratio of optimal variable settings of 𝛽𝑉 

(𝐵𝑄𝐿), 𝛽𝑏or 𝛽𝑝 (𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶) and corresponding simulation-based (from 

100 runs) MOE’s (𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠), 𝑡𝑚 (𝑀𝑇𝑇) (seconds), 𝑇𝑡 (𝑇𝑇𝑇) (hours)) for dual 

actuated controls of “F” demand scenario 

Coefficients Responses 

𝛽𝑉 

(𝐵𝑄𝐿) 

𝛽𝑏or 𝛽𝑝 

(𝐵𝑇𝑃) 

𝛽𝐵 

(𝐵𝐷𝐶) 

𝑁𝑏𝑢𝑠 
(𝑇𝑟𝑖𝑝𝑠) 

𝑡𝑚 (𝑀𝑇𝑇) 

(seconds) 

𝑇𝑡 (𝑇𝑇𝑇) 

(hours) 

306.0 1508.5 1 208.4 1424.2 13223.2 

918.0 4525.4 3 208.5 1427.1 13259.5 

1530.1 7542.4 5 207.5 1419.6 13159.6 

3060.1 15084.8 10 204.6 1409.2 12873.7 

6120.3 30169.5 20 203.0 1404.6 12686.2 

 

Figure 6.19 shows the rolling average of 10 runs of total bus trips (Trips) from 

100 simulation runs for several variable settings using the ratio of optimal variable 

settings of 𝛽𝑉 (𝐵𝑄𝐿), 𝛽𝑏or 𝛽𝑝 (𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶) for dual actuated controls under 

“F” demand scenario. There is a similarity among the several variable settings, with 

the total bus trips (Trips) ranges from 197.9 to 213.8, which are close to the response 

(total bus trips=206.1) of selected optimal variable settings of 𝛽𝑉 (𝐵𝑄𝐿), 𝛽𝑏or 𝛽𝑝 

(𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶). The variations of the three responses under the various tested 

scenarios (Table 6.28) is almost negligible, and it clearly indicates the robustness of 

the dual actuated controllers using the fixed relative ratio of 306:1508.5:1 for the 𝛽𝑉 

(𝐵𝑄𝐿): 𝛽𝑏or 𝛽𝑝 (𝐵𝑇𝑃): 𝛽𝐵 (𝐵𝐷𝐶). 
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Figure 6.19: Ten runs rolling average of total bus trips (Trips) for several variable 

settings with the fixed ratio of optimal variable settings of 𝛽𝑉 (𝐵𝑄𝐿), 𝛽𝑏or 𝛽𝑝 

(𝐵𝑇𝑃), and 𝛽𝐵 (𝐵𝐷𝐶) for the dual actuated controller of “F” demand scenario 
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Chapter 7: Conclusions  

 

This chapter concludes with summarizing the major findings of this research 

in Section 7.1. Section 7.2 highlights the main research contribution.  Section 7.3 

highlights some of the limitations of this study followed by practical application in 

section 7.4. Finally, Section 7.5 suggests several future research directions. 

7.1 Overview and Summary of Findings  

This study provides a thorough review of various aspects of traffic control 

systems with transit signal priority (TSP), such as the types of TSP concepts and 

strategies, and the evaluations of these strategies. The study also describes how to 

implement the Response Surface Methodology (RSM) with single/multiple objective 

functions to calibrate the parameters of the integrated control system (Ahmed and 

Hawas, 2015). RSM applies the desirability function approach using the multi-

objective simultaneous consideration of the responses. The composite desirability is 

estimated using the own desirability of each response, which varies from zero to one 

in dimensionless scale. Then, calibration is done to find the best outputs (optimal 

measures of effectiveness) by selecting the input variable settings (coefficient for 

virtual queue of vehicles on the upstream approach link (𝛽𝑉), coefficients for transit 

priority (𝛽𝑏or 𝛽𝑝), and downstream blockage penalty coefficient (𝛽𝐵)). This is 

performed under high (“E”) and very high (“F”) traffic demand scenarios for various 

traffic controllers, such as split actuated, protected actuated, and dual actuated.  

Table 7.1 summarizes the major findings of various controllers under high (E) 

and very high (F) traffic demand scenarios. It shows that all the controllers are robust 

under different traffic demand scenarios (“E” and “F”) except the split actuated 
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controller under very high traffic demand scenario. The control types are also ranked 

considering the measures of effectiveness under each traffic demand scenario. The 

measures of effectiveness are the total number of bus trips served during a specific 

analysis period, N𝑏𝑢𝑠, the trip mean travel time in seconds, 𝑡𝑚, and total network travel 

time (in hours),  𝑇𝑡. It is evident that the dual actuated control type is performing best 

under both traffic demand scenarios considering the MOEs of 𝑁𝑏𝑢𝑠 and 𝑡𝑚. It is worthy 

of note that the rank based on 𝑇𝑡 can give the wrong perception. As an example, the 

protected actuated control type under both traffic demand scenarios is the best, but this 

is due to the fewer trips (transit and non-transit) which result in lesser total travel time. 

Table 7.1: Summary of findings of various controllers under “E” and “F” traffic 

demand 

Control type Split Actuated Protected 

Actuated 

Dual Actuated 

Traffic demand High 

(E) 

Very 

high (F) 

High 

(E) 

Very 

high (F) 

High 

(E) 

Very 

high (F) 

Robustness Yes No Yes ~Yes Yes ~Yes 

Rank based on 

𝑵𝒃𝒖𝒔 

1 2 3 3 2 1 

Rank based on 𝒕𝒎  2 3 3 1 1 2 

Rank based on 𝑻𝒕 3 2 1 1 2 3 

* “~” denotes the moderate level of robustness 

The performance of the optimal variable settings of various controllers under 

high (“E”) traffic demand, is shown in Table 7.2 compared with the sample mean that 

is calculated considering all the model's data as explained in Chapters 5 and 6. The 

sample mean is dependent on the attempted number of cases. The sample mean reflects 

the average performance of the integrated control system in case it is not appropriately 
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calibrated. The optimal variable settings of the various controllers give the best 

performance (the highest total bus trips and lowest mean travel time), including the 

number of non-transit vehicles. Table 7.2 indicates that the split actuated control under 

“E” traffic demand scenario gives the best performance, as it increases the total bus 

trips (by nearly 4%) and decreases the mean travel time (by 11%). Other control types 

(protected actuated, dual actuated) also shows better performance than the 

corresponding sample mean, as the total bus trips, Nbus, is more and mean travel time, 

tm, is less. 

Table 7.2: Performance of the selected optimal variable settings of 𝛽𝑉 , 𝛽𝑏or 𝛽𝑝, and 

𝛽𝐵 of various controllers under “E” traffic demand 

Control 

type Split actuated 
Protected 

actuated 
Dual actuated 

MOEs 𝐍𝐛𝐮𝐬 
(𝐓𝐫𝐢𝐩𝐬) 

𝐭𝐦  

(seconds) 

𝐍𝐛𝐮𝐬 
(𝐓𝐫𝐢𝐩𝐬) 

𝐭𝐦  

(seconds) 

𝐍𝐛𝐮𝐬 
(𝐓𝐫𝐢𝐩𝐬) 

𝐭𝐦  

(seconds) 

Sample 

Mean 
155.5  942.1 98.8 1034.9 155.2 691.6 

Using optimal 

setting 
161.0  838.3 100.1 1012.7 155.2 688.7 

Performance +3.6% -11.0% +1.3% -2.1% 0.0% -0.4% 

 

 

Similarly, the performance of the optimal variable of various controllers under 

very high (“F”) traffic demand, is shown in Table 7.3 compared with the sample mean 

of all the attempted model's data. The split actuated control under “F” traffic demand 

scenario also shows the best performance, as it gives nearly 5% more total bus trips 

and 2.4 % lesser mean travel time. Other control types (protected actuated, dual 

actuated) also shows better performance than the sample mean, as the total bus trips, 
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𝑁𝑏𝑢𝑠, is more and mean travel time, tm , is less. Only the dual actuated control resulted 

in very marginal average travel time increase (+0.4%).  

Table 7.3: Performance of the selected optimal variable settings of 𝛽𝑉 , 𝛽𝑏or 𝛽𝑝, and 

𝛽𝐵 of various controllers under “F” traffic demand 

Control 

type Split actuated Protected actuated Dual actuated 

MOEs 𝐍𝐛𝐮𝐬 
(𝐓𝐫𝐢𝐩𝐬) 

𝐭𝐦  

(seconds) 

𝐍𝐛𝐮𝐬 
(𝐓𝐫𝐢𝐩𝐬) 

𝐭𝐦  

(seconds) 

𝐍𝐛𝐮𝐬 
(𝐓𝐫𝐢𝐩𝐬) 

𝐭𝐦 

(seconds) 

Sample 

Mean 
166.9 1498.1 121.9 1411.7 200.7 1412.2 

Using optimal 

setting 
175.1 1462.2 124.8 1391.8 206.1 1418.4 

Performance +4.9% -2.4% + 2.4% -1.4% +2.7% +0.4% 

 

 

As indicated in Chapter 1, the robustness of the system must be ensured at 

various levels of congestion and across different control types (namely three levels). 

In Chapters 5 and 6, we presented the first level of robustness checking to ensure that 

for each control type (e.g. dual, protected or split) the sensitivity of relative ratios of 

the parameters.  

The second level of robustness checking is necessary to identify for each 

control type the optimal robust relative ratio (identified at the first level) that makes 

each control type effective under different traffic conditions. That is, when the traffic 

conditions vary, how to set the parameters of each specific controller to perform 

effectively under such varying traffic conditions. The third level purpose is to identify 

the “universal” relative parameters ratio that can be applied under varying traffic 

conditions for all control types together. In the remaining part of this section, we 

discuss briefly the second and third levels of robustness checking. 
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For the second level of robustness checking, the purpose is to select the 

parameter set that can perform efficiently under various traffic demand levels. Given 

the diversity of traffic conditions a controller may be applied for, and only for the 

purpose of demonstration, we assume that some intersection is dominantly operated 

under two traffic demand conditions (“E” and “F”), and each condition corresponds to 

a different optimal parameter setting. Here, the use of only two traffic conditions is 

merely to simplify the robustness checking procedure for the reader (not a limitation). 

In fact, the same methodology can be applied to whatever the number and durations of 

the prevailing traffic conditions the system may typically operate under.  

To ensure the robustness of the controller, some information would be needed 

about the traffic conditions it is applied to, and the durations. A controller operating 

under say the F conditions most of the time is different from the one operating under 

E most of the time. The proportions (and durations) of such traffic conditions may 

certainly affect the selection of the most robust set of parameters.   

Here, an attempt is made to formulate the process of robustness checking. Let’s 

say, “E” is dominant for 𝑡𝐸 (hrs.) and “F” is dominate for 𝑡𝐹 (hrs.). The total network 

travel times 𝑇𝑡
𝛽𝐸
𝐸 , 𝑇𝑡

𝛽𝐸
𝐹 , 𝑇𝑡

𝛽𝐹
𝐸  and 𝑇𝑡

𝛽𝐹
𝐹  are estimated using the two parameter sets 𝛽𝐸, 

and 𝛽𝐹 for “E” and “F” traffic demand conditions, respectively. 𝑇𝑡
𝛽𝐸
𝐸 and  𝑇𝑡

𝛽𝐸
𝐹  are the 

resulting total network travel times (per hour) if the parameter set 𝛽𝐸 (identified 

optimal set for the “E” traffic demand) is used under the “E” and “F” conditions, 

respectively. Similarly, 𝑇𝑡
𝛽𝐹
𝐸  and 𝑇𝑡

𝛽𝐹
𝐹  are the resulting total network travel times (per 

hour) if the parameter set 𝛽𝐹 (identified optimal set for the “F” traffic demand) is used 

under the “E” and “F” conditions, respectively. The values of 𝛽𝐸, and 𝛽𝐹 are already 

identified in Chapters 5 and 6.  
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The total network travel times (𝑇𝛽𝐸, and 𝑇𝛽𝐹) during the 𝑡𝐸 (hrs.) and 𝑡𝐹 (hrs.) 

are calculated as follows: 

𝑇𝛽𝐸 = 𝑡𝐸 × 𝑇𝑡
𝛽𝐸
𝐸 + 𝑡𝐹 × 𝑇𝑡

𝛽𝐸
𝐹       (7.1) 

𝑇𝛽𝐹 = 𝑡𝐸 × 𝑇𝑡𝛽𝐹
𝐸 + 𝑡𝐹 × 𝑇𝑡

𝛽𝐹
𝐹       (7.2) 

Comparing between 𝑇𝛽𝐸 and 𝑇𝛽𝐹 can be simply used to identify the most robust 

set for a specific controller type. The set that results in lesser total travel time can be 

identified as the most robust set should be chosen as a default parameter set. For 

instance, if 𝑇𝛽𝐸 is greater than 𝑇𝛽𝐹 , then the parameter set of “F” (𝛽𝐹) will be chosen 

as a default value and vice versa. In this way, the calibrated parameters under various 

traffic demands can operate the traffic control system robustly.  

The robustness can also be checked using other measures of effectiveness 

(MOEs) like 𝑁𝑏𝑢𝑠 (𝑇𝑟𝑖𝑝𝑠). The total bus trips (𝑁𝛽𝐸 and 𝑁𝛽𝐹)  during the 𝑡𝐸 (hrs.) and 

𝑡𝐹 (hrs.) are calculated using the following equations: 

𝑁𝛽𝐸 = 𝑡𝐸 × 𝑁𝑏𝑢𝑠𝛽𝐸
𝐸 + 𝑡𝐹 ×𝑁𝑏𝑢𝑠

𝛽𝐸

𝐹      (7.3) 

𝑁𝛽𝐹 = 𝑡𝐸 × 𝑁𝑏𝑢𝑠
𝛽𝐹

𝐸 + 𝑡𝐹 × 𝑁𝑏𝑢𝑠
𝛽𝐹

𝐹      (7.4) 

𝑁𝑏𝑢𝑠
𝛽𝐸

𝐸 and  𝑁𝑏𝑢𝑠
𝛽𝐸

𝐹  are the total bus trips using the optimal parameter set of “E” 

traffic demand (𝛽𝐸) under the traffic demand scenarios of “E” and “F”. 𝑁𝑏𝑢𝑠
𝛽𝐹

𝐸  and 

𝑁𝑏𝑢𝑠
𝛽𝐹

𝐹  are also the total bus trips using the optimal parameter set of “F” traffic demand 

(𝛽𝐹) under the traffic demand scenarios of “E” and “F”. Comparing between 𝑁𝛽𝐸 

and 𝑁𝛽𝐹, if 𝑁𝛽𝐸 is greater than 𝑁𝛽𝐹 , then the parameter set of “E” (𝛽𝐸) is more robust 

and will be chosen as a default value and vice versa. 

To demonstrate the process, we assume a hypothetical condition where each 

controller operates under the E and F traffic conditions equally for say 1.5 hrs each. 
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That is, assuming equal 𝑡𝐸 and 𝑡𝐹 of 1.5 hrs. The total travel times (𝑇𝑡
𝛽𝐸
𝐸 , 𝑇𝑡

𝛽𝐸
𝐹 , 𝑇𝑡

𝛽𝐹
𝐸  

and 𝑇𝑡
𝛽𝐹
𝐹 ) are estimated using the two parameter sets for the dual actuated control as 

shown in Table 7.4. The total travel times (𝑇𝛽𝐸, and 𝑇𝛽𝐹) are calculated using the Eqs. 

(7.1) and (7.2) (𝑇𝛽𝐸 is 19583.7 hours and 𝑇𝛽𝐹  is 19953.8 hours). Since 𝑇𝛽𝐸 is lesser 

than 𝑇𝛽𝐹, then the parameter set of “E” (𝛽𝐸) is more robust and is chosen as a default 

value. Moreover, 𝑁𝛽𝐸, and 𝑁𝛽𝐹 are also calculated using the Eqs. (7.3) and (7.4) (𝑁𝛽𝐸 

is 358 trips and 𝑁𝛽𝐹  is 361.6 trips). Since 𝑁𝛽𝐸 is lesser than 𝑁𝛽𝐹, then the parameter 

set of “F” (𝛽𝐹) can be chosen as a default value. Due to the different conclusions in 

studying various MOE (travel times or number of bus trips), a subjective judgment 

should be made weighing the overall pros and cons. Here, the parameter set of “F” 

(𝛽𝐹) is considered more robust given higher weight to the set that maximizes the bus 

trips throughput. In conclusion,  𝛽𝐹 is selected as the most robust parameter set for the 

dual TSP integrated controller.  
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Table 7.4: Simulation-based MOE’s (𝑁𝑏𝑢𝑠 (Trips), 𝑡𝑚 (seconds), 𝑇𝑡 (hours)) using 

different optimal variable settings for dual actuated controls under “E” and “F” 

demand scenarios 

Traffic 

demand 

Optimal 

parameter 

set 

Responses  Total 

𝑵𝒃𝒖𝒔 

(𝒕𝒓𝒊𝒑𝒔) 

𝒕𝒎 

(seconds) 

𝑻𝒕 

(hours) 

 𝑵𝒃𝒖𝒔 

(𝒕𝒓𝒊𝒑𝒔) 

𝑻𝒕 

(hours) 

“E” 𝛽𝐸 155.2 688.7 6901.9  358.1 19583.7 

“F” 𝛽𝐸 202.9 1409.7 12681.8  

“E” 𝛽𝐹 155.5 686.0 6878.5  361.6 19953.8 

“F” 𝛽𝐹 206.1 1418.4 13075.3  

Conclusion: 𝜷𝑭 is more robust considering the priority of 

bus trips 

𝛽𝐹 𝛽𝐸 

 

 

Tables 7.5 and 7.6 show the results of robustness for the split and protected 

actuated controllers under “E” and “F” traffic demand scenarios. The parameter set of 

“F” (𝛽𝐹) is clearly more robust as shown in tables 7.5 and 7.6, as 𝑇𝛽𝐸 is greater 

than 𝑇𝛽𝐹 and 𝑁𝛽𝐸 is lesser than 𝑁𝛽𝐹 for both traffic control types. Therefore, the 

parameter set of “F” (𝛽𝐹) is more robust for the split and protected controllers.  
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Table 7.5: Simulation-based MOE’s (𝑁𝑏𝑢𝑠 (Trips), 𝑡𝑚 (seconds), 𝑇𝑡 (hours)) using 

different optimal variable settings for split actuated controls under “E” and “F” 

demand scenarios 

Traffic 

demand 

Optimal 

parameters set 

Responses  Total  

𝑁𝑏𝑢𝑠 

(𝑡𝑟𝑖𝑝𝑠) 

𝑡𝑚 

(seconds) 

𝑇𝑡 

(hours) 

 𝑁𝑏𝑢𝑠 

(𝑡𝑟𝑖𝑝𝑠) 

𝑇𝑡 

(hours) 

“E” 𝛽𝐸 161.0 838.3 8190.6  328.8 18239.7 

“F” 𝛽𝐸 
167.8 1502.1 10049.1 

 

“E” 𝛽𝐹 160.8 831.7 8152.4  335.9 17488 

“F” 𝛽𝐹 175.1 1462.2 9335.6  

Conclusion: 𝜷𝑭 is more robust.  𝛽𝐹 𝛽𝐹 

 

Table 7.6: Simulation-based MOE’s (𝑁𝑏𝑢𝑠 (Trips), 𝑡𝑚 (seconds), 𝑇𝑡 (hours)) using 

different optimal variable settings for protected actuated controls under “E” and “F” 

demand scenarios 

Traffic 

demand 

Optimal 

parameters 

set 

Responses  Total  

𝑁𝑏𝑢𝑠 

(𝑡𝑟𝑖𝑝𝑠) 

𝑡𝑚 

(seconds) 

𝑇𝑡 

(hours) 

 𝑁𝑏𝑢𝑠 

(𝑡𝑟𝑖𝑝𝑠) 

𝑇𝑡 

(hours) 

“E” 𝛽𝐸 100.1 1012.7 3536.9  221.3 7372.6 

“F” 𝛽𝐸 121.2 1425.7 3835.7  

“E” 𝛽𝐹 101.1 998.8 3444.1  225.9 7194.9 

“F” 𝛽𝐹 124.8 1391.8 3750.8  

Conclusion: 𝜷𝑭 is more robust.  𝛽𝐹 𝛽𝐹 

 

If the traffic demand in an intersection is not similar to the calibrated demand 

scenarios (“E” and “F”), then it is suggested to recalibrate the system under that traffic 

demand condition for better performance. The performance of the system is dependent 

on the parameters (as discussed in Eq. 2.1 to Eq. 2.3) that are likely to change due to 

the alteration of traffic demand as well as traffic control phasing (split, protected, and 

dual). As such, it is advisable to calibrate the system under all prevailing traffic 
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conditions individually, then to identify the most robust set of parameters using 

equations 7.1 through 7.4 as explained earlier.  

Tables 7.4 and 7.5 show that the parameter set of “F” (𝛽𝐹) gives better 

performance than the parameter set of “E” (𝛽𝐸). To identify the “universal” set of 

parameters that can be applied among the various control types and under all traffic 

conditions, one should examine the effectiveness of the identified robust parameters 

for all control types.  

The parameter set of “F” (𝛽𝐹) of dual actuated controller produces the best 

performance when applied for all traffic control types (split, protected, and dual) under 

both “E” and “F” traffic demand conditions, as shown in Table 7.7. The results from 

Table 7.7 show that the 𝛽𝐹 for dual actuated control produces quite similar MOEs 

(𝑁𝑏𝑢𝑠 (trips), 𝑡𝑚 (seconds), 𝑇𝑡 (hours)) compared to the optimal parameter set using 

RSM for the control type under the particular traffic demand (“E” or “F”) in almost all 

scenarios (except for the split actuated control under “F” traffic demand but similar 

bus trips are produced). Therefore, the 𝛽𝐹 for dual actuated control is identified as the 

most robust parameter set for various control types (split, protected, and dual) under 

both traffic demand of “E” and “F” considering the bus trips. 
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Table 7.7: Simulation-based MOE’s (𝑁𝑏𝑢𝑠 (trips), 𝑡𝑚 (seconds), 𝑇𝑡 (hours)) using 

different optimal variable settings for various control types under traffic demand of  

“E” and “F” 

Traffic 

demand 

Control type Optimal 

parameter set 

Responses 

𝑵𝒃𝒖𝒔 
(𝒕𝒓𝒊𝒑𝒔) 

𝒕𝒎 

(seconds) 

𝑻𝒕  
(hours) 

“E” 

Split 𝛽𝐸 of split control 

(using RSM) 
161.0 838.3 8190.6 

𝜷𝑭 of dual 

control 
161.5 844.5 8249.0 

“E” 

Protected 𝛽𝐸 of protected 

control (using 

RSM) 

100.1 1012.7 3536.9 

𝜷𝑭 of dual 

control 
100.7 1017.4 3535. 7 

“E” 

Dual 𝛽𝐸 of dual control 

(using RSM) 

155.2 688.7 6901.9 

𝜷𝑭 of dual 

control 

155.5 686.0 6878.5 

“F” 

Split 𝛽𝐹 of split control 

(using RSM) 

175.1 1462.2 9335.6 

𝜷𝑭 of dual 

control 

174.0 1556.9 10675.7 

“F” Protected 𝛽𝐹 of protected 

control (using 

RSM) 

124.8 1391.8 3750.8 

𝜷𝑭 of dual 

control 

124.2 1379.5 3855.8 

 

Figure 7.1 compares the 𝑁𝑏𝑢𝑠 obtained from different optimal variable settings 

(optimal parameter set from RSM that was obtained for each control type under the 

traffic demand of “E” and “F”) versus the optimal parameter set, 𝛽𝐹, of the dual 

actuated control under “F” traffic demand) for various control types under traffic 
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demand of  “E” and “F”. In all scenarios, the obtained bus trips by 𝛽𝐹 of the dual 

actuated control under “F” traffic demand are almost similar to others.  

 

 

Figure 7.1: Comparison of optimal variable settings (optimal from RSM vs. 𝛽𝐹 of 

dual control) using 𝑁𝑏𝑢𝑠 (trips) for various control types under “E” and “F” 

 

The obtained mean travel times by 𝛽𝐹 of the dual actuated control under “F” 

traffic demand are also similar to the mean travel times using the optimal set of the 

parameters of the controller itself as shown in Figure 7.2 (except for the split actuated 

control under “F” traffic demand, where 𝛽𝐹 of the dual control under “F” traffic 

demand produces more mean travel time (1556.9 sec) than the optimal parameter set 

using RSM (1462.2 seconds)). Similarly, comparison of the total travel times 𝑇𝑡 is 

presented in Figure 7.3. The 𝛽𝐹 of the dual control under “F” traffic demand produces 

similar total travel times compared to the values of the optimal parameter sets (except 

for the split controller case under “F”, where than the optimal parameter set using RSM 

yields total travel time of 9335.6 hours versus 10675.7 hours when the 𝛽𝐹 of the dual 

control are used ). Therefore, the parameter set (𝛽𝐹) of the dual control under “F” 
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traffic demand is quite robust, even if applied among all other controllers, it still 

produces MOEs quite close to the values obtained if the optimal parameter sets of the 

controller type itself are used. This identifies the (𝛽𝐹) of the dual control to be the most 

robust parameter set and as such it should be used as the default for the various control 

types under both traffic demand of “E” and “F”. 

 

 

Figure 7.2: Comparison of optimal variable settings (optimal from RSM vs. 𝛽𝐹 of 

dual control) using 𝑡𝑚 (seconds) for various control types under “E” and “F” 

 

  

Figure 7.3: Comparison of optimal variable settings (optimal from RSM vs. 𝛽𝐹 of 

dual control) using 𝑇𝑡 (hours) for various control types under “E” and “F” 
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Calibrating the traffic control system for each traffic demand is impractical. 

Therefore, the robust control type should be chosen for the different demand levels. 

As an example, under very high (“F”) traffic demand scenario, split actuated controller 

is not robust, but the dual actuated controller is. Furthermore, dual actuated controller 

shows the best performance considering measures of effectiveness (total bus trips, 

𝑁𝑏𝑢𝑠, and mean travel time, tm). Also, 𝛽𝐹 of dual control has proven to be the most 

robust set even when applied to other controller types under either the E or F 

conditions, As such, it is preferable to use dual actuated controller settings at the very 

high demand levels; as this will certainly provide best performance and robust 

solutions.  

7.2 Research Contributions 

The primary contribution of this thesis is setting the framework and method 

that entails the application of the Response Surface Methodology (RSM) to calibrate 

the complex integrated traffic control system. The suggested method was assessed via 

extensive case study analysis of the integrated control system developed by Ahmed 

and Hawas (2015). The system has the advanced traffic management strategies, such 

as transit signal priority, incident detection, and management. The suggested RSM 

calibrates the parameters of the integrated system by selecting the values that can 

produce the best measures of effectiveness. The challenging task is to satisfy the 

requirements of transit and non-transit vehicles, which are very often diverse and 

conflicting. As an example, if transit signal priority is active in one approach, then the 

opposite side street would certainly encounter adverse impacts in the form of more 

delay travel time. RSM uses the desirability function approach as well as the 

simultaneous multi-objective desirability of the responses.  
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Another interesting feature of the suggested RSM method is its amenability to 

handle various control systems with different applications and multiple parameters. 

There is no limitation on the number of parameters to set optimally, and in fact, the 

data needed for the search for the optimal settings will not be significantly increased 

with the higher number of parameters. In brief, no matter what is the control system, 

its complexity, functions, and number of parameters, the suggested RSM approach can 

be used.   

This research study also presented how to use either single or multiple 

objective functions to identify the optimal settings. Some of these objective functions 

may also be contradicting in nature, such as increasing throughput of transit trips and 

minimizing overall travel time. At first, three objective functions were used to calibrate 

the traffic control system. If the identified optimal solutions are always at boundary 

values not a mid-points of the specified model’s regions, then single or double 

objective functions were alternatively considered. After identifying the optimal set, it 

(the set) was verified by simulation with 95% confidence interval.  

This study also demonstrated how to develop “mathematical” models for 

estimation of the performance measures vis-à-vis the various parameter values. The 

calibrated models were proven to be significant. The study also indicated how to 

validate these optimal settings and ensure their robustness.  

7.3 Limitations of the Research  

This research study indicated how to apply the suggested RSM to any advanced 

control systems. To demonstrate the RSM procedure, it was applied to the integrated 

traffic signal control system developed by Ahmed and Hawas (2015). The integrated 
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control system itself (by Ahmed and Hawas) has some limitations regarding specific 

assumptions to some variables and parameters. Some of these limitations include:  

 Assumed specific geometric parameters such as the number of lanes, phase 

arrangements, link length, link speed, lane width, saturation flow rate, 

passenger car length, and heavy vehicle length.   

 Specific traffic parameters were assumed such as the right turn percentage, 

through movement percentage, left turn percentage, peak hour factor, and the 

percentage of heavy vehicles.   

The parameter calibration and the testing of robustness were carried out under 

certain boundary region. The selected optimal setting of the parameters can be 

dependent on this boundary region. The process of calibration itself cannot also be 

applied online; in fact, it is designed to provide off-line optimization of parameters.  

7.4 Practical Application (Implementation) 

The success of the research is to implement the proposed method for parameter 

settings in field, and therefore, the guidelines to implement the findings of this study 

are provided as follows: 

 It is found that the parameter values for dual actuated control under “F” traffic 

demand scenario is robust for all control types (split actuated, protected 

actuated, and dual actuated) under “E” and “F” traffic demands. Therefore, to 

implement the Integrated Traffic Signal Control System (Ahmed and Hawas, 

2015) in the field in case E” or “F” are the prevailing traffic conditions, it is 

recommended to use these parameters (𝛽𝐹 of the dual control under “F” traffic 

demand), if deemed necessary to use various control types. 
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 The field traffic demand may not be equal to the studied traffic demands (E” 

and “F”), and as such, the prevailing field traffic demand should be measured, 

and the corresponding robust parameters should be obtained, verified, and 

endorsed as shown in this research using the Response Surface Methodology 

(RSM).  

7.5 Future Research Directions 

Some of the suggested future research directions include:  

 Calibrating the parameters of the traffic signal control itself: 

In the application of the RSM to the integrated control system, it was 

assumed that the parameters of the signal controller itself would remain 

fixed; just to narrow down the number of parameters to calibrate and 

ease tracking the process for the reader. The specific traffic signal 

parameters such as the minimum green, the maximum green, the 

vehicular extension period can also be optimized. Future research 

direction would increase the optimization number of parameters by 

considering the specific signal control parameters.  

 The inclusion of environmental aspects 

Given that the developed framework and the RSM can be applied to 

multiple objective functions, it should also be valuable to add some 

measures of performance that reflect the network environmental quality 

and vehicular emissions explicitly.  An additional objective function to 

minimize the negative environmental impacts can be beneficial.  

 Calibration with arterial coordination: 
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The integrated control system could also be calibrated for coordination 

of traffic signals along a major arterial corridor for various traffic 

demands as well as various control types.  
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Appendix: A Response Surface Modeling in Minitab 

 

This section describes the steps of Response Surface Modelling design, data 

importing, model building for each response, and the optimization in Minitab.  

A. Response Surface Modeling Design 

In order to design the response surface model, the first step is defining the 

properties of the model, such as the type of design (Box-Behnken, Central Composite), 

number of factors (continuous, categorical), replications, and blocks, etc. Replicates is 

also defined as the multiple simulation runs with the same factor settings (levels) and 

these are subject to the same sources of variability, independently of one another. In 

response surface design, replicate measurements are taken from multiple simulation 

runs. Similarly, blocks in response surface design are defined as a group of 

experiments conducted under relatively homogeneous conditions. In this research 

study, there is only one block for the simulation-based model, as every measurement 

is taken under consistent simulated conditions changing only the input (factor settings) 

not the simulation environment (CORSIM). 

First, the “Create Response Surface Design…” is selected from the main menu 

of Minitab, as Stat ➔ DOE ➔ Response Surface ➔ Create Response Surface Design 

shown in Figure A.1. Consequently, the “Create Response Surface Design” window 

opens shown in Figure A.2.  
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Figure A.1: Selection of “Create Response Surface Design”  

 

 

Figure A.2: Selection of “Type of Design” and number of factors 

 

For the “Type of Design”, “Box-Behnken” is selected. For the “Number of 

continuous factors:”, “3” is selected, representing the various coefficients (β𝑉, β𝑏or β𝑝, 

and β𝐵) as shown in Figure A.2. It is to be noted that both β𝑏and β𝑝 in the presented 

model formulation in Chapter 3 are considered equal and as such the number of factors 

is only three not four.  



192  

 

 
 

The “Designs…” tab is selected to set up the number of center points, 

replicates, blocks, as shown in Figure A.3.  

 

  

Figure A.3: Selection of number of center points, blocks, and replicates 

 

In Figure A.3, the default “3” number of center point is selected; as well as for 

the “Number of replicates:” and “Number of blocks:”, “1” is kept. It is to be noted that 

the number of replicates here is set to 1 despite the fact that 10 simulation runs are 

carried out for each set of factors. The replicate of 1 here represents the average values 

obtained from the 10 simulation runs.  

To keep the settings, “OK” is clicked. Other options such as Factors, Options, 

and Results are activated, as shown in Figure A.4. 
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Figure A.4: RSM design after selection of design properties  

 

To input the factors and their levels (low, high), “Factors…” is clicked to open 

the “Create Response Surface Design: Factors” window shown in Figure A.5.  

 

 

Figure A.5: Entry of the factors and their levels 
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The “Names” of the three factors (Coefficient for virtual queue of vehicles, 𝛽𝑉, 

Coefficient for transit priority, 𝛽𝑏or 𝛽𝑝, Downstream blockage penalty coefficient, 

𝛽𝐵) are modified to 𝐵𝑄𝐿, 𝐵𝑇𝑃, and 𝐵𝐷𝐶, respectively, as shown in Figure A.6. The 

𝐿𝑜𝑤 and 𝐻𝑖𝑔ℎ levels of the factors shown in Table A.1 (preliminary regions of factors) 

are used to modify the ranges in Figure A.5, to ones shown in Figure A.6. By clicking 

“OK”, the dialog box shown in Figure A.4 reappears. 

Table A.1: Factors and their levels for the model 1 of split actuated control for “E2” 

demand scenario  

Factors “Low” Level “High” Level 

Coefficient for virtual queue of vehicles, 𝛽𝑉  -1000  15000 

Coefficient for transit priority, 𝛽𝑏or 𝛽𝑝  -2000 10000 

Downstream blockage penalty coefficient, 𝛽𝐵 -5 25 

 

 

 

Figure A.6: Modifying the “Names” of factors and their Low and High levels 
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At this stage, the properties for the response surface modeling is set. By 

clicking “OK” in the dialog box shown in Figure A.4, the response surface design is 

created for the factor settings, as shown in Figure A.7.  

 

 

Figure A.7: Box-Behnken response surface design  

 

B. Building Responses Models  

Following the design of the response surface model (RSM), the CORSIM 

simulation is executed ten (10) times for each factor level settings (as shown in each 

raw of Figure A.7).  Subsequently, the resulting average total number of bus trips, 

network total travel time, and trip’s average travel time, of the 10 simulation runs are 
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exported to the worksheet in the Minitab to build the model for each response, as 

shown in Figure B.1. The variables Trips, TTT and MTT represent the average 

response values of the ten simulation runs using the corresponding factor settings.  

 

 

Figure B.1: Selection of “Analyze Response Surface Design”  

 

The process of analysis starts by selecting “Analyze Response Surface 

Design…” from the main menu of Minitab, as Stat ➔ DOE ➔ Response Surface ➔ 

Analyze Response Surface Design as shown in Figure B.1. The “Analyze Response 

Surface Design” window opens as shown in Figure B.2. 



197  

 

 
 

 

Figure B.2: Selection of the “Trips” as one response to analyze the model 

 

As there are three responses exported from the simulation model, three 

response surface models are built for the responses. As an example, “Trips” is selected 

as a response to build the model shown in Figure B.2.  

 

 

Figure B.3: Selection of the “Terms” to select the full quadratic model 
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The “Terms…” of a “Full quadratic” model are selected to set up the second-

order model (the single factor effects, the square effects and the interaction among the 

factors), as shown in Figure B.3. All terms are considered in the model for the first 

time to identify the significant terms. By clicking “OK” in the dialog box, the output 

(ANOVA table) of the response surface model is shown as in Figure B.4. 

Subsequently, the non-significant terms are identified as shown in Figure B.5.  

 

 

Figure B.4: ANOVA output for the “Trips” of full quadratic model 
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Figure B.5: ANOVA output for the “Trips” of full quadratic model (the non-

significant terms are highlighted) 

 

The next step is to eliminate the non-significant terms, one at a time, 

commencing with the term with the highest P-value. The model is reanalyzed 

following each elimination. For example, for the “Trips” response, the interaction 

effect between the downstream blockage penalty coefficient, 𝛽𝐵 (BDC) with both 

coefficient for virtual queue of vehicles, 𝛽𝑉 (BQL) and coefficient for transit priority, 

𝛽𝑝(BTP), and the square effect term of 𝛽𝑝 are all eliminated at a time for simplicity; 

since their P-value is near to 1, as shown in Figure B.5. The output (ANOVA table) of 

the response surface model following the elimination of the non-significant terms is 

illustrated in Figure B.6 and Figure B.7.  
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Figure B.6: Selection of “Trips” response for reanalysis, keeping the significant 

terms to develop the model 

 

 

Figure B.7: ANOVA output for the “Trips” following the elimination of the non-

significant terms 
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When the terms of significant effect on the “Trips” response are identified, the 

models for the other two responses (TTT and MTT) are constructed similarly. 

Afterward, given the developed models for all the responses, the optimization is 

executed as described in the following section.  

C. Responses Optimization 

Following the construct of the response surface models for Trips, TTT and 

MTT (including only the significant terms), the next step is to determine the optimal 

combination of factors for specific objective functions (such as minimizing TTT and 

MTT while maximizing Trips).  

To carry on the optimization, the “Response Optimizer…” is selected from the 

main menu of Minitab, (Stat ➔ DOE ➔ Response Surface ➔ Response Optimizer) as 

shown in Figure C.1. The “Response Optimizer” window opens as shown in Figure 

C.2 to set the optimization goals of each response individually. 
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Figure C.1: Selection of “Response Optimizer” 

 

 

Figure C.2: Setting the “Goals” of the various responses 
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The goal (objective) of each response is selected as shown in Figure C.3. 

Herein, both TTT and MTT are to be minimized, and the Trips is to be maximized. 

Subsequently, the “OK” in the dialog box is clicked to execute. The output of the 

response optimizer is shown in Figure C.4.  

 

 

Figure C.3: Selection of triple “Goal” for three responses 
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Figure C.4: Optimal solution for the selected triple objective functions 

 

Figure C.4 shows the optimal settings of the factors of coefficient for virtual 

queue of vehicles, 𝛽𝑉 (BQL), coefficient for transit priority, 𝛽𝑏or 𝛽𝑝 (BTP), and 

downstream blockage penalty coefficient, 𝛽𝐵 (BDC), for the three objective functions 

(minimizing TTT and MTT and maximizing Trips). The optimal setting; one with the 

highest composite desirability of 0.629 is 3040.4 for the 𝛽𝑉 (BQL), -2000 for the 

𝛽𝑏or 𝛽𝑝 (BTP) and 10.15 for the 𝛽𝐵(BDC). The following step is to maybe change the 
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penalty coefficient ranges and repeat the whole process again to test different models. 

For instance, given that the optimal BTP value is identified to be the border (minimal) 

value (-2000) of the initially specified range, a new range can be specified for this 

factor and then the processes of model design, building, and optimization are repeated 

as described above.  

Alternatively, one may seek different optimization arrangements, by 

considering only two response optimization (two goals instead of three), as shown in 

Figure C.5. 

 

 

Figure C.5: Reselection of two “Goals” for the responses 
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Herein, the goals are restated as (minimizing MTT and maximizing Trips), as 

shown in Figure C.5. That is, the TTT response is not considered for optimization.  

Following the reapplication of the surface optimizer on only two responses, the output 

of the response optimizer is obtained as shown in Figure C.6. In this case, the optimal 

factor setting (with the highest composite desirability of 1.0) is 12898.9 for 𝛽𝑉 (BQL), 

10000 for 𝛽𝑏or 𝛽𝑝 (BTP), and -3.45 for 𝛽𝐵 (BDC). One can also seek optimization of 

one goal and obtain the corresponding optimal factor settings in the same way.  

 

 

Figure C.6: Optimal solution for only two objective functions 
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