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Abstract

Setting the traffic controller parameters to perform effectively in real-time is a
challenging task, and it entails setting several parameters to best suit some predicted
traffic conditions. This study presents the framework and method that entail the
application of the Response Surface Methodology (RSM) to calibrate the parameters
of any control system incorporating advanced traffic management strategies (e.g., the
complex integrated traffic control system developed by Ahmed and Hawas). The
integrated system is a rule-based heuristic controller that reacts to specific triggering
conditions, such as identification of priority transit vehicle, downstream signal
congestion, and incidents by penalizing the predefined objective function with a set of
parameters corresponding to these conditions. The integrated system provides real
time control of actuated signalized intersections with different phase arrangements

(split, protected and dual).

The premise of the RSM is its ability to handle either single or multiple objective
functions; some of which may be contradicting to each other. For instance, maximizing
transit trips in a typical transit priority system may affect the overall network travel
time. The challenging task is to satisfy the requirements of transit and non-transit

vehicles simultaneously.

The RSM calibrates the parameters of the integrated system by selecting the values
that can produce optimal measures of effectiveness. The control system was calibrated
using extensive simulation-based analyses under high and very high traffic demand

scenario for the split, protected, and dual control types.

A simulation-based approach that entailed the use of the popular TSIS software with
code scripts representing the logic of the integrated control system was used. The
simulation environment was utilized to generate the data needed to carry on the RSM

analysis and calibrate the models.

The RSM was used to identify the optimal parameter settings for each control type and

traffic demand level. It was also used to determine the most influential parameters on



vii
the objective function(s) and to develop models of the significant parameters as well

as their interactions on the overall network performance measures.

RSM uses the so-called composite desirability value as well as the simultaneous multi-
objective desirabilities (e.g., the desirability of maximizing the transit vehicles
throughput and minimizing the average vehicular travel time) estimates of the
responses to identify the best parameters. This study also demonstrated how to develop
“mathematical” models for rough estimation of the performance measures vis-a-vis
the various parameter values, including how to validate the optimal settings. The

calibrated models are proven to be significant.

The optimal parameters of each control type and demand level were also checked for
robustness, and whether a universal set of relative parameter values can be used for
each control type. For the high traffic demand level, the optimal set of parameters is
more robust than those of the very high traffic demand. Besides, the dual actuated
controller optimal setting under the very high traffic demand scenario is more robust

(than other control types settings) and shows the best performance.

Keywords: Integrated traffic control system, transit signal priority, TSP, TSIS-
CORSIM, calibration, robust, optimization, response surface methodology, RSM,

multi-objective desirability, micro-simulation.
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Chapter 1: Introduction

1.1 Research Problem and Motivation

Traffic demand in the urban area dynamically fluctuates with abrupt changes,
and it is hard to predict future traffic accurately. Optimizing the controller settings in
real time is a challenging task as it entails setting several parameters to best suit some
predicted traffic conditions. There is nearly no logic that can accurately predict traffic
conditions and additionally set the control parameters optimally to suit these
conditions. There is the so-called dependency phenomenon, where the traffic
conditions depend on the control decisions and vice versa. Not to mention the added
complexity of additional functions such as incident detection, management, and transit
priority systems (TSP) are active duties of the same controller. The optimization of
such complex controllers requires analyses at different network loading levels and
configurations. In a typical network, functions such as TSP may result in deterioration
of performance to the regular vehicular traffic at the expense of favoring priority transit
vehicles.

For any typical control system, such as signal control, parameters are
commonly selected to fit specific traffic conditions. It is natural as such that such
systems should be re-calibrated each time they are deployed to different conditions
(that the system was not optimized for). What makes it more challenging is the
dynamics of traffic and the evolution of the traffic demand over the day. A signal
controller with some TSP functions may operate effectively during specific hours but
then fails to run at other times because its parameters are adjusted for only some

specific conditions (but not all). Such complex control systems commonly include
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multiple parameters that affect the performance, and as such the recalibration is
certainly a challenging, difficult multi-dimensional task.

It is also practically impossible to readjust such control systems by carrying the
optimization process online. Instead, a more appealing approach is to optimize such
systems offline, but additionally one has to ensure the robustness of the optimized
settings. The settings should provide optimal (or near) performance measures. In brief
words, such control systems must be calibrated to provide good performance to the
most prevailing traffic conditions in the network, keeping in mind that these
circumstances would certainly change.

Regardless of the controller functions, strategy and methodology to implement,
one has to ensure the robustness of adopted solutions. Robustness can only be assured
with extensive analytical, simulation or field tests under variant traffic conditions and
network configurations. In addition to robustness, there is also need to minimize the
recalibration requirement; it is illogical and impractical to calibrate the system for
every condition it may encounter. In a real-time operational environment, this is
certainly an impossible task. In brief, there is a need to devise a methodology that can
be used to assess the effectiveness of complex control systems, calibrate parameters to
provide optimal (or at least close to optimal) control, and assess the robustness of its
effective control under the varying conditions. The typical notion of a robust system
is one that performs well across a range of (traffic, geometry, weather, etc.) conditions.
Given that this study considers varying traffic conditions and control types, the
robustness of the system should be assured at various levels (multi-dimensional). At
the first level, the purpose is to ensure that for each control type (e.g. dual, protected
or split) the sensitivity of relative ratios of the parameters. The idea here is to check

whether there is a specific relative ratio among the parameters that makes the specific
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control type (dual, protected or split) robust under one specific traffic condition. The
second level purpose is to identify for each control type the optimal robust relative
ratio (identified at the first level) that makes each control type robust if applied to
different traffic conditions. That is, when the traffic conditions vary, how to set the
parameters of each specific controller to perform effectively under such varying traffic
conditions. The third level purpose is to identify the “universal” relative parameters
ratio that can be applied under varying traffic conditions for all control types together.
The details regarding the study of robustness will be discussed later in the study in
Chapters 5, 6 and 7.

The challenge of the devising such methodology is the complexity of the
objective functions and the nonlinearity nature of it in response to the calibration
parameters. Some of the signal controllers in the literature, for instance, are even
integrated with other advanced ATMS components such as incident detection,
management, and transit priority systems (Ahmed and Hawas, 2015), which makes the
calibration of parameters even more challenging. Some of integrated control systems
may have few parameters to calibrate, and some may have many. As such, no matter
what methodology is used to calibrate these parameters, it should be functional with
various control systems and parameters.

In general, Adaptive Traffic Control Systems (ATCSs) have been developed
to adjust signal timing plans in dynamic real-time based on the current traffic
situations, and transportation system capacity. According to a comprehensive study by
Stevanovic (2010), each ATCS has unique features and identified several features to
describe various adaptive traffic control logics. The distinctive working principles of
various ATCS are detection, type of action, adjustment method, the time frame for

adjustment, hierarchical levels, models for the status of traffic condition, signal timing
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parameters to be adjusted, flexibility to form regions, support for vehicle-actuated
operations, and transit operations. None of the commonly used ATCS has the
comprehensive function of TSP, incident detection, and management as well as
congestion protocols altogether.

Nearly all the existing adaptive traffic control systems do not consider the
combined effects of TSP and incidents, simultaneously (Ahmed and Hawas, 2015).
Recently, Ahmed and Hawas (2015) developed a complex integrated traffic control
system, which has the advanced traffic management strategies, such as transit signal
priority, incident detection and management, and the recurrent congestion
management. The developed integrated system prioritizes the competing phases of a
traffic signal by the total expected throughputs (in terms of the number of passengers)
among all competing phases.

This research study presents an attempt to enhance the previously developed
integrated control system by the optimization of parameters. The control system by
Ahmed and Hawas may be best classified as heuristically-based that reacts to specific
triggering conditions (such as downstream signal congestion, incident detection,
identification of priority transit vehicle(s) in the traffic stream) by penalizing some
predefined objective function with a set of parameters corresponding to these
conditions.

The system itself is not an optimization controller but a heuristic one. For
instance, when a transit vehicle is detected, a transit vehicle parameter is activated to
increase the value of the objective function for this traffic approach (and its
corresponding signal phase) on which the transit vehicle is detected. Similarly, if the

congestion downstream a specific phase is reaching the capacity of approach, the
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upstream phase objective function is penalized for reducing the green time allocation
of this phase.

In their earlier work, Ahmed and Hawas carried out extensive analyses to
identify the set of parameters that will suit specific traffic conditions. The analyses
were conducted using trial and error; change the parameter values and assess the
controller performance. Needless to say that the “optimal” settings of the earlier work
corresponded to one of these trials. That is, there was no systematic procedure to
identify the optimal set of parameters, nor to verify the optimality of the solutions and
to ensure the robustness. Given the complexity of such integrated system by Ahmed
and Hawas (2015) and the fact it includes multiple contradicting functions that affect
the network performance, it will be used in this study to demonstrate how can the
proposed methodology in this research be used to calibrate any complex control
systems.

Advanced Traffic Management Systems (ATMS) are commonly studied,
analyzed, and evaluated by using micro-simulation tools. These micro-simulation
models mimic events, such as gap-acceptance to cross or merge the traffic, speed
adjustment, lane changing, and car-following. There are also models like gap
acceptance ones to predict driver’s behavior at signalized intersections (Teodorovié¢
and Jani¢, 2017). Various parameters are used in such models to describe the
individual driver behavior and individual vehicle dynamics. These parameters also
need calibration to replicate real life events accurately, and to minimize the
discrepancy between the observed and simulated traffic conditions (Pande and
Wolshon, 2016). This calibration is the crucial stage for any traffic simulation model

(Hawas, 2002). Similarly, the integrated traffic control system has parameters to



6
regulate traffic for improving the overall network productivity and efficiency, and
these parameters must be calibrated to determine their values for optimal control.

This research has taken a step towards the calibration of the parameters for
various real time traffic control systems (regardless of its complexity and number of
parameters) under several traffic demand scenarios. The calibration guidelines with
the application of the well-known simulation-based optimization method of Response
Surface Methodology (RSM) is developed for ATMS systems calibration and
robustness verification.

This research study aims to develop an RSM-based methodology that can be
used to calibrate and improve the effectiveness and robustness of the solutions of
advanced traffic control systems in general. The methodology would entail the
selection of the optimal settings for the controller parameters. To demonstrate the
details of the method and how it can be used for parameter setting and robustness
verification, the Integrated Traffic Signal Control System developed by Ahmed and
Hawas (2015), is used (as the controller to optimize). The proposed method can be
effectively used to optimize parameters of multi-criteria contradicting objective
functions within the same controller. Three criteria have been used in this study;
maximize the transit vehicles throughput while minimizing the average vehicular
travel time as well as the network overall vehicle travel time. These criteria may
actually contradict each other; increasing transit throughput may increase delay and

travel time for other vehicles.

1.2 Research Objectives

This study has set the following specific objectives:
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= Carry out a detailed literature review to identify the characteristics of existing
transit signal priority systems in specific as the most important function of any
integrated traffic signal control system. The introduction of TSP function to a
signal control has implications on its effectiveness as it commonly results in
exceeding delays for nonpriority vehicles.

= Carry on the literature review on simulation based optimization methods along
with the features of the Response Surface Methodology (RSM) and response
optimization method.

= Develop the framework for complex controller optimization and robustness
verification, and formulate a RSM-based methodology to optimize the multi-
function integrated controller by Ahmed and Hawas (2015)

= Carry on the calibration exercise for the integrated controller under various
traffic conditions, and signal type configurations

= Investigate the robustness features of the identified optimal settings of the
different signal control types.

= Recommend some calibration guidelines and suggest further enhancement to

the developed integrated traffic signal control system.

1.3 Research Question

The TSP is commonly integrated with a traffic signal controller (e.g. Ahmed
and Hawas, 2015). The combination of TSP with the controller (integration) would
have implications on the preset objective functions. For instance, maximizing transit
throughput (by the TSP) is commonly accompanied by increase in vehicular traffic
delays and travel times. Based on the nature of the controller (type and functions), and

the TSP strategies, this study attempts to address the following research questions:
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= What are the state-of-art and state-of-practice to implement TSP system in the
urban network?
= How to calibrate TSP-based traffic control systems, especially if combined
with other functions for signal control, incident and congestion management?
= What is the optimal set of parameters for each control type and traffic
condition?
= How to study the robustness of the integrated controller?

= Are the identified optimal settings robust and to what extent?

1.4 Thesis Outline

This thesis is organized into seven chapters. Chapter 2 presents a detailed
literature review of the existing transit signal priority (TSP) systems. The state-of-art
and state-of-practice of the simulation based optimization methods are discussed in
Chapter 3. It also incorporates all the relevant details of the Response Surface
Methodology (RSM) and response optimization method. Chapter 4 presents the
experimental model's setup with different traffic demand and supply conditions and
data generation with RSM based model building and optimization process for this
research study. Chapter 5 discusses the results, analyses, and robustness under high
traffic demand scenario with different control settings. The results, analyses, and
robustness under very high traffic demand scenario with different control settings are
presented and discussed in Chapter 6. A synthesis of the main findings and the

proposed direction for future research are presented in Chapter 7.



Chapter 2: Literature Review

2.1 Introduction

This research study addresses complex integrated advanced signal controllers
coupled with transit systems priority (TSP). This chapter is intended to review the
state-of-the-art design of traffic signals with TSP functions to identify the influence of
calibration using simulation-based optimization. It reviews the existing methodologies
of transit signal priority systems, both in practice and in theory. Section 2.2 discusses
the general characteristics and features of transit signal priority (TSP) systems, such
as TSP concepts like active, adaptive/real-time with or without optimization, TSP
strategies, and the evaluation of TSP system. This section also provides a summary
discussion of the TSP in general and concludes the main drives behind this research.
The concept of the Integrated Traffic Signal Control System is presented in section

2.3. The simulation-based optimization methods are reviewed in section 2.4.

2.2 Transit Signal Priority (TSP)

Transit Signal Priority (TSP) can be defined as an operational strategy to
facilitate the movement of transit vehicles by enhancing the performance, efficiency,
and reliability of transit systems. This entails adjustments to the traffic signal control
logic to integrate preferential treatment to the movement of transit vehicles as they
approach intersections. In general, TSP strategies offer benefits in minimizing the
delays of transit vehicles. The primary objective of TSP is to reduce the transit travel
time or the transit vehicle throughput. It is believed that TSP can significantly increase
the operational efficiency of the transit vehicles and maintain a better schedule

adherence.
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The priority treatment, given to emergency vehicles and the transit vehicles, is
not same. Although both methods facilitate the movement of vehicles, preemption,
which gives priority to emergency vehicles, interrupts the signal operation while
priority changes or modifies the signal operation. The TSP is used for some priority
service within the coordinated operation of traffic signals that can reduce delay for the
transit vehicles with minimal impact on other traffic. In other words, preemption is a
high degree of priority to facilitate a safe movement of specific vehicles through the
signal with some consideration to the resulting delays.

The configuration and timing of traffic signal control, as well as physical
design of streets, are often optimized to minimize average delay for all motor vehicles.
However, since transit vehicles normally carry a higher number of passengers, this
traffic signal control will not minimize the overall delay per person. Transit vehicles,
therefore, need to be handled differently to minimize the overall delay per person. The
transit lines sometimes use minor streets not the major arterial streets and have a
different speed profile due to bus stops. Therefore, transit vehicles need to be
prioritized to minimize the delay per person. There is also another important reason to
“over compensate” transit vehicles; that is to promote travel by public transport to
reduce pollution and congestion.

The benefits of TSP include also reducing costs of bus operation by reducing
the delay of bus or passengers at signalized intersections and reducing passenger’s
waiting time at the bus stops. Thus, the required number of transit vehicles to serve the
predicted transit demand is minimized. Other significant benefits are improving the
service of on-schedule public transit and increasing the ridership and discouraging the
use of private vehicles. Besides these advantages, however, there are common two

negative impacts or costs on non-priority approaches and neighboring intersections,
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such as increasing travel time in non-priority approaches and interruption on
coordinated treatment at adjacent intersections.

Research studies along with methodologies on the TSP technologies, TSP
concepts (active/passive/adaptive), priority strategies, evaluation methods, and design

criteria are discussed in the following sections.

2.2.1 TSP Technologies

The transit vehicle detection system is a principal component of the advanced
transit signal priority systems as it detects transit vehicles, and transmits this
information to the signal controller. There are different types of media for detection
such as sound, light, radio frequencies, wireless, and so on. Advanced technologies
like global positioning systems (GPS) is commonly used for transit priority. TSP may
be implemented locally in a single intersection or a centralized signal system
controlling by the traffic management center. The effectiveness of TSP relies on transit
vehicle detection and location methods. Usually, there are three types of vehicle
detection methods: point detectors, zone detectors, and transit vehicle movement
detectors (Automatic Vehicle Location — AVL and Automatic Passenger Count -
APC). In the following section, the research studies on connected vehicle technologies
to control the traffic signal are presented.

Ding et al. (2013) demonstrated a multimodal priority signal control system
within an integrated traffic control framework using wireless communication, global
positioning system, and connected vehicles. The framework has been developed and
tested using a microscopic hardware-in-the-loop simulation (HILS) environment
(based on VISSIM) and was demonstrated in a network of six intersections in Anthem,

Arizona. The paper addresses the architecture of multiple priority requests signal
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control system (the Priority Request Generator and the Priority Request Server) and
the HILS environment (The setup of HILS and various wireless communications
among different components of HILS). Also, the functions like emergency vehicle
(EV) preemption and transit priority are presented. The developed model was
demonstrated in a real network with three case studies (An EV from conflicting phase
to the bus, two EVs on concurrent phases but conflicting to the bus, and two EVs from
conflicting phases). The three broad components of priority signal control system are
the On-Board Equipment (OBE), Road Side Equipment (RSE), and the Actuated
Signal Controller (ASC). The vehicle detection system and priority request generator
(PRG) is realized by the OBE, while the communication medium is wireless, and the
RSE realizes the priority request server (PRS). There is also communication between
the RSE and ASC to implement the priority timing strategy from the PRS. The
assumption for case studies included: 1) A case without EV, where the maximum green
time extension is set to (1+a) multiples of the maximum green time extension for the
transit vehicle, (typically, the value of a is 0<a<0.5). This case had no allowed phase
skipping, and actuated control on non-priority vehicle phases was available, 2) A case
with EV, where the maximum green time extension is set equal to 240 seconds for EV

requested phases, and additionally phases skipping be allowed.

2.2.2 Priority Concepts

At a traffic signal, the transit priority is granted in different methods. Among
these methods are the active (conditional and unconditional) and passive priorities. Lin
et al. (2015) presented a comprehensive review of existing TSP controls according to
the application and theoretical aspects. Passive priority gives priority using historical

data of transit vehicles arrivals, and Active priority uses a system for the transit
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vehicles arrivals and detections at the intersection. The active control can be further
categorized into rule-based and model-based. There are different types of TSP

concepts as described below.

Active Unconditional and Conditional Priority

Conditional priority gives transit vehicles priority under certain limits and
conditions like transit vehicle's occupancy, time headway, and delay. The main
objective of this concept is to operate the network efficiently without affecting non-
transit vehicles. On the other hand, the unconditional priority provides priority to a
transit vehicle whenever it is detected. The main aim of this concept is to reduce the
transit vehicles’ travel times for a better service and to encourage people to use it. Both
conditional and unconditional control strategies attempt to improve system
performance. Conditional control is more sophisticated and requires additional
infrastructure/sensors.

Ekeila et al. (2009) presented the development and evaluation of a TSP control
system in response to real-time traffic and transit conditions. Transit arrival time is
defined with its upper and lower boundaries, and the implementation of the TSP
decision is delayed to minimize the impact on cross street traffic. The Automatic
Vehicle Location (AVL) system and the transit arrival prediction model are essential
parts of the overall system. The TSP system by Ekeila et al. consists of three main
components: a virtual detection system, a dynamic arrival prediction model, and a
dynamic TSP algorithm. This system was evaluated through two case studies to
compare its performance vis-a-vis some conventional TSP systems. The first case
study entailed using a hypothetical four-legged intersection and the second one

involved a Light Rail Transit (LRT) line with 17 signalized intersections on a corridor.
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For both case studies, a virtual detection system was developed (in VISSIM), along
with a linear travel-time arrival prediction model. Also, a dynamic TSP algorithm was
developed to determine what TSP strategy to use and when to apply it. The results
showed considerable time savings regarding transit delays. There are many limitations
for this work, such as the Delayed TSP decision is not well explained; no evaluation
in a typical network of intersections; single (not multiple) transit priority to consider

during a cycle with offset recovery time.

Adaptive/Real-Time Priority

Automatic Vehicle Location (AVL) based TSP system has the potential to
overcome the typical shortcomings of traditional active or passive TSP (e.g.,
traditional active or passive TSP does provide priority to the transit vehicle, but it fails
to seize the opportunity to cross the intersection due to the lack of real-time location
of transit vehicle). The real-time transit movement data from GPS can be used to
estimate bus location as well as to predict bus arrival time to reach the bus stops and
intersections. The accurate prediction of Transit's arrival time at an intersection can
help to select the optimal time range to activate the traffic signal controller for priority
service. A few of adaptive traffic signal control algorithms have been enhanced to
embed TSP functions.

Ahmed and Hawas (2015) presented the functional modules of a distributed
adaptive traffic control system to handle boundary conditions of recurrent and non-
recurrent congestion with transit signal priority. The main objective of this model is to
develop three functional modules (transit priority module, downstream blockage
module, and Incident status module) to handle boundary conditions of recurrent and

non-recurrent congestion with transit signal priority. The system employs multiple
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objective functions to improve the overall transit productivity (throughput) and
efficiency (delay times) for all vehicles under heavily congested traffic demand
scenarios. For this, the control system uses the link detectors’ (upstream, mid-block,
and downstream) data to determine the boundary conditions of all entry and exit links
of the intersection.

The transit signal priority module estimates the number of priority and non-
priority buses at every second using a GPS based bus detector device. The bus is
considered as non-priority if it is bound to stop at some intermediate bus stop along
the approach link. If the bus has already stopped or no bus stop along the approach
link and the expected time of the bus to reach the stop line at the downstream end of
the link is less than the green extension, then the bus is treated as a high priority bus
only for actuated traffic control. The model by Ahmed and Hawas was thoroughly
assessed with CORSIM micro-simulation for a grid network of 49 intersections with
different types of signal phase settings. Various traffic demand flows starting from
relatively low to high-traffic volume levels are adopted, and the directional movements
on each link are estimated using User Equilibrium Assignment. The model has some
limitations such as the number of required detectors on each link. Also, the initial
results were only favorable for the pre-timed signal settings (with phase skipping
strategy). There are also some inconsistencies among the set parameters within the
control model and the CORSIM simulator.

Ma et al. (2013) presented some integrated operation for signal timings and bus
speed. The idea is to provide priority to buses at isolated intersections using real-time
adjustment of bus speed through Connected Vehicles technology. A set of integrated
operational rules (such as impacts of preceding bus analysis rules, priority requests

generation rules, priority passing rules, and speed adjustment without priority rules)
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are developed. The relevant rules are selected according to the passing and the arrival
times windows for buses with and without schedule deviation with the objective of
minimizing bus schedule deviation, bus fuel consumption, and emissions. This model
was designed and evaluated with a VISSIM-based simulation platform. The model
outperforms the no priority and common priority strategies. A sensitivity analysis was
conducted under different levels of transit and vehicular demands, as well as
accounting for critical factors that may affect model performance such as available
priority time (maximum red truncation time and maximum green extension time) and
bus speed limits. Some of the model limitations include; 1) No near-side bus stops; 2)
Only green extension and red truncation can be used to provide transit signal priority;
3) There is an exclusive bus lane, and all buses will accept the recommend speed
immediately and accurately. Furthermore, the model was tested at isolated
intersections, and as such, it may underperform on corridor-wide or grid network.

Linetal. (2013) presented a headway-based transit signal priority (TSP) model
for multiple bus requests from different routes to benefit both bus riders and passenger-
car users without increasing the total person delay on the arterial. The main objective
of this model is to minimize the passenger waiting time at the next bus stop without
significantly causing disruptions to the crossing street. This model utilizes the variable
priority time technique to determine the duration of green extension for each
intersection depending on the total person delay estimation and by considering the
impacts of the downstream signal controller. To handle multiple priority requests
based on headways, the model estimates the benefits of the bus passenger at the next
bus stop, the in-bus passengers and the passenger-car users on the arterial before and
after TSP control to determine the optimal priority time. The primary model

assumptions are: 1) only grant the priority to traffic movements on the arterial; 2) no
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change to the common cycle time; the extra green time of prioritized movements is
equal to truncated green time of through movements on the cross street; 3) the green
time should be long enough to clear the initial queue for each movement, and 4) the
passenger cars have no effect on buses in the entry/exit into/from the bus stop. This
model was tested in a hypothetical arterial with six intersections, with only two
intersections operated with the function of TSP. The results showed that the TSP
control provides some benefits to transit vehicles with an increase of the cross-street
passengers delay. Among the limitations of this model is that it applies only green
extension strategy of TSP (of 15 seconds maximum).

Mirchandani and Lucas (2004) presented a strategy, referred to as Categorized
Arrivals-based Phase Re-optimization at Intersections (CAPRI), which integrates
transit signal priority and rail/emergency preemption within a dynamic programming-
based real-time traffic adaptive signal control system like RHODES (Real-time
Hierarchical Optimizing Distributed Effective System). The main objective of this
paper is to enhance the RHODES by using varying weights for buses or transit vehicles
based on the onboard number of passengers and its schedule. The weight is negative
when the bus is earlier to its announced schedule and positive when it is late. This
model was examined using a simulation environment. Results indicated a reduction in
the variance of bus delays at the downstream bus stop when RHODES is implemented.
The standard deviation for the delay decreased from 22.95 seconds (semi-actuated
control- SAC) to 20.02 seconds (RHODES with no bus priority) and 18.65 seconds
(RHODES-BP) at high cross street volumes. The reduction in bus delays on cross
streets due to RHODES-BP is higher (4.46%) for relatively high cross street volumes

(demand of 1100 vehicles/hour), with very little change in cross-street traffic delays
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(16.24 versus 17.02 seconds). In evaluating the model, all intersections were

considered isolated.

Adaptive/Real-Time Priority with Optimization

Adaptive/real-time priority with optimization control strategies predict the
arrival of vehicles, and then, the optimization is done to minimize a cost function (like
a weighted combination of stops and delays for all vehicles). Transit vehicles can be
selectively detected and given a higher weight in the cost function. Therefore, the
resulting signal timings will be more favorable towards the transit. Different routes,
directions or late buses, can be given different weights to prioritize in different extents.
In summary, this approach attempts to provide transit priority based on the
optimization of performance criteria such as passenger delay, vehicle delay or some
combinations of these measures.

Feng et al. (2015) presented a real-time adaptive signal phase allocation
algorithm using connected vehicle data to optimize the phase sequence and duration
by solving a two-level optimization problem (minimization of total vehicle delay and
queue length). The main objective of this paper is to improve the controlled
optimization of phases (COP), which is based on a sequence of stages (used in the
Real-time Hierarchical Optimization Distributed Effective System, RHODES,
adaptive traffic control system). This algorithm applies the two-level optimization
scheme to a dual ring controller. Both phase sequence and duration are optimized
simultaneously. Given the current low penetration rates, the location and speed of
unequipped vehicles should be estimated accurately. An algorithm called EVLS
(Estimation of Location and Speed) is used to construct a complete prediction arrival

table by segmenting the road near an intersection into three regions: queuing region,
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slow-down region, and free-flow region. The two-level optimization algorithm assigns
signal phase sequences and durations based on predicted vehicle arrivals. At the upper
level, a dynamic program (DP) is applied to each barrier group.

The calculation of the performance function of the upper level is passed to the
lower level, which is formulated as a utility minimization problem (total vehicle delay
or queue length based on different operational policies). The sequence of barrier
groups is assumed to be fixed, but the order of phases within each ring in each barrier
group can vary. A real-world intersection is modeled in VISSIM to validate the
algorithm. Different scenarios with two different demand levels and four penetration
rates (100%, 75%, 50%, and 25%) are tested. The results with the various market
penetration rates and demand levels are compared to well-tuned fully actuated control.
In general, minimization of total vehicle delay generates lower total vehicle delay
compared to minimization of queue length. When the demand is higher, the difference
is more significant. The algorithm outperforms actuated control by reducing total delay
by as much as 16.33% in a high penetration rate case.

Hu et al. (2015) presented a person-delay-based optimization method for a TSP
logic that enables transit/signal cooperation and coordination among consecutive
signals under the Connected Vehicle environment. A Coordinated TSP with
Connected Vehicle (TSPCV-C) is proposed to secure the mobility benefit generated
by the TSP logic along a corridor. The problem is formulated as a Binary Mixed
Integer Linear Program (BMILP), solved by a standard branch-and-bound method, to
minimize the person delay. The TSPCV-C is designed to be “conditional”; grants
priority only when the bus is behind schedule and the grant of TSP causes no extra
total person delay. The used assumptions include; 1) cycle length is fixed, 2) sequence

of signal phases does not change, 3) general traffic rate is constant 4) a maximum of
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one TSP is granted within the signal cycle. The optimization algorithm is designed to
find a set of decision variables that minimize the total delay (including bus and general
traffic users). This algorithm was evaluated using both analytical and microscopic
traffic simulation approaches. Four scenarios were compared: without TSP (NTSP),
conventional TSP (CTSP), TSP with Connected Vehicle (TSPCV), and Coordinated
TSP with Connected Vehicle (TSPCV-C). Transit delay and total travel time of all
travelers were used as the measures of effectiveness. The performance of TSPCV-C is
compared against conventional TSP (CTSP) under four congestion levels (v/c ratios
are 0.5, 0.7, 0.9, and 1.0) and five intersection spacing (0.14 to 0.54 miles with 0.1
miles increment) cases. The results showed that the TSPCV-C greatly reduces bus
delay for all congestion levels and intersection spacing cases. The TSPCV is not as
efficientas TSPCV-C, but still, it can reduce delay up to 59% for not too closely spaced
intersections. The TSPCV-C is recommended for intersections that are spaced less than
0.5 miles away, and it can reduce the bus delay between 55% and 75% compared to
the conventional TSP. No significant negative effects were observed at congestion
levels below capacity.

Dion and Hellinga (2002) presented a heuristic-based, distributed, real-time,
traffic-responsive model named Signal Priority Procedure for Optimization in Real-
Time (SPPORT) considering the impacts of transit vehicles. The model accounts for
the interference caused to the general traffic by transit vehicles (stopping in the right
of way to board and discharge passengers), and the potential effects of priority passage
of transit vehicles on other traffic. This model was evaluated with 12 scenarios in an
isolated intersection considering transit vehicles (yes, no), and various temporal
(constant, peaking) travel demands (low, medium, high). The model was also

compared with both fixed-time and traffic actuated control. Among the model
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limitations is the unrealistic setting of amber time (set to 2 seconds), which may create
a dilemma for drivers (usually it should be 3-5 seconds). Also, the relative weights of
priority were not considered in the sensitivity analysis. For the constant demand
scenarios, the model performs worse than fixed timed signal control. The model is also
reported to be time-consuming with short green extension settings.

Ghanim and Abu-Lebdeh (2015) presented a real-time traffic signal
optimization approach for a coordinated network, integrating transit signal priority
using genetic algorithms (GA). The model is aimed at overcoming the uncertainty in
transit vehicle arrival times and difficulties associated with incorporating a TSP system
within a coordinated traffic signal control network. Artificial neural networks (ANN)
applications are used to predict the bus travel time (dwell time at individual stops along
the route).

A Dynamic Signal Priority Optimization in Real-time Traffic (D-SPORT)
control algorithm was developed with cost function formulation based on signal timing
plans, ANN bus arrival prediction model and the GA optimization platform. The cost
function combines weighted sub-functions of network general traffic performance,
transit travel time, and transit schedule adherence. The ANN model predicts bus arrival
times using the number of general traffic vehicles, observed average delay and travel
time, average number of queued vehicles in through, right and left-turning traffic
streams in the past 5 minutes, bus lateness, number of passengers in bus and at bus
stop, and local signal time within signal cycle at which a bus is detected. The ANN
model was trained, tested, and validated in a MATLAB environment using 8871
datasets generated by VISSIM. The decision variables of the GA algorithm are the
cycle length, green times, and offsets. The model was tested in a simulation

environment using VISSIM, using a network with two intersecting one-way streets
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(two through lanes and one exclusive left-turn lane with same cross-streets without
turning bay) under coordinated signal operation. The tested signal control scenarios
are pre-timed with and without TSP, fully actuated traffic control with and without
TSP, real time without TSP, and D-SPORT. The results indicated that D-SPORT could
reduce traffic delay and stops by 5% to 90% for the general traffic along the major
corridors depending on the congestion level and control type in the most experimental
scenarios. The model does not have an adverse impact on crossing streets traffic.
Concerning the transit traffic, the model resulted in reducing transit delay and number
of stops by 15% to 85%.

Zhou et al. (2007) presented an adaptive transit signal priority (TSP) model
using a parallel genetic algorithm (PGA) to optimize the traffic signal control (phase
plan, cycle length, and green splits) at isolated intersections considering the
performance of both the transit and general vehicles. The model assigns weighting
factors to individual transit vehicles that require TSP service. This weighting factor
accounts for the passenger occupancy of the transit vehicle, the queuing conditions of
all intersection movements, and the schedule lateness of the transit vehicle. The PGA
searches for a near-optimal traffic signal timing solution to optimize the intersection
average vehicle delay. This model was implemented and tested in a “star-like” network
of one center and four adjacent intersections upstream the center intersection. The four
adjacent intersections create traffic platoons and fluctuations. The simulation results
showed that the PGA-based optimizer outperformed the fully actuated NEMA TSP
control. Among the limitations are the use of single intersection for TSP evaluation,

and also the huge computational resources needed for an arterial control.
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2.2.3 Priority Strategies

TSP implementation is done through several strategies, such as extending
greens, altering phase sequences, and including distinct phases without disrupting the
coordination between adjacent intersections. The characteristics of these strategies are
dependent on the selected priority concept. In the remaining part of this section, we

highlight some of these strategies.

Passive Priority Strategies

Passive priority strategies are based on the schedules of the transit vehicles.
They are developed based on the assumption that transit vehicles adhere to the planned
schedule. When transit volume is higher (exceeds 60 buses per hour), the passive TSP
with arterial coordination can provide much better performance than others (Lin et al.,
2015). They are easy to implement and require low investment since no detection
system is used. Passive priority strategies include green adjustment, phase splitting,
cycle length reduction, transit coordination, metering vehicle, and queue jumps.

Green adjustment is two types; extending the green phase and truncating the
red phase. The signal timing is changed depending on the arrival time of a transit
vehicle. In phase splitting strategy, the signal phase is split into two equal phases
without affecting the cycle length and the green time of cross streets traffic. The
appropriateness of this strategy usually depends on transit and non-transit vehicles
volumes. The cycle length reduction strategy is like the phase splitting strategy.
However, the cycle length is reduced to decreases the stopping time of the transit
vehicles. The strategy is likely to lessen the efficiency of control (by increasing the
loss time), as the all red clearance times and the start-up delays at the beginning of

each phase will be same for reduced cycle length. In transit coordination strategy, the
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offsets of the signals along the route of the transit vehicles are designed for signal
coordination based on the schedule of the transit vehicles. Coordination is designed
along the path of the transit vehicles if the transit vehicle path is not through an arterial.
This strategy may not be effective due to the difficulty of predicting the dwell time at
different stations along the route. A metering vehicle is an approach that limits the
number of passenger cars to pass in the congested intersections or regions to increase
the reliability and efficiency of transit vehicle operations. Finally, the queue jumps
strategy is only suitable at intersections with designated transit vehicle lane(s). The

transit vehicles are given early green times to jump the vehicle queues.

Active Priority Strategies

Active priority strategies are based on real-time conditions and are better than
the passive strategies since they are responsive to traffic conditions. However, they
require greater investment due to the essential implementation of a detection system.
Active priority strategies include a green extension, red truncation or early green,
phase insertion, phase rotation or substitution, and queue jumps. These strategies are
like the ones used in the passive priority systems, but they are executed only when a
transit vehicle is detected.

Zhou and Gan (2009) presented a signal control design for queue jumper lanes
with actuated TSP strategies and compared its performance with that of the general
actuated mixed-lane TSP. The associated signal control designs for the TSP and queue
jumper lanes include phasing, phase splits, multiple bus services, and coordination
recovery and green reimbursement. The model was evaluated in a micro-simulation
environment by comparing its performance with that of the general mixed-lane TSP

under various traffic volumes and bus stop locations. The results showed that the
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proposed TSP with queue jumper lanes could reduce more bus delays than can the
commonly-used mixed-lane TSP, especially under high traffic volume conditions.
Also, a nearside bus stop is superior to the far-side bus stop regarding bus delay
(reduction of bus delay up to 25 percent) and overall intersection delay for the
proposed design. Also, the impact of bus volumes on the general traffic on both major
and minor streets is not significantly different from the mixed-lane TSP because of
limiting the continuous calls for TSP to no more than two in one or two continuous
signal cycles. The model is limited in the sense it accounts only for intersections with
three phases (left turn are only permitted on the minor street). For four phase
intersections, the results can be entirely different, and a new strategy has to be
developed for coordination recovery and green reimbursement.

Green reallocation is another strategy that splits the original green times with
respecting the phase transition sequence. Hu et al. (2015) demonstrated this strategy
based on person-delay using optimization method for a TSP logic (Coordinated TSP
with Connected Vehicle, TSPCV-C). This model is composed of three major
components; a transit detection component, a TSP timing plan and transit speed

calculation component, and finally a logic assessment and implementation component.

Signal Recovery/Compensation

Applying transit priority strategies may adversely affect other traffic and signal
coordination. Signal compensation and offset recovery could be used to recover these
effects. The additional green time given to the desired phase is taken from other phases
in the following cycles to keep the same signal cycle time. This can cause delays and

queues on the other phases especially if the frequency of transit signal priority is more.
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The implementation of this strategy depends on the incidence frequency and
characteristics of priority requests.

When a transit signal priority strategy is applied, the offsets of the signals may
get altered, and that may disrupt the coordination of the signals on an arterial. The
offset recovery is employed to recover the offset of the signal by adjusting the cycle
lengths of the next two or three cycles. Signal recovery is usually applied on a network
scale.

During the implementation of TSP, coordination can be interrupted due to the
alteration of signal settings at intersections. Therefore, the strategy to incorporate TSP
into a coordinated arterial should be thoroughly examined. He et al. (2014) presented
the mathematical optimization model formulation of coordinated-actuated traffic
signal priority control using Mixed-Integer Linear Program (MILP). The model was
examined using a microsimulation tool. The model is designed to handle the multiple
priority requests from different modes of vehicles and pedestrians with coordination
and actuation simultaneously. Vehicle-To-Infrastructure (V2I) communication is used
for getting the real-time information from the priority vehicle. Signal coordination is
achieved by integrating virtual coordination requests, and when the signal coordination
is not fulfilled, a penalty is added to the objective function. Two assumptions were
used; the sequence of phases in aring is fixed, and an existing off-line optimized signal
coordination plan is available. The model was examined with three coordinated control
methods, two bus frequencies and four different scenarios of nominal traffic volume
(from low to high) for sensitivity analysis. The simulation experiment showed better
results than the state-of-practice strategies. Results also indicated that greater

coordination weight might cause some adverse impact to buses and pedestrians.
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Conflicting/Multiple Priority Requests

Conflicting or multiple signal priority requests can occur. For instance, two
transit lines crossing each other at an intersection can arrive at the same time requesting
signal priority in different directions. Similarly, multiple priority requests of various
modes of vehicles and pedestrians can occur. Also, buses on the same transit line
initiate multiple priorities requests if they arrive successively with some time gaps,
which results in calls at different stages of the traffic signal. Even two buses served by
the same stage can cause various requests for signal priority if it is impossible for both
buses to pass the intersection at the same green period. Typically, conventional
controls, heuristic rules like first-come first served, are used to overcome this issue.

Zamanipour et al. (2014) presented a mathematical optimization model
formulation to present a unified decision framework for multimodal traffic signal
control. They used relative importance for different modes based on the information
collected from connected vehicles and traditional detection system. The model is
aimed to handle the multiple priority requests of various modes of vehicles and
pedestrians. A policy-based integrated priority control framework is developed.
National Electrical Manufacturers Association (NEMA) dual-ring eight-phase
controller is used assuming the sequence of phases in each ring is fixed and phase
skipping is not allowed. This model was evaluated with using two modes; Transit and
Trucks. The model, although tested in the simulation model, does not account for

delays due to coordination and green time extensions.

2.2.4 Evaluation

Lin et al. (2015) presented a comprehensive review of existing TSP controls

according to the application and theoretical aspects by considering priority control
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methods, and system evaluations. This paper reviews three effective ways of system
evaluations: analytical evaluation, simulation test, and field test. Moreover, this study
analyzes field benefits of TSP in 24 cities around the world.

A critical step of the implementation of TSP is its assessment. Bus performance
and reliability can measure the effectiveness of a transit signal priority. Bus
performance is measured by bus travel time, delay, and speed, while bus reliability is
measured by headway or schedule adherence. Moreover, the performance of the
general vehicles and overall intersection/network is used to evaluate TSP system. The
general vehicles performance is measured by vehicle delay and cross street vehicle
delay, and the overall intersection/network performance is measured by total delay and
total passenger delay. These performance measures are commonly determined by

traffic simulation, analytical modeling, or actual TSP implementation.

Analytical Evaluation

The effects of active transit priority are difficult to model analytically due to
the stochastic nature of the transit arrivals, which can be described as “events” rather
than traffic flow. Analytical evaluation is done using queueing theory and regression
models, to assess the efficiency and reliability of TSP control, and identify influenced
factors.

Bagherian et al. (2015) presented an analytical method to enhance the
evaluation of TSP at the network level using parameters such as traffic flow and signal
characteristics. The model operational rules are: 1) pre-computed signal timing is
utilized when no bus is approaching the intersection; 2) green extension (GE) would
be granted if a bus is detected on an approach, the signal is green, the bus can pass the

stop-line with this extension, and once the bus crosses the stop line, transition to the
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next phase is triggered; 3) red truncation (RT) is granted if a bus is detected on an
approach and the signal is red; 4) the amounts of GE or RT time are compensated in
the next cycle; 5) both prioritizing and compensation are ignored if a bus is detected
in the next cycle; and 6) the effect of opposing flow rate is reflected in signal timing
(i.e., allocated green time for each phase). The SIDRA model for traffic analysis is
used to obtain sequence and phase times, and to compare the delay values vis-a-vis
those obtained from the TSP delay function. The TSP model was examined by two
case studies; first, an isolated T-intersection is used to address both TSP strategy and
model efficiency, and second using a corridor in Australia. The results indicated that

the delay estimated by the delay function closely matches micro simulation results.

Traffic Simulation Software

The microsimulation techniques have been widely used to evaluate and assess
the efficiency and effectiveness of signal timing settings (Lin et al., 2015). For the
preliminary study and planning of large transportation projects, traffic simulation
software can provide more depth and analyses of project’s impacts. Simulation
technologies have replaced traditional mathematical models for understanding and
foreseeing the dynamics of traffic movements and control operations. Currently, there
are several popular micro-simulation models, such as AIMSUM, CORSIM, VISSIM,
TRANSMODELLER, and PARAMICS; however, engineering (statistical) judgment
with calibration is required for adopting the most appropriate, efficient simulation tool

for the particular type of project.
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2.2.5 Discussion

This section summarizes the literature reviewed on various aspects of transit
signal priority (TSP), such as the types of TSP concepts and strategies, the evaluations
of these strategies, and the considerations for the planning and implementation of TSP.

TSP concepts are commonly categorized as Passive Priority, Active Priority or
Adaptive/Real-Time Priority with or without optimization. Passive priority uses a pre-
timed signal plan to favor bus operation without explicitly recognizing actual bus
presence. Such passive priority strategies include green adjustment, phase splitting,
cycle length reduction, transit coordination, metering vehicle, and queue jumps. Active
priority alters the signal operation in response to the presence of a transit vehicle using
detectors. Active priority strategies include a green extension, red truncation or early
green, phase insertion, phase rotation or substitution, and the green reallocation (Hu et
al., 2015). Depending on the location and capabilities of the bus detectors, active
priority can also be classified as unconditional and conditional. Unconditional active
priority grants priority to all transit priority requests; whereas, conditional active
priority provides priority only to buses that meet certain predefined criteria, such as
schedule or headway adherence, high passenger occupancy, or queue length of traffic.
Based on real-time flow profiles of transit and general vehicles, adaptive priority
develops signal timing plans to provide priority for transit vehicles while incurring the
least delay to the transit passenger or total person (Lin et al., 2015). Adaptive priority
entails using optimization models, Genetic algorithms and Artificial Neural Network
(ANN) based control algorithm (Ghanim and Abu-Lebdeh, 2015).

The evaluation of TSP strategies is commonly based on the traffic

performance, including the assessment of bus performance, bus reliability (headway
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or schedule adherence), general and cross street traffic performance and overall traffic
performance. Also, evaluation methods can be categorized into three types: analytical
evaluation, simulation test, and field test (Lin et al., 2015). In the majority of the
literature, the TSP evaluation has been commonly reported with an improvement in
transit performance (i.e., travel time, delay). However, the improvement gained
regarding transit performance is typically accompanied by deterioration in the
performance of the cross street traffic.

TSP may be applied at an isolated intersection, on an arterial, and over a
network of intersections. Only very few papers have reported the performance of TSP
in a complex urban traffic network with many overlapping or conflicting bus routes
(Ahmed and Hawas, 2015). Transit signal priority at an isolated intersection needs a
detection system for active priority. In the case of passive priority, an efficient arrival
prediction model is required to get information regarding transit vehicles. When
applied along an arterial with a group of signalized intersections, it is common to
consider the coordinating between the adjacent intersections. For a network-based
application, complex and advanced transit detection systems are essential (such as the
Automatic Vehicle Location (AVL) and Automatic Passenger Count (APC),
Connected Vehicle (CV)), and should be coupled with the non-transit vehicle queue
detectors (Ding et al., 2013). The real-time detection system monitors the transit
vehicles continuously, and the signal controller integrates the monitored vehicle's
information with the non-transit flow data to provide priority to the transit vehicles. At
this level, various priority strategies and different optimization models can be applied
to optimize the network performance.

In general, TSP interrupts normal signal operations, and this creates delays to

general traffic by serving priority requests. In some way, the performance of TSP
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control strategies relies on transit vehicle detection system, which in turn influences
TSP operations. Short or long detection ranges may lead to less efficient TSP
operations. Short detection range technology enables transit identification too near
from the intersection, while the long detection range transit vehicles to be located at a
far distance from the intersection. As such, short detection range implies late priority
calls which would have limited lead time for treatment. On the other hand, long
detection ranges can result in less predictability or inaccuracy of the transit vehicle’s
arrival at the intersection, due to the uncertainties of transit movements like dwelling
at stops. Another important aspect is the location of bus stops (a near side stop is
located before the intersection, and a far side stop is located after the intersection). In
the case of far side bus stop, the TSP operation depends on the detection of the bus
itself, but for nearside bus stop, the TSP operations should additionally account for the
dwelling time at the bus stop.

Considering all these issues, Ahmed and Hawas (2015) developed an
integrated traffic control system with TSP using a GPS based real-time bus detector
system. The bus is considered as non-priority if it is bound to stop at some intermediate
bus stop along the approach link. If the bus has already stopped or no bus stop along
the approach link and its expected time to reach the stop line at the downstream end of
the link is less than the green extension, then the bus is treated as a high priority bus.
If the bus cannot reach the stop line within the green extension, the bus is regarded as
anormal priority. This provides treatment to the issue of near or far side bus stop. Also,
Ahmed and Hawas introduced mid-block detectors to overcome the problem of short
or large detection range, but the impact of these detectors is not evaluated.

Furthermore, despite the fact that the TSP system was tested with various signal
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controllers (split, protected, dual), there is no adequate discussion of the implications
(pros and cons) of integrating the TSP with the different controllers.

The majority of the TSP systems in the literature lack some fundamental
aspects that this research is attempting to address. First, the TSP s in literature have
limited applicability to network operation (with overlapping and intersecting transit
routes). Second, there is also another limitation because of the assumption that one
point of transit vehicle’s detection is sufficient for the system to operate. As indicated
earlier there is advantages and disadvantages of both short and long term detection.
Each detection range requires specific technology (with pros and cons), and as such,
coupling both detection techniques (and ranges) might provide an edge. Third, nearly
all the presented TSP’s cannot be generalized to conditions beyond which the
conditions they are calibrated for and tested. The robustness of a TSP system is verified
if and only if it results in near optimal (or at least good) measures of performance in
all conditions it may encounter in real life. A TSP working effectively for a specific
traffic situation may not be as effective for another condition.

The TSP system parameters are commonly selected to fit specific traffic
conditions. It is natural as such that such systems should be re-calibrated each time
they are deployed to different conditions (that the system was not optimized for). What
makes it more challenging is the dynamics of traffic and the evolution of the traffic
demand over the day. A TSP may operate effectively during specific hours but then
fails to run at other times because its parameters are adjusted for only some specific
conditions (but not all). Furthermore, TSP systems commonly include multiple
parameters that affect the performance, and as such the recalibration is certainly a
challenging, difficult multi-dimensional task. It is not clear from the literature how

were most of the TSP systems calibrated and how parameters were estimated.
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Apparently, it seems like a trial and error calibration approach. It is certainly unclear
also how general ATMS systems (and specifically complex TSPs) are calibrated for
real time operation to function effectively at various demand levels and network
configurations. A rule of thumb is no TSP system fits all traffic conditions.
Regardless of the TSP strategy and methodology to implement, one has to
ensure the robustness of adopted solutions. Robustness can only be assured with
extensive analytical, simulation or field tests under variant traffic conditions and
network configurations. In addition to robustness, there is also need to minimize the
recalibration requirement; it is illogical and impractical to calibrate the system for
every condition it may encounter. In a real-time operational environment, this is
certainly an impossible task. In brief, there is a need to devise a methodology that can
be used to assess the effectiveness of complex TSP based systems, calibrate its
parameters to provide optimal (or at least close to optimal) control, and assess the
robustness of its effective control under the varying conditions. The challenge of the
devising such methodology is the complexity of the objective functions and the
nonlinearity nature of it. Some of the TSP s found in the literature are even integrated
with other advanced ATMS components such as incident detection and management
(Ahmed and Hawas, 2015), which makes the calibration of parameters even more
challenging. Some of the TSP s may have few parameters to calibrate, and some may
have many. As such, no matter what methodology is used to calibrate these parameters,
it should be functional with various TSP systems and parameters. In the remaining part
of this thesis, we highlight the main features of the proposed solution methodology
and demonstrate how it can be used for optimizing the parameters through various case
studies and ensure consistency and robustness of solution effectiveness at different

operating conditions. To demonstrate the methodology, the integrated system
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developed by Ahmed and Hawas (2015) shall be used. Any other TSP algorithm can
also be used instead; the Ahmed and Hawas (2015) was merely used because it is one
of the most complicated TSP-based systems published recently, and it applies to all

traffic control types (split, protected and dual).

2.3 Integrated Traffic Signal Control System

Traffic signals operate in pre-timed and actuated (semi-actuated and full-actuated)
control modes. In pre-timed control, the control parameters (e.g. cycle length, phase
splits, and phase sequence) are preset based on average traffic demand from historical
data at different time periods of the day. In actuated control (based on the vehicle
actuation), the control parameters (e.g. cycle length, phase splits, and sequence) vary
in response to the current traffic situation. However, still, these control parameters
depend on preset fixed parameters, such as unit extension, minimum, and maximum
green. Therefore, these signal control systems can handle the recurrent congestion
efficiently, but they do not have the ability to cope with non-recurrent congestion.
Adaptive Traffic Control Systems (ATCSs) have been developed to adjust signal
timing plans in dynamic real-time based on the current traffic situations, and
transportation system capacity. According to a comprehensive study by Stevanovic
(2010), each ATCS has unique features. This study identified several features to
describe various adaptive traffic control logics. Among the potential features, the
following functions can help in the identification of the distinctive working principles
of each respective ATCS, as shown in Figure 2.1. This list does not include other
features that are nearly as important (e.g. handling non-recurrent traffic conditions in

urban streets). It is evident that none has the function of incident detection and
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management protocols. Therefore, an alternative control logic was developed by
Ahmed and Hawas (2015) to combine incident detection and management protocols,
transit signal priority, along with the recurrent congestion management into one

integrated control system.

The control system by Ahmed and Hawas (2015) may be best classified as
heuristically-based system that reacts to specific triggering conditions (such as
downstream signal congestion, incident detection, identification of priority transit
vehicle(s) in the traffic stream) by penalizing some predefined objective function with

a set of parameters corresponding to these conditions.

The objective function of the controller is to maximize the throughput of
passengers. This is not a typical optimization (maximization) process over a specific
extended time-period, but rather an optimization at specific time instants (triggers). At
any time (triggered by activating specific conditions), following the minimum green
of the current phase, the system allocates the green to the phase (either current or the

competing one) that has the estimated maximum queue of passengers.

In estimating the queue of passengers for any phase, the model accounts of
passengers on priority buses (increases the passenger queue with more priority buses).
For instance, when a transit vehicle is detected, a transit vehicle parameter is activated
to increase the value of the objective function for this traffic approach (and its
corresponding signal phase) on which the transit vehicle is detected. The model also
accounts for downstream congestion status (decreases the passengers queue with
downstream blockage conditions). If the congestion downstream a specific phase is
reaching the capacity of approach, the upstream phase queue of passengers is

readjusted to reduce the green time allocation of the phase(s) that are likely affected
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by the downstream congestion. The model also reacts to incident alarms on a specific
approach by increasing the passenger queue of the phase serving this approach to allow

incident recovery.

Ahmed and Hawas (2015) suggested that the system should undertake some
actuation decisions of a currently running green phase based on the “establishment” of
some boundary conditions, as shown in Figure 2.2. There are four modules, which are
deployed to check the so-called boundary conditions. According to Ahmed and Hawas
(2015), the traffic regime state module estimates the congestion status of the upstream
link to a signalized intersection, the incident status module determines the likelihood
of an incident on the link, the transit priority module estimates if the link is flagged for
transit priority based on the transit vehicle location and type, and the downstream
blockage module scans all downstream links of the intersection and determines their

recurrent blockage (spillback) conditions.

The transit signal priority module estimates the number of priority buses and their
type (normal or high). A bus will be flagged as no priority and as such will not be
accounted for in the logic, if it is bound to stop at some intermediate bus stop along
the approach link at time t. i.e., the bus is yet to stop. If the bus has already stopped (or
no bus stop along the approach link), we check the expected time of the bus to reach
the stop line at the downstream end of the link. If the bus is expected to reach the stop

line within some interval, A g; ¢, , the bus is treated as a high priority bus. If the bus is
to reach the stop line beyond A g; 4, , the bus is treated as a normal priority one. A
gi.», IS the pre-specified time extension period for the actuated signal. The logic

identifies the numbers of no priority, normal and high priority buses, and is capable of



39
treating them differently by separate penalty values. Nonetheless, in this research, the

penalty of both normal and high priority buses are set equal.

The downstream blockage module declares if any downstream blockage condition
exists (physical constraint on the downstream exit link(s) for an individual phase, ¢);)
at each detector data aggregation interval. This module checks the balance between
the number of vehicles to be served for the time Ag; o, from the upstream approach
link, and the available physical spaces on the downstream exit link. The presence of
downstream blockage condition is indicated if the estimated number of vehicles to be
served (from the upstream demand side) exceeds the number of vehicles that could be
accommodated physically (with the downstream supply side), at the time t. It is to be
noted that the available number of vehicles that could be accommodated on a
downstream exit link is estimated considering the jam condition as the worst case
scenario.

The actuation module then estimates the so-called actuation index for each
individual phase and then optimize to identify the next candidate phase set based on
the signal control type (e.g. dual, protected, split). The controller then deploys the best-

identified candidate phase set.

According to Ahmed and Hawas (2015), the proposed system operates in a manner
similar to fully actuated signal (with split phase or protected phase or dual ring phase
settings). The system has a continuously running actuation module which decides the
“most deserving” phase set to go green from the inputs of the four modules at each
control decision check point. While deploying the actuation module, the system also
scans all feasible phase sets (including the current one). The system then estimates the

value of the so-called actuation index for all the feasible phase sets, and determines
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the optimum (most deserving) candidate phase set; the one that possesses the

maximum actuation index value, to serve green.
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Figure 2.2: The architecture of the integrated traffic signal control system (source:
Ahmed and Hawas, 2015)
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For the actuated controllers, the first check point is the pre-selected minimum
green-time g{f‘qi,‘; (of the current phase set @, at intersection i). If the actuation module
identifies the currently running green phase set as the optimum (most deserving)
candidate phase set at this first check point, then the green time is extended for a period
of Ag; o ,where Ag; o is the adopted (pre-selected) green time extension seconds for
the phase set @, at intersection i. The whole control system logic is repeated then (a
loop) at each Ag;q_ interval, which forms the consecutive check points and this
process is constrained with some limiting conditions.

If the optimum (most deserving) candidate phase set is currently red flagged, then
the current green phase set is truncated to switch to this optimum candidate phase with
the maximum actuation index value. The control system logic is repeated when the
current phase set reaches the first check point i.e. the minimum green time of a phase
set.

In order to determine the optimum phase set @, at any time t, the actuation module
acts as an optimization model with a maximization problem. At any time t at the
intersection i, while the current green phase set is @, the aim of this maximization
problem is to search the best deserving candidate phase set &, out of W,, which is a
set of all feasible candidate phase sets while the current phase set is ®.. The best
candidate phase set is termed as the phase set(s) which would produce the maximum
actuation index, Zifq,kvalue(s). The optimum phase set, ®, is selected from either
®,-1 or -2 (based on the type of control and the time with respect to maximum
green), where, ®,-1 and @,z refer the index of the best candidate phase set of the

highest and second highest Z{lq,k values, respectively, given that the current green

phase set is @, and the set of feasible candidate phase sets, W..
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As any phase set consists of two individual phases (as per the dual ring operation
phase settings format), the final adjusted virtual queue of passengers of the feasible
phase set is estimated by summing the adjusted virtual queue of passengers of the two
corresponding individual phases. The phase set incurring the highest adjusted virtual

queue of passengers is denoted as the optimum or most deserving candidate phase.

The base congestion indicator on the upstream of an individual phase ¢ denoted
by ]i/’ '¢t>j refers to the virtual queue of passengers on the upstream approach of that
individual phase ¢jat time t, and could be estimated from Eq. (2.1). This base
congestion indicator (]/ L) ) is estimated without any adjustment for the incident status

on the upstream approach of that individual phase ¢j attimet. Thatis, Eq. (2.1) applies
only to normal recurrent conditions; that is if no incident is detected on the upstream

approach of phase 9.

]ld)]

Where C” , €2 and CPP ) are the total vehicular counts of the cars, c,
¢] l:¢j,u l,(l)]',u

normal priority buses, b, and high priority buses, p, respectively, at time t on the

upstream approach link, u/, relevant to phase, ¢; , of intersection i. OC Ol.bd),u/and
’ ]r

i

Of’(p s are the average passenger occupancies of cars, ¢, normal priority buses, b, and
) ]r
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high priority buses, p, respectively. The parameters ﬁi”¢ s and ﬁf’(p _, are coefficients
’ j‘ ’ ]!
for transit priority for normal and high priority buses, respectively. rivg. ./ 18 the ratio
) ]I

of the vehicular queue length to the physical capacity of the corresponding link length
V - - = - -
li'¢j'u/. ﬁi’%u, is a coefficient for virtual queue of vehicles.

N,t

b = 1), the value of the base congestion

If an incident is detected (i. e. I
indicator, ]i{ ';]_ is adjusted (increased) by the incident penalty coefficient ﬁiN o/ to

account for the potential incident on the upstream approach, u/ , as shown in Eq.

(2.2):

t — N N,t /.t
]i’¢/ - (1 + ’Bi,¢j,u/ X Ii,qb]-,u/) ><]i,(l> (2.2)

j
The ]ifqu value (in Eq. 2.2) is further adjusted (decreased) as shown in Eg. (2.3) by

applying a downstream blockage penalty coefficient ,Bf ¢! to account for blockage

on the downstream exit link of phase®;. This applies only if the indicator of the

B,t

downstream congestion I byl =

i}f-a/ = 1. If the downstream congestion indicator;
’ ]!

BY
0, the denominator value [(1 + Iﬁ}:w) "4’1"‘1/] -1, and Af_¢j = ]it,qu' The value of
’ ]!

A{f,quis referred to as the actuation index of the individual phase ;.

]it,d’j

— (2.3)
(1+1.B’t )l'qu'dl
1,¢j,d/

L

t —
A',qu =
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Figure 2.3: Mathematical model of the Integrated Traffic Control System

It is important to note though that all links of the network have detectors. That is,
the downstream (exit) link of a phase is simultaneously an upstream link of another
phase at the downstream intersection, and as such, it is naturally equipped with
detectors. The congestion on the downstream link is estimated using the information
extracted from the downstream (exit) link detectors as indicated in Eq. (2.3). The

actuation index of a candidate phase set Zf,q)k is the sum of the actuation indexes of
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the two concurrent individual phases of the candidate phase set, ®;, ®, = {¢p** U
).

VA

Lo = Apgia + A gz (24)

t
i,(l)k’l

The Z{q,k index represents the final adjusted virtual queue of passengers

considering the estimated impact of all the relevant boundary conditions which are
represented by respective modules. The most deserving candidate phase set is the one

of the maximum Z{ ,, value.

Eq. (2.3) is introduced to penalize the links that have full or partial blockage; if
one link is fully blocked, the upstream phases of this particular link will be “penalized”
and as such lesser green times to these phases that feed vehicles to such blocked link.
This will prevent any further blockage on the incident links, reduce the likelihood of
full blockage and prevent spill backs from and along fully blocked incident links.

Eqgns. (2.1), (2.2) and (2.3) are all used to estimate the congestion indicator (base
or adjusted), but their values will depend on the met identified boundary conditions.
For instance, the transit priority parameters and terms in Eq. (2.1) accounts for priority
buses. If a priority bus is detected, these terms will be processed and as such the base
congestion indicator will give different results as compared to the case where no
priority buses are detected. The downstream congestion (in Eq. 2.3) as well is a
boundary condition that is flagged by a blockage on downstream links (if and only if

downstream exit links are flagged with blockage).
2.4 Simulation-based optimization

Contemporary simulation-based optimization methods can be categorized as

discussed by Carson and Maria (1997) and shown in Figure 2.4 into Gradient-Based
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Search, Stochastic Optimization, Response Surface Methodology, Heuristic Methods,
A-Teams, and Statistical. Gradient-Based Search Methods estimate the response
function gradient to assess the shape of the objective function and employ
deterministic mathematical programming techniques. Also, commonly used gradient
estimation methods are Finite Difference Estimation, Likelihood Ratio Estimators
(Treiber and Kesting, 2013), Perturbation Analysis, and Frequency Domain
Experiments.

Stochastic optimization is the way of finding a local optimum for an objective
function using an iterative method based on gradient estimation. It has two features
relevant to the calibration of micro-simulation traffic models: (1) considering the
presence of measurement errors in the objective function explicitly and (2) the results
are usually faster to identify solutions than many other algorithms (Daamen et al.,
2015). Stochastic optimization has been used for the traffic simulation models by
Balakrishna et al. (2007), Ma et al. (2007), Lee and Ozbay (2009), Vaze et al. (2009),
Ciuffo and Punzo (2010), (Hale et al., 2015b), Mudigonda and Ozbay (2015), and Paz
et al. (2015b).

Response surface methodology is a process for fitting a regression model to the
output variable(s) of a simulation model. More details about this method are presented
in the following sections. The response surface methodology has been used for the
optimization of transportation systems by Joshi et al. (1995), and Jafarzadeh-
Ghoushchi (2015).

Heuristic (direct search) methods require function values to balance
exploration with efficient global search strategies (Genetic Algorithms, Evolutionary
Strategies, Simulated Annealing, Tabu Search, and Simplex Search). Genetic

algorithms are the most widely used for calibrating microscopic traffic simulation
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models (Daamen et al., 2015, Manjunatha et al., 2013, Vasconcelos et al., 2014a,
2014b, Ma and Abdulhai, 2002, Schultz and Rilett, 2004, Kim et al., 2005, Ma et al.,
2007, Ciuffo and Punzo, 2010). Simulated annealing is a method for solving
unconstrained and bound-constrained global optimization problems, and it has been
used in numerous transportation applications by Chang et al. (2002), Chen et al.
(2005), and Ciuffo and Punzo (2010).

Asynchronous team (A-team) is a method that involves combining various
problem solving strategies so that they can interact synergistically (Carson and Maria,
1997, Abdalhag and Baker, 2014, Paz and Molano, 2014, Hale et al., 2015a, Osorio
and Chong, 2015, Osorio et al., 2015, Li et al., 2016, Paz et al., 2015a).

OptQuest/Multistart algorithm is a type of the A-team methods, which is at the
same time a scatter search heuristic and a gradient-based algorithm. A shortcoming of
this approach is a large number of objective function evaluations (i.e., traffic
simulations) it requires (Daamen et al., 2015). This has been applied in the microscopic
traffic simulation models by Ciuffo et al. (2008), Ciuffo and Punzo (2010).

The statistical methods include the Importance Sampling, Ranking and
Selection, and Multiple Comparison. Additionally, Zhong (2016) used a cross-entropy
method with probabilistic sensitivity analysis framework for calibrating microscopic
traffic models.

In simulation-based optimization, the best parameter values are chosen from a
set of candidate parameter settings. In this research, Response Surface Methodology
(RSM) will be used to get the best parameter configurations, as RSM requires a smaller
number of simulation experiments than that of the Gradient-based method (Carson and
Maria, 1997). The idea of RSM is to construct a mathematical surrogate model(s) to

approximate the underlying function (Deng, 2007).
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RSM can be divided into two general methods; Central Composite Design
(CCD) and Box—Behnken Design (BBD) (Fu, 2015). In this research study, Box—
Behnken method is used to get the optimum solutions (of the parameters vis-a-vis the
specified MOE’s) as the BBD is slightly more efficient than the CCD (Ferreira et al.,
2007). The following sections provide more details about the RSM with different

design methods and the procedure to optimize the responses.
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Chapter 3: Methodology

3.1 Introduction

This chapter presents the methodology to calibrate the parameters of Integrated
Traffic Signal Control System (Ahmed and Hawas, 2015) using the Response Surface
Methodology (RSM). The parameters of Integrated Traffic Signal Control System are
discussed in Section 3.2 briefly. Then, the features of RSM including the experimental
design (Central Composite Design or Box—Behnken Design) methods and response
optimization strategy are presented. Finally, the RSM procedures (design, data
importing, model building for each response, and optimization) in Minitab are

introduced.

3.2 Parameters of Integrated Traffic Signal Control System

To apply the Integrated Traffic Signal Control System developed by Ahmed
and Hawas (2015) for real-time traffic signal control, there are parameters that must
be calibrated and their values to be determined for optimal control, as they affect the
estimates of the actuation index, A§’¢j as explained earlier. These parameters are:

1. The coefficient for virtual queue of vehicles on the upstream approach
link (B¥); an abbreviation of the coefficient of virtual queue of vehicles

(ﬁi‘,’d)j,u/) on the upstream approach link of phase ¢;at intersection i.

2. The coefficients for transit priority (BPor PP); abbreviations of

coefficients for transit priority for high priority buses (qub-u/) and
) ]J

normal priority buses (ﬁf’fp,u,) on the upstream approach,u’, of phase
) ]l
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¢;, at intersection i. In this study, it is assumed that both coefficients
have equal values for simplicity.

3. The downstream blockage penalty coefficient (BZ); an abbreviation of

the coefficient for blockage on the downstream exit link (,BiB y a) of
y ]!

phase ¢;at intersection i.
4. Theincident penalty coefficient (BY); an abbreviation of the coefficient

of incidents (51'1,V¢j,u/) on the upstream approach,u’/, of phase ¢;, at

intersection i.

In this study, we focus only on estimating the optimal control strategies for
recurrent conditions. That is, no incident scenarios are considered. For more on
incident situation control, the reader is referred to Ahmed and Hawas (2015). In typical
recurrent congestion situations, the values of the parameters Y, 2or pP, and BB
(while BY is not considered) are likely to affect the network performance as a result
of different penalty values via the signal control. The performance of the traffic
network is represented herein by three output variables or MOEs; these are: total
number of bus trips served during a specific analysis period, Ny, total network travel
time (in hrs), T; , and the trip mean travel time in seconds, t,,. Figure 3.1 shows the
schematic presentation of the control system. It is to be noted that the mid-block of the
figure (simulation) is acting herein as the medium for evaluating the MOE’s in
response to the changes of the various control coefficients. The study adopts a
simulation-based optimization approach to model the relationships between the control
parameters and the resulting MOE’s.

In brief, this study aims at studying the impact of these control parameters on

the network MOE’s, to develop models for explaining the relationships between these



52
parameters and the resulting MOE’s for various signal control types and congestion
conditions. One can regard the problem in hand as an optimization problem of input
parameters BY, BPor P, and 5, to maximize the total number bus trips, and to
minimize the total and mean travel times. For simplicity, in this study both high and

normal bus priority parameters ?and P are assumed equal.

Coefficient for virtual
queue of vehicles, B¥

Coefficients for transit Simulation .
priority, B° or B? Model — > Total Travel Time in hour, T;

Y

—>Total Bus Trips, Npgs

Downstream blockage
penalty coefficient, B°

> —>Mean Travel Time in sec, t,

Figure 3.1: Schematic presentation of input parameters and resulting MOE’s

Figures 3.2 and 3.3 show the 3D scatter plots for the responses of N, and t,,
for various parameters of 8V, g2or g7, and 5. The data for these plots are taken from
the simulation of a specific network (that will be discussed later) operated by the
integrated control system using different 135 input variable settings. Each setting is
simulated ten times. That is, 1350 simulation runs were done to produce these data.
The responses as drawn on the figures (total bus trips in Figure 3.2, and the mean travel
time in Figure 3.3) are the average values of the ten simulation runs of each of the 135
settings. As apparent in figures 3.2 and 3.3, the responses are quite dispersed. It is not
possible to identify the set (among these 135 settings) that correspond to the maximum
total bus trips and simultaneously the least mean travel time. In Figure 3.2, the black
dots refer to the bus trips of more than 160 (the maximum number of bus trips obtained

from simulating the 1350 cases is 161.3).
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In Figure 3.3, the black dots refer to the mean travel time of fewer than 830
seconds (the least mean travel time was 809.4 seconds). The question then becomes
whether is there a specific parameter set that can be used to obtain more than (or as
close as possible) 161.3 bus trips and simultaneously have mean travel time fewer than
830 seconds. Therefore, to identify the optimal setting, it is necessary to use some
optimization method to satisfy all conditions. The Response Surface Methodology is

chosen to perform this task.

3.3 Response Surface Methodology (RSM)

Response Surface Methodology (RSM) was originated and described by Box
and Wilson (1951). RSM consists of techniques (mathematical and statistical), to
define the relationships between the response and independent variables (inputs). It
determines the effect (alone or in combination) of the independent variables on the
processes. To analyze the consequences of the independent variables, RSM generates
a metamodel. The graphical perspective of this metamodel has led to the
term Response Surface Methodology.

In this research study, the relationships between the responses or MOE’s (N s,
T, and t,,) and the inputs parameters (BY, B2or B?, and ) are mathematically

expressed by Egs. (3.1 to 3.3):

Npus = fuy,s(B”.B°0r BP, and B7) + ey, 3.1)
T, = fr,(B".B0r B, and B®) + &7, (3.2)
tm = fo, (BY.B"0r BP, and %) + &, (3.3)

Npus, T, and t,, are the responses (MOE’s) of total bus trips, total network

travel time, and trip mean travel time, respectively. fy, ., fr,, and f, represent the
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unknown functions (metamodels) of responses (N,,s, T: and t,,, respectively).

BY,BPor BP, and BZ denote the input variables (coefficient for virtual queue of

vehicles, coefficient for transit priority, and downstream blockage penalty coefficient,

respectively. ey, ., er,,and g, aresome statistical errors that represent other sources

of variability not accounted for by the functions. The error terms are assumed to

follow a normal distribution with the mean of zero and some variance.

3.3.1 Steps for RSM

The application of RSM as an optimization technique are as follows (Bezerra

et al., 2008):

1.

The selection of independent variables through screening and the delimitation
of the experimental region, according to the objective and the experience of the
researcher. In this research study, the three independent variables are
previously selected (BY, BPor B?, and BB) as they relate to the parameters
affecting the objective function (as explained earlier in Section 2.3).

The choice of the experimental design and accomplishing the experiments
according to the selected experimental matrix. In this research study, Box-
Behnken Design (BBD) is used.

The mathematic-statistical treatment of the obtained experimental data through
the fit of a polynomial function, using the p-value of 0.1;

The evaluation of the model's fitness;

The verification of the necessity and possibility of performing a displacement
in direction to the optimal region; and

Obtaining the optimum values for each studied variable.
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3.4 Experimental Designs with Computer Simulation Models

RSM can be applied to computer simulation models of physical systems
(Myers et al., 2009). In such applications, RSM is used to build a metamodel of the
system (being modeled by the computer simulation), and optimization is carried out
on the metamodel. The assumption is that if the computer simulation model is a
reliable representation of the real system, then the RSM optimization will result in an
adequate determination of the optimum settings for the actual system. It is worthy to
note traffic simulation models could be stochastic or deterministic. In the stochastic
simulation models, the output responses are somehow random variables whereas
deterministic models are typically mathematical functions that yield deterministic
outputs (not random). In this research study, an experimental network is simulated by
a stochastic model.

The RSM approach is based on a philosophy of sequential experimentation,
with the objective of approximating the response surface with a low-order polynomial
function in a relatively small region of interest that contains the optimum solution.
RSM can be carried out using either Central Composite Design (CCD) or Box—

Behnken Design methods (Fu, 2015), as discussed in the following sections.

3.4.1 Box—-Behnken Design

Box-Behnken Design (BBD) suggests how to select points from the three-level
factorial arrangement, which allows the efficient approximation of the first- and
second-order coefficients of the mathematical model. BBD is more efficient and
economical than the similar three-level full factorial designs (Bezerra et al., 2008). The

BBD principal characteristics are:
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1. The number of experiments (N) required in BBD is defined asN =
2k(k — 1) + C,, (where k and C, are the number of factors and central points,
respectively). In this study, k and C, are both equal to three (3). Thus, the
number of experiments will be 15 (N = 2 * 3 x (3 — 1) + 3). For comparison;
the number of experiments for a Central Composite Design (CCD) is N =
2% + 2k + C,, which would be 20 (N = 23 + 2 * 3 + 6) with three factors and

six central points.
2. All factor levels have to be set only at three levels (—1, 0, +1) with equally

spaced intervals between these levels.

(@) (b)
o
B or B° /./ o B°or p° ® o
[ ° [
P o
o o
® ® @
B B
B B

Figure 3.4: (a) The cube for BBD, and (b) three interlocking two-level full factorial
design (modified version of the source figure from Ferreira et al., 2007).

For three factors, the BBD graphical representation can be seen in two forms
(Ferreira et al., 2007):
1. A cube that consists of the central point and the middle points of the edges, as

can be seen in Figure 3.4a.
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2. An illustration of three interlocking two-level full factorial designs and a

central point, as shown in Figure 3.4b.

Table 3.1: Coded factor levels for a BBD of three-variable matrices with 3 center
points in a single block

Experiment Point Type BY pPorpPr pB

1 Edge -1 -1 0
2 Edge 1 -1 0
3 Edge -1 1 0
4 Edge 1 1 0
5 Edge -1 0 -1
6 Edge 1 0 -1
7 Edge -1 0 1
8 Edge 1 0 1
9 Edge 0o -1 -1
10 Edge 0o 1 -1
11 Edge o -1 1
12 Edge 0o 1 1
13 Center 0 O 0
14 Center 0 O 0
15 Center 0O O 0

Table 3.1 presents the coded values of the experimental matrices of BBD. For
a BBD, the Minitab represents the settings with -1 for the low factor setting, O for the
middle setting, and +1 for the high setting.

The BBD is a good design for the RSM (Ferreira et al., 2007). It permits (i)
estimation of the parameters of the full/ partial quadratic model with the building of

sequential designs; (ii) detection of lack of fit of the model; and (iii) use of blocks. A
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comparison between the BBD and other RSM designs (central composite, and three-
level full factorial design) has demonstrated that the BBD is slightly more efficient
than the CCD, and much more efficient than the three-level full factorial designs

(Ferreira et al., 2007).

3.4.2 Central Composite Design

The Central Composite Design (CCD) was presented by Box and Wilson
(1951) and consists of the following parts: (1) a full factorial or fractional factorial
design with an additional design, often a star design in which experimental points are
at a distance o from its center; and (2) a central point (Bezerra et al., 2008). Figure 3.5

illustrates the full CCD of three variables for optimization.

O

B”or B°

»
L

BV

Figure 3.5: The CCD of three variables system

The full CCD presents the following characteristics:
1. The required number of experiments is N = 2% + 2k + C,, where k is the

factor number and C, is the replicate number of the central point. In this
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research study, (N = 23 + 2 =3 + 6) which 20 with three factors and six
central points;

2. a-values depend on the number of input variables and is calculated by for

Spherical design (a = Vk), and for Rotatable design (a = Zk/4) , Where K is
the number of factors;

3. All factors are considered in five levels (—a, —1, 0, +1, +a).

Table 3.2: The coded values of the CCD experimental matrices

Experiment Point Type gY BPor BP BB
1 Corner -1 -1 1

2 Corner 1 -1 -1

3 Corner -1 1 1

4 Corner 1 1 -1

5 Corner 1 -1 1

6 Corner -1 1 -1

7 Corner -1 -1 -1

8 Corner 1 1 1

9 Axial 0 1.681793 0

10 Axial 1.681793 0 0

11 Axial 0 0 1.681793
12 Axial 0 -1.68179 0

13 Axial 0 0 -1.68179
14 Axial -1.68179 0 0

15 Center 0 0 0

16 Center 0 0 0

17 Center 0 0 0

18 Center 0 0 0

19 Center 0 0 0

20 Center 0 0 0
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Table 3.2 presents the coded values of the experimental matrices of CCD. For
a CCD, Minitab represents the settings as follows:
e -1 indicates the low factor level
¢ 1 indicates the high level
¢ 0 indicates the middle point between the low and high level

e -1.68179 and 1.68179 indicate the low and high axial levels, respectively

3.5 Response optimization

The variable settings (BY,BPor BP, and B?) are obtained using Minitab®'s
Response Optimizer in accordance to some objective functions on the set of responses
(Npys, Ty and t,,,). Herein, the objectives are to maximize N, and to simultaneously
minimize both T; and t,,,.

The so-called desirability function approach (as outlined by Derringer and
Suich, 1980) is used the multi-objective simultaneous consideration of the responses.
Initially, each response is converted into an individual desirability, which varies over
the range from zero to one dimensionless scale. The individual desirabilities are, then,
used to estimate the composite desirability (D) using the following geometric mean

formula:

D = (dyy,, *dr, * dy, )3 (3.4)

Where, dy,  is the individual desirability of total number of bus trips (Np.s),
dr, is the individual desirability of the network’s total travel time (T;), and d, is the

individual desirability of trip’s mean travel time (t,,).
The estimated composite desirability value depends on the specific set goal

(lower, target, upper) of each individual desirability element (response), the weight
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(r) which defines the form shape of desirability function for each response, and the
importance parameters (w) of the various desirability items that are combined into a
single composite desirability.

Given the aimed objectives (e.g. maximize N,,, and to simultaneously
minimize both T; and t,,), the individual desirabilities are stated, and overall the
problem in hand is transformed into maximizing the composite desirability. The
composite desirability unifies the individual desirabilities of all the response variables
into a single measure and emphasis is placed on the response variables with the
importance parameter (w). The importance parameters reflect the relative importance
of the individual desirabilities in estimating the composite one as shown in Equation

3.8 (weighted geometric mean):

WN Wwr, Wem 1/
D = [(dny) " % (dr) ™" % (dg,)" "] (35)

Where, wy, is the importance parameter of Ny, wr,is the importance
parameter of T;, and wy_is the importance parameter of t,,,. The importance parameter
determines the influence of each response on the composite desirability. For instance,
if the importance of dy,_is 1, whereas the importance of dy, is 2, then, dy, will have
a greater (not double) influence on the composite desirability. By default, Minitab®
places equal importance on the responses and assigns each an importance value of one.
In this research study, all importance parameters of individual desirability are set equal
to one (1). Thatis, wy, = wr, =w, =1.

The goal is interpreted with regard to the target parameter for the response. If
the goal is minimizing a response, the desirability is one for all response values less
than or equal to a specific lower bound target. Alternatively, if the goal is maximizing

a response, then the desirability is one for all values equal to or above a specific upper
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bound target. Finally, if the goal is to get the response at target (located between the

lower and upper bound), then the desirability is one at the target.

(a) A
11—
0O<r<1
1%}
2
z r=1
o
r>1
0 —
LNbUS ™ bus beUS
(b) N

O<r<l1

Tt Tt
(c) A~
1
0<ri<1 0<r<1
E rp=1 4 =1
©
ri>1 ¢ r>1
0 “ ' T >
t Tt t Y

m m m m

Figure 3.6: The forms of individual desirability functions for different goals:
maximization; (b) minimization; (c) a particular target value.
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For example, if the goal for the response of the total bus trips (yy,,.) is a
maximum value, the individual desirability function dy, _is defined as follows:

( 0 beus < LNbus
r
beus_ LNbus
dNbu5: (TNb - LN LNbus S beus S TNbus (36)
us bus

1 beus > TNbus

beus - LNbus

T
Where, the value of ( ) ranges from zero to one. r is the weight

TNpus ™ LiNpus
that defines the functional form of the desirability function; if r = 1, the desirability
function is linear, as shown in Figure 3.6a. Ly,  and Ty, are the lower bound and
target values of the response (Nj,), respectively.

If the goal for the response is a minimum value (e.g. minimal network total

travel time yr,), the individual desirability for the response dr, is defined as follows:

1 yr, <Tr,
dp= (2 o<y <u 3.7
Tt_ m Tt—yTt —_ Tt ( " )
0 yr, > Ug,

UTt_yTt

r
Where, the value of (U ) ranges from zero to one. r is the weight that

T~ TT,
defines the functional form of the desirability function; if r = 1, the desirability
function is linear, as shown in Figure 3.6b. Ur, and T, are the upper bound and target
of the response (T), respectively.

Likewise, if the goal for the response is to achieve a specific target (e.g. trip
mean trip time for the network y, is setto atarget value T;, ), the two-sided individual

desirability is defined as follows:
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( 0 Ve < L¢,,

Yem =Lt ) *
( - tm) Ly <y, <T
Tty =Lt m m m

(3.8)

T
(Utm—J’tm> 2 T. < <U
tm = Yt = Vg,

Ut —Ttm

\ 0 Yt > Ut

T1 Ty
Where, the values of (ytm—tm) and (tm—ytm> range from zero to one. r;

tm—Ltm Utm—Ttm
and r, are the desirability function weights (if r; = r, = 1, the desirability function is

linear, as shown in Figure 3.6¢c, L, , U, and T, are the lower bound, upper bound

and target values of the response (t,,), respectively.

It is important to note that in this research, the goal for a specific target value
of any response is not used. The goals of maximizing the response (N,,s) and
minimizing the responses (T, and t,,,) are used.

The weights of the desirability function (r,, r,, and r) define the shape of the
individual desirability function as shown in Figure 3.6. Choosing r > 1 places more
emphasis on being close to the target value of the response and choosing0 < r < 1
makes this less important (Myers et al., 2009).

In summary, in maximizing a response, the desirability value increases as
response values increase from the lower limit to the target, and it becomes one for all
values at or above the set target. In minimizing a response, the desirability is one for
all response values less than or equal to the target. If the goal is a specific target, then
the desirability is one and only one at the target value, and it decreases as the response
deviates more from the target in either direction. In conclusion, desirability is an
objective function, which ranges from zero outside of the limits to one at the goal. The
features of the goal can be modified by adjusting the weight and/or importance

parameters.
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For multiple responses and factors, all goals get united into composite a
desirability function. It is worth noting that always trying to get a very high desirability
value is not useful, as the value is completely dependent on how closely the lower and
upper limits are set relative to the actual best set of conditions (Design-Expert, 2015).
Rather, the goal of optimization is to find the best set of conditions for satisfying all
the goals. That is, in this study, the aim is to find the best set parameters ", B2or 7,
and B2 that maximize Ny, and to simultaneously minimize both T, and t,,, regardless
of the achieved composite desirability index. Achieving a maximum composite

desirability index by itself is not the study objective.

3.6 Response Surface Modeling in Minitab

The steps of Response Surface Modelling design, data importing, model
building for each response, and the optimization in Minitab are explained in Appendix
A. First, it depicts the Response Surface Modelling design (Appendix A.1.1). Second,
it shows the steps for building the RSM model for the responses, the analyses of the
model terms (interactions between the factors and their squares) to identify the
significant terms, as described in details in Appendix A.1.2. Finally, it depicts the steps
of optimization of the responses considering the objective function(s) described in

details in Appendix A.1.3.
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Chapter 4: Experimental Models Setup, Data Generation, and Model
Building Process

This chapter summarizes simulation experimental setup for the integrated
control system described in the previous chapter with the various signal control types
(Split Actuated, Dual Actuated, and Protected Actuated). The network topologies
together with the different traffic demand levels used for testing are described. The
well-known TSIS-CORSIM (TSIS-CORSIM, 2010) is used for the simulation. The
results of the simulation are then used, by Minitab® (Minitab, 2016), for the Response
Surface modeling and optimization of the previously described coefficients. The data

generation and the RSM building processes are also described briefly.

4.1 Experimental Traffic Network

A grid-type network of 49 intersections is used in this study. Due to the
extensive set of simulation-based runs and the corresponding RSM optimization in this
study, it is decided to focus the scope of this research on networks exhibiting high to

very high traffic volume levels.

The network consists of one short link (i.e. 300 m) and one long link (i.e. 600
m) side by side, on alternatively in both vertical and horizontal dimensions, as shown
in Figure 4.1. This is a typical grid network with a mix of non-uniform link lengths
(next to each other). This network has seven (7) horizontal and seven (7) vertical
arterials and the origin (O) and destination (D) are chosen from the Eastern, Western,
Northern and Southern boundary link entrances and exits, respectively. In this
network, there are 49 intersections and each intersection has four approach links (from
the East, West, North, and South) and four exit links with three continuous lanes (all

over the link length) and two additional left-turn lanes with 80 m storage length each.
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The network has seven origins and destinations at each of the four boundary

sides as shown in Figure 4.1.

The adopted “car” trip distribution for any demand case is as follows: From
any origin j on the Eastern boundary (Og;), 60% of the total originated trips are split
equally among the destinations on the Western boundary (i.e. Dyy;t0 Dy).
Furthermore, 20% of the total originated trips are split equally among the destinations
on the Northern boundary (i.e. Dy;to Dy-). Finally, the remaining 20% of the total
originated trips are split equally among the destinations on the Southern boundary (i.e.
Dg;to Dg;). Similar directional distributions are followed for any origin j on the

Western (0O,;), Northern (Oy;) and Southern (Og;) boundaries.

Two different levels of traffic demand are configured based on the origin nodes
traffic volumes and the characteristics of the bus routes. The adopted traffic demand
conditions or cases are shown in Table 4.1. The demand cases of “E” and “F”
correspond to the high and very high car traffic volume of 1000 and 1500 per hour,

respectively. For the demand cases of “E”, from any origin j along the Eastern (Og;)
or Western (0,,;) or Northern (Oy;) or Southern (Os;) boundaries, the hourly traffic
volume is set as 1000 cars/hour. Therefore, the network demand for cars is 28,000 per
hour (or 42,000 per the analysis period of 1.5 hours). For the demand cases of “F”,
from any origin j along the Eastern (Og;) or Western (O,,;) or Northern (Oy;) or
Southern (Og;) boundaries, the hourly traffic volume is set as 1,500 cars/hour.
Therefore, the network demand for cars is 42,000 per hour (or 63,000 per the analysis
period of 1.5 hours). The demand cases “E” and demand cases “F” are tested with the

mean headway along the bus routes is 10 minutes and 5 minutes, respectively. Both
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demand cases are tested with the maximum green time (of any individual phase or

phase set) of 45 seconds.

Table 4.1:Different Traffic Demand Case Scenarios

Demand Car Demands (Cars/hour) Network Mean Bus Maximum
Case Demand Headway  Green time for
Eastern  Western  Northern  Southern (in Phase/Phase
(Og) (Owj) (On;) (0g)) (Cars/1.5 Minutes) Set
hours) as for all
offered Routes (Seconds)
load
E 1000 1000 1000 1000 42000 10 45
F 1500 1500 1500 1500 63000 5 45

As indicated in Figure 4.2, a fixed bus route network comprising 18 directional
routes are introduced for the two demand case scenarios (Ahmed and Hawas, 2015).
The devised integrated logic allows bus priority in grid networks in cross directions
not only along specific arterials and bus routes operate with uniform headways.
According to the demand of the car trips, proportionate levels of bus trip headway and
bus occupancy are considered. The origins and destinations on the Eastern and
Western boundaries are considered, as the bus flow directions shown in Figure 4.2.
Some of the bus routes overlap on some of the links and some intersections have both

left- and right-turning bus trips on their associated approach links.
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Figure 4.1: Layout of hypothetical test bed network (Ahmed and Hawas, 2015)
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Figure 4.2: Layout of bus route network (Ahmed and Hawas, 2015)

4.2 Data Generation Process

This section describes the steps of simulation-based data generation using the

TSIS-CORSIM model:

1. Selection of the input variables levels range. A range is set for each

value of BV, BPor BP, and B5.
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2. Designing the Response Surface Model (RSM) in Minitab for the
selected variables; details are provided in the Appendix A.

3. For each combination of 8V, BPor B?, and Z the simulation model is
run for ten times (10) using different seeds. A folder is then created for
each case according to the RSM design.

4. Executing the Simulation model using TSIS-CORSIM. The various
coefficients of Y, BPor fP, and BB are modified in Visual Studio

according to the case’s coefficients.

5. Extracting the MOE’s (response variables) from the simulation; the
total number of bus trips, the network total travel time (in hours), and

the trip’s mean travel time (in seconds).

6. Importing the response variables to Excel to estimate the MOE average

response from the ten runs of each case.

7. Importing the Excel data to Minitab to model each response for the

input variables; details are provided in Appendix A.

8. Optimizing the Response Surface Model for each response; details are

provided in Appendix A.

9. Interpreting the results and model analysis (based on the model

significance and boundary values of the coefficients).

4.3 Model Building Process

An important step in RSM is to perform a displacement to the variables
BY, BPor BP, and BE (change in the region) in the direction to the optimal region
(Bezerra et al., 2008). The steepest ascent method is commonly used to decide on the
direction of displacement (Myers et al., 2009). In this research study, this was not
followed in this calibration process of the RSM. The reason is that downstream

blockage penalty coefficient (8%) was found to be insignificant in most of the studied
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cases. Furthermore, the steepest ascent method requires the fitting of a first-order

(linear) model with the factors (Myers et al., 2009).

In this research study, the regions of the factors for the first model are initially
chosen arbitrarily, yet guided by the preliminary findings of Ahmed and Hawas (2015),
whom used a simplified Brute-Force search to identify the optimal coefficient values.
The earlier study (Ahmed and Hawas, 2015) however was limited in the sense that it
used a Brute-Force sequential process to identify the best value of one parameter at a
time, while all others are kept fixed. This earlier approach could also lead to local (not
global) optimal solutions, keeping in mind that the optimal values are strongly affected
by the initial values of the parameters. Furthermore, deploying a Brute-Force search
method was very time consuming and did not allow for verification of global optimal
solution nor for model calibration of responses vis-a-vis the control parameters

BV, BPor BP, and BE.

To overcome these limitations, the RSM is used to allow full consideration of
interactions among the control parameters and to insure obtaining global optimal
solutions. The findings of Ahmed and Hawas (2015) were used to specify the initial
control parameter regions. The establishment of the RSM followed an iterative smart
guided search. The initial control parameters were used to develop RSM. The
“learning” from the established relationships of the first model were then used to
specify (modify) the region of the control parameters, and as such developing a second
RSM. The analysis of the 2" model was then used to modify as needed the parameters’
ranges as needed. The later models are processed similarly considering the output of
contour plot from the data of previous models. When the established model satisfies

the objective functions properly (maximizing the network bus trips and simultaneously
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minimizing the network travel time and the trip mean travel time), the model is
thoroughly analyzed, and then verification stage is carried out to validate the results
from the model. Chapter 5 and Appendix A illustrate the process of model building

through a step-by-step example.
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Chapter 5: RSM Results and Analyses under the High Traffic (E)
Demand Scenario

This chapter summarizes the results and the analyses of the optimization of the
calibrated RSM on the coefficients for the integrated control system described in
Chapter 3 for the various control types (Split Actuated, Protected Actuated, and Dual
Actuated) under the demand scenario designated as (E) and the associated network
topology. The (E) letter herein refers to the traffic demand scenarios of “high” traffic

volume as explained earlier in more details in Chapter 4.

This chapter is divided into three subsections to demonstrate the results and
analyses for the Split Actuated control, followed by the ones for the Protected Actuated

control, and finally for the Dual Actuated control.

5.1 Split Actuated Control

The outputs for the Split Actuated control system are presented in Table 5.1
for nine (9) RSM models, as discussed in Chapter 3 and Appendix A in details. Table
5.1 summarizes the input variable ranges, the optimal settings, and the resulting
composite desirability. The optimization results of the nine models are plotted in
Figure 5.1 to Figure 5.9 for the three input parameters of coefficient for virtual queue
of vehicles, BV (BQL), coefficient for transit priority, f2or P (BTP), and downstream
blockage penalty coefficient, B2 (BDC), as well as the three responses of the total bus
trips, Np,s (Trips), total network travel time, T, (TTT), and the trip average travel

time, t,, (MTT).
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Model Factor ranges Optimal factor | Composite
NO. BY (BQL) Bor BP BB settings (B¥, | Desirability,
(BTP) (BDC) Bbor gP, B5) D
1 -1000 — 15000 | -2000 — 10000 -5-25 3040, -2000, 10 0.629
2 2500 — 25000 | 1500 - 15000 -10-20 25000, 10363, -10 0.526
3 1000 — 25000 | 5000 — 20000 -7-20 1000, 5000, -2.9 0.610
4 500 — 5500 1000 — 19000 1-19 2924, 1000, 1 0.619
5* 100 — 3500 9000 — 15000 5-15 100, 15000, 15 0.933
6 2-200 2000 — 22000 2-20 2, 22000, 20 0.745
7 2-200 1000 — 19000 1-19 2, 19000, 19 0.901
8 2-200 500 — 15500 1-9 2,14742,1 0.863
9 100 — 3000 1000 — 8000 1-5 100, 1000, 1 0.626

* Little variation in responses and the models are not significant.

Figures 5.1 and 5.2 illustrate the optimization plots for models 1 and 2

considering the three input parameters and the three responses. The composite

desirability of models 1 and 2 are 0.629 and 0.526, respectively. Only the 1% model

considered possible negative values for BQL and BTP coefficients. It is worth noting

that when such negative values are used simultaneously (for the coefficients of BQL

and BTP in model 1), the resulting Trips are very low (almost zero), and as such, no

further negative values were used anymore in other models.
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Figure 5.1: Model 1 individual and composite desirability D for the responses of
Npys (Trips), T, (TTT) and t,,, (MTT) for various parameters of 5V (BQL), f2or P

(BTP), and BB (BDC), for split actuated control under “E” demand scenario
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Figure 5.2: Model 2 individual and composite desirability D for the responses of
Npys (Trips), T, (TTT) and t,,, (MTT) for various parameters of 5V (BQL), f2or P
(BTP), and BB (BDC), for split actuated control under “E” demand scenario

Figures 5.3, 5.4, 5.5 and 5.6 illustrate the optimization plots for models 3, 4, 5

and 6. The composite desirability values of these models are 0.61, 0.62, 0.93, and 0.75,

respectively.
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Figure 5.3: Model 3 individual and composite desirability D for the responses of
Npys (Trips), T, (TTT) and t,,, (MTT) for various parameters of 5V (BQL), f2or P
(BTP), and BB (BDC), for split actuated control under “E” demand scenario
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Figure 5.4: Model 4 individual and composite desirability D for the responses of
Nyys (Trips), T, (TTT) and t,,, (MTT) for various parameters of g8V (BQL), f?or BP
(BTP), and BB (BDC), for split actuated control under “E” demand scenario
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Figure 5.5: Model 5 individual and composite desirability D for the responses of
Npys (Trips), T, (TTT) and t,,, (MTT) for various parameters of 5V (BQL), f2or P
(BTP), and BB (BDC), for split actuated control under “E” demand scenario
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Figure 5.6: Model 6 individual and composite desirability D for the responses of
Nyys (Trips), T, (TTT) and t,,, (MTT) for various parameters of g8V (BQL), f?or BP
(BTP), and BB (BDC), for split actuated control under “E” demand scenario
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Figures 5.7, 5.8, and 5.9 illustrate the optimization plots for models 7, 8 and 9.
The composite desirability values of these models are 0.90, 0.86, and 0.63,

respectively.
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Figure 5.7: Model 7 individual and composite desirability D for the responses of
Nyys (Trips), T, (TTT) and t,,, (MTT) for various parameters of ¥ (BQL), f?or BP
(BTP), and BB (BDC), for split actuated control under “E” demand scenario
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Figure 5.8: Model 8 individual and composite desirability D for the responses of
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Figure 5.9: Model 9 individual and composite desirability D for the responses of
Nyys (Trips), T, (TTT) and t,,, (MTT) for various parameters of g8V (BQL), f?or BP
(BTP), and BB (BDC), for split actuated control under “E” demand scenario
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A contour plot was developed for the three responses of N, (Trips), T; (TTT)

and t,,, (MTT) for various parameters of 8V (BQL), f2or BP (BTP), and 8% (BDC) as
shown in Figure 5.10. The data for the contour plot was taken from a total of 135 input
variable settings (data of models 1 to 9). These variant input settings correspond to a
total of 1350 simulation runs, as each parameter setting is executed for 10 multiple

runs.
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Figure 5.10: Contour plot of the three responses of Ny, (Trips), T, (TTT) and t,,, (MTT) for various parameters of ¥ (BQL), f2or BP (BTP), and S8 (BDC) for split actuated control and demand case “E”
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5.1.1 Analysis

None of the above models resulted in acceptable desirability levels (within the
model input range) using the set three objective functions (maximizing of Ny,
(Trips), while simultaneously minimizing both T, (TTT) and t,, (MTT)). The
optimum values of the coefficients are mostly border values (upper bound or lower
bound of the specified regions). Furthermore, the variability of the responses is very
little, for instance Ny, (Trips) are 150 — 160, T; (TTT) is 8000 — 8300 hours and ¢,
(MTT) is 810 — 860 seconds.

Further analysis is done for the all the models using only either double or single
objective function(s). The conducted analyses still led to optimal solutions at the
borders of the parameter regions. Only model 9 has shown good performance, and it

is discussed hereafter.

Trmd BQL BTP BDC

D 1000 High 3000.0 8000.0 5.0
S Cur [100.0] [5030.3030] [3.7475]
Predict Low 1000 1000.0 1.0

el

Trips
Maximum
y = 161.3394
d = 1.0000

Figure 5.11: Optimization of N, (Trips) for various parameters of 8V (BQL),
SPor pP (BTP), and BB (BDC), for split actuated control under “E” demand scenario

First, the optimization is done only using one objective function (maximizing
of Ny,s (Trips)) as shown in Figure 5.11. The resulting optimal variable setting is

presented in Table 5.2. This setting is 100, 5030, and 3.75 for the 8V (BQL), f?or BP
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(BTP), and BB (BDC), respectively, with the response Ny, (Trips) of 161.34, and

0.291 (95% CI = 160.7, 162.1) standard error (SE).

Table 5.2: Optimal variable setting of coefficients for the response of Ny, (Trips)
for split actuated control with demand case “E”

Coefficients Responses
p¥ (BQL)  pPorp? p? (BDC) Npys SE (95% CI)
(BTP) (Trips)
100 5030 3.75 161.339 0.291 (160.7, 162.1)

The optimization is done afterward considering two objective functions

(maximizing of Ny, (Trips), while simultaneously minimizing t,, (MTT)), as shown

in Figure 5.12. The resulting optimal parameter setting is presented in Table 5.3. This

setting is 305, 1000, and 2.91 for BY (BQL), BPor B (BTP), and S5 (BDC),

respectively. The optimal responses are 159.9 for N, (Trips) with a standard error

(SE) of 0.4 (95% CI = 159, 160.8) and 834.7 seconds for t,, (MTT) with a standard

error (SE) of 3.4 (95% CI = 827.0, 842.4).

Table 5.3: Optimal variable setting of coefficients for the responses of N,,s (Trips)
and t,,, (MTT) for split actuated control with demand case “E”

Coefficients Responses
B" (BQL) BPorpP  B%(BDC) | Npys SE tm (MTT) SE
(BTP) (Trips) (95%Cl)  (seconds)  (95%Cl)
305 1000 2.1 159.9 0.4 (159, 834.71 3.4 (827.0,
160.8) 842.4)
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Optimal BQL BTP BDC
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S Cur [305.0505] [1000.0] [2.0909]

Predict Low 100.0 1000.0 1.0
Composite . I
Desirability \_/

D: 0.6220
Minimum BE - 1~ =

y = 834.7056

d = 048206

Trips
Maximum
y = 159.8937
d = 0.80245

Figure 5.12: Optimization of Ny, (Trips), and t,,, (MTT) for various parameters of
BV (BQL), BPor BP (BTP), and BB (BDC), for split actuated control under “E”
demand scenario

RSM Statistics (ANOVA table)

Regardless of the number and nature of used objective function(s) to identify
the optimal setting (single, dual or triple), the model itself is the same. Only the optimal
settings vary according to the preset objective function(s). For the 9" model (with
design explained in Table 5.1), the response surface model of N,,; (Trips) is
significant (R-square = 94.56%), as p-value for each parameter is less than 0.01, as
shown in Table 5.4. Only g8 (BDC) is not significant with a p-value greater than 0.1.
There is a supporting evidence that there is little variation with different values of g2
(BDC) as shown in the contour plots of Figure 5.10. This may be attributed to the

prevailing traffic conditions under the E demand level, as the downstream approaches
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may not likely to be flagged as congested (the necessary condition to apply the

downstream congestion adjustment as explained in Chapter 2- Equation 2.3).

Table 5.4: Summary of ANOVA for N, (Trips) versus various 8V (BQL), BPor 5P
(BTP), and B8 (BDC) for split actuated control of “E” demand scenario

Sum of Mean
Source Squares df Square F
Linear 27.2125 3 9.0708 39%*
BY 10.58 1 1058 45.49%*
P 16.5312 1 16.5312 71.07%*
B® 0.1013 1  0.1013 0.44*
Square BP*pP 2.8934 1 28934 12.44**
2-Way Interaction BV*pP 6.25 1  6.25 26.87**
Lack-of-Fit 2.0467 7 0.2924 12.53*
Total 38.4493 14
*p>0.1
**p<0.1

The second order regression equation of Ny, (Trips) versus BY (BQL),

BPor BP (BTP), and BB (BDC) is:

Npys (Trips) (Split Actuated Control under “E” Demand Scenario)
= 159.518 — 0.001901 BV + 0.000676 B? + 0.0563 B2

— 0.00000013P * BP + 0.00000018" x 8P

Additionally, the response model of t,, (MTT) is significant (R-square =
80.94%), as p-value for each parameter is less than 0.1, as shown in Table 5.5. Only

S (BDC) is not significant with a p-value greater than 0.1.
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Table 5.5: Summary of ANOVA for t,,, (MTT) versus various 8V (BQL), fPor BP
(BTP), and B8 (BDC) for split actuated control of “E” demand scenario

Source Sum of Squares df Mean Square F
Linear 442.406 3 147.469 7.08**
gY 66.387 1 66.387 3.19**
B 375.58 1 375.58 18.04**
BE 0.44 1 0.44 0.02*
Square P*pP  218.051 1 218.051 10.47**
2-Way Interaction BV*pP 135.185 1 135.185 6.49**
Lack-of-Fit 145.159 7 20.737 0.98*
Total 983.01 14
*p>0.1
**p < 0.1

The second order regression equation of t,, (MTT) versus 8V (BQL), BPor P

(BTP), and B8 (BDC) is:

t (MTT) (Split Actuated Control under “E” Demand Scenario) (seconds)
= 831.12 — 0.00714 ¥ + 0.00580 B” + 0.117 BB

—0.000001 8P = BP + 0.000001 BV * BP

Finally, the response model of T, (TTT) is significant (R-square = 87.19%), as

the p-value for each parameter is less than 0.1 shown in Table 5.6. Only B2 (BDC) is

not significant with a p-value greater than 0.1.
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Table 5.6: Summary of ANOVA for T, (TTT) versus various 8” (BQL), f2or BP
(BTP), and B8 (BDC) for split actuated control of “E” demand scenario

Sum of Mean
Source Squares df Square F
Linear 18218.8 3 60729  7.87**
gY 3532.5 1 35325  4.58**
BP 14597.6 1 14597.6 18.93**
BE 88.6 1 88.6 0.11*
Square 16767.4 2 8383.7  10.87**
BP x BP  15026.3 1 15026.3 19.48**
BB x BB 2537.6 1 2537.6  3.29**
2-Way Interaction B"* BP 6993.5 1 6993.5  9.07**
Lack-of-Fit 4224.9 6 704.1 0.72*
Total 48149.6 14
*»n>0.1
**p<0.1

The second order regression equation of T, (TTT) versus 8V (BQL), fPor BP

(BTP), and B8 (BDC) is:

T, (TTT) (Split Actuated Control under “E” Demand Scenario) (hours) =
8093.3 — 0.0516 8 + 0.0462 SP + 40.9 B&

—0.000005 P x BP — 6.53 BE x BB + 0.000008 BY * BP

5.1.2 Optimum selection (model validation)

For different objective functions, different optimal settings are obtained. In
specific, herein we refer to the optimum settings of the coefficients of BY (BQL),
BPor BP (BTP), and 8B (BDC) related to the solutions:

I. whereonly N,,s (Trips) is maximized (as indicated in Table 5.2)
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Il. where N, (Trips) is maximized and t,, (MTT) is minimized (as

indicated in Table 5.3)

In order to select only one set of values to generalize its use with the split
actuated controller under the E demand scenario, a verification/validation process is
deployed. The validation process entails running the simulation with the identified
values (in Tables 5.2 and 5.3). Each dataset was used in ten (10) multiple runs and the
resulting responses were then averaged and reported as shown in Table 5.7. The
resulting average Ny, (Trips), t,, (MTT) and T; (TTT) of the 10 simulation runs (as
shown in Table 5.7) lie within the 95% confidence interval (corresponding values)
extracted from the response surface model (as shown in Table 5.2 for variable setting
I, and Table 5.3 for variable setting I1).

The 2" set of variables (11) (8¥ (BQL) = 305, or P (BTP) = 1000, and
BB (BDC)= 2.1) is selected as the default general setting of the split actuated
controller under the demand case “E”. The set results in higher values of Ny,,,s (Trips)
and lesser values of t,,, (MTT) and T, (TTT) as shown in Table 5.7.

It is worth noting that the total network travel time T; (TTT) was not explicitly
used an optimization criterion in any of the above two solutions (I and 11). Nonetheless,
it is legitimate to say that T, (TTT) was implicitly accounted in obtaining the optimal

settings II; as it directly relates to the trip’s average travel time, t,,, (MTT) through the

formula t,= T, 3600, where Ny, is the total number of vehicles in the network.
trips

That is, explicit minimization of t,,, (MTT) implies implicit minimization (not explicit)

of T, (TTT).
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Table 5.7: Optimal variable settings of ¥ (BQL), f2or P (BTP), and £& (BDC) and
corresponding simulation-based MOE’s (Ny,s (TTips), t,, (MTT) (seconds), T;

(TTT) (hours)) for split actuated control of “E” demand scenario

Coefficients Responses
. . BV | BPorp? [ BB | Npus | tm (MTT) | T,
Variable Settings (BQL) | (BTP) | (BDC) | (Trips) | (seconds) | (TTT)
(hours)
I. (only Np,s 100 5030 3.75 160.9 839.26 8205.25
(Trips) is
maximized)
1. (Npys (Trips) | 305 1000 2.1 161.0 838.26 8190.57
IS maximized and
tm (MTT) is
minimized)

5.2 Protected Actuated Control

The outputs for the Protected Actuated control system is presented in Table 5.8

for three (3) RSM models, as discussed in Chapter 3 and Appendix A in details. Table

5.8 summarizes the input variable ranges, the optimal variable setting, and the resulting

composite desirability. The optimization results of the three models are plotted in

Figure 5.13 to 5.15 for three input parameters of coefficient for virtual queue of

vehicles, BV (BQL), coefficient for transit priority, f2or fP (BTP), and downstream

blockage penalty coefficient, B2 (BDC), as well as the three responses of the total bus

trips, Np.s (Trips), total network travel time, T, (TTT), and the trip average travel

time, t,, (MTT).



Table 5.8: Optimal values of protected actuated control under “E” demand scenario

Model Factor ranges Optimal factor | Composite

NO. 8V (BQL) Bor BP BB settings (B¥, | Desirability,
(BTP) Bpc) | B"or B7. BF) D

1 2 —3000 1000-15000 |1-10 3000, 14434, 1 0.941

2 1000 - 6000 2000 -20000 |2-8 1000, 16545, 2 0.963

3 100 - 4000 3000-18000 | 3-6 4000, 18000, 3 0.916

Figure 5.13, 5.14, and 5.15 depict the optimization plots for models 1, 2, and 3

considering the three input parameters and the three responses. The composite

desirability values of these models are 0.941, 0.963, and 0.916, respectively.
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Figure 5.13: Model 1 individual and composite desirability D for the responses of
Nyys (Trips), T, (TTT) and t,,, (MTT) for various parameters of ¥ (BQL), f?or BP
(BTP), and BB (BDC), for protected actuated control under “E” demand scenario
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Figure 5.14: Model 2 individual and composite desirability D for the responses of
Npys (Trips), T, (TTT) and t,,, (MTT) for various parameters of 5V (BQL), f2or P
(BTP), and BB (BDC), for protected actuated control under “E” demand scenario
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Figure 5.15: Model 3 individual and composite desirability D for the responses of
Nyys (Trips), T, (TTT) and t,,, (MTT) for various parameters of ¥ (BQL), f?or BP
(BTP), and BB (BDC), for protected actuated control under “E” demand scenario
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A contour plot was developed for the three responses of N, (Trips), T; (TTT)

and t,,, (MTT) for various parameters of 8V (BQL), f2or BP (BTP), and B2 (BDC) as
shown in Figure 5.16. The data of the control plots were taken from a total of 45 input
variable settings (data of models 1 to 3). These variant input settings correspond to a

total of 450 simulation runs, as each parameter setting is executed for 10 multiple runs.
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Figure 5.16: Contour plot of the three responses of Ny, (Trips), T, (TTT) and t,,, (MTT) for various parameters of 8V (BQL), f2or BP (BTP), and S8 (BDC) for protected actuated control and demand case “E”
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5.2.1 Analysis

The multi-objective optimization methodology (maximizing of Ny, (Trips),
while simultaneously minimizing both T, (TTT) and t,,, (MTT)) is used to solve these
three models by the composite desirability function, as described in Chapter 3. None
of the above models resulted in acceptable desirability levels (within the model input
range) using the set three objective functions (maximizing of Ny, (Trips), while
simultaneously minimizing both T, (TTT) and t,,, (MTT)). The optimum values of the
coefficients are mostly border values (upper bound or lower bound of the specified
regions).

Further analysis is done for the all the models using only either double or single
objective function(s). The conducted analyses still led to optimal solutions at the
borders of the parameter regions. Only model 3 has shown good performance only for
the double objective functions (maximizing of Ny, (Trips), while simultaneously
minimizing t,,, (MTT)) and it is discussed hereafter.

The optimization is done only using two objective functions (maximizing of
Npys (Trips), while simultaneously minimizing ¢t,,, (MTT)) as shown in Figure 5.17.
The resulting optimal variable setting is presented in Table 5.9. This setting is 2503,
17242, and 3 for BV (BQL), BPor BP (BTP), and 5 (BDC), respectively. The optimal
responses are 100.3 for Ny, (Trips) with a standard error (SE) of 0.6 (95% CI = 99.0,
101.6) and 999.3 seconds for t,,, (MTT) with a standard error (SE) of 3.9 (95% CI =

990.5, 1008.1).
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Figure 5.17: Optimization of Ny, (Trips), and t,,, (MTT) for various parameters of
BV (BQL), BPor BP (BTP), and BE (BDC), for protected actuated control under “E”

demand scenario

Table 5.9: Optimal variable setting of coefficients for the response of Ny, (Trips)
and t,,, (MTT) for protected actuated control with demand case “E”

Coefficients Responses
:BV ﬁbOI’ ﬁp BB Nbus SE tm (MTT) SE
(BQL)  (BTP)  (BDC) | (Trips) (95%Cl)  (seconds)  (95% Cl)
2503 17242 3 100.3 0.6 (99.0, 999.3 3.9 (990.5,
101.6) 1008.1)

RSM Statistics (ANOVA table)

Regardless of the number and nature of used objective function(s) to identify

the optimal setting (single, dual or triple), the model itself is the same. Only the optimal

settings vary according to the preset objective function(s). In 3™ model (with design
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explained in Table 5.8), the response surface model of total bus trips is significant (R-
square = 86.42%), as shown in Table 5.10. 2 (BDC) and its square effect are not

significant with a p-value greater than 0.1.

Table 5.10: Summary of ANOVA for N, (Trips) versus various 8V (BQL),
SPor BP (BTP), and BB (BDC) for protected actuated control of “E” demand

scenario
Sum of Mean
Source Squares df Square F
Linear 31.163 3 10.3877 12.8**
BY 19.0159 1 19.0159 23.43**
gP 12.005 1 12.005 14.79**
BB 0.142 1 0.142 0.18*
Square 4.6465 2 2.3232 2.86**
BP*RP 3.677 1 3.677 4.53**
BE*BE 0.7143 1 0.7143 0.88*
2-Way Interaction BYV*g? 5.5225 1 55225 6.8**
Lack-of-Fit 5.1059 6 0.851 1.23*
Total 47.8246 14
*»n>0.1
**p<0.1

The second order regression equation of Ny, (Trips) versus ¥ (BQL),

fPor BP (BTP), and BB (BDC) is:

Nyyus (Trips) (Protected Actuated Control under “E” Demand Scenario)
= 103.06 — 0.001634 BV + 0.000370 pP — 1.67 p&

—0.0000001 BP * BP + 0.195 B x BB + 0.0000001 BY * BP

Additionally, the response model of t,, (MTT) is significant (R-square =
89.26%), as shown in Table 5.11. Only P (BTP) is not significant with a p-value

greater than 0.1.
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Table 5.11: Summary of ANOVA for t,,, (MTT) versus various 8" (BQL), fPor BP
(BTP), and B8 (BDC) for protected actuated control of “E” demand scenario

Sum of Mean
Source Squares df Square F
Linear 2802.64 3 934.21 22.98**
BY 614.87 1 614.87 15.13**
B 30.67 1 30.67 0.75*
B 2157.1 1 2157.1 53.06**
Square BV*pY 96.75 1 96.75 2.38**
2-Way Interaction BV*pP 142.62 1 142.62 3.51**
Lack-of-Fit 170.18 7 24.31 0.25*
Total 3407.87 14
*p>0.1
**p < 0.1

The second order regression equation of t,, (MTT) versus SV (BQL), BPor P

(BTP), and 8 (BDC) is:

t, (MTT) (Protected Actuated Control under “E” Demand Scenario)
(seconds) = 980.03 — 0.00570 8V + 0.000576 BP + 10.95 5

+0.000001 B¥ * B¥ — 0.0000001 BV * BP

Finally, the response model of T, (TTT) is significant (R-square = 93.35%), as

shown in Table 5.12. Only g? (BT P) is not significant with a p-value greater than 0.1.

Table 5.12: Summary of ANOVA for T, (TTT) versus various 8V (BQL), f2or BP
(BTP), and BB (BDC) for protected actuated control of “E” demand scenario

Sum of Mean
Source Squares df Square F
Linear 41253.4 3 13751.1 45.3**
gY 2041 1 2041 6.72**
P 428.1 1 428.1 141*
BB 38784.3 1 38784.3 127.77**
Square BP « BP  1348.7 1 1348.7  4.44**
Lack-of-Fit 1986.5 8 248.3 0.47*
Total 45637.6 14

*»n>0.1
**p<0.1
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The second order regression equation of T, (TTT) versus 8V (BQL), Por pP

(BTP), and 8 (BDC) is:

T; (TTT) (Protected Actuated Control under “E” Demand Scenario) (hours) =
3329.4 — 0.00819 BV + 0.00807 BP + 46.42 pE

—0.0000001 BP * BP

5.2.2 Optimum selection (model validation)

In order to select the set of values to generalize its use with the protected
actuated controller under the E demand scenario, a verification/validation process is
deployed. The validation process entails running the simulation with the identified
values (in Table 5.9). The dataset was used in ten (10) multiple runs and the resulting
responses were then averaged and reported as shown in Table 5.13. The resulting
average Ny, (Trips), t,, (MTT) and T, (TTT) of the 10 simulation runs (as shown in
Table 5.13) lie within the 95% confidence interval (corresponding values) extracted
from the response surface model (as shown in Table 5.9). Therefore, the set of
variables (Y (BQL) = 2503, BPor p? (BTP) = 17242, and B® (BDC)=3) is
selected as the default general setting of the protected actuated controller under the

demand case “E”.

Table 5.13: Optimal variable settings of 8V (BQL), BPor BP (BTP), and BB (BDC)
and corresponding simulation-based MOE’s (N5 (Trips), t,, (MTT) (seconds), T;
(TTT) (hours)) for protected actuated control of “E” demand scenario

Coefficients Responses
B’ pPor pP p® Npus tm (MTT) Te (TTT)
(BQL) (BTP) (BDC) (Trips) (seconds) (hours)
2503 17242 3 100.1 1012.7 3536.98
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It is worth noting that the total network travel time T; (TTT) was not explicitly
used an optimization criterion in the above solution. Nonetheless, it is legitimate to say

that T, (TTT) was implicitly accounted in obtaining the optimal settings; as it directly

T

relates to the trip’s average travel time, t,, (MTT) through the formula t,,= —— *
trips

3600, where Niyps is the total number of vehicles in the network. That is, explicit

minimization of t,,, (MTT) implies implicit minimization (not explicit) of T, (TTT).
5.3 Dual Actuated Control

The outputs of the Dual Actuated control system are presented in the Table
5.14 for five (5) RSM models, as discussed in Chapter 3 and Appendix A in details.
Table 5.14 summarizes the input variable ranges, the optimal variable setting, and the
resulting composite desirability. The optimization results of the five models are plotted
in Figure 5.18 to 5.22 for three input parameters of coefficient for virtual queue of
vehicles, BV (BQL), coefficient for transit priority, f2or gP (BTP), and downstream
blockage penalty coefficient, B2 (BDC), as well as the three responses of the total bus
trips, Np.s (Trips), total network travel time, T, (TTT), and the trip average travel

time, t,, (MTT).

Table 5.14: Optimal values of dual actuated control under “E” demand scenario

Model Factor ranges Optimal factor Composite
NO. B (BQL) Por pP BE settings (B, Desirability,
(BTP) (BDC) Btor B?, B5) D

1 100 — 5000 1000 — 20000 1-10 100, 1000, 10 0.973

2 1-3000 500 — 15000 2-20 2547.96, 15000, 20 0.994

3 1000 — 4000 2000 — 10000 3-30 1000, 10000, 3 0.916

4 500 — 6000 3000 — 30000 4-140 6000, 30000, 40 0.983

5 23500 2500 — 13000 5-34 1839.3, 13000, 5 0.933
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Figure 5.18 to 5.22 depict the optimization plots for the models 1 to 5,

respectively, considering the three input parameters and the three responses. The

composite desirability values of the models 1 to 5 are 0.973, 0.994, 0.916, 0.983, and

0.933, respectively.
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Figure 5.18: Model 1 individual and composite desirability D for the responses of
Npys (Trips), T, (TTT) and t,,, (MTT) for various parameters of 5V (BQL), f2or P
(BTP), and 8 (BDC), for dual actuated control under “E” demand case
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Figure 5.19: Model 2 individual and composite desirability D for the responses of
Npys (Trips), T, (TTT) and t,,, (MTT) for various parameters of 5V (BQL), f2or P
(BTP), and BB (BDC), for dual actuated control under “E” demand case”
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Figure 5.20: Model 3 individual and composite desirability D for the responses of
Nyys (Trips), T, (TTT) and t,,, (MTT) for various parameters of g8V (BQL), f?or BP
(BTP), and BB (BDC), for dual actuated control under “E” demand case
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Figure 5.21: Model 4 individual and composite desirability D for the responses of
Npys (Trips), T, (TTT) and t,,, (MTT) for various parameters of 5V (BQL), f2or P
(BTP), and BB (BDC), for dual actuated control under “E” demand case
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Figure 5.22: Model 5 individual and composite desirability D for the responses of
Nyys (Trips), T, (TTT) and t,,, (MTT) for various parameters of g8V (BQL), f?or BP
(BTP), and BB (BDC), for dual actuated control under “E” demand case
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A contour plot was developed for the three responses of N, (Trips), T; (TTT)

and t,,, (MTT) for various parameters of 8V (BQL), f2or BP (BTP), and 8% (BDC) as
shown in Figure 5.23. The data for the control plot is taken from a total of 75 input
variable settings (data of models 1 to 5). These variant input settings correspond to a

total of 750 simulation runs, as each parameter setting is executed for 10 multiple runs.
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Figure 5.23: Contour plot of the three responses of N, (Trips), T, (TTT) and t,,, (MTT) for various parameters of 5"

(BQL), BPor BP (BTP), and 8B (BDC) for dual actuated control and demand case “E”
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5.3.1 Analysis

The multi-objective optimization methodology (maximizing of Ny, (Trips),
while simultaneously minimizing both T, (TTT) and t,,, (MTT)) is used to solve these
five models by the composite desirability function, as described in Chapter 3. None of
the above models resulted in acceptable desirability levels (within the model input
range) using the set three objective functions (maximizing of Ny, (Trips), while
simultaneously minimizing both T; (TTT) and t,,, (MTT)). The optimum values of the
coefficients are mostly border values (upper bound or lower bound of the specified
regions).

Further analysis is done for the all the models using only either double or single
objective function(s). The conducted analyses still led to optimal solutions at the
borders of the parameter regions. Only model 3 has shown good performance, and it
is discussed hereafter.

First, the optimization is done only using one objective function (maximizing
of Ny, (Trips)) as shown in Figure 5.24. The resulting optimal variable setting is
presented in Table 5.15. This setting is 1274, 9941, and 5 for the B¥ (BQL), fPor 5P
(BTP), and BB (BDC), respectively, with the response N, (Trips) of 155.7, and

0.146 (95% CI = 155.4, 156.0) standard error (SE).
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Figure 5.24: Optimization of N, (Trips) for various parameters of BV (BQL),
SPor BP (BTP), and BB (BDC), for dual actuated control under “E” demand scenario

Table 5.15: Optimal variable setting of coefficients for the response of Ny,s (Trips)
for dual actuated control with demand case “E”

Coefficients Responses
p¥ (BQL)  pPorp? Bf (BDC) Npus SE (95% CI)
(BTP) (Trips)
1274 9941 5 155.7 0.146 (155.4, 156.0)

The optimization is done afterward considering two objective functions
(maximizing of N,,,s (Trips), while simultaneously minimizing t,,, (MTT)), as shown
in Figure 5.25. The resulting optimal variable setting is presented in Table 5.16. This
setting is 2652, 11727, and 34 for BV (BQL), SPor BP (BTP), and BB (BDC),
respectively. The optimal responses are 155.6 for N, (Trips) with a standard error
(SE) of 0.16 (95% CI = 155.25, 155.99) and 687.19 seconds for t,, (MTT) with a

standard error (SE) of 2.42 (95% CI = 681.6, 692.8).
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Figure 5.25: Optimization of Ny, (Trips), and t,,, (MTT) for various parameters of
BV (BQL), BPor BP (BTP), and BB (BDC), for dual actuated control under “E”

demand scenario

Table 5.16: Optimal variable setting of coefficients for the response for dual actuated
control of “E” demand scenario

Coefficients Responses
BV Bbor :Bp BB Nbus SE tm (MTT) SE
(BQL) (BTP)  (BDC) | (Trips) (95% Cl) (seconds) (95% CI)
2652 11727 34 155.6 0.16 (155.25, 687.19 2.42 (681.6,
155.99) 692.8)

RSM Statistics (ANOVA table)

Regardless of the number and nature of used objective function(s) to identify

the optimal setting (single, dual or triple), the model itself is the same. Only the optimal

settings vary according to the preset objective function(s). In 5" model, the response
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surface model of N, (Trips) is significant (R-square = 82.40%), as shown in Table
5.17.

Table 5.17: Summary of ANOVA for N, (Trips) versus various 8V (BQL),
fPor BP (BTP), and BB (BDC) for dual actuated control of “E” demand scenario

Sum of Mean
Source Squares df Square F
Linear 0.5025 3 0.1675 2.66**
BY 0.02 1 0.02 0.32*
BP 0.45125 1 0.45125 7.17**
BB 0.03125 1 0.03125 0.5*
Square 1.36423 2 0.68212 10.84**
BYV*pY 1.14727 1 1.14727 18.24**
BP*BP 0.2928 1 0.2928 4.65**
2-Way Interaction BV*pE 0.49 1 049 7.79%*
Lack-of-Fit 0.3966 6 0.0661 1.24*
Total 2.86 14
*p>0.1
**p < 0.1

The second order regression equation of Ny, (Trips) versus BV (BQL),

fPor BP (BTP), and BB (BDC) is:

Nyys (Trips) (Dual Actuated Control under “E” Demand Scenario)
= 154.53 + 0.000396 BV + 0.000203 BP — 0.0285 BB

—0.0000001 B¥ * B¥ — 0.0000001 P * BP + 0.000014 BY * BB

Additionally, the response model of t,, (MTT) is significant (R-square =

82.67%), as shown in Table 5.18.
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Table 5.18: Summary of ANOVA for t,,, (MTT) versus various 8 (BQL), Sor P
(BTP), and 8 (BDC) for dual actuated control of “E” demand scenario

Sum of Mean
Source Squares df Square F
Linear 558.055 3 186.018 10.87**
BY 551.51 1 551.51 32.22%*
BP 0.012 1 0.012 0*
BB 6.533 1 6.533 0.38*
Square 176.896 2 88.448 5.17**
BV*BY 106.517 1 106.517 6.22%*
BE*BE 58.226 1 58.226 3.4%*
Lack-of-Fit 37.842 7 5.406 0.09*
Total 889.007 14
*p>0.1
**p < 0.1

The second order regression equation of t,, (MTT) versus SV (BQL), BPor P

(BTP), and B8 (BDC) is:

tm (MTT) (Dual Actuated Control under “E” Demand Scenario) (seconds) =
698.47 — 0.01088 BV + 0.000007 BP + 0.797 p&

+0.000002 BY x B¥ — 0.0188 BE « BE

Finally, the response model of T; (TTT) is significant (R-square = 84.89%), as

shown in Table 5.19. Only 8 (BDC) is not significant.
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Table 5.19: Summary of ANOVA for T, (TTT) versus various 8¥ (BQL), fPor B
(BTP), and B8 (BDC) for dual actuated control of “E” demand scenario

Sum of Mean
Source Squares df Square F
Linear 27341.2 3 9113.7  10.81**
gY 27181.5 1 271815 32.24**
BP 9.5 1 9.5 0.01*
BB 150.2 1 150.2 0.18*
Square 10568 3 3522.7  4.18**
BV*BY  3034.1 1 30341  3.6**
BP x BP  2545.2 1 25452  3.02**
BB x BB 44315 1 44315  5.26%*
Lack-of-Fit 179.2 6 29.9 0.01*
Total 44654.4 14
*p > 0.1
*Ep <0.1

The second order regression equation of T, (TTT) versus 8V (BQL), SPor P

(BTP), and B8 (BDC) is:

T, (TTT) (Dual Actuated Control under "E" Demand Scenario) (hours)
= 6911.8 — 0.0661 8V + 0.01497 BP + 6.73 p5

4+ 0.000009 B¥ * BV — 0.000001 BP * BP — 0.1648 BB * BB.

5.3.2 Optimum selection (model validation)

For different objective functions, different optimal settings are obtained. In
specific, herein we refer to the optimum settings of the coefficients of BY (BQL),
BPor BP (BTP), and B (BDC) related to the solutions:

I. where only N,,s (Trips) is maximized (as indicated in Table 5.15)

Il. where Np,s (Trips) is maximized and t,, (MTT) is minimized (as

indicated in Table 5.16)
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In order to select only one set of values to generalize its use with the dual
actuated controller under the E demand scenario, a verification/validation process is
deployed. The validation process entails running the simulation with the identified
values (in Tables 5.15 and 5.16). Each dataset was used in ten (10) multiple runs and
the resulting responses were then averaged and reported as shown in Table 5.20. The
resulting average Ny, (Trips), t,, (MTT) and T (TTT) of the 10 simulation runs (as
shown in Table 5.20) lie within the 95% confidence interval (corresponding values)
extracted from the response surface model (as shown in Table 5.15 for variable setting
I, and Table 5.16 for variable setting II).
The 2" set of variables (I1) (8" (BQL) = 2652, BPor fP (BTP) = 11727,
and BB (BDC)= 34) is selected as the default general setting of the dual actuated
controller under the demand case “E”. The set results nearly same values of Ny,

(Trips), but lesser values of t,,, (MTT) and T, (TTT) as shown in Table 5.20.

Table 5.20: Optimal variable settings of 8V (BQL), BPor fP (BTP), and B2 (BDC)
and corresponding simulation-based MOE’s (N5 (Trips), t,, (MTT) (seconds), T;
(TTT) (hours)) for dual actuated control of “E” demand scenario

Coefficients Responses

Variable Settings | BY | pPorp? | pBE Npus | tm (MTT) | T (TTT)

(BQL) | (BTP) | (BDC) | (Trips) | (seconds) | (hours)
I. (only Ny
(Trips) is 1274 9941 5 155.5 701.56 6993.85
maximized)
1. (Npys (Trips)
IS maximized and
£ (MTT) s 2652 11727 34 155.2 688.71 6901.98
minimized)

It is worth noting that the total network travel time T; (TTT) was not explicitly

used an optimization criterion in any of the above two solutions (I and 11). Nonetheless,

it is legitimate to say that T; (TTT) was implicitly accounted in obtaining the optimal
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settings II; as it directly relates to the trip’s average travel time, t,,, (MTT) through the

T

formula t,,= * 3600, where Ny, is the total number of vehicles in the network.

trips
That is, explicit minimization of ¢,,, (MTT) implies implicit minimization (not explicit)

of T, (TTT).
5.4 Discussion

The optimal variable settings for various controls and their responses with
characteristics are discussed in this section. The selected optimal variable settings for
the Split Actuated control, Protected Actuated control, and Dual Actuated control
under the demand scenario “E” (‘E’ refers to the traffic demand scenario of “high”
traffic volume) are presented in Table 5.21. Also, the corresponding simulation-based
MOE’s (Npys (Trips), t,, (MTT) (seconds), T; (TTT) (hours)) for each setting are
shown. From these settings, the split actuated and dual actuated control performed
better than the protected actuated, as they delivered more total bus trips (N, (Trips))
with less average travel time per trip (t,,, (MTT)). In addition, the dual actuated control
has shown best performance considering the average travel time per trip (688.71
seconds vs. 838.26 seconds); although, it has less total bus trips (155.2 vs. 161) than

the split actuated control.
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Table 5.21: Optimal variable settings of 8V (BQL), fPor BP (BTP), and BZ (BDC)
and corresponding simulation-based MOE’s (N5 (Trips), t,, (MTT) (seconds), T;
(TTT) (hours)) for various controls of “E” demand scenario

Coefficients Responses
Control Y SPor pP pB Npys tm (MTT) | T, (TTT)
(BQL) (BTP) (BDC) | (Trips) (seconds) (hours)

Split 305 1000 2.1 161.0 838.26 8190.57
Actuated
Protected 2503 17242 3 100.1 1012.7 3536.98
Actuated
Dual 2652 | 11727 | 34 | 1552 | 68871 | 6901.98
Actuated

In general, optimization deals with finding the best outputs (MOEs) by
selecting the input variable settings and often in simulation-based optimization, the
input variable settings follow a ratio among them to yield the similar output(s), as they
have a similar effect on output(s). Therefore, the effect of various input variable
settings using the selected optimal input variable settings is discussed in this section.

As indicated in Chapter 1, the typical notion of a robust system is one that
performs well across a range of (traffic, geometry, weather, etc.) conditions. The
robustness of the system must be ensured at various levels of congestion and across
different control types (namely three levels). At the first level, the purpose is to ensure
that for each control type (e.g. dual, protected or split) the sensitivity of relative ratios
of the parameters. The idea is to check whether there is a specific relative ratio among
the parameters that makes the specific control type (dual, protected or split) robust
under one specific traffic condition.

Here, the “robustness” is examined in the context of the degree of sensitivity
of the control system performance as a function of the scale of the input variable, while
holding the relative ratio between these variables constant. The conclusion from this
analysis is that the system is robust because (for most cases) performance of the system

remains relatively constant regardless of the absolute magnitude of the parameter
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values as long as the relative ratios of the parameter values remain constant. The other
two levels of robustness checking are summarized in Chapter 7.

More specifically, this section focuses on testing the “robustness” of the
various controllers under fixed relative proportions among the various inputs. That is,
will the performance of a specific controller change if the absolute values of the
penalty coefficients (inputs) change, but the relative proportions among these penalties
remain the same? It is believed that no matter what are the absolute values of these
penalty coefficients, what determines the optimal setting is a specific “relative”
proportion among them for each specific controller. If the controller performance does
not change with the change of the absolute penalty values (while keeping the relative
proportions fixed), this is a reflection of system robustness.

In the remaining part of this section, the robustness testing of the split actuated
control is presented first, followed by the ones for the protected actuated control, and

finally for the dual actuated control.

5.4.1 Split Actuated Control

The selected optimal variable settings (8¥ (BQL) = 305, BPor f? (BTP) =
1000, and BB (BDC)= 2.1) for split actuated controls under “E” demand scenario is
presented in Table 5.22. These absolute values if rounded would result in the relative
ratios of 150:495:1 (BY (BQL) : BPor BP (BTP): BB (BDC)). Using this fixed relative
ratio, several input variable settings were developed and simulated. Each setting as
indicated in Table 5.23 was simulated 100 times, and the average MOE’s of these runs
were reported. The results of the various settings (with the same relative ratio) are

shown in Table 5.23. The results (in Table 5.23) show that the responses using this
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fixed ratio are more or less similar, and closely identical to the responses obtained with

the selected optimal input variable settings (Table 5.22).

Table 5.22: Selected optimal variable settings of 8V (BQL), BPor P (BTP), and 5
(BDC) and corresponding simulation-based MOE’s (Ny,s (TTips), t,, (MTT)
(seconds), T; (TTT) (hours)) for split actuated controls of “E” demand scenario

Coefficients Responses
gY pPor g7 p? Npus tm (MTT) Te (TTT)
(BQL) (BTP) (BDC) (Trips) (seconds) (hours)
305 1000 2.1 161.0 838.26 8190.57

Table 5.23: Several variable settings with the ratio of optimal variable settings of 8
(BQL), BPor P (BTP), and 5 (BDC) and corresponding simulation-based (from
100 runs) MOE’s (Np,s (TTips), t,, (MTT) (seconds), T, (TTT) (hours)) for split

actuated controls of “E” demand scenario

Coefficients Responses

i pPor g? p? Npus tm (MTT) Te (TTT)
(BQL) (BTP) (BDC) (Trips) (seconds) (hours)

150 495 1 160.1 842.5 8223.0

450 1485 3 160.6 842.8 8223.5

750 2475 5 160.5 844.0 8241.3
1500 4950 10 160.4 842.2 8229.0
3000 9900 20 160.5 842.8 8232.8

Figure 5.26 shows the rolling average of 10 runs of total bus trips (Trips) from
100 simulation runs for several variable settings using the ratio of optimal variable
settings of BV (BQL), fPor BP (BTP), and B (BDC) for split actuated controls under
“E” demand scenario. There is a similarity among the several variable settings, with
the total bus trips (Trips) ranges from 159.6 to 161.5, which are close to the response
(total bus trips=161.0) of selected optimal variable settings of 8V (BQL), fPor P
(BTP), and BB (BDC). The variations of the three responses under the various tested

scenarios (Table 5.23) is almost negligible, and it clearly indicates the robustness of
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the split actuated controllers using the fixed relative ratio of 150:495:1 for the 5"

(BQL): BPor fP (BTP): BB (BDC).

161.5
161.0
160.5

160.0

Total bus trips, Ny, (Trips)
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—=@=150 495 1 ==@==450 1485 3 ==@==750_ 2475 5
=@=1500_4950_10 ==@==3000_9900_20

Figure 5.26: Ten runs rolling average of total bus trips (Trips) for several variable
settings with the fixed ratio of optimal variable settings of 8V (BQL), B’or 5P
(BTP), and B8 (BDC) for the split actuated controller of “E” demand scenario

5.4.2 Protected Actuated Control

The selected optimal variable settings (8 (BQL) = 2503, f2or fP (BTP) =
17242, and B8 (BDC)= 3) for protected actuated controls under “E” demand scenario
is presented in Table 5.24. These absolute values if rounded would result in the relative
ratios of 830:5810:1 (8¥ (BQL) : BPor B? (BTP): BB (BDC)).

Using this fixed relative ratio, several input variable settings were developed
and simulated. Each setting as indicated in Table 5.25 was simulated 100 times, and
the average MOE’s of these runs were reported. The results of the various settings
(with the same relative ratio) are shown in Table 5.25. The results (in Table 5.25)

indicate that the responses using this fixed ratio are more or less similar, and closely
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identical to the responses obtained with the selected optimal input variable settings

(Table 5.24).

Table 5.24: Selected optimal variable settings of 8V (BQL), BPor P (BTP), and p5
(BDC) and corresponding simulation-based MOE’s (Ny,s (TTips), t,, (MTT)
(seconds), T; (TTT) (hours)) for protected actuated controls of “E” demand scenario

Coefficients Responses
gY pPor g7 p? Npus tm (MTT) T (TTT)
(BQL) (BTP) (BDC) (Trips) (seconds) (hours)
2503 17242 3 100.1 1012.7 3536.98

Table 5.25: Several variable settings with the ratio of optimal variable settings of 8

(BQL), BPor P (BTP), and 5 (BDC) and corresponding simulation-based (from
100 runs) MOE’s (N, (Trips), t,,, (MTT) (seconds), T, (TTT) (hours)) for

protected actuated controls of “E” demand scenario

Coefficients Responses

i pPor gP p? Npus tm (MTT) T (TTT)
(BQL) (BTP) (BDC) (Trips) (seconds) (hours)

830 5810 1 99.1 1015.99 3493.65
2490 17430 3 99.9 1013.1 3489.1
4150 29050 5 99.8 1029.26 3572.93
8300 58100 10 100.3 1101.5 3896.7
16600 116200 20 100.2 1116.1 3947.7

Figure 5.27 shows the rolling average of 10 runs of total bus trips (Trips) from
100 simulation runs for several variable settings using the ratio of optimal variable
settings of 8V (BQL), BPor fP (BTP), and BB (BDC) for protected actuated controls
under “E” demand scenario. There is a similarity among the several variable settings,
with the total bus trips (Trips) ranges from 95.4 to 104.3, which are close to the
response (total bus trips=100.1) of selected optimal variable settings of 8V (BQL),
BPor BP (BTP), and £B (BDC). The variations of the three responses under the various

tested scenarios (Table 5.25) is moderate, and it clearly indicates a moderate level of
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robustness of the protected actuated controllers using the fixed relative ratio of

830:5810:1 for the B¥ (BQL): BPor P (BTP): fE (BDC).
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Figure 5.27: Ten runs rolling average of total bus trips (Trips) for several variable
settings with the fixed ratio of optimal variable settings of 8V (BQL), BPor 5P
(BTP), and B8 (BDC) for the protected actuated controller of “E” demand scenario

5.4.3 Dual Actuated Control

The selected optimal variable settings (8 (BQL) = 2652, fPor fP (BTP) =
11727, and B8 (BDC)= 34) for dual actuated controls under “E” demand scenario is
presented in Table 5.26. These absolute values if rounded would result in the relative
ratios of 80:350:1 (8" (BQL) : fPor BP (BTP): BB (BDC)).
Table 5.26: Selected optimal variable settings of 8V (BQL), f2or P (BTP), and 55

(BDC) and corresponding simulation-based MOE’s (N, (Trips), t,, (MTT)
(seconds), T; (TTT) (hours)) for dual actuated controls of “E” demand scenario

Coefficients Responses
gY pPor gP p? Npus tm (MTT) Te (TTT)
(BQL) (BTP) (BDC) (Trips) (seconds) (hours)
2652 11727 34 155.2 688.71 6901.98
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Using this fixed relative ratio, several input variable settings were developed

and simulated. Each setting as indicated in Table 5.27 was simulated 100 times, and
the average MOE’s of these runs were reported. The results of the various settings
(with the same relative ratio) are shown in Table 5.27. The results (in Table 5.27)
indicate that the responses using this fixed ratio are more or less similar, and closely
identical to the responses obtained with the selected optimal input variable settings

(Table 5.26).

Table 5.27: Several variable settings with the ratio of optimal variable settings of 8"
(BQL), BPor P (BTP), and B& (BDC) and corresponding simulation-based (from
100 runs) MOE’s (N,,,s (Trips), t,,, (MTT) (seconds), T, (TTT) (hours)) for dual

actuated controls of “E” demand scenario

Coefficients Responses

pY pPor gP p? Npys tm (MTT) Te (TTT)
(BQL) (BTP) (BDC) (Trips) (seconds) (hours)

80 350 1 155.4 693.70 6947.05

240 1050 3 155.3 692.98 6938.53

400 1750 5 155.5 692.33 6935.31

800 3500 10 155.1 693.34 6938.64
1600 7000 20 155.6 692.97 6936.31

Figure 5.28 shows the rolling average of 10 runs of total bus trips (Trips) from
100 simulation runs for several variable settings using the ratio of optimal variable
settings of 8V (BQL), fPor BP (BTP), and S8 (BDC) for dual actuated controls under
“E” demand scenario. There is a similarity among the several variable settings, with
the total bus trips (Trips) ranges from 154.3 to 156.4, which are close to the response
(total bus trips=155.2) of selected optimal variable settings of 8V (BQL), B’or pP
(BTP), and B8 (BDC). The variations of the three responses under the various tested

scenarios (Table 5.27) is almost negligible, and it clearly indicates the robustness of
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the dual actuated controllers using the fixed relative ratio of 80:350:1 for the 5V (BQL):
BPor P (BTP): B8 (BDC).
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Figure 5.28: Ten runs rolling average of total bus trips (Trips) for several variable
settings with the fixed ratio of optimal variable settings of 8V (BQL), BPor 5P
(BTP), and BB (BDC) for the dual actuated controller of “E” demand scenario
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Chapter 6: RSM Results and Analyses under the Very High Traffic (F)
Demand Scenario

This chapter summarizes the results and the analyses of the optimization of the
calibrated RSM on the coefficients for the integrated control system described in
Chapter 3 for the various control types (Split Actuated, Protected Actuated, and Dual
Actuated) under the demand scenario designated as (F) and the associated network
topology. The (F) letter herein refers to the traffic demand scenarios of “very high”
traffic volume as explained earlier in more details in Chapter 4.

This chapter is divided into three subsections to demonstrate the results and
analyses for the Split Actuated control, followed by the ones for the Protected Actuated

control, and finally for the Dual Actuated control.
6.1 Split Actuated Control

The output of the Split Actuated control system is presented in Table 6.1 for
two (2) RSM models, as discussed in Chapter 3 and Appendix A in details. Table 6.1
summarizes the input variable ranges, the optimal settings, and the resulting composite
desirability. The optimization results of the two models are plotted in Figures 6.1 and
6.2 for the three input parameters of coefficient for virtual queue of vehicles, B
(BQL), coefficient for transit priority, ?or B? (BTP), and downstream blockage
penalty coefficient, B2 (BDC), as well as the three responses of the total bus trips, Ny,
(Trips), total network travel time, T; (TTT), and the trip average travel time, t,,

(MTT).
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Table 6.1: Optimal values of split actuated control under “F” demand scenario

Model | Factor ranges Optimal factor Composite

NO. gY (BQL) BPor P BE (BDC) | settings (BY, Desirability,
(BTP) pPorp?,pf) | D

1 100 -3000 1000 - 8000 1-5 100, 8000, 1.32 0.792

2 1-3000 1000 - 8000 1-5 1,4818.18,1.20 0.887

Figures 6.1 and 6.2 depict the optimization plot for the models 1 and 2
considering the three input parameters and the three responses. The composite

desirability values of models 1 and 2 are 0.792 and 0.887, respectively.

D: 07921 igh 3000.0 8000.0 5.0
; Cur [100.0] [8000.0] [1.3232]
Predict Low 100.0 1000.0 1.0

Composite \\\—# k\\J

Desirability
D: 0.7921

MTT

Minimum
y = 1388.7030 /_\ |

d = 0.96939

TIT
Minimum

y = 85263922 /\ |

d = 0.99556

Trips
Maximum
y=1677198 —— — — — — == — — =~ — — — — -
d = 0.51501 \

Figure 6.1: Model 1 individual and composite desirability D for the responses of
Nyys (Trips), T, (TTT) and t,,, (MTT) for various parameters of ¥ (BQL), f?or BP
(BTP), and BB (BDC), for split actuated control under “F” demand scenario
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Optimal BQL Sl BDC

. High 3000.0 8000.0 >0
D-08867 ¢y [1.0] [4818.1818)] [1.2020]
Predict Low 10 1000.0 10

et
Composite \ X_/
Desirability

D: 0.8867

MTT
Minimum
y = 1389.8043
d=099985 T

T
Minimum
y = 8207.0206
d=10000 -

Trips
Maximum
y = 167.8387
d = 069734

Figure 6.2: Model 2 individual and composite desirability D for the responses of
Npys (Trips), T, (TTT) and t,,, (MTT) for various parameters of 5V (BQL), f2or P
(BTP), and 8 (BDC), for split actuated control under “F” demand scenario

A contour plot was developed for the three responses of N,,,s (Trips), T; (TTT)
and t,,, (MTT) for various parameters of B8V (BQL), B%or ¥ (BTP), and B (BDC) as
shown in Figure 6.3. The data for the contour plot were taken from a total of 15 coded
input variable settings for each model as indicated in Chapter 3 according to the Box-
Behnkan design (Table 3.1) (a total of 30 input settings for models 1 and 2). These
variant input settings correspond to a total of 300 simulation runs, as each parameter

setting is executed for 10 multiple runs.
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Contour Plot of Total Bus Trips
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Figure 6.3: Contour plot of the three responses of Ny, (Trips), T; (TTT) and t,,, (MTT) for various parameters of ¥ (BQL), fPor P (BTP), and 58 (BDC) for split actuated control and demand case “F”
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6.1.1 Analysis

The multi-objective optimization methodology (maximizing of Ny, (Trips),
while simultaneously minimizing both T, (TTT) and t,,, (MTT)) is used to solve these
two models by the composite desirability function, as described in Chapter 3. The
second model satisfied the proper desirability within the input variable levels, as the
optimum values of the coefficients are within the border (upper bound or lower bound)
as shown in Figure 6.2, except for the coefficient for virtual queue of vehicles and it is
lowest positive value. Further analysis is done for the second model using only either
double or single objective function(s) and it is discussed hereafter.

First, the optimization is done considering two objective functions
(maximizing of Ny,,s (Trips), while simultaneously minimizing t,,, (MTT)), as shown
in Figure 6.4 and the optimal variable setting is presented in Table 6.2. The results are
similar to the earlier ones shown in Figure 6.2. This setting is 1, 4818.18, and 1.20 for
BV (BQL), BPor BP (BTP), and B2 (BDC), respectively. The optimal responses are
167.84 for N,,,; (Trips) with a standard error (SE) of 1.35 (95% CI = 164.53, 171.15)
and 1389.8 seconds for t,,, (MTT) with a standard error (SE) of 14.4 (95% CI = 1356.6,

1423.0).
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Figure 6.4: Optimization of Ny, (Trips), and t,,, (MTT) for various parameters of
BV (BQL), fPor BP (BTP), and BB (BDC), for split actuated control under “F”
demand scenario

Table 6.2: Optimal variable setting of coefficients for the response for split actuated
control of “F” demand scenario

Coefficients Responses

BV ﬁbOI’ Bp BB Nbus SE tm (MTT) SE
(BQL) (BTP) (BDC) | (Trips)  (95%Cl) (seconds) (95% CI)

1 481818 1.0 | 167.84 135(16453,  1389.8  14.4 (1356.6,
171.15) 1423.0)

The optimization is done afterward considering only one objective function
(maximizing of Ny, (Trips)) as shown in Figure 6.5. The resulting optimal variable
setting is presented in Table 6.3. This setting is 1, 4818.18, and 3.67 for the 8V (BQL),
BPor BP (BTP), and BB (BDC), respectively, with the response Ny, (Trips) of 177.05

and 1.08 (95% CI = 174.41, 179.70) standard error (SE).
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Figure 6.5: Optimization of N, (Trips) for various parameters of 8V (BQL),
fPor BP (BTP), and BB (BDC), for split actuated control under “F” demand scenario

Table 6.3: Optimal variable setting of coefficients for the response of Ny, (Trips)
for split actuated control with demand case “F”

Coefficients Responses
BV (BQL)  BPorp?  BP(BDC) Npus SE (95% Cl)
(BTP) (Trips)
1 4818.18 3.67 177.05 1.08 (174.41, 179.70)

RSM Statistics (ANOVA table)

Regardless of the number and nature of used objective function(s) to identify
the optimal setting (single, dual or triple), the model itself is the same. Only the optimal
settings vary according to the preset objective function(s). In 2" model (with design
explained in Table 6.1), the response surface model of N, (Trips) is statistically
significant (R-square = 94.56%), as p-value for each parameter is less than 0.1, as
shown in Table 6.4, except the square of coefficient for virtual queue of vehicles (B¥ *

BY, p-value = 0.117).
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Table 6.4: Summary of ANOVA for N, (Trips) versus various 8V (BQL), BPor 5P
(BTP), and B8 (BDC) for split actuated control of “F” demand scenario

Sum of Mean
Source Squares df Square F
Linear 527.142 3 175.714 61.52**
BY 147.061 1 147.061 45.49**
gP 77.501 1 77501  71.07**
BB 302.580 1 302.580 0.44**
Square 188.468 3 62.823  22.00**
BV « BV 9.551 1 9.551 3.34*
BP *BP  46.314 1 46.314  16.22**
BE « BB 133.663 1 133.663 46.8**
2-Way Interaction 40.263 2 20.131  7.05**
BYV* BP 23.04 1 23.04 8.07**
BV* BB 17.223 1 17.223  6.03**
Lack-of-Fit 11.850 4 2.963 1.12*
Total 773.009 14
*p>0.1
**p <01

The second order regression equation of N, (Trips) versus BV (BQL),

fPor BP (BTP), and BB (BDC) is:

Nyus (Trips) (Split Actuated Control under “F” Demand Scenario) =
149.92 — 0.00914 B + 0.002805 B? + 11.06 BZ + 0.0000018" * BV —

0.000000187 = BP — 1.504B5 = B& + 0.00000018" 8P + 0.0006923" BE

Additionally, the response model of t,, (MTT) is significant (R-square =
93.91%), as p-value for each parameter is less than 0.1 as shown in Table 6.5, except

the BP(BTP), as p-value greater than 0.1.
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Table 6.5: Summary of ANOVA for t,,, (MTT) versus various 8V (BQL), for pP
(BTP), and BB (BDC) for split actuated control of “F” demand scenario

Sum of Mean
Source Squares df Square F
Linear 26876 3 8958.7 18.86**
BY 5609.4 1 5609.4 11.81**
B 289 1 289 0.61*
BB 20977.5 1 20977.5 44,15**
Square 31749.3 3 10583.1 22.28**
BV xBY  8654.7 1 8654.7 18.22**
P *pP  2196.1 1 2196.1 4.62**
BE « BB 24286.9 1 24286.9 51.12**
Lack-of-Fit 3157.8 6 526.3 1.64*
Total 62426.1 14
*p>0.1
**p <01

The second order regression equation of t,, (MTT) versus SV (BQL), BPor P

(BTP), and B8 (BDC) is:

tm (MTT) (Split Actuated Control under “F” Demand Scenario) (seconds)
= 1193.6 + 0.0823 BV + 0.01964 B? + 147.3 BB

—0.000022 BV * B¥ — 0.000002 BP = BP — 20.28 BE « BB

Finally, the response model of T, (TTT) is significant (R-square = 94.57%), as
p-value for each parameter is less than 0.1, as shown in Table 6.6, except the
interaction between the coefficient for virtual queue of vehicles and coefficient for

transit priority (B¥* B?, p-value = 0.16).
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Table 6.6: Summary of ANOVA for T, (TTT) versus various 8¥ (BQL), f?or g
(BTP), and B8 (BDC) for split actuated control of “F” demand scenario

Sum of Mean
Source Squares df Square F

Linear 8161969 3 2720656 33.04**
114 3752929 1 3752929 45.58**

gP 466049 1 466049  5.66**

BE 3942991 1 3942991 47.89**

Square 3120424 2 1560212 18.95**
1
1
1
6
1

BY BV 1098124 1098124 13.34**
BB x BB 2229928 2229928 27.08**
2-Way Interaction  B"* P 192960 192960 2.34*

Lack-of-Fit 588067 98011 2.78*
Total 12134027 4

*n>0.1

**p<0.1

The second order regression equation of T, (TTT) versus 8V (BQL), fPor BP

(BTP), and B8 (BDC) is:

T, (TTT) (Split Actuated Control under “F” Demand Scenario) (hours) =
6696 + 1.371 8” — 0.0062 BP + 1513 BB

—0.000242 BY x BY —193.7 BB » BB — 0.000042 BV * BP

6.1.2 Optimum selection (model validation)

For different objective functions, different optimal settings are obtained. In
specific, herein we refer to the optimum settings of the coefficients of BY (BQL),
SPor BP (BTP), and BB (BDC) related to the solutions:

I1l. where Np,s (Trips) is maximized and t,, (MTT) is minimized (as

indicated in Table 6.2)

IV. where only N, (Trips) is maximized (as indicated in Table 6.3)
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To select only one set of values, to generalize its use with the split actuated
controller under the “F” demand scenario), a verification/validation process is
deployed. The validation process entails running the simulation with the identified
values (in Tables 6.2 and 6.3). Each dataset was used in ten (10) multiple runs and the
resulting responses were then averaged and reported as shown in Table 6.7. The
resulting average Ny, (Trips), t,, (MTT) and T; (TTT) of the 10 simulation runs (as
shown in Table 6.7) lie within the 95% confidence interval (corresponding values)
extracted from the response surface model (as shown in Table 6.2 for variable setting

I, and Table 6.3 for variable setting I1).

Table 6.7: Optimal variable settings of ¥ (BQL), f2or P (BTP), and £Z (BDC) and
corresponding simulation-based MOE’s (Ny,s (TTips), t,, (MTT) (seconds), T;
(TTT) (hours)) for split actuated control of “F” demand scenario

Coefficients Responses
i i ﬁV ﬁborﬁp ﬁB Nbus tm (MTT) Tt
Variable Setting (BQL) | (BTP) | (BDC) | (Trips) | (seconds) | (TTT)
(hours)

I. (N5 (Trips)is | 1 4818.18 | 1.2 163.2 1393.9 8408.5
maximized and
t,, (MTT) is
minimized)

I1. (only Ny, 1 4818.18 | 3.2 175.1 1462.2 9335.6
(Trips)is
maximized)

The 2" set of variables (11) (3" (BQL) = 1, BPor BP (BTP) = 4818.18, and
BB (BDC)= 3.2) is selected as the default general setting of the split actuated
controller under the demand case “F”. The set has nearly 12 more total bus trips. It is
usual that with more trips, the average travel time and total travel time in the network

will increase.
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6.2 Protected Actuated Control

The outputs for the Protected Actuated control system are presented in Table
6.8 for two (2) RSM models, as discussed in Chapter 3 and Appendix A in details.
Table 6.8 summarizes the input variable ranges, the optimal variable setting, and the
resulting composite desirability. The optimization results of the two models are plotted
in Figures 6.6, and 6.7 for three input parameters of coefficient for virtual queue of
vehicles, BV (BQL), coefficient for transit priority, f2or gP (BTP), and downstream
blockage penalty coefficient, B2 (BDC), as well as the three responses of the total bus
trips, Ny,s (Trips), total network travel time, T, (TTT), and the trip average travel

time, t,, (MTT).

Table 6.8: Optimal values of protected actuated control under “F” demand scenario

Model Factor ranges Optimal factor Composite

NO. 8V (BQL) Bor BP BB settings (BY, Desirability,
(BTP) Bpc) | BPor B?. B) D

1 100 -4000 | 3000-18000 | 3—-6 |100,9212.12,3 |0.891

2 1-5000 3000-18000 | 1-5 |1,10575,1.52 0.836

Figures 6.6, and 6.7 depict the optimization plots for models 1, and 2
considering the three input parameters and the three responses. The composite

desirability values of these models are 0. 891, and 0.836, respectively.
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Figure 6.6: Model 1 individual and composite desirability D for the responses of
Npys (Trips), T, (TTT) and t,,, (MTT) for various parameters of 5V (BQL), f2or P
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A contour plot was developed for the three responses of N, (Trips), T; (TTT)

and t,,, (MTT) for various parameters of 8V (BQL), f2or BP (BTP), and 8% (BDC) as
shown in Figure 6.15. The data for the contour plot were taken from a total of 15 coded
input variable settings for each model as indicated in Chapter 3 according to the Box-
Behnkan design (Table 3.1) (a total of 30 input settings for models 1 and 2). These
variant input settings correspond to a total of 300 simulation runs, as each parameter

setting is executed for 10 multiple runs.
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Figure 6.8: Contour plot of the three responses of Ny, (Trips), T, (TTT) and t,,, (MTT) for various parameters of ¥ (BQL), f2or B? (BTP), and 5B (BDC) for protected actuated control and demand case “F”



139

6.2.1 Analysis

The multi-objective optimization methodology (maximizing of Ny, (Trips),
while simultaneously minimizing both T, (TTT) and t,,, (MTT)) is used to solve these
two models by the composite desirability function, as described in Chapter 3. None of
the above models resulted in acceptable desirability levels (within the model input
range) using the set three objective functions (maximizing of Ny, (Trips), while
simultaneously minimizing both T, (TTT) and t,,, (MTT)). The optimum values of the
coefficients are mostly border values (upper bound or lower bound of the specified
regions).

Further analysis is done for the all the models using only either double or single
objective function(s). The conducted analyses still indicated the optimal solutions at
the borders of the parameter regions. Only model 2 has shown good performance, and
it is discussed hereafter.

First, the optimization is done considering two objective functions
(maximizing of N,,,s (Trips), while simultaneously minimizing t,,, (MTT)), as shown
in Figure 6.9. The resulting optimal variable setting is presented in Table 6.9. This
setting is 303.97, 10727.27, and 1.69 for BV (BQL), Por B? (BTP), and BB (BDC),
respectively. The optimal responses are 124.18 for N, (Trips) with a standard error
(SE) 0f 0.32 (95% CI1 = 123.5, 124.9) and 1395.8 seconds for t,,, (MTT) with a standard

error (SE) of 6.71 (95% Cl = 1380.3, 1411.2).
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Figure 6.9: Optimization of N, (Trips), and t,, (MTT) for various parameters of
Y (BQL), BPor BP (BTP), and BE (BDC), for protected actuated control under “F”

demand scenario

Table 6.9: Optimal variable setting of coefficients for the response of Ny, (Trips)
and t,, (MTT) for protected actuated control with demand case “F”

Coefficients Responses
:BV ﬁbOI’ ﬁp ﬁB Nbus SE tm (MTT) SE
(BQL)  (BTP)  (BDC) | (Trips) (95%Cl)  (seconds)  (95% Cl)
303.97 10727.27 1.69 12418 0.32 1395.8 6.71
(123.5, (1380.3,
124.9) 1411.2)

The optimization is done afterward considering only one objective function

(maximizing of Ny, (Trips)) as shown in Figure 6.10. The resulting optimal variable

setting is presented in Table 6.10. This setting is 1, 9818.18, and 1 for the 8V (BQL),

BPor BP (BTP), and BB (BDC), respectively, with the response Ny, (Trips) of 124.66

and 0.38 (95% CI = 123.8, 125.5) standard error (SE).
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Figure 6.10: Optimization of N, (Trips) for various parameters of BV (BQL),
SPor BP (BTP), and BB (BDC), for split actuated control under “F” demand scenario

Table 6.10: Optimal variable setting of coefficients for the response of N,,s (Trips)
for split actuated control with demand case “F”

Coefficients Responses
BV (BQL) SPor pP B2 (BDC) Npus SE (95% CI)
(BTP) (Trips)
1 0818.18 1 124.66 0.38 (123.8, 125.5)

RSM Statistics (ANOVA table)

Regardless of the number and nature of used objective function(s) to identify
the optimal setting (single, dual or triple), the model itself is the same. Only the optimal
settings vary according to the preset objective function(s). In 2" model (with design
explained in Table 6.8), the response surface model of total bus trips is significant (R-
square = 95.59%), as shown in Table 6.11. Only 82 (BDC) is not significant with a p-

value greater than 0.1.
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Table 6.11: Summary of ANOVA for N, (Trips) versus various 8V (BQL),
SPor BP (BTP), and BB (BDC) for protected actuated control of “F” demand scenario

Sum of Mean
Source Squares df Square F
Linear 33.0422 3 11.0141 33.59**
BY 27.4259 1 27.4259 83.64**
B 5.2963 1 5.2963 16.15**
BB 0.32 1 0.32 0.98*
Square 12.5219 2 6.261 19.1**
BV*pY 1.8907 1 1.8907 5.77**
BP*RP 9.9478 1 9.9478 30.34**
2-Way Interaction ~ BV*BP 7.5625 1 75625 23.06**
Lack-of-Fit 2.1364 6 0.3561 1.46*
Total 59.5 14
*p > 0.1
**p < 0.1

The second order regression equation of Ny, (Trips) versus BV (BQL),

fPor pP (BTP), and BB (BDC) is:

Npys (Trips) (Protected Actuated Control under “F” Demand Scenario)
= 121.94 — 0.002076 8V + 0.000573 pP — 0.1p5

+0.0000001 B¥ % B¥ — 0.0000001 BP x BP + 0.0000001 B¥ % BP

Additionally, the response model of t,, (MTT) is significant (R-square =
77.02%), as shown in Table 6.12. Only BP (BTP) is not significant with a p-value

greater than 0.1.
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Table 6.12: Summary of ANOVA for t,,, (MTT) versus various B” (BQL), fPor BP
(BTP), and B8 (BDC) for protected actuated control of “F” demand scenario

Sum of Mean
Source Squares df Square F
Linear 3500.9 3 1166.97 8.24**
BY 1691.63 1 1691.63 11.94**
gP 19.77 1 19.77 0.14*
BB 2113.49 1 2113.49 14.92**
Square 1558.09 2 779.05 5.5**
BYV*pY 503.42 1 503.42 3.55**
BE*BE 1155.69 1 1155.69 8.16**
2-Way Interaction BYV*pE 586.62 1  586.62 4.14**
Lack-of-Fit 719.97 6 120 0.58*
Total 4931.66 14
*»n>0.1
**p<0.1

The second order regression equation of t,, (MTT) versus 8V (BQL), BPor P

(BTP), and B8 (BDC) is:

t,mn (MTT) (Protected Actuated Control under “F” Demand Scenario)
(seconds) = 1413.5 — 0.00576 BV — 0.00021 BP — 14.96 p&

+0.000002 BY * ¥ + 4.41B8 « BB — 0.00242 BV * BB

Finally, the response model of T, (TTT) is significant (R-square = 66.91%), as

shown in Table 6.13. Only 8P (BTP) is not significant with a p-value greater than 0.1.
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Table 6.13: Summary of ANOVA for T, (TTT) versus various 8” (BQL), fPor B
(BTP), and B8 (BDC) for protected actuated control of “F” demand scenario

Sum of Mean
Source Squares df Square F
Linear 26734.3 3 89114  4.17**
114 7232.9 1 72329  3.39**
gP 19 1 19 0.01*
BE 19482.5 1 194825 9.13**
Square BB « BB 5462.3 1 5462.3  2.56**
Lack-of-Fit 4933.5 8 616.7 0.08*
Total 64506.9 14
*p > 0.1
**p < 0.1

The second order regression equation of T, (TTT) versus 8V (BQL), fPor BP

(BTP), and B8 (BDC) is:

T, (TTT) (Protected Actuated Control under “F” Demand Scenario) (hours) =

3718.8 — 0.01203 BV — 0.00021 B? — 26.5 BB +9.56 BE « BB

6.2.2 Optimum selection (model validation)

For different objective functions, different optimal settings are obtained. In
specific, herein we refer to the optimum settings of the coefficients of BY (BQL),
SPor BP (BTP), and BB (BDC) related to the solutions:

I. where Ny, (Trips) is maximized and t,, (MTT) is minimized (as

indicated in Table 6.9)

Il. where only N, (Trips) is maximized (as indicated in Table 6.10)

To select the set of values, to generalize its use with the protected actuated
controller under the “F” demand scenario, a verification/validation process is

deployed. The validation process entails running the simulation with the identified
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values (in Tables 6.9 and 6.10). The dataset was used in ten (10) multiple runs and the
resulting responses were then averaged and reported as shown in Table 6.14. The
resulting average Ny, (Trips), t,, (MTT) and T; (TTT) of the 10 simulation runs (as
shown in Table 6.14) lie within the 95% confidence interval (corresponding values)
extracted from the response surface model (as shown in Table 6.9 for variable setting

I, and Table 6.10 for variable setting II).

Table 6.14: Optimal variable settings of 8V (BQL), fPor B? (BTP), and 8% (BDC)
and corresponding simulation-based MOE’s (N5 (Trips), t,,, (MTT) (seconds), T;
(TTT) (hours)) for protected actuated control of “F” demand scenario

Coefficients Responses
,BV .Bborﬁp ﬁB Nbus tm (MTT) Tt
(BQL) | (BTP) | (BDC) | (Trips) | (seconds) | (TTT)
(hours)

Variable Setting

. (Npus (TTipS)
is maximized and | 303.97 | 10727.27 | 1.69 124.8 1391.8 3750.8
t,, (MTT) is
minimized)
1. (only Ny,s
(Trips)is
maximized)

1 9818.18 |1 124.7 14015 3720.4

The 1%t set of variables (I) (8V (BQL) = 303.97, BYorpP (BTP) =
10727.27,and BB (BDC)= 1.69) is selected as the default general setting of the dual
actuated controller under the demand case “F”. The set has similar total bus trips (Np,)
but less average travel time (t,,).

It is worth noting that the total network travel time T; (TTT) was not explicitly
used an optimization criterion in the above solution. Nonetheless, it is legitimate to say
that T, (TTT) was implicitly accounted in obtaining the optimal settings; as it directly

relates to the trip’s average travel time, t,, (MTT) through the formula t,,= Tt

*
trips
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3600, where Nips is the total number of vehicles in the network. That is, explicit

minimization of t,,, (MTT) implies implicit minimization (not explicit) of T, (TTT).
6.3 Dual Actuated Control

The outputs of the Dual Actuated control system are presented in the Table
6.15 for three (3) RSM models, as discussed in Chapter 3 and Appendix A in details.
Table 6.15 summarizes the input variable ranges, the optimal variable setting, and the
resulting composite desirability. The optimization results of the three models are
plotted in Figure 6.11 to 6.13 for three input parameters of coefficient for virtual queue
of vehicles, BV (BQL), coefficient for transit priority, S2or P (BTP), and downstream
blockage penalty coefficient, B2 (BDC), as well as the three responses of the total bus
trips, Npys (Trips), total network travel time, T, (TTT), and the trip average travel

time, t,, (MTT).

Table 6.15: Optimal values of dual actuated control under “F”” demand scenario

Model Factor ranges Optimal factor Composite
NO. BY (BQL) BPor pP B® | settings (BV, pPor gP, | Desirability,
(BTP) (BDC) BE) D
1 2-3500 | 250013000 | 5-34 3500, 3380.29, 5 0.751
2 1-5000 | 2500 —-13000 | 125 5000, 2500, 9.48 0.586
3 1-2500 | 2000 —-10000 | 1—-11 | 1767.97, 2000, 5.55 0.629

Figures 6.11 to 6.13 depict the optimization plots for the models 1 to 3,
respectively, considering the three input parameters and the three responses. The
composite desirability values of the models 1 to 3 are 0.751, 0.586, and 0.629,

respectively.
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Figure 6.11: Model 1 individual and composite desirability D for the responses of
Npys (Trips), T, (TTT) and t,,, (MTT) for various parameters of 5V (BQL), f2or P
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Figure 6.12: Model 2 individual and composite desirability D for the responses of
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Figure 6.13: Model 3 individual and composite desirability D for the responses of
Npys (Trips), T, (TTT) and t,,, (MTT) for various parameters of 8V (BQL), f2or P
(BTP), and BB (BDC), for dual actuated control under “F” demand case

A contour plot was developed for the three responses of Ny, s (Trips), Ty (TTT)
and t,,, (MTT) for various parameters of g8V (BQL), B%or ¥ (BTP), and B (BDC) as
shown in Figure 6.14. The data for the contour plot were taken from a total of 15 coded
input variable settings for each model as indicated in Chapter 3 according to the Box-
Behnkan design (Table 3.1) (a total of 45 input settings for models 1 to 3). These
variant input settings correspond to a total of 450 simulation runs, as each parameter

setting is executed for 10 multiple runs.
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Figure 6.14: Contour plot of the three responses of Ny, (Trips), T; (TTT) and t,,, (MTT) for various parameters of 8V (BQL), BPor P (BTP), and & (BDC) for dual actuated control and demand case “F”
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6.3.1 Analysis

The multi-objective optimization methodology (maximizing of Ny, (Trips),
while simultaneously minimizing both T, (TTT) and t,,, (MTT)) is used to solve these
three models by the composite desirability function, as described in Chapter 3. None
of the above models resulted in acceptable desirability levels (within the model input
range) using the set three objective functions (maximizing of Ny, (Trips), while
simultaneously minimizing both T, (TTT) and t,,, (MTT)). The optimum values of the
coefficients are mostly border values (upper bound or lower bound of the specified
regions).

Further analysis is done for the all the models using either double or single
objective function(s). The conducted analyses still indicated optimal solutions at the
borders of the parameter regions. Only model 3 has shown good performance, and it
Is discussed hereafter.

First, the optimization is done only considering one objective function
(maximizing of N, (Trips)) as shown in Figure 6.15. The resulting optimal variable
setting is presented in Table 6.16. This setting is 1389.3, 6848.48, and 4.54 for the 8V
(BQL), BPor BP (BTP), and BB (BDC), respectively, with the response N, (Trips)

of 207.6, and 1.22 (95% CI = 204.82, 210.43) standard error (SE).
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Figure 6.15: Optimization of N, (Trips) for various parameters of 8V (BQL),
SPor BP (BTP), and BB (BDC), for dual actuated control under “F” demand scenario

Table 6.16: Optimal variable setting of coefficients for the response of Ny,s (Trips)
for dual actuated control with demand case “F”

Coefficients Responses
BV (BQL)  BPorp?  BP(BDC) Npus SE (95% Cl)
(BTP) (Trips)
1389.3 6848.48 4.54 207.6 1.22 (204.8, 210.4)

The optimization is done afterward considering two objective functions

(maximizing of Ny, (Trips), while simultaneously minimizing t,, (MTT)), as shown

in Figure 6.16. The resulting optimal variable setting is presented in Table 6.17. This

setting is 1767.97, 5151.5, and 5.24 for 8V (BQL), fPor fP (BTP), and BB (BDC),

respectively. The optimal responses are 206.8 for N, (Trips) with a standard error

(SE) 0f 1.19 (95% CI1 = 204.1, 209.5) and 1405.4 seconds for t,,, (MTT) with a standard

error (SE) of 4.40 (95% Cl = 1395.4, 1415.4).
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Figure 6.16: Optimization of Ny, (Trips), and t,,, (MTT) for various parameters of
BY (BQL), fPor BP (BTP), and BB (BDC), for dual actuated control under “F”

demand scenario

Table 6.17: Optimal variable setting of coefficients for the response for dual actuated
control of “F” demand scenario

Coefficients Responses
,BV ﬁbOF ﬁp ﬁB Nbus SE tm (MTT) SE
(BQL)  (BTP) (BDC) | (Trips)  (95%Cl)  (seconds) (95% CI)
176797 5151.5 5.24 206.8 1.19 (204.1, 1405.4 4.40 (1395.4,
209.5) 1415.4)

RSM Statistics (ANOVA table)

Regardless of the number and nature of used objective function(s) to identify

the optimal setting (single, dual or triple), the model itself is the same. Only the optimal

settings vary according to the preset objective function(s). In 3" model, the response
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surface model of N, (Trips) is significant (R-square = 77.71%), as shown in Table

6.18.

Table 6.18: Summary of ANOVA for N, (Trips) versus various 8V (BQL),
SPor BP (BTP), and B (BDC) for dual actuated control of “F”” demand scenario

Sum of Mean
Source Squares df Square F
Linear 47.695 3 15.898 3.29**
BY 3.125 1 3.125 0.65*
gP 10.125 1 10.125 2.09*
BB 34.445 1 34.445 7.12**
Square 87.216 3 29.072 6.01**
BV*pY 31.159 1 31.159 6.44%*
BP*BP 25.056 1 25.056 5.18**
BE*BE 44.075 1 44.075 9.11**
Lack-of-Fit 16.755 6 2.792 0.25*
Total 173.6 14
*p > 0.1
*Ep <0.1

The second order regression equation of N, (Trips) versus BV (BQL),

fPor BP (BTP), and BB (BDC) is:

Npys (Trips) (Dual Actuated Control under “F” Demand Scenario)
= 193.59 + 0.00515 8" + 0.002235 BP + 1.243 ¥

—0.000002 BY * B¥ — 0.0000001 BP * BP — 0.1382 BE « BE

Additionally, the response model of t,, (MTT) is significant (R-square =

62.75%), as shown in Table 6.19.
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Table 6.19: Summary of ANOVA for t,,, (MTT) versus various 8 (BQL), Sor P
(BTP), and B8 (BDC) for dual actuated control of “F demand scenario

Sum of Mean
Source Squares df Square F
Linear 1604.96 3 534.99 3.68**
BY 1384.32 1 1384.32 9.53**
gP 146.85 1 146.85 1.01*
BB 73.79 1 73.79 0.51*
RV*BV 455.81 1 45581 3.14**
BY*pP 140.8 1 140.8 0.97*
Lack-of-Fit 716.73 7 102.39 0.35*
Total 3508.24 14
*p > 0.1
**p < 0.1

The second order regression equation of t,, (MTT) versus SV (BQL), BPor P

(BTP), and 8 (BDC) is:

tm (MTT) (Dual Actuated Control under “F” Demand Scenario) (seconds) =
14440.3 — 0.0354 BV — 0.00041 BP — 0.607 BB

+0.000007 B¥ * B¥ + 0.000001 B" * P

Finally, the response model of T; (TTT) is significant (R-square =54.49%), as

shown in Table 6.20.
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Table 6.20: Summary of ANOVA for T, (TTT) versus various 8” (BQL), fPor B
(BTP), and B8 (BDC) for dual actuated control of “F” demand scenario

Sum of Mean
Source Squares df Square F
Linear 175291 3 58430 1.29*
114 110 1 110 0*
BP 40086 1 40086 0.89*
BE 135095 1 135095 2.99**
Square 312028 2 156014  3.45**
BP x P 188109 1 188109 4.16**
BB « BB 146002 1 146002  3.23**
Lack-of-Fit 143542 7 20506 0.16*
Total 894250 14
*p>0.1
*gp <0.1

The second order regression equation of T, (TTT) versus 8V (BQL), fPor BP

(BTP), and B8 (BDC) is:

T; (TTT) (Dual Actuated Control under "F" Demand Scenario) (hours)
= 12250 + 0.003 3" + 0.1865 B? + 69.2 5

—0.000014 BP x BP — 7.93 BB « BE.

6.3.2 Optimum selection (model validation)

For different objective functions, different optimal settings are obtained. In
specific, herein we refer to the optimum settings of the coefficients of BY (BQL),
BPor BP (BTP), and B (BDC) related to the solutions:

[11. where only N,,s (Trips) is maximized (as indicated in Table 6.16)

IV.where Np,s (Trips) is maximized and t,, (MTT) is minimized (as

indicated in Table 6.17)
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To select only one set of values, to generalize its use with the dual actuated
controller under the “F” demand scenario, a verification/validation process is
deployed. The validation process entails running the simulation with the identified
values (in Tables 6.16 and 6.17). Each dataset was used in ten (10) multiple runs and
the resulting responses were then averaged and reported as shown in Table 6.21. The
resulting average Ny, (Trips), t,, (MTT) and T; (TTT) of the 10 simulation runs (as
shown in Table 6.21) lie within the 95% confidence interval (corresponding values)
extracted from the response surface model (as shown in Table 6.16 for variable setting
I, and Table 6.17 for variable setting II).
The 1%t set of variables (I) (8V (BQL) = 1389.3, fPor fP (BTP) = 6848.48,
and B8 (BDC)= 4.54) is selected as the default general setting of the dual actuated
controller under the demand case “F”. The set results more values of Ny, (Trips), as

well as less values of t,, (MTT) and T; (TTT) than another set as shown in Table 6.21.

Table 6.21: Optimal variable settings of 8V (BQL), f2or fP (BTP), and B2 (BDC)
and corresponding simulation-based MOE’s (N5 (Trips), t,, (MTT) (seconds), T;
(TTT) (hours)) for dual actuated control of “F” demand scenario

Coefficients Responses
Variable Settings | Y pPorp? | BB Npys | tm (MTT) | T, (TTT)
(BQL) | (BTP) | (BDC) | (Trips) | (seconds) | (hours)
I. (only Nps 1389.3 | 6848.48 | 4.54 | 206.1 1418.4 13075.3
(Trips)is
maximized)
Il. (Npys (Trips) | 1767.97 | 5151.5 524 | 204.5 1423.1 13085.9
IS maximized
and t,, (MTT) is
minimized)

It is worth noting that the total network travel time T, (TTT) was not explicitly

used an optimization criterion in any of the above two solutions (1 and I11). Nonetheless,
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it is legitimate to say that T; (TTT) was implicitly accounted in obtaining the optimal

settings II; as it directly relates to the trip’s average travel time, t,,, (MTT) through the

Tt

formula t,= * 3600, where Ny, is the total number of vehicles in the network.

trips
That is, explicit minimization of ¢,,, (MTT) implies implicit minimization (not explicit)

of T, (TTT).
6.4 Discussion

The optimal variable settings for various controls and their responses with
characteristics are discussed in this section. The selected optimal variable settings for
the Split Actuated control, Protected Actuated control, and Dual Actuated control
under the demand scenario “F” (“F” refers to the traffic demand scenario of “very
high” traffic volume) are presented in Table 6.22. Also, the corresponding simulation-
based MOE’s (Ny,s (Trips), t,, (MTT) (seconds), T; (TTT) (hours)) for each setting
are shown. From these settings, the dual actuated control has shown best performance,
as it delivered more total bus trips (N,s) with similar or less average travel time per
trip (t,,). In addition, the split actuated control has shown better performance than
protected actuated control considering the total bus trips (Np,s) (175.1 vs. 124.8),

although it required more average travel time per trip (t,,) (1462.2 vs. 1391.8).
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Table 6.22: Optimal variable settings of 5V (BQL), fPor fP (BTP), and 8% (BDC)
and corresponding simulation-based MOE’s (N5 (Trips), t,, (MTT) (seconds), T;
(TTT) (hours)) for various controls of “F” demand scenario

Coefficients Responses
Control BY SPor pP LB Ny tm (MTT) | T, (TTT)
(BQL) (BTP) (BDC) | (Trips) (seconds) (hours)

Split
Actuated 1 4818.18 3.2 175.1 1462.2 9335.6
Protected | 94397 | 1072727 | 169 | 124.8 1391.8 3750.8
Actuated
Dual 1389.3 | 6848.48 4.54 206.1 1418.4 13075.3
Actuated

In general, optimization deals with finding the best outputs (MOEs) by
selecting the input variable settings and often in simulation-based optimization, the
input variable settings follow a ratio among them to yield the similar output(s), as they
have a similar effect on output(s). Therefore, the effect of various input variable
settings using the selected optimal input variable settings is discussed in this section.

As indicated in Chapter 1 and Chapter 5, the typical notion of a robust system
is one that performs well across a range of (traffic, geometry, weather, etc.) conditions.
The robustness of the system must be ensured at various levels of congestion and
across different control types (namely three levels). At the first level, the purpose is to
ensure that for each control type (e.g. dual, protected or split) the sensitivity of relative
ratios of the parameters.

Here, the “robustness” is examined in the context of the degree of sensitivity
of the control system performance as a function of the scale of the input variable, while
holding the relative ratio between these variables constant. The conclusion from this
analysis is that the system is robust because (for most cases) performance of the system
remains relatively constant regardless of the absolute magnitude of the parameter
values as long as the relative ratios of the parameter values remain constant. The other

two levels of robustness checking are summarized in Chapter 7.
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More specifically, this section focuses on testing the “robustness” of the
various controllers under fixed relative proportions among the various inputs. That is,
will the performance of a specific controller change if the absolute values of the
penalty coefficients (inputs) change, but the relative proportions among these penalties
remain the same? It is believed that no matter what are the absolute values of these
penalty coefficients, what determines the optimal setting is a specific “relative”
proportion among them for each specific controller. If the controller performance does
not change with the change of the absolute penalty values (while keeping the relative
proportions fixed), this reflects system robustness.
In the remaining part of this section, the robustness testing of the split actuated
control is presented first, followed by the ones for the protected actuated control, and

finally for the dual actuated control.

6.4.1 Split Actuated Control

The selected optimal variable settings (8V (BQL) = 1, pPor BP (BTP) =
4818.18, and B8 (BDC)= 3.2) for split actuated controls under “F” demand scenario
is presented in Table 6.23. These absolute values if rounded would result in the relative
ratios of 0.3:1505.7:1 (BY (BQL) : BPor f? (BTP): BB (BDC)). Using this fixed
relative ratio, several input variable settings were developed and simulated. Each
setting as indicated in Table 6.24 was simulated 100 times, and the average MOE’s of
these runs were reported. The results of the various settings (with the same relative
ratio) are shown in Table 6.24. The results (in Table 6.24) show that the responses
using this fixed ratio are not similar (increasing towards the higher absolute values,

especially at 6.3, 30113.6, 20 (8V (BQL) : BPor BP (BTP): fB (BDC)), and decreasing
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towards the lower absolute values at 0.3, 1505.7, 1 (8 (BQL) : BPor BP (BTP): &

(BDC)).

Table 6.23: Selected optimal variable settings of 8V (BQL), BPor P (BTP), and 55
(BDC) and corresponding simulation-based MOE’s (Ny,s (TTips), t,, (MTT)
(seconds), T; (TTT) (hours)) for split actuated controls of “F” demand scenario

Coefficients Responses
pY pPor g7 p? Npys tm (MTT) T (TTT)
(BQL) (BTP) (BDC) (Trips) (seconds) (hours)
1 4818.18 3.2 175.1 1462.2 9335.6

Table 6.24: Several variable settings with the ratio of optimal variable settings of 5"
(BQL), BPor BP (BTP), and B& (BDC) and corresponding simulation-based (from
100 runs) MOE’s (Ny,s (Trips), t,, (MTT) (seconds), T; (TTT) (hours)) for split

actuated controls of “F” demand scenario

Coefficients Responses

pY pPor P p? Npus tm (MTT) T¢ (TTT)
(BQL) (BTP) (BDC) (Trips) (seconds) (hours)

0.3 1505.7 1 162.8 1365.2 8136.2

0.9 4517.1 3 173.2 1466.1 9357.5

1.6 7528.4 5 173.6 1442.0 9302.0

3.1 15056.8 10 173.6 1453.3 9360.6

6.3 30113.6 20 184.7 1549.9 10665.8

Figure 6.17 shows the rolling average of 10 runs of total bus trips (Trips) from
100 simulation runs for several variable settings using the ratio of optimal variable
settings of BV (BQL), fPor BP (BTP), and B (BDC) for split actuated controls under
“F” demand scenario. If the least and highest values are excluded, there is a similarity
among the several variable settings. The total bus trips (Trips) ranges from 156.6 to

191.1.
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Figure 6.17: Ten runs rolling average of total bus trips (Trips) for several variable
settings with the fixed ratio of optimal variable settings of 8V (BQL), BPor 5P
(BTP), and 58 (BDC) for the split actuated controller of “F” demand scenario

6.4.2 Protected Actuated Control

The selected optimal variable settings (8Y (BQL) = 303.97, [Por pP
(BTP) = 10727.27,and BB (BDC)= 1.69) for protected actuated controls under “F”
demand scenario is presented in Table 6.25. These absolute values if rounded would
result in the relative ratios of 179.9:6347.5:1 (8 (BQL) : BPor BP (BTP): B8 (BDC)).

Using this fixed relative ratio, several input variable settings were developed
and simulated. Each setting as indicated in Table 6.26 was simulated 100 times, and
the average MOE’s of these runs were reported. The results of the various settings
(with the same relative ratio) are shown in Table 6.26. The results (in Table 6.26)
indicate that the responses using this fixed ratio are more or less similar, and closely
identical to the responses obtained with the selected optimal input variable settings

(Table 6.25).
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Table 6.25: Selected optimal variable settings of 8V (BQL), BPor P (BTP), and 55
(BDC) and corresponding simulation-based MOE’s (Ny,s (TTips), t,, (MTT)

(seconds), T; (TTT) (hours)) for protected actuated controls of “F” demand scenario

Coefficients Responses
pY BPor gP p? Npys tm (MTT) T (TTT)
(BQL) (BTP) (BDC) (Trips) (seconds) (hours)
303.97 10727.27 1.69 124.8 1391.8 3750.8

Table 6.26: Several variable settings with the ratio of optimal variable settings of 5"

(BQL), BPor P (BTP), and B& (BDC) and corresponding simulation-based (from
100 runs) MOE’s (Ny,s (TTips), t,, (MTT) (seconds), T; (TTT) (hours)) for

protected actuated controls of “F”” demand scenario

Coefficients Responses
pY pPor gP p? Npys tm (MTT) Te (TTT)
(BQL) (BTP) (BDC) (Trips) (seconds) (hours)
179.9 6347.5 1 123.9 1398.1 3734.9
539.6 19042.5 3 124.2 1397.8 3767.5
899.3 31737.5 5 124.2 1429.3 3937.8
1798.6 63475.0 10 126.2 1530.6 4407.5
3597.3 126949.9 20 126.1 1557.4 4528.0

Figure 6.18 shows the rolling average of 10 runs of total bus trips (Trips) from
100 simulation runs for several variable settings using the ratio of optimal variable
settings of 8V (BQL), BPor fP (BTP), and BB (BDC) for protected actuated controls
under “F”” demand scenario. There is a similarity among the several variable settings,
with the total bus trips (Trips) ranges from 119.7 to 128.9, which are close to the
response (total bus trips=124.8) of selected optimal variable settings of BV (BQL),
SPor BP (BTP), and BB (BDC). However, the values of the three responses under the
various tested scenarios (Table 6.26) indicate some moderate variations, and some
moderate level of robustness of the protected actuated controllers using the fixed

relative ratio of 179.9:6347.5:1 for the ¥ (BQL): BPor B? (BTP): B& (BDC).
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Figure 6.18: Ten runs rolling average of total bus trips (Trips) for several variable
settings with the fixed ratio of optimal variable settings of 8V (BQL), f?or 5P
(BTP), and BB (BDC) for the protected actuated controller of “F” demand scenario

6.4.3 Dual Actuated Control

The selected optimal variable settings (Y (BQL) = 1389.3, BPor P
(BTP) = 6448.48, and B? (BDC)= 4.54) for dual actuated controls under “F”
demand scenario is presented in Table 6.27. These absolute values if rounded would
result in the relative ratios of 306:1508.5:1 (8¥ (BQL) : B°or g? (BTP): B% (BDC)).

Using this fixed relative ratio, several input variable settings were developed
and simulated. Each setting as indicated in Table 6.28 was simulated 100 times, and
the average MOE’s of these runs were reported. The results of the various settings
(with the same relative ratio) are shown in Table 6.28. The results (in Table 6.28) show
that the responses using this fixed ratio are nearly close to a great extent to the

responses obtained with the selected optimal input variable settings (Table 6.27).
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Table 6.27: Selected optimal variable settings of 8V (BQL), BPor P (BTP), and 55
(BDC) and corresponding simulation-based MOE’s (Ny,s (TTips), t,, (MTT)
(seconds), T; (TTT) (hours)) for dual actuated controls of “F” demand scenario

Coefficients Responses
pY BPor pP p? Npys tm (MTT) T, (TTT)
(BQL) (BTP) (BDC) (Trips) (seconds) (hours)
1389.3 6848.48 4,54 206.1 1418.4 13075.3

Table 6.28: Several variable settings with the ratio of optimal variable settings of 5"
(BQL), BPor P (BTP), and BB (BDC) and corresponding simulation-based (from
100 runs) MOE’s (N,,,s (Trips), t,,, (MTT) (seconds), T, (TTT) (hours)) for dual

actuated controls of “F” demand scenario

Coefficients Responses

i pPor P p? Npus tm (MTT) Te (TTT)
(BQL) (BTP) (BDC) (Trips) (seconds) (hours)
306.0 1508.5 1 208.4 1424.2 13223.2
918.0 4525.4 3 208.5 1427.1 13259.5
1530.1 7542.4 5 207.5 1419.6 13159.6
3060.1 15084.8 10 204.6 1409.2 12873.7
6120.3 30169.5 20 203.0 1404.6 12686.2

Figure 6.19 shows the rolling average of 10 runs of total bus trips (Trips) from
100 simulation runs for several variable settings using the ratio of optimal variable
settings of BV (BQL), BPor BP (BTP), and BB (BDC) for dual actuated controls under
“F” demand scenario. There is a similarity among the several variable settings, with
the total bus trips (Trips) ranges from 197.9 to 213.8, which are close to the response
(total bus trips=206.1) of selected optimal variable settings of 8V (BQL), SPor P
(BTP), and BB (BDC). The variations of the three responses under the various tested
scenarios (Table 6.28) is almost negligible, and it clearly indicates the robustness of
the dual actuated controllers using the fixed relative ratio of 306:1508.5:1 for the gV

(BQL): Por P (BTP): BB (BDC).
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Figure 6.19: Ten runs rolling average of total bus trips (Trips) for several variable
settings with the fixed ratio of optimal variable settings of 8V (BQL), B’or 5P
(BTP), and BB (BDC) for the dual actuated controller of “F” demand scenario
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Chapter 7: Conclusions

This chapter concludes with summarizing the major findings of this research
in Section 7.1. Section 7.2 highlights the main research contribution. Section 7.3
highlights some of the limitations of this study followed by practical application in

section 7.4. Finally, Section 7.5 suggests several future research directions.

7.1 Overview and Summary of Findings

This study provides a thorough review of various aspects of traffic control
systems with transit signal priority (TSP), such as the types of TSP concepts and
strategies, and the evaluations of these strategies. The study also describes how to
implement the Response Surface Methodology (RSM) with single/multiple objective
functions to calibrate the parameters of the integrated control system (Ahmed and
Hawas, 2015). RSM applies the desirability function approach using the multi-
objective simultaneous consideration of the responses. The composite desirability is
estimated using the own desirability of each response, which varies from zero to one
in dimensionless scale. Then, calibration is done to find the best outputs (optimal
measures of effectiveness) by selecting the input variable settings (coefficient for
virtual queue of vehicles on the upstream approach link (8"), coefficients for transit
priority (BPor fP), and downstream blockage penalty coefficient (52)). This is
performed under high (“E”) and very high (“F”) traffic demand scenarios for various

traffic controllers, such as split actuated, protected actuated, and dual actuated.

Table 7.1 summarizes the major findings of various controllers under high (E)
and very high (F) traffic demand scenarios. It shows that all the controllers are robust

under different traffic demand scenarios (“E” and “F”) except the split actuated
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controller under very high traffic demand scenario. The control types are also ranked
considering the measures of effectiveness under each traffic demand scenario. The
measures of effectiveness are the total number of bus trips served during a specific
analysis period, N, the trip mean travel time in seconds, t,,,, and total network travel
time (in hours), T;. It is evident that the dual actuated control type is performing best
under both traffic demand scenarios considering the MOEs of N, and t,,,. It is worthy
of note that the rank based on T; can give the wrong perception. As an example, the
protected actuated control type under both traffic demand scenarios is the best, but this

is due to the fewer trips (transit and non-transit) which result in lesser total travel time.

Table 7.1: Summary of findings of various controllers under “E” and “F” traffic

demand
Control type Split Actuated Protected Dual Actuated
Actuated
Traffic demand High Very High Very High Very
(B) high (F) | (E) high (F) | (E) high (F)

Robustness Yes No Yes ~Yes Yes ~Yes
Rank based on |1 2 3 3 2 1

Nbus

Rank basedon t,, | 2 3 3 1 1 2

Rank basedon T, | 3 2 1 1 2 3

* «.” denotes the moderate level of robustness

The performance of the optimal variable settings of various controllers under
high (“E”) traffic demand, is shown in Table 7.2 compared with the sample mean that
is calculated considering all the model's data as explained in Chapters 5 and 6. The
sample mean is dependent on the attempted number of cases. The sample mean reflects

the average performance of the integrated control system in case it is not appropriately
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calibrated. The optimal variable settings of the various controllers give the best
performance (the highest total bus trips and lowest mean travel time), including the
number of non-transit vehicles. Table 7.2 indicates that the split actuated control under
“E” traffic demand scenario gives the best performance, as it increases the total bus
trips (by nearly 4%) and decreases the mean travel time (by 11%). Other control types
(protected actuated, dual actuated) also shows better performance than the
corresponding sample mean, as the total bus trips, Ny, is more and mean travel time,

tm, IS less.

Table 7.2: Performance of the selected optimal variable settings of 8V, g2or P, and
B8 of various controllers under “E” traffic demand

Control

type Split actuated cht)ltjzctteeg Dual actuated
MOEs Npus tm Npus L Npus tm
(Trips) (seconds) (Trips)  (seconds) (Trips)  (seconds)
Sample | 155.5 942.1 98.8 1034.9 155.2 691.6
Mean
Using optimal | 161.0 838.3 100.1 1012.7 155.2 688.7
setting
Performance | +3.6% -11.0% +1.3% -2.1% 0.0% -0.4%

Similarly, the performance of the optimal variable of various controllers under
very high (“F”) traffic demand, is shown in Table 7.3 compared with the sample mean
of all the attempted model's data. The split actuated control under “F” traffic demand
scenario also shows the best performance, as it gives nearly 5% more total bus trips
and 2.4 % lesser mean travel time. Other control types (protected actuated, dual

actuated) also shows better performance than the sample mean, as the total bus trips,
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Npys, IS more and mean travel time, t,, , is less. Only the dual actuated control resulted

in very marginal average travel time increase (+0.4%).

Table 7.3: Performance of the selected optimal variable settings of 8, S2or P, and
B8 of various controllers under “F” traffic demand

Control
type Split actuated Protected actuated Dual actuated
MOEs Npus t Npus t Npus t

(Trips) (seconF]ds) (Trips) (SECOn;IdS) (Trips) (seconFlds)
Sample | 166.9 1498.1 121.9 1411.7 200.7 1412.2
Mean

Using optimal | 175.1  1462.2 124.8 1391.8 206.1 1418.4
setting

Performance | +4.9% -2.4% + 2.4% -1.4% +2.7% +0.4%

As indicated in Chapter 1, the robustness of the system must be ensured at
various levels of congestion and across different control types (namely three levels).
In Chapters 5 and 6, we presented the first level of robustness checking to ensure that
for each control type (e.g. dual, protected or split) the sensitivity of relative ratios of
the parameters.

The second level of robustness checking is necessary to identify for each
control type the optimal robust relative ratio (identified at the first level) that makes
each control type effective under different traffic conditions. That is, when the traffic
conditions vary, how to set the parameters of each specific controller to perform
effectively under such varying traffic conditions. The third level purpose is to identify
the “universal” relative parameters ratio that can be applied under varying traffic
conditions for all control types together. In the remaining part of this section, we

discuss briefly the second and third levels of robustness checking.
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For the second level of robustness checking, the purpose is to select the
parameter set that can perform efficiently under various traffic demand levels. Given
the diversity of traffic conditions a controller may be applied for, and only for the
purpose of demonstration, we assume that some intersection is dominantly operated
under two traffic demand conditions (“E” and “F”’), and each condition corresponds to
a different optimal parameter setting. Here, the use of only two traffic conditions is
merely to simplify the robustness checking procedure for the reader (not a limitation).
In fact, the same methodology can be applied to whatever the number and durations of
the prevailing traffic conditions the system may typically operate under.

To ensure the robustness of the controller, some information would be needed
about the traffic conditions it is applied to, and the durations. A controller operating
under say the F conditions most of the time is different from the one operating under
E most of the time. The proportions (and durations) of such traffic conditions may
certainly affect the selection of the most robust set of parameters.

Here, an attempt is made to formulate the process of robustness checking. Let’s
say, “E” is dominant for t; (hrs.) and “F” is dominate for tz (hrs.). The total network

travel times Tt’; o Tt‘; o Tt’; - and Tg; . are estimated using the two parameter sets S~
and BF for “E” and “F” traffic demand conditions, respectively. Tt’; zand Tg; . are the

resulting total network travel times (per hour) if the parameter set £ (identified
optimal set for the “E” traffic demand) is used under the “E” and “F” conditions,

respectively. Similarly, Tt’;F and Tt’;p are the resulting total network travel times (per

hour) if the parameter set ¥ (identified optimal set for the “F” traffic demand) is used
under the “E” and “F” conditions, respectively. The values of g£, and g are already

identified in Chapters 5 and 6.
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The total network travel times (TﬁE, and TBF) during the tz (hrs.) and t (hrs.)
are calculated as follows:

Tge = tp X Tt’;E + tp X Tg;E (7.1)

Tgr = tg X Tt’;F + tp X TtFﬁF (7.2)

Comparing between T gz and Tz can be simply used to identify the most robust

set for a specific controller type. The set that results in lesser total travel time can be
identified as the most robust set should be chosen as a default parameter set. For

instance, if Te is greater than Tr, then the parameter set of “F” (BF) will be chosen

as a default value and vice versa. In this way, the calibrated parameters under various
traffic demands can operate the traffic control system robustly.
The robustness can also be checked using other measures of effectiveness

(MOEs) like Nyys (Trips). The total bus trips (N gz and Ngr) during the tg (hrs.) and

tr (hrs.) are calculated using the following equations:

Nge = tg X N,fusﬁE + tp X leuSBE (7.3)

Ngr = tg X N;;"usﬁp + tp X N}fuspp (7.4)

N{quBEand N}fusBE are the total bus trips using the optimal parameter set of “E”
traffic demand (B%) under the traffic demand scenarios of “E” and “F”. N{fusﬁF and
N},’usﬁp are also the total bus trips using the optimal parameter set of “F” traffic demand

(BF) under the traffic demand scenarios of “E” and “F”. Comparing between N BE
and Ngr, if Nge is greater than Nyr, then the parameter set of “E” (BE) is more robust

and will be chosen as a default value and vice versa.
To demonstrate the process, we assume a hypothetical condition where each

controller operates under the E and F traffic conditions equally for say 1.5 hrs each.
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That is, assuming equal t; and tz of 1.5 hrs. The total travel times (Tt’;E, TtFBE, Tt’;F
and Tfl; ) are estimated using the two parameter sets for the dual actuated control as

shown in Table 7.4. The total travel times (T ;&, and T'4r) are calculated using the Egs.
(7.1) and (7.2) (T e is 19583.7 hours and Tgr is 19953.8 hours). Since T4 is lesser
than Tsr, then the parameter set of “E” (BE) is more robust and is chosen as a default
value. Moreover, Nge, and Npgr are also calculated using the Egs. (7.3) and (7.4) (NEE
is 358 trips and Ngr is 361.6 trips). Since Ny is lesser than Ny, then the parameter
set of “F” (#F) can be chosen as a default value. Due to the different conclusions in
studying various MOE (travel times or number of bus trips), a subjective judgment
should be made weighing the overall pros and cons. Here, the parameter set of “F”
(BF) is considered more robust given higher weight to the set that maximizes the bus

trips throughput. In conclusion, SF is selected as the most robust parameter set for the

dual TSP integrated controller.
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Table 7.4: Simulation-based MOE’s (N5 (Trips), t,, (seconds), T; (hours)) using
different optimal variable settings for dual actuated controls under “E” and “F”
demand scenarios

Traffic Optimal Responses Total
demand  parameter N pus tn T, Npus T,
set (trips) (seconds) (hours) (trips) (hours)

“E” BE 155.2 688.7 6901.9 358.1  19583.7
“F” BE 202.9 1409.7  12681.8
“E” pr 155.5 686.0 6878.5 361.6 19953.8
“F pF 206.1 1418.4  13075.3

Conclusion: BF is more robust considering the priority of B BE

bus trips

Tables 7.5 and 7.6 show the results of robustness for the split and protected
actuated controllers under “E” and “F” traffic demand scenarios. The parameter set of

“F” (BF) is clearly more robust as shown in tables 7.5 and 7.6, as Tge is greater
than Txr and Nge is lesser than Ngr for both traffic control types. Therefore, the

parameter set of “F” (B8F) is more robust for the split and protected controllers.
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Table 7.5: Simulation-based MOE’s (N5 (Trips), t,, (seconds), T; (hours)) using
different optimal variable settings for split actuated controls under “E” and “F”
demand scenarios

Traffic Optimal Responses Total
demand parametersset N, tm T, Npys T,
(trips) (seconds)  (hours) (trips) (hours)
“E” BE 161.0 838.3 8190.6 328.8 18239.7
“E» ﬁE
167.8 1502.1 10049.1
“E” pr 160.8 831.7 8152.4 335.9 17488
“F” pr 175.1 1462.2 9335.6
Conclusion: BF is more robust. pF pr

Table 7.6: Simulation-based MOE’s (N5 (Trips), t,, (seconds), T; (hours)) using
different optimal variable settings for protected actuated controls under “E” and “F”
demand scenarios

Traffic ~ Optimal Responses Total
demand parameters N, tm T; Npys T,
set (trips)  (seconds)  (hours) (trips) (hours)
“E” BE 100.1 1012.7 3536.9 221.3 7372.6
“F” BE 121.2 1425.7 3835.7
“E” pr 101.1 998.8 3444.1 225.9 7194.9
“F” pF 124.8 1391.8 3750.8
Conclusion: BF is more robust. pr pr

If the traffic demand in an intersection is not similar to the calibrated demand
scenarios (“E” and “F”), then it is suggested to recalibrate the system under that traffic
demand condition for better performance. The performance of the system is dependent
on the parameters (as discussed in Eq. 2.1 to Eq. 2.3) that are likely to change due to
the alteration of traffic demand as well as traffic control phasing (split, protected, and

dual). As such, it is advisable to calibrate the system under all prevailing traffic
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conditions individually, then to identify the most robust set of parameters using
equations 7.1 through 7.4 as explained earlier.

Tables 7.4 and 7.5 show that the parameter set of “F” (BF) gives better
performance than the parameter set of “E” (B%). To identify the “universal” set of
parameters that can be applied among the various control types and under all traffic
conditions, one should examine the effectiveness of the identified robust parameters
for all control types.

The parameter set of “F” (BF) of dual actuated controller produces the best
performance when applied for all traffic control types (split, protected, and dual) under
both “E” and “F” traffic demand conditions, as shown in Table 7.7. The results from
Table 7.7 show that the ¥ for dual actuated control produces quite similar MOEs
(Npys (trips), t,, (seconds), T; (hours)) compared to the optimal parameter set using
RSM for the control type under the particular traffic demand (“E” or “F”’) in almost all
scenarios (except for the split actuated control under “F” traffic demand but similar
bus trips are produced). Therefore, the BF for dual actuated control is identified as the
most robust parameter set for various control types (split, protected, and dual) under

both traffic demand of “E” and “F” considering the bus trips.
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Table 7.7: Simulation-based MOE’s (N, (trips), t,, (seconds), T; (hours)) using
different optimal variable settings for various control types under traffic demand of

C‘E” and (.GF”
Traffic Control type Optimal Responses
demand parameter set Npus tn T,
(trips) (seconds) (hours)
Split BE of split control
(using RSM) 161.0 838.3 8190.6
GGE”
F
B of dual 1615 8445  8249.0
control
Protected BE of protected
control (using 100.1 1012.7 3536.9
(.‘E” RSM)
F
p" of dual 1007 10174 3535.7
control
Dual BE of dual control ~ 155.2 688.7 6901.9
(using RSM)
GEE”
BF of dual 155.5 686.0 6878.5
control
Split BF of splitcontrol  175.1 14622  9335.6
(using RSM)
G‘F)’
BF of dual 174.0 1556.9 10675.7
control
“F” Protected BF of protected 1248  1391.8  3750.8
control (using
RSM)
BF of dual 1242 13795  3855.8
control

Figure 7.1 compares the N,,,; obtained from different optimal variable settings
(optimal parameter set from RSM that was obtained for each control type under the
traffic demand of “E” and “F”) versus the optimal parameter set, ¥, of the dual

actuated control under “F” traffic demand) for various control types under traffic
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demand of “E” and “F”. In all scenarios, the obtained bus trips by g of the dual

actuated control under “F” traffic demand are almost similar to others.
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Figure 7.1: Comparison of optimal variable settings (optimal from RSM vs. B of
dual control) using Ny, (trips) for various control types under “E” and “F”

The obtained mean travel times by BF of the dual actuated control under “F”
traffic demand are also similar to the mean travel times using the optimal set of the
parameters of the controller itself as shown in Figure 7.2 (except for the split actuated
control under “F” traffic demand, where B¥ of the dual control under “F” traffic
demand produces more mean travel time (1556.9 sec) than the optimal parameter set
using RSM (1462.2 seconds)). Similarly, comparison of the total travel times T; is
presented in Figure 7.3. The B¥ of the dual control under “F” traffic demand produces
similar total travel times compared to the values of the optimal parameter sets (except
for the split controller case under “F”, where than the optimal parameter set using RSM
yields total travel time of 9335.6 hours versus 10675.7 hours when the B¥ of the dual

control are used ). Therefore, the parameter set (8F) of the dual control under “F”
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traffic demand is quite robust, even if applied among all other controllers, it still
produces MOEs quite close to the values obtained if the optimal parameter sets of the
controller type itself are used. This identifies the (8F) of the dual control to be the most
robust parameter set and as such it should be used as the default for the various control

types under both traffic demand of “E” and “F”’.
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Figure 7.2: Comparison of optimal variable settings (optimal from RSM vs. gF of
dual control) using t,, (seconds) for various control types under “E” and “F”’
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Figure 7.3: Comparison of optimal variable settings (optimal from RSM vs. BF of
dual control) using T; (hours) for various control types under “E” and “F”
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Calibrating the traffic control system for each traffic demand is impractical.
Therefore, the robust control type should be chosen for the different demand levels.
As an example, under very high (“F”) traffic demand scenario, split actuated controller
Is not robust, but the dual actuated controller is. Furthermore, dual actuated controller
shows the best performance considering measures of effectiveness (total bus trips,
Np.s, and mean travel time, t,,). Also, ¥ of dual control has proven to be the most
robust set even when applied to other controller types under either the E or F
conditions, As such, it is preferable to use dual actuated controller settings at the very
high demand levels; as this will certainly provide best performance and robust

solutions.

7.2 Research Contributions

The primary contribution of this thesis is setting the framework and method
that entails the application of the Response Surface Methodology (RSM) to calibrate
the complex integrated traffic control system. The suggested method was assessed via
extensive case study analysis of the integrated control system developed by Ahmed
and Hawas (2015). The system has the advanced traffic management strategies, such
as transit signal priority, incident detection, and management. The suggested RSM
calibrates the parameters of the integrated system by selecting the values that can
produce the best measures of effectiveness. The challenging task is to satisfy the
requirements of transit and non-transit vehicles, which are very often diverse and
conflicting. As an example, if transit signal priority is active in one approach, then the
opposite side street would certainly encounter adverse impacts in the form of more
delay travel time. RSM uses the desirability function approach as well as the

simultaneous multi-objective desirability of the responses.
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Another interesting feature of the suggested RSM method is its amenability to
handle various control systems with different applications and multiple parameters.
There is no limitation on the number of parameters to set optimally, and in fact, the
data needed for the search for the optimal settings will not be significantly increased
with the higher number of parameters. In brief, no matter what is the control system,
its complexity, functions, and number of parameters, the suggested RSM approach can
be used.

This research study also presented how to use either single or multiple
objective functions to identify the optimal settings. Some of these objective functions
may also be contradicting in nature, such as increasing throughput of transit trips and
minimizing overall travel time. At first, three objective functions were used to calibrate
the traffic control system. If the identified optimal solutions are always at boundary
values not a mid-points of the specified model’s regions, then single or double
objective functions were alternatively considered. After identifying the optimal set, it
(the set) was verified by simulation with 95% confidence interval.

This study also demonstrated how to develop “mathematical” models for
estimation of the performance measures vis-a-vis the various parameter values. The
calibrated models were proven to be significant. The study also indicated how to

validate these optimal settings and ensure their robustness.

7.3 Limitations of the Research

This research study indicated how to apply the suggested RSM to any advanced
control systems. To demonstrate the RSM procedure, it was applied to the integrated

traffic signal control system developed by Ahmed and Hawas (2015). The integrated
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control system itself (by Ahmed and Hawas) has some limitations regarding specific

assumptions to some variables and parameters. Some of these limitations include:

X/
L X4

Assumed specific geometric parameters such as the number of lanes, phase
arrangements, link length, link speed, lane width, saturation flow rate,
passenger car length, and heavy vehicle length.

Specific traffic parameters were assumed such as the right turn percentage,
through movement percentage, left turn percentage, peak hour factor, and the
percentage of heavy vehicles.

The parameter calibration and the testing of robustness were carried out under

certain boundary region. The selected optimal setting of the parameters can be

dependent on this boundary region. The process of calibration itself cannot also be

applied online; in fact, it is designed to provide off-line optimization of parameters.

7.4 Practical Application (Implementation)

The success of the research is to implement the proposed method for parameter

settings in field, and therefore, the guidelines to implement the findings of this study

are provided as follows:

X/
L X4

It is found that the parameter values for dual actuated control under “F” traffic
demand scenario is robust for all control types (split actuated, protected
actuated, and dual actuated) under “E” and “F” traffic demands. Therefore, to
implement the Integrated Traffic Signal Control System (Ahmed and Hawas,
2015) in the field in case E” or “F” are the prevailing traffic conditions, it is
recommended to use these parameters (87 of the dual control under “F” traffic

demand), if deemed necessary to use various control types.
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% The field traffic demand may not be equal to the studied traffic demands (E”
and “F”), and as such, the prevailing field traffic demand should be measured,
and the corresponding robust parameters should be obtained, verified, and
endorsed as shown in this research using the Response Surface Methodology

(RSM).

7.5 Future Research Directions

Some of the suggested future research directions include:

++ Calibrating the parameters of the traffic signal control itself:
In the application of the RSM to the integrated control system, it was
assumed that the parameters of the signal controller itself would remain
fixed; just to narrow down the number of parameters to calibrate and
ease tracking the process for the reader. The specific traffic signal
parameters such as the minimum green, the maximum green, the
vehicular extension period can also be optimized. Future research
direction would increase the optimization number of parameters by
considering the specific signal control parameters.

¢+ The inclusion of environmental aspects
Given that the developed framework and the RSM can be applied to
multiple objective functions, it should also be valuable to add some
measures of performance that reflect the network environmental quality
and vehicular emissions explicitly. An additional objective function to
minimize the negative environmental impacts can be beneficial.

+ Calibration with arterial coordination:
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The integrated control system could also be calibrated for coordination
of traffic signals along a major arterial corridor for various traffic

demands as well as various control types.



184

References

Abdalhag, B.K., Baker, M.I.A., 2014. Using Meta Heuristic Algorithms to Improve
Traffic Simulation. Journal of Algorithms and Optimization. Oct. 2014, Vol. 2
Iss. 4, PP. 110-128.

Ahmed, F., Hawas, Y.E., 2015. An integrated real-time traffic signal system for transit
signal priority, incident detection and congestion management. Transportation
Research Part C: Emerging Technologies 60, 52-76.

Bagherian, M., Mesbah, M., Ferreira, L., 2015. Using delay functions to evaluate
transit priority at signals. Public Transport 7(1), 61-75.

Balakrishna, R., Antoniou, C., Ben-Akiva, M.E., Koutsopoulos, H.N., Wen, Y., 2007.
Calibration of Microscopic Traffic Simulation Models: Methods and
Application. Transportation Research Record: Journal of the Transportation
Research Board (Vol. 1999), pp 198-207.

Bezerra, M.A., Santelli, R.E., Oliveira, E.P., Villar, L.S., Escaleira, L.A., 2008.
Response surface methodology (RSM) as a tool for optimization in analytical
chemistry. Talanta 76(5), 965-977.

Box, G.E.P., Wilson, K.B., 1951. On the Experimental Attainment of Optimum
Conditions. Journal of the Royal Statistical Society. Series B (Methodological)
13(1), 1-45.

Carson, Y., Maria, A., 1997. Simulation Optimization: Methods And Applications,
Simulation Conference, 7-10 Dec. 1997., pp. 118-126.

Chang, T.H., Li, Z.Y., 2002. Optimization of Mainline Traffic Via an Adaptive
Coordinated Ramp Metering Control Model with Dynamic OD Estimation.
Transportation Research Part C: Emerging Technologies 10(2), p. 99-120.

Chen, C.-H., Schonfeld, P., Paracha, J., 2005. Work Zone Optimization for Two-Lane
Highway Resurfacing Projects with an Alternate Route. Transportation
Research Record: Journal of the Transportation Research Board (Vol.1911),
51-66.

Ciuffo, B.F., Punzo, V., 2010. Verification of Traffic Micro-simulation Model
Calibration Procedures: Analysis of Goodness-of-Fit Measures, Proceedings
of 89th Annual Meeting. Washington, DC: Transportation Research Board., p.
20p.

Ciuffo, B.F., Punzo, V., Torrieri, V., 2008. Comparison of Simulation-Based and
Model-Based Calibrations of Traffic-Flow Microsimulation Models.



185

Transportation Research Record: Journal of the Transportation Research Board
(Vol. 2088), pp 36-44.

Daamen, W., Buisson, C., Hoogendoorn, S.P., 2015. Traffic simulation and data :
validation methods and applications.

Deng, G., 2007. Simulation-based Optimization, Mathematics and Computation in
Engineering. University of Wisconsin, Madison, p. 248.

Derringer, G., Suich, R., 1980. Simultaneous Optimization of Several Response
Variables. Journal of Quality Technology , vol 12, 1980, pp. 214-219.

Design-Expert, 2015. Design Expert software, Version 10. Stat-Ease, Inc. 2021 E.
Hennepin Ave. Suite 480, Minneapolis, MN 55413-2726, USA.

Ding, J., He, Q., Head, K.L., Saleem, F., Wu, W., 2013. Development and Testing of
Priority Control System in Connected Vehicle Environment. TRB 92th Annual
Meeting.

Dion, F., Hellinga, B., 2002. A rule-based real-time traffic responsive signal control
system with transit priority: Application to an isolated intersection.
Transportation Research Part B: Methodological 36(4), 325-343.

Ekeila, W., Sayed, T., El Esawey, M., 2009. Development of Dynamic Transit Signal
Priority Strategy. Transportation Research Record: Journal of the
Transportation Research Board Vol. 2111, 1-9.

Feng, Y., Head, K.L., Khoshmagham, S., Zamanipour, M., 2015. A real-time adaptive
signal control in a connected vehicle environment. Transportation Research
Part C: Emerging Technologies 55, 460-473.

Ferreira, S.L., Bruns, R.E., Ferreira, H.S., Matos, G.D., David, J.M., Brandao, G.C.,
da Silva, E.G., Portugal, L.A., Dos Reis, P.S., Souza, A.S., Dos Santos, W.N.,
2007. Box-Behnken design: an alternative for the optimization of analytical
methods. Anal Chim Acta 597(2), 179-186.

Fu, M.C., 2015. Handbook of Simulation Optimization. Springer New York, New
York, NY.

Ghanim, M.S., Abu-Lebdeh, G., 2015. Real-Time Dynamic Transit Signal Priority
Optimization for Coordinated Traffic Networks Using Genetic Algorithms and
Avrtificial Neural Networks. Journal of Intelligent Transportation Systems, 1—
12.

Hale, D.K., Antoniou, C., Brackstone, M., Michalaka, D., Moreno, A.T., Parikh, K.,
2015a. Comparison of Optimization Methods for Assisted Calibration of



186

Traffic Micro-Simulation, Transportation Research Board 94th Annual
Meeting. Transportation Research Board, Washington, DC, United States.

Hale, D.K., Antoniou, C., Brackstone, M., Michalaka, D., Moreno, A.T., Parikh, K.,
2015h. Optimization-based assisted calibration of traffic simulation models.
Transportation Research Part C: Emerging Technologies 55, 100-115.

Hawas, Y.E., 2002. Calibrating Simulation Models for Advanced Traveler
Information Systems/Advanced Traffic Management Systems Applications.
Journal of Transportation Engineering 128(1), 80-88.

Hawas, Y.E., Ahmed, F., 2016. A binary logit-based incident detection model for
urban traffic networks. Transportation Letters, 1-14.

He, Q., Head, K.L., Ding, J., 2014. Multi-modal traffic signal control with priority,
signal actuation and coordination. Transportation Research Part C: Emerging
Technologies 46, 65-82.

Hu, J., Park, B.B., Lee, Y.-J., 2015. Coordinated transit signal priority supporting
transit progression under Connected Vehicle Technology. Transportation
Research Part C: Emerging Technologies 55, 393-408.

Jafarzadeh-Ghoushchi, S., 2015. Optimization of Transportation System Based on
Combined Model Using Artificial Neural Networks and Response Surface
Methodology. International Journal of Technical Research and Applications e-
ISSN: 2320-8163, www.ijtra.com Special Issue 23 (June-July 2015), PP. 69-
76.

Joshi, S.S., Rathi, A.K., Tew, J.D., 1995. An improved response surface methodology
algorithm with an application to traffic signal optimization for urban networks.
pp. 1104-11009.

Kim, S.-J., Kim, W., Rilett, L.R., 2005. Calibration of Microsimulation Models Using
Nonparametric Statistical Techniques. Transportation Research Record:
Journal of the Transportation Research Board (Vol. 1935), pp 111-119.

Lee, J.-B., Ozbay, K., 2009. New Calibration Methodology for Microscopic Traffic
Simulation Using Enhanced Simultaneous Perturbation  Stochastic
Approximation Approach. Transportation Research Record: Journal of the
Transportation Research Board Vol. 2124, 233-240.

Li, L., Chen, X., Zhang, L., 2016. A global optimization algorithm for trajectory data
based car-following model calibration. Transportation Research Part C:
Emerging Technologies 68, 311-332.



187

Lin, Y., Yang, X., Jia, L., Zou, N., 2013. Development of Model-based Transit Signal
Priority Control for local Arterials. Procedia - Social and Behavioral Sciences
96, pp. 2344-2353.

Lin, Y., Yang, X., Zou, N., Franz, M., 2015. Transit signal priority control at signalized
intersections: A comprehensive review. Transportation Letters: the
International Journal of Transportation Research 7(3), 168—180.

Ma, J., Dong, H., Zhang, H.M., 2007. Calibration of Microsimulation with Heuristic
Optimization Methods. Transportation Research Record: Journal of the
Transportation Research Board (Vol. 1999), pp 208-217.

Ma, T., Abdulhai, B., 2002. Genetic Algorithm-Based Optimization Approach and
Generic Tool for Calibrating Traffic Microscopic Simulation Parameters.
Transportation Research Record: Journal of the Transportation Research Board
(Vol. 1800), p. 6-15.

Ma, W., Liu, Y., Han, B., 2013. A rule-based model for integrated operation of bus
priority signal timings and traveling speed. Journal of Advanced
Transportation 47(3), 369—383.

Manjunatha, P., Vortisch, P., Mathew, T.V., 2013. Methodology for the Calibration of
VISSIM in Mixed Traffic, Transportation Research Board 92nd Annual
Meeting. Transportation Research Board, Washington, DC, United States.

Minitab, 2016. Minitab Inc. Minitab, State College, PA.

Mirchandani, P., Lucas, D., 2004. Integrated Transit Priority and Rail/Emergency
Preemption in Real-Time Traffic Adaptive Signal Control. Journal of
Intelligent Transportation Systems 8(2), 101-115.

Mudigonda, S., Ozbay, K., 2015. Robust calibration of macroscopic traffic simulation
models using stochastic collocation. Transportation Research Part C: Emerging
Technologies 59, 358-374.

Myers, R.H., Montgomery, D.C., Anderson-Cook, C.M., 2009. Response surface
methodology: Process and product optimization using designed experiments,
3rd ed. ed. Wiley, Oxford.

Osorio, C., Chong, L., 2015. A Computationally Efficient Simulation-Based
Optimization Algorithm for Large-Scale Urban Transportation Problems.
Transportation Science 49(3), 623-636.

Osorio, C., Flotteréd, G., Zhang, C., 2015. A Metamodel Simulation-based
Optimization Approach for the Efficient Calibration of Stochastic Traffic
Simulators. Transportation Research Procedia 6, 213-223.



188

Pande, A., Wolshon, B., 2016. Traffic engineering handbook. Institute of
Transportation Engineers.

Paz, A., Molano, V., 2014. Development of a Tool for an Efficient Calibration of
CORSIM Models, University of Nevada, Las Vegas, Transportation Research
Center, Department of Civil and Environmental Engineering, Howard R.
Hughes College of Engineering., Augost, 2014.

Paz, A., Molano, V., Martinez, E., Gaviria, C., Arteaga, C., 2015a. Calibration of
traffic flow models using a memetic algorithm. Transportation Research Part
C: Emerging Technologies 55, 432-443.

Paz, A., Molano, V., Sanchez-Medina, J., 2015b. Holistic Calibration of Microscopic
Traffic Flow Models: Methodology and Real World Application Studies. 38,
33-52.

Schultz, G.G., Rilett, L.R., 2004. Analysis of distribution and calibration of car-
following sensitivity parameters in microscopic traffic simulation models.
Transportation Research Board. 41-51.

Stevanovic, A., 2010. Adaptive traffic control systems : domestic and foreign state of
practice. Transportation Research Board, National Cooperative Highway
Research Program (NCHRP) Synthesis 403, Washington, D.C.

Teodorovi¢, D., Jani¢, M., 2017. Transportation Engineering: Theory, Practice, and
Modeling. Butterworth-Heinemann.

Treiber, M., Kesting, A., 2013. Microscopic Calibration and Validation of Car-
Following Models — A Systematic Approach. Procedia - Social and Behavioral
Sciences 80, 922-9309.

TSIS-CORSIM, 2010. Traffic Software Integrated System-Corridor Simulation 6.2.
Dept. of Transportation, McTrans Center, USA.

Vasconcelos, L., Neto, L., Santos, S., Silva, A.B., Seco, A., 2014a. Calibration of the
Gipps Car-following Model Using Trajectory Data. Transportation Research
Procedia 3, 952-961.

Vasconcelos, L., Seco, A., Silva, A.B., 2014b. Hybrid Calibration of Microscopic
Simulation Models. 262, 307-320.

Vaze, V.S., Antoniou, C., Wen, Y., Ben-Akiva, M.E., 2009. Calibration of Dynamic
Traffic Assignment Models with Point-to-Point Traffic Surveillance.
Transportation Research Record: Journal of the Transportation Research Board
(\Vol. 2090), pp 1-9.



189

Zamanipour, M., Head, L., Ding, J., 2014. Priority System for Multimodal Traffic
Signal Control, Transportation Research Board 93rd Annual Meeting, p. 13p.

Zhong, R., Fu, K., Sumalee, A., Ngoduy, D., & Lam, W. , 2016. A cross-entropy
method and probabilistic sensitivity analysis framework for calibrating
microscopic traffic models. Transportation Research Part C: Emerging
Technologies. 63, 147-169.

Zhou, G., Gan, A., 2009. Design of Transit Signal Priority at Signalized Intersections
with Queue Jumper Lanes. Journal of Public Transportation 12(4), 117-132.

Zhou, G., Gan, A., Shen, L.D., 2007. Optimization of adaptive transit signal priority
using parallel genetic algorithm. Tsinghua Science and Technology 12(2),
131-140.



190

Appendix: A Response Surface Modeling in Minitab

This section describes the steps of Response Surface Modelling design, data

importing, model building for each response, and the optimization in Minitab.

A. Response Surface Modeling Design

In order to design the response surface model, the first step is defining the
properties of the model, such as the type of design (Box-Behnken, Central Composite),
number of factors (continuous, categorical), replications, and blocks, etc. Replicates is
also defined as the multiple simulation runs with the same factor settings (levels) and
these are subject to the same sources of variability, independently of one another. In
response surface design, replicate measurements are taken from multiple simulation
runs. Similarly, blocks in response surface design are defined as a group of
experiments conducted under relatively homogeneous conditions. In this research
study, there is only one block for the simulation-based model, as every measurement
Is taken under consistent simulated conditions changing only the input (factor settings)

not the simulation environment (CORSIM).

First, the “Create Response Surface Design...” is selected from the main menu
of Minitab, as Stat & DOE - Response Surface = Create Response Surface Design

shown in Figure A.1. Consequently, the “Create Response Surface Design” window

opens shown in Figure A.2.



] Minitab - Untitled - O X
| File Edit Data Calc |Stat Graph Editor Tools Window Help Assistant
288 xB7 Bt X IREEEN B I e e A
| i g ddlxlQlls TooON o M| %2 % | v <H& %, [
ANOVA >
B ool )| =E=]
I
Control Charts 4 Response Surface » i3] Create Response Surface Design... fa
1/19, Quality Tools 4 Mixture | ¥ Define Custom Response Surface Design...
Reliability/Survival > Taguchi »| 3¢ Select Optimal Design...
Welcome to Minitab
Multivariate [ . i
‘T, Modify Design... # Analyze Response Surface Design..,
Time Series »| —
[i"] Display Design... 7
Tables = Y Predict...
Nonparametrics » < Factorial Plots...
Equivalence Tests » I Contour Plot...
Power and Sample Size » @ Surface Plot... v
< Overlaid Contour Plot... >
il Response Optimizer... e Ta— =]
£ Worksheet 1+ (=8 i )
+ C1 e | c3 c4 c5 C6 a7 c8 c9 C10 cn Cc12 ci3 ci4 (o e )
1|
2
3
4
5
6
7

Current Worksheet: Worksheet 1

Figure A.1: Selection of “Create Response Surface Design”

Create Response Surface Design X
Type of Design

" Central composite (2 to 10 continuous factors)
* Box-Behnken (3,4,5,6,7,9, or 10 continuous factors)

Number of continuous factors: | 3 I Display Available Designs... I

Number of categorical factors: Io vl Designs... I Factors.., I

Options... l Results, .. l

Help | OK | Cancel I

Figure A.2: Selection of “Type of Design” and number of factors

For the “Type of Design”, “Box-Behnken” is selected. For the “Number of
continuous factors:”, “3” is selected, representing the various coefficients (B”, B?or B?,
and B8) as shown in Figure A.2. It is to be noted that both B2and B? in the presented
model formulation in Chapter 3 are considered equal and as such the number of factors

is only three not four.
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The “Designs...” tab is selected to set up the number of center points,

replicates, blocks, as shown in Figure A.3.

Create Response Surface Design: Designs

X

Number of center points Number of replicates: | 1

(¢ Default: 3

" Custom: I

| Block on replicates

Help | OK

Cancel

Figure A.3: Selection of number of center points, blocks, and replicates

In Figure A.3, the default “3” number of center point is selected; as well as for

the “Number of replicates:” and “Number of blocks:”, “1” is kept. It is to be noted that

the number of replicates here is set to 1 despite the fact that 10 simulation runs are

carried out for each set of factors. The replicate of 1 here represents the average values

obtained from the 10 simulation runs.

To keep the settings, “OK™ is clicked. Other options such as Factors, Options,

and Results are activated, as shown in Figure A.4.
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Create Response Surface Design X

Type of Design
" Central composite (2 to 10 continuous factors)
{* Box-Behnken (3,4,5,6,7,9, or 10 continuous factors)

Number of continuous factors: I 3 v l Display Available Designs...
Number of categorical factors: I 0 w l Designs... Factors...
Options... Results...

Help | oK Cancel

Figure A.4: RSM design after selection of design properties

To input the factors and their levels (low, high), “Factors...” is clicked to open

the “Create Response Surface Design: Factors” window shown in Figure A.5.

Create Response Surface Design: Factors X
Factor Name Low High
A A -1 1
B B -1 1
C C -1 1

Help | OK Cancel

Figure A.5: Entry of the factors and their levels
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The “Names” of the three factors (Coefficient for virtual queue of vehicles, B,
Coefficient for transit priority, f2or 7, Downstream blockage penalty coefficient,
(8) are modified to BQL, BTP, and BDC, respectively, as shown in Figure A.6. The
Low and High levels of the factors shown in Table A.1 (preliminary regions of factors)
are used to modify the ranges in Figure A.5, to ones shown in Figure A.6. By clicking

“OK”, the dialog box shown in Figure A.4 reappears.

Table A.1: Factors and their levels for the model 1 of split actuated control for “E2”
demand scenario

Factors “Low” Level “High” Level
Coefficient for virtual queue of vehicles, BV -1000 15000
Coefficient for transit priority, g2or g? -2000 10000
Downstream blockage penalty coefficient, 52 -5 25
Create Response Surface Design: Factors X
Factor Name Low High
A BQL -1000 15000
B BTP -2000 10000
C BDC =5 25
Help OK Cancel

Figure A.6: Modifying the “Names” of factors and their Low and High levels
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At this stage, the properties for the response surface modeling is set. By
clicking “OK” in the dialog box shown in Figure A.4, the response surface design is

created for the factor settings, as shown in Figure A.7.

Minitab - Untitled - O X
File Edit Data Calc Stat Graph Editor Tools Window Help Assistant
=H[® XB D O #4 Q0H||UBTOL N NNOEOG]| A8 -2k ik &
y || X | L4 ™M) # % 88 # |y < H 1, [
L Se (===
~
Box-Behnken Design
Factors: 3 Replicates: 1
Base runs: 15 Total runs: 15
Base blocks: 1 Total blocks: 1
Center points: 3
v
< >
FH Worksheet 1+ =]
s a | @ Lo I S I & o | a & | C | co | cn Cc12 C13 4 | a5 4
StdOrder RunOrder| PtType | Blocks BQL BTP BDC
1| 5 2 1 -1000 -2000 10
L -
2 5 3 2 1 -1000 4000 -5
3 7 13 2 1 -1000 4000 25
4 3 9 2 1 -1000 10000 10
5 9 7 2 1 7000 -2000 -5
6 1" 4 2 1 7000 -2000 25
7 14 8 0 1 7000 4000 10
8 15 12 0 1 7000 4000 10
9 13 15 0 1 7000 4000 10
10 10 2 2 1 7000 10000 -5
1n 12 6 2 1 7000 10000 25
12 2 10 2 1 15000 -2000 10
13 6 14 2 1 15000 4000 =5
14 8 1 2 1 15000 4000 25
15 4 1 2 1 15000 10000 10 <
< >

Current Worksheet: Worksheet 1

Figure A.7: Box-Behnken response surface design

B. Building Responses Models

Following the design of the response surface model (RSM), the CORSIM
simulation is executed ten (10) times for each factor level settings (as shown in each
raw of Figure A.7). Subsequently, the resulting average total number of bus trips,

network total travel time, and trip’s average travel time, of the 10 simulation runs are
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exported to the worksheet in the Minitab to build the model for each response, as

shown in Figure B.1. The variables Trips, TTT and MTT represent the average

response values of the ten simulation runs using the corresponding factor settings.

| 1 Minitab - Untitled

;‘ File Edit Data Calc | Stat Graph Editor Tools Window Help Assistant

B2 %E7 Bt QOB BTmOr Bl NNOEOG| Alg-sh &t
‘7‘7'77_7 Regression > —_}:‘ x -I- T‘;’ N i PP _m_ 7&? T;.
[——e ANOVA » -
Control Charts ¥ \ #t Create Response Surface Design... ol
Box-Behnken De Quality Tools 4 Mixture »| #'  Define Custom Response Surface Design...
T 3 ReliaF)iIitAy/Survival 4 Taguchi > iﬂ- Select Optimal Design... )
ol R e I - ReponscSuroceDesion.. |
Display Design... Z
Center points: 3 Tables p e Yt
Nonparametrics » ~< Factorial Plots...
Equivalence Tests > [E ContourPlot...
Power and Sample Size 4 Surface Plot... v
< Overlaid Contour Plot... >
B Workahest 1= Response Optimizer... E
+ (o] (o] c c4 5 C6 c7 c8 9 ‘ Cc10 cn c12 Ci3 Ci14 CIbgE A
stdorder RunOrder| PtType | Blocks | BQL | BTP BDC | Trps | TIT | MTT | | | | \
1 1 5 2 1 -1000 -2000 10 0.0 0.00 0.00
2 5 3 2 1 -1000 4000 -5 45.0 532320 6211.40
T 74 13 2 1 -1000 4000 25 429 519006 6251.09
777 3 9 2 1 -1000 10000 10 67.3| 5910.55| 5271.76
5 9 2 1 7000 -2000 -5 146.6 814470 829.15
6 | 1 4 3 1| 7000 -2000 25| 1466 814470 829.15
T 14 8 0 1 7000 4000 10 157.3 8093.79 823.00
8 15 12 0 1 7000 4000 10 157.3 8093.79 823.00
9 13 15 0 1 7000 4000 10 1573 809379 823.00
10 ] 10 2 2 1 7000 10000 -5 1584 817534 835.17
1 12 6 2 1 7000 10000 25 1584 8176.49 835.22
i 12 3 2 10 2 1 15000 -2000 10 1503 8105.32 823.88
? 6 14 2 1 15000 4000 5 1548 804335 817.67
14 8 1 2 1 15000 4000 25 1548 804335 817.67
? 4 n 2 1 15000 10000 10 157.3 8109.23 825.70 9
< >

‘ Current Worksheet: Worksheet 1

Figure B.1: Selection of “Analyze Response Surface Design”

The process of analysis starts by selecting “Analyze Response Surface
Design...” from the main menu of Minitab, as Stat & DOE = Response Surface =

Analyze Response Surface Design as shown in Figure B.1. The “Analyze Response

Surface Design” window opens as shown in Figure B.2.



C8 Trips
C9: T
C10 M™IT

Analyze Response Surface Design

X
Responses:
TripsI
Terms... | Optons... | stepwise... |
Graphs... I Results... | Storage... ]
ok | cancel |

Figure B.2: Selection of the “Trips” as one response to analyze the model
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As there are three responses exported from the simulation model, three

response surface models are built for the responses. As an example, “Trips” is selected

as a response to build the model shown in Figure B.2.

Analyze Response Surface Design: Terms X
Indude the following terms: |8 IR =TS v
Available Terms: Selected Terms:
AL |
B:BTP
C:BDC
x AA
I BB
| cc
— AB
> | AC
BC
<< I
[T Include blocks in the model
Help I (0]1¢ I Cancel |

Figure B.3: Selection of the “Terms” to select the full quadratic model
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The “Terms...” of a “Full quadratic” model are selected to set up the second-

order model (the single factor effects, the square effects and the interaction among the
factors), as shown in Figure B.3. All terms are considered in the model for the first
time to identify the significant terms. By clicking “OK” in the dialog box, the output
(ANOVA table) of the response surface model is shown as in Figure B.4.

Subsequently, the non-significant terms are identified as shown in Figure B.5.

Analysis of Variance
Source DF Adj SS Adj MS F-Value P-Value
Model 9 41454.6 4606.1 €3.08 0.000
Linear 3 27879.1 9293.0 127.26 0.000
BQL 1 26680.5 26680.5 365.38 0.000
BTP 1 1198.1 1198.1 16.41 0.010
BDC Y 0.6 0.6 0.01 0.934
Square 3 12665.4 4221.8 57.82 0.000
BQL*BQL I 1297¥e3 125713 172.16 0.000
BTP*BTP 1k 100.8 100.8 1.38 0.293
BDC*BDC 1 0.7 0.7 0.01 0.928
2-Way Interaction 3 910.1 303.4 4.15 0.080
BQL*BTP 1 909.0 909.0 12.45 0.017
BQL*BDC 1 o {18 § 2 Bl & 0.02 0.907
BTP*BDC 1 0.0 0.0 0.00 1.000
Error S 365.1 73.0
Lack-of-Fit 3 365.1 32127 e *
Pure Error 2 0.0 0.0
Total 14 41819.7

Figure B.4: ANOVA output for the “Trips” of full quadratic model
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Source
Model
Linear
BQL
BTP
BDC
Square
BQL*BQL
BTP*BTP
BDC*BDC
2-Way Interaction
BQL*BTP
BQL*BDC
BTP*BDC
Error
Lack-of-Fit
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)
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0.6
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'1.000]
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Figure B.5: ANOVA output for the “Trips” of full quadratic model (the non-
significant terms are highlighted)
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The next step is to eliminate the non-significant terms, one at a time,

commencing with the term with the highest P-value. The model is reanalyzed

following each elimination. For example, for the “Trips” response, the interaction

effect between the downstream blockage penalty coefficient, £ (BDC) with both

coefficient for virtual queue of vehicles, BV (BQL) and coefficient for transit priority,

BP(BTP), and the square effect term of P are all eliminated at a time for simplicity;

since their P-value is near to 1, as shown in Figure B.5. The output (ANOVA table) of

the response surface model following the elimination of the non-significant terms is

illustrated in Figure B.6 and Figure B.7.
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Analyze Response Surface Design: Terms X
Indude the following terms: |Full quadratic L]
Available Terms: Selected Terms:
cC A:BQL
AC B:BTP
BC C:BDC
AA
BB
A8

<<

lle ]

[T Include blocks in the model

Help I OK Cancel

Figure B.6: Selection of “Trips” response for reanalysis, keeping the significant
terms to develop the model

Analysis of Variance
Scurce DF Adj SS Adj MS F-Value P-Value
Model & 41452.8 6908.8 150.865 0.000
Linear 3. 278791 §9293.0 202.64 0.000
BQL 1 26680.5 26680.5 581.79 0.000
BTP X 1198.1 1198.1 26.12 0.001
BDC 1 0.6 0.6 0.01 0.915
Square 2 12664.7 6332.4 138.08 0.000
BQL*BQL 1 12660.3 12660.3 276.07 0.000
BTP*BTP 1 102.7 102.7 2.24 0.173
2-Way Interaction 1 909.0 909.0 19.82 0.002
BQL*BTP 1 909.0 909.0 19.82 0.002
Error 8 366.9 45.9
Lack-of-Fit 6 366.9 6l.1 * *
Pure Error 2 0.0 0.0
Total 14 41819.7

Figure B.7: ANOVA output for the “Trips” following the elimination of the non-
significant terms



201

When the terms of significant effect on the “Trips” response are identified, the
models for the other two responses (TTT and MTT) are constructed similarly.
Afterward, given the developed models for all the responses, the optimization is

executed as described in the following section.

C. Responses Optimization

Following the construct of the response surface models for Trips, TTT and
MTT (including only the significant terms), the next step is to determine the optimal
combination of factors for specific objective functions (such as minimizing TTT and

MTT while maximizing Trips).

To carry on the optimization, the “Response Optimizer...” is selected from the
main menu of Minitab, (Stat = DOE = Response Surface = Response Optimizer) as

shown in Figure C.1. The “Response Optimizer” window opens as shown in Figure

C.2 to set the optimization goals of each response individually.
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[ 6 | 1 4 2 1 7000 -2000) 25 1466 814470 82915
7 14 8 0 1| 7000 4000 10 1573] 809379 823.00
5] 15 12| 0 1) 7000 4000 10 1573] 809379 823.00
[ o | 13 15 0 1) 7000 4000 10 1573] 809379 823.00
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12 2 10 2| 1 15000  -2000 10 1503| 810532 823.88
| 13| 6 14 2 1 15000 4000 -5 1548 804335 81767
14 8 1] 2 1 15000 4000 25| 1548 804335 817.67
15 | 4 11| 2 1/ 15000, 10000] 10| 1573 810923 825.70| v
< >
Current Worksheet: Worksheet 1 W’i Y
Figure C.1: Selection of “Response Optimizer”

Response Optimizer

Optimize up to 25 responses:
Response I Goal Target I
MTT IDo not optimize v
TIT ‘Do not optimize =
Trips iDo not optimize L

B

Figure C.2: Setting the “Goals” of the various responses
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The goal (objective) of each response is selected as shown in Figure C.3.
Herein, both TTT and MTT are to be minimized, and the Trips is to be maximized.
Subsequently, the “OK” in the dialog box is clicked to execute. The output of the

response optimizer is shown in Figure C.4.

Optimize up to 25 responses:

Response Goal Target
MTT Minimize _v_l
1T Minimize _v_l
Trips Maximize -

Setup... Options... Graphs...

Results... Storage... View Model...

' Help | oK Cancel

Figure C.3: Selection of triple “Goal” for three responses
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" Optimization Plot

Optimal BQL BTP BDC

D: 0.6290 High 15000.0 10000.0 25.0
Cur [3040.4040] [-2000.0] [10.1515]

Predict Low -1000.0 -2000.0 -5.0

Composite
Desirability / 3 e e S - B

D:06290 ' AN

MTT S
Minimum '\ /

\ >

y=-472628 | \ A / S P

A / / \"x_ P
d = 1.0000 ‘__L\_____/'}__T'L———————————}‘_;-:___

.’/ P

TIT / -

Minimum - N

y=46084219 [~/ T TTTTT]
d = 0.44664 :

Trips 7

Maximum / | g

y = 89.7167
d = 0.55725

Figure C.4: Optimal solution for the selected triple objective functions

Figure C.4 shows the optimal settings of the factors of coefficient for virtual
queue of vehicles, BV (BQL), coefficient for transit priority, g%or g (BTP), and
downstream blockage penalty coefficient, 58 (BDC), for the three objective functions
(minimizing TTT and MTT and maximizing Trips). The optimal setting; one with the
highest composite desirability of 0.629 is 3040.4 for the BV (BQL), -2000 for the

SPor g7 (BTP) and 10.15 for the BZ(BDC). The following step is to maybe change the
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penalty coefficient ranges and repeat the whole process again to test different models.
For instance, given that the optimal BTP value is identified to be the border (minimal)
value (-2000) of the initially specified range, a new range can be specified for this
factor and then the processes of model design, building, and optimization are repeated

as described above.

Alternatively, one may seek different optimization arrangements, by
considering only two response optimization (two goals instead of three), as shown in

Figure C.5.

Response Optimizer X

Optimize up to 25 responses:

Response Goal Target
MTT Minimize .
TIT o not optimize
Trips ‘Maximize

Setup... Options... Graphs...

Results... Storage... View Model...

Help I OK Cancel

Figure C.5: Reselection of two “Goals” for the responses
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Herein, the goals are restated as (minimizing MTT and maximizing Trips), as

shown in Figure C.5. That is, the TTT response is not considered for optimization.
Following the reapplication of the surface optimizer on only two responses, the output
of the response optimizer is obtained as shown in Figure C.6. In this case, the optimal
factor setting (with the highest composite desirability of 1.0) is 12898.9 for 5V (BQL),
10000 for Por B? (BTP), and -3.45 for B2 (BDC). One can also seek optimization of

one goal and obtain the corresponding optimal factor settings in the same way.

" Optimization Plot

Optimal BQL BTP BDC
D: 1.000 High 15000.0 10000.0 25.0
T Cur [12898.9899] [10000.0] [-3.4848]

Predict  Low -1000.0 -2000.0 -5.0

Composite
Desirability A
D: 1.000 /

\
MTT \\

Minimum N

y = -9.2442 N

d = 1.0000 Mg e

Trips /
Maximum /S
y = 164.5009 /
d = 1.0000 /

Figure C.6: Optimal solution for only two objective functions
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