8,973 research outputs found

    On Redundancy Elimination Tolerant Scheduling Rules

    Full text link
    In (Ferrucci, Pacini and Sessa, 1995) an extended form of resolution, called Reduced SLD resolution (RSLD), is introduced. In essence, an RSLD derivation is an SLD derivation such that redundancy elimination from resolvents is performed after each rewriting step. It is intuitive that redundancy elimination may have positive effects on derivation process. However, undesiderable effects are also possible. In particular, as shown in this paper, program termination as well as completeness of loop checking mechanisms via a given selection rule may be lost. The study of such effects has led us to an analysis of selection rule basic concepts, so that we have found convenient to move the attention from rules of atom selection to rules of atom scheduling. A priority mechanism for atom scheduling is built, where a priority is assigned to each atom in a resolvent, and primary importance is given to the event of arrival of new atoms from the body of the applied clause at rewriting time. This new computational model proves able to address the study of redundancy elimination effects, giving at the same time interesting insights into general properties of selection rules. As a matter of fact, a class of scheduling rules, namely the specialisation independent ones, is defined in the paper by using not trivial semantic arguments. As a quite surprising result, specialisation independent scheduling rules turn out to coincide with a class of rules which have an immediate structural characterisation (named stack-queue rules). Then we prove that such scheduling rules are tolerant to redundancy elimination, in the sense that neither program termination nor completeness of equality loop check is lost passing from SLD to RSLD.Comment: 53 pages, to appear on TPL

    A Calculus of Bounded Capacities

    No full text
    Resource control has attracted increasing interest in foundational research on distributed systems. This paper focuses on space control and develops an analysis of space usage in the context of an ambient-like calculus with bounded capacities and weighed processes, where migration and activation require space. A type system complements the dynamics of the calculus by providing static guarantees that the intended capacity bounds are preserved throughout the computation

    Late allocation and early release of physical registers

    Get PDF
    The register file is one of the critical components of current processors in terms of access time and power consumption. Among other things, the potential to exploit instruction-level parallelism is closely related to the size and number of ports of the register file. In conventional register renaming schemes, both register allocation and releasing are conservatively done, the former at the rename stage, before registers are loaded with values, and the latter at the commit stage of the instruction redefining the same register, once registers are not used any more. We introduce VP-LAER, a renaming scheme that allocates registers later and releases them earlier than conventional schemes. Specifically, physical registers are allocated at the end of the execution stage and released as soon as the processor realizes that there will be no further use of them. VP-LAER enhances register utilization, that is, the fraction of allocated registers having a value to be read in the future. Detailed cycle-level simulations show either a significant speedup for a given register file size or a reduction in the register file size for a given performance level, especially for floating-point codes, where the register file pressure is usually high.Peer ReviewedPostprint (published version

    Dynamic Dependency Collapsing

    Get PDF
    In this dissertation, we explore the concept of dynamic dependency collapsing. Performance increases in computer architecture are always introduced by exploiting additional parallelism when the clock speed is fixed. We show that further improvements are possible even when the available parallelism in programs are exhausted. This performance improvement is possible due to executing instructions in parallel that would ordinarily have been serialized. We call this concept dependency collapsing. We explore existing techniques that exploit parallelism and show which of them fall under the umbrella of dependency collapsing. We then introduce two dependency collapsing techniques of our own. The first technique collapses data dependencies by executing two normally dependent instructions together by fusing them. We show that exploiting the additional parallelism generated by collapsing these dependencies results in a performance increase. Our second technique collapses resource dependencies to execute instructions that would normally have been serialized due to resource constraints in the processor. We show that it is possible to take advantage of larger in-processor structures while avoiding the power and area penalty this often implies

    A generic framework for the analysis and specialization of logic programs

    Get PDF
    The relationship between abstract interpretation and partial deduction has received considerable attention and (partial) integrations have been proposed starting from both the partial deduction and abstract interpretation perspectives. In this work we present what we argĂŒe is the first fully described generic algorithm for efñcient and precise integration of abstract interpretation and partial deduction. Taking as starting point state-of-the-art algorithms for context-sensitive, polyvariant abstract interpretation and (abstract) partial deduction, we present an algorithm which combines the best of both worlds. Key ingredients include the accurate success propagation inherent to abstract interpretation and the powerful program transformations achievable by partial deduction. In our algorithm, the calis which appear in the analysis graph are not analyzed w.r.t. the original definition of the procedure but w.r.t. specialized definitions of these procedures. Such specialized definitions are obtained by applying both unfolding and abstract executability. Our framework is parametric w.r.t. different control strategies and abstract domains. Different combinations of such parameters correspond to existing algorithms for program analysis and specialization. Simultaneously, our approach opens the door to the efñcient computation of strictly more precise results than those achievable by each of the individual techniques. The algorithm is now one of the key components of the CiaoPP analysis and specialization system

    Crafting symbolic geographies in modern Turkey

    Get PDF
    Place is a social site of meaning and memory. The critical appreciation of place and its link to power in toponymic studies involve the identity politics of place naming. This paper discusses the relationship between the naming of places and identity construction in Turkey. First, conceptualized as a hegemonic practice, the Turkification of toponyms in the Kurdish region of the country is argued to be part of a broader system of assimilation. Supported by the imposition of particular ethno- nationalist narratives on the past, and conducted with concomitant processes of linguistic and demographic design, top-down and centralized engineering of the country’s toponymic order has two sides; the construction of symbolic Turkish spaces and the cultural erosion of Kurdishness. Later, the research examines the act of naming places as a Kurdish strategy of resistance and a cultural right. As an attempt to remove spatial and linguistic injustice, Kurdish toponymic practices aim at re-asserting the ‘self’ and reclaiming memory, space and identity through the re-introduction of former place names or new alternatives that are conducive to the reparation of the Kurdish identity. The discursive and material struggle over space and the clash between the Turkish and Kurdish discourses on naming places reflect the overall structure of social and political power relations in Turkey

    Enumerating Independent Linear Inferences

    Get PDF
    A linear inference is a valid inequality of Boolean algebra in which each variable occurs at most once on each side. Equivalently, it is a linear rewrite rule on Boolean terms that constitutes a valid implication. Linear inferences have played a significant role in structural proof theory, in particular in models of substructural logics and in normalisation arguments for deep inference proof systems. In this work we leverage recently developed graphical representations of linear formulae to build an implementation that is capable of more efficiently searching for switch-medial-independent inferences. We use it to find four `minimal' 8-variable independent inferences and also prove that no smaller ones exist; in contrast, a previous approach based directly on formulae reached computational limits already at 7 variables. Two of these new inferences derive some previously found independent linear inferences. The other two (which are dual) exhibit structure seemingly beyond the scope of previous approaches we are aware of; in particular, their existence contradicts a conjecture of Das and Strassburger. We were also able to identify 10 minimal 9-variable linear inferences independent of all the aforementioned inferences, comprising 5 dual pairs, and present applications of our implementation to recent `graph logics'.Comment: 33 pages, 3 figure
    • 

    corecore