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Abstract

In this dissertation, we explore the concept of dynamic dependency collapsing. Perfor-

mance increases in computer architecture are always introduced by exploiting addi-

tional parallelism when the clock speed is fixed. We show that further improvements

are possible even when the available parallelism in programs are exhausted. This

performance improvement is possible due to executing instructions in parallel that

would ordinarily have been serialized. We call this concept dependency collapsing.

We explore existing techniques that exploit parallelism and show which of them fall

under the umbrella of dependency collapsing. We then introduce two dependency

collapsing techniques of our own. The first technique collapses data dependencies by

executing two normally dependent instructions together by fusing them. We show

that exploiting the additional parallelism generated by collapsing these dependencies

results in a performance increase. Our second technique collapses resource dependen-

cies to execute instructions that would normally have been serialized due to resource

constraints in the processor. We show that it is possible to take advantage of larger

in-processor structures while avoiding the power and area penalty this often implies.
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Chapter 1: Introduction

In computer architecture, parallelism is the keystone to creating faster processors

when confronted with a fixed clock speed. Each architectural improvement that

creates a time optimization allows some computation in a processor to happen at the

same time as another. For instance, pipelining is one of the simplest examples of

parallelism that exists in almost every modern processor.

Pipelining allows a processor to overlap different stages of execution of multiple

instructions. Processors also execute multiple independent instructions at the same

time when available. The number of independent instructions available for execution

at any given point in a program’s execution is called available instruction level par-

allelism (ILP). In the rest of this work, we use the term available parallelism to refer

to available ILP.

Many modern micro-architectural techniques focus on available parallelism in-

herent in programs. Techniques which focus on available parallelism range from

multi-fetch, multi-issue processors (superscalar processors) to multiple processors

running different processes all related to the same application (supercomputers or

high-performance computing). Inherently, whether or not task-level parallelism is
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sought, the premise is the execution of independent instructions in parallel. Gen-

erally speaking, it does not matter if these independent instructions come from the

same thread.

All micro-architecture techniques which focus on available parallelism hit a per-

formance wall when the so called available parallelism is not sufficient. In such cases,

program execution performance is bounded by dependent code which can’t be readily

parallelized by distributing it across multiple execution units.

This dissertation work aims to explore and exploit a different type of parallelism,

which we call dependent parallelism. Exploiting dependent parallelism is accomplished

by scheduling and executing dependent instructions together at the expense of po-

tentially slowing down the processor clock. As a result, the dependency height of the

program is collapsed and additional independent parallelism is exposed to be further

exploited. Dependent code can be run in parallel using a multitude of techniques

such as instruction fusion and value prediction. We refer to these techniques as de-

pendency collapsing techniques. Within dependency collapsing techniques, we focus

on techniques which are activated dynamically – that is, the techniques in question

do their work while code is running on the processor.

In this dissertation, we also discuss the concept of resource dependencies, and

articulate a technique which collapses such dependencies. Resource dependencies are

encountered when the same architectural construct needs to be accessed by multiple

instructions to exploit the available parallelism. Resource dependencies can only be
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broken by introducing larger microarchitectural structures with a greater number of

simultaneous access ports. Such additions to processors are not easy or often not

feasible due to power, area and process node constraints. Our design aims to relax

these dependencies by introducing multiple copies of processor structures with fewer

access ports, which is often called clustering. We introduce a novel technique in

which such additions can be made to the processor without introducing a significant

performance penalty.

In summary, we explore existing dependency collapsing techniques and apply them

dynamically to exploit dependent parallelism in this dissertation. As well, we design

new and expanded dependency collapsing techniques to achieve greater dependent

parallelism.

To make efficient use of these dependency collapsing techniques, we design, imple-

ment and evaluate novel micro-architecture designs or improvements to superscalar

processors.

23





Chapter 2: Background and Domain

Analysis

A computer program calculates some output for a problem based on given inputs. To

this end, some operations must be completed after certain others, in a certain order.

These orderings manifest themselves as dependencies. We define a dependency as any

interaction between two operations of a program (e.g. an instruction or a basic block

or an even larger section of code) that imposes an order on the execution of these

operations. If an operation A must be executed before operation B, we represent

it in a dependency graph as seen in Figure 2.1, where an arrow going from A to B

indicates that B depends on A and therefore A must occur before B.

A

B

Figure 2.1: Dependency Example

As we are primarily concerned with the available instruction-level parallelism, in

this work we focus on instruction dependencies instead of larger blocks of code. We
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further split the concept of a dependency into data, control and resource dependencies.

Data dependencies occur when an instruction (B) requires a value produced by

another instruction (A). In this case, A must execute first to provide the value to

B for B’s execution. A data dependency could occur through registers for scalar

values in execution, or through memory for array values. While in theory both data

dependency classes are similar, data dependencies through memory are often dynamic

in nature since the memory address being accessed may vary.

Control dependencies occur when the execution of an instruction (B) depends on

another instruction (A). Since we don’t know if the instruction B will be executed at

all, A must be evaluated first to determine if B shall execute. Control dependencies

in a program can be converted to data dependencies using a technique called if-

conversion.

Resource dependencies can occur when two instructions are not data or contol

dependent, but instead when the execution of each instruction is dependent on the

same resource in the processor. Resource dependencies impose linearity but do not

necessarily impose a specific order. Each instruction (A or B) can be executed ahead

of each other, but not at the same time due to resource limitations. A well known

example of a resource dependency is a write-after-read or write-after-write register

dependencies. These dependencies are created due to lack of available architectural

register names in the ISA. A resource dependency can be removed by adding more of

the same resource to the processor as well as the capability to utilize those resources.
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For instance, a write-after-write dependency is resolved in modern superscalar pro-

cessors by adding more registers, then renaming the architectural registers to these

additional, larger bank of registers. Adding additional resources to a processor col-

lapses these dependencies.

2.1 Mutability of Dependencies

We classify dependencies to be immutable or mutable. We consider a dependency to

be immutable if the dependency exists in all execution paths that pass through the

members of the dependency relation. Most immutable dependencies are statically

determinable and mutable dependencies exhibit data dependent behavior. If two

operations A and B are observed to be dependent and independent on each other

at least once each, we consider the dependency between A and B to be a mutable

dependency.

Consider the following code snippet shown in Figure 2.2 (a). Given this instruction

ordering, i2 will always be dependent on i1 since i1 produces the register value r3 and

i2 consumes r3. Immutable dependencies are also possible over memory accesses. In

Figure 2.2 (b), we show that i2 will always be dependent on i1 since the value of r1 is

not modified between the two instructions. Note that while the value storage location

is not constant in this snippet, i2 will always read from the same location i1 writes to,

thus forming an immutable dependency. In Figure 2.2 (c), we see another immutable

dependency over memory due to r1 being equal to r7 in all paths of execution. This
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dependency would not be statically determinable in most cases.

In Figure 2.2 (d), we see an immutable resource dependency. i1 and i2 are not

control or data dependent. However, i2 may not execute ahead of i1 since it will

overwrite r4, which i1 hasn’t read yet. This dependency occurs due to the lack of

available architectural registers, and exists in all paths of execution leading to this

code snippet. Such dependencies are commonly known as false data dependencies.

We classify them in a broader category of dependencies that all exist due to lack of

resources. Additionally, any instructions that rely on the same architectural resource

(such as register file ports, execution units, etc.) are immutably resource dependent as

well. Regardless of the execution path or data of the program, should two instructions

happen to execute in the same instruction stream and use the same resource, they

will always be resource dependent.

(a) Over Registers (b) Over Memory

i1
i2

i1
i2

r3=r1+r2
r4=r3+r1

M[r1]=r3
r4=M[r1]

(c) Over Memory

i1
i2

Statically Identifiable r1==r7, always

M[r1]=r3
r4=M[r7]

(d) Resource dependency

i1
i2

Anti-dependency

r3=r1+r4
r4=r1+r2

Figure 2.2: Immutable Dependency Examples

Figure 2.3 (a) shows an example of a mutable dependency due to a branching

control flow. If the branch at i1 is not taken, i5 would be dependent on i2. Should

the branch at i1 be taken, i5 would then instead depend on i4. Mutable dependencies

can also occur without branching control flows. Here, the data value tested by the

branch instruction controls whether the dependency occurs. In Figure 2.3 (b), we
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see a load instruction preceded by two store instructions. Based on the equality

relationship between r1, r2 and r3, i3 may be mutably dependent on both i1 and i2.

Again, data values control whether the dependency occurs. Resource dependencies

exist between any pair of instructions in the executed instruction stream due to the

accessed memory and register ports.

PC=r5==r6,L1
r1=r3+r5
PC=L2
r1=r3+r6
r2=r1+r4

L1:
L2:

(a) Control Based

i1
i2
i3
i4
i5

r5==r6 at least once, and
r5!=r6 at least once

M[r2]=r4
r5=M[r3]

M[r1]=r6i1
i2
i3

(b) Data Based
r2==r3 and r2!=r3 at least once each, and

r1==r3 and r1!=r3 at least once each

Figure 2.3: Mutable Dependency Examples

2.2 Criticality

Dependencies impose a time order into program execution. Each dependent instruc-

tion must then run in a different time interval (typically a cycle in computer archi-

tecture). Given a dependency graph, we call the longest path through that graph

the critical path. Consider Figure 2.4. The critical path in this graph is through

i1 → i3 → i5 → i7. To execute all instructions in this figure, we need at least 4 time

intervals even when given infinite execution resources because of the dependencies.

Resource dependencies only exacerbate the situation. For instance, let’s assume

we are working in a micro-architecture that may only execute two instructions per

time interval. The following schedule will extend the minimum execution time of the
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i1

i2 i3 i4

i5 i6

i7

Figure 2.4: Data Dependency Example

code in Figure 2.4 to 5 time intervals: i1 → i2&i4 → i3&i6 → i5 → i7.

Improving the performance of such a graph is possible only if the critical path is

shortened.

2.3 Dependency Collapsing

Shortening the critical path can be accomplished by using dependency collapsing,

where two or more dependent instructions are scheduled and executed together. Thus,

dependency collapsing is a subcategory of instruction scheduling techniques. In addi-

tion, dependency collapsing requires techniques and mechanisms that allow multiple

dependent instructions to be executed together when scheduled.

In order to take advantage of dependency collapsing to the fullest extent, it is
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important to detect the critical path in the program. Critical path detection can

be performed at compile time, as well as dynamically and is well studied. Critical

path detection techniques range from dynamic heuristic based predictors [14, 13, 52]

to instruction behavior based criticality determination [48, 23]. Heuristic predictors

predict criticality based on heuristics such as how quickly an instruction’s value is

used. Instruction behavior based criticality determination is accomplished through

identifying which instructions typically reside on the critical path, such as instructions

consuming values produced by load instructions. Program trace based criticality

detectors also exist [51]. However, these prior techniques assume the dependency

graph does not change. Collapsing dependencies may change the dependence height

of the paths containing these dependencies. Therefore, a new dependency graph may

result following a dependency collapsing operation. On this new graph, the critical

path may be on an entirely different branch.

2.3.1 Data Dependency Collapsing

A series of immutable dependencies between instructions is shown in Figure 2.5 (a),

where i7 is dependent on i5. Collapsing i5 and i7 would yield the graph in Figure 2.5

(b). Since collapsing occurred on the critical path, the total height of the graph has

been reduced to 3 from 4.

Note that, while collapsing on a path other than the critical path would still

increase the available dependent parallelism, there would be no commensurate perfor-
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(a) Original Dependency Graph (b) Collapsed Dependency Graph

i1

i2 i3 i4

i5 i6

i7

i1

i2 i3 i4

i5|i7 i6

Figure 2.5: Collapsed Data Dependency Example

mance impact.

Memory Data Dependency Collapsing

While being a subset of data dependencies, dependencies through memory require ad-

ditional consideration. Many memory dependencies are mutable dependencies based

on data values. Consider the dashed line representing a potential memory depen-

dency in Figure 2.6. i7 would only be dependent on i6 if they accessed the same

memory location. Such disambiguation at compile time is difficult due to the large

address space possible for each memory instruction. The logical assumption then is to

consider every memory instruction to be dependent on all prior memory instructions,

except that loads are independent of each other. The majority of existing dependency
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i1

i2 i3 i4

i5 i6

i7

Figure 2.6: Memory Dependency Example

collapsing techniques which target memory operations begin with this assumption.

Each technique then focuses on collapsing these assumed dependencies.

One well known example of a memory data dependency collapsing technique is

memory dependence prediction[10, 34]. These techniques attempt to correctly predict

whether two memory instructions are dependent on each other, instead of assuming

dependence. This approach allows memory instructions that are not dependent on

each other to successfully execute in parallel. If two memory instructions that were

truly dependent on each other were incorrectly predicted to be independent, the

processor state must be rolled back to a correct point.
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2.3.2 Control Dependency Collapsing

Collapsing control dependencies enables us to schedule and execute an instruction

B that is control dependent on instruction A in the same time interval. The most

common control dependency collapsing mechanism is branch prediction, where B is

executed without knowing A’s result. However, once A’s result is verified, B must be

rolled back if a misspeculation occurred.

Another common technique used to handle control dependencies is predication or

if-conversion. Predication makes it so that an instruction does not commit its final

values to the processor state if a predicate is false. This predicate is generated by

what would ordinarily be a control flow instruction. In such an instance, the control

dependencies have been converted to a data dependency on a register, and may be

handled according to data dependency collapsing techniques.

A

B C

D

Figure 2.7: Control Dependency Example

Additionally, a processor can see control dependencies where none exist in the

actual program. An example can be seen in Figure 2.7. A is a control instruction.
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Depending on A’s result, either B or C will be executed. However D will be executed

regardless of A’s result. A processor fetching several instructions at a time will see D

appearing after A, and assume it is control dependent on A. There are control inde-

pendence detection techniques [42, 9, 8, 16, 20, 1, 40] which detect instructions such

as D and allow them to execute without being control dependent on A. Depending

on data dependencies, collapsing may not actually allow D to execute in the same

time interval as A (e.g. if D was data dependent on B or C).

2.4 Taxonomy of Dependency Collapsing

Dependency collapsing is an instruction scheduling technique. In Figure 2.8, we

split instruction scheduling into two branches; independent instruction scheduling

and dependency collapsing. As independent instruction scheduling is a wide and well

explored field, we do not discuss independent scheduling in this dissertation. We

categorize and expand on existing dependency collapsing techniques and show where

they fall within our classification system.

Instruction Scheduling

Independent Scheduling Dependency Collapsing

Figure 2.8: Instruction Scheduling

Figure 2.9 illustrates our classification of dependency collapsing techniques. We
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identify different dependency collapsing techniques based on whether they can be

applied to immutable or mutable dependencies.

Dependency Collapsing

Collapsing Mutable Dependencies Collapsing Immutable Dependencies

Assume Independence Prediction Non-Speculative Value Speculation

Assume Immutable

Figure 2.9: Dependency Collapsing

2.4.1 Collapsing Immutable Dependencies

Immutable dependencies do not vary over time through the program’s execution.

Once detected, immutable dependencies may be collapsed with any available de-

pendency collapsing technique. Here, we classify collapsing immutable dependencies

further into non-speculative techniques and value prediction techniques.

Non-Speculative Collapsing of Data Dependencies

In this dissertation, the leading non-speculative data dependency collapsing technique

we focus on is instruction fusion. Instruction fusion is a technique used to execute

two data dependent instructions within the same time interval through the use of a
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specialized execution unit which can execute two dependent instructions in a single

time interval [30].

Prior Graph Fused Graph

i1

i2

i3

i4

i1|i2

i3|i4

Figure 2.10: Fusion Dependency Graph

An example of fusion on a dependency graph can be seen in Figure 2.10. On the

left, four dependent instructions are in a chain. Once i1 and i2, as well as i3 and i4

are fused together, the dependency chain length shortens from four to two. In other

words, the execution of this graph after fusion now only takes two time intervals as

opposed to four before fusion although in practice this may require lengthening the

time interval. Later in the dissertation, we discuss possible hardware implementation

strategies for fused instruction execution.

A fused execution unit [30] can execute two dependent instructions in a single

cycle. As well, Phillips et. al. detail an example of how to build a high-performance
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ALU Fused ALU

A B A B C
X = A+B

Y = X + C

X Y

Figure 2.11: Hardware For Executing a Fused Instruction with Interim Result

3-1 ALU [39]. However, a fused execution unit only computes the final result of the

fused pair. When working with techniques that dynamically fuse instructions, we

often require the result of the first instruction in a fused pair as well. To produce the

intermediate result as well as the final result without extending the time interval, we

can use the configuration of fused and regular execution units in parallel as shown in

Figure 2.11.

Instruction fusion in micro-architecture is well utilized. Fusion techniques tend

to focus on two main objectives: static fusion of instructions directed toward fused

execution units to achieve dependency collapsing [22, 21, 41] and dynamic fusion of

instructions to achieve greater resource usage by combining instructions into smaller

packages [18, 17, 25, 45, 44]. Note that many existing dynamic fusion techniques aim

to improve processor resource use and not to collapse dependencies.
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Non-Speculative Collapsing of Control Dependencies

Collapsing control dependencies without speculation requires an inference about the

condition of the control-flow instruction. One example for non-speculative control

dependency collapsing is loop vectorization. A loop condition may be pre-evaluated

and if it can be shown to be true for a certain number of iterations, subsequent

iterations can be run as if that branch did not exist without requiring a roll-back.

We should also note here that, although predication [29] is a non-speculative tech-

nique, it’s not an effective dependency collapsing technique. While it does remove

the branch instruction, the series of instructions that calculate the predicate result

remains the same. Therefore, the predicated instructions still have the same depen-

dency height as if they were dependent on the branch. Additional techniques may be

employed for speculative collapsing of the dependencies of predicated instructions.

Non-Speculative Collapsing of Resource Dependencies

If there are resource dependencies in a program, adding additional resources will

generally collapse these dependencies. However, additional processing is needed to

make use of these new resources.

Resource dependencies are collapsed in three stages. First, the instructions that

have the resource dependency are translated or reorganized in some way to facilitate

using the added resources. In other words, the identifiers which associate a given

resource with instructions that need the resource have to replaced with multiple new
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identifiers, each pointing to the new resources. The instructions then make use of the

additional resources to execute in parallel. Finally, the instructions are translated

back to their initial state as they make their output visible architecturally, or commit.

While there may be techniques where the first and third stages are trivial, the addition

of new resources necessitates a departure from the ISA as written, which will always

require a level of translation.

One example of this approach in action is the superscalar processor design itself.

First, the incoming instruction stream is reorganized into a window where out-of-order

instruction selection is possible. Multiple execution paths are added to the processor

to make use of this out-of-order execution capability. When the instructions finish

executing, they are reordered again as they make their changes to the architectural

state of the processor.

Another chief example is register renaming. The registers are translated to use the

name space of a much larger register file within the processor. This large register file

is used during execution, which is the additional resource. Finally, the instructions

commit their changes to the architectural state.

Value Prediction

Value prediction is a mechanism in which the result of an instruction is predicted

before the instruction is complete, allowing instructions dependent on it to execute

using the predicted value. As such, value prediction techniques are also an early

execution technique. If the prediction is incorrect, these set of techniques also require
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recovery action. The most common application of value prediction is load value

prediction as loads typically have a high latency.

Value prediction has been introduced by Lipasti et al. [28, 27] and Gabbay [15].

It has been evaluated in hundreds of research papers as a dependency collapsing

technique with various predictors. Value prediction has also been used in approximate

computing.

2.4.2 Collapsing Mutable Dependencies

Mutable dependencies phase in and out of existence based on either the execution

path taken to reach the dependent instruction or the difference in the input of the

relevant code segment. The major challenge of collapsing mutable dependencies is

discovering the existence of the dependency.

To allow dependency collapsing under uncertain dependency information, proces-

sor designs employ speculative dependency collapsing techniques. Such techniques

work with two assumptions. They either assume independence between instructions

and use independent scheduling techniques for collapsing dependencies, or assume

an immutable dependency between instructions and use immutable dependency col-

lapsing techniques. Many techniques in both categories keep a memoization table of

dependencies where their assumptions fail, and use this table to change their assump-

tions as appropriate.

In addition to the default assumption of independence and immutability, predic-
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tion techniques are also used to dynamically decide which assumption to use.

When a speculative assumption fails and the program order is violated, a misspec-

ulation occurs. When a prediction is incorrect, it’s called a misprediction instead. For

memory dependencies, the term memory order violation is also commonly used. Us-

ing speculative techniques requires a state recovery mechanism. This mechanism

restores the processor state to a known correct state. While some state restoration

techniques are general purpose (i.e. can be used for any type of misspeculation), ad-

ditional techniques can be used to speed-up or forgo state restoration for some subset

of misspeculations. We briefly discuss some of the specialized techniques where ap-

propriate.

Speculative Collapsing of Data Dependencies

Many mutable dependency collapsing techniques focus on memory instructions. Both

assuming independence and assuming immutability is used for memory dependency

collapsing.

One well known example of assuming independence is the store set algorithm [10]

and its variants. The store set algorithm initially assumes no memory instruction is

dependent on each other and schedules them as if they were independent. A misspec-

ulation is detected when a store instruction that appears earlier in execution accesses

the same address as a later load which executed speculatively. When a misspecu-

lation occurs, the conflicting memory instructions are memoized in a memoization

table. From that point on, all memory instructions included in the same set are as-
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sumed to be dependent. Onder and Gupta improve on the misspeculation detection

conditions of the store set algorithm [34] by introducing delayed misspeculation han-

dling and value matching. In this technique, an address match between a earlier store

which executed after a prior load is not sufficient to trigger a misspeculation. The

value written by the store instruction must also be different from the value read by

the load instruction. To ensure the latest store prior to each speculative load is the

instruction that sets misspeculation status, detection of misspeculations is moved to

the retire stage of the processor. This scheme allows stores to execute out of order

while also stopping many false misspeculations from triggering a restart.

r2==r6 at least once, and

i1
i2

i3
i4

r2!=r6 at least once

r1=...
MEM[r2]=r1
......
r5=MEM[r6]
r7=r5+r4

Figure 2.12: Memory Cloaking

In addition to collapsing data dependencies over memory, data dependencies can

also be collapsed through memory when appropriate. Consider the code snippet

in Figure 2.12 where if i2 and i3 are dependent on each other, i1 and i4 are also

dependent on each other over register r1 and r5, despite the register names being

different. We assume here that no additional changes were made to memory between

i2 and i3. If the dependency between i2 and i3 can be determined, i1 and i4 could be

collapsed, ignoring the memory instructions altogether. Such dependency collapsing
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techniques are referred to as memory cloaking. Various dependency detection and

cloaking algorithms have been published to achieve memory cloaking [31, 35].

Speculative Collapsing of Control Dependencies

Perhaps the most well known speculative dependency collapsing technique is branch

prediction. Branch prediction collapses control dependencies by speculating whether

a branch is taken or not ahead of its execution. Such a speculation allows the processor

to keep fetching instructions from the predicted control path instead of having to wait

for the branch to resolve. If a branch is mispredicted, the processor must undo changes

made to the processor state by the speculative instructions after the mispredicted

branch.

Branch prediction is an early execution technique. Predicting a branch completes

its execution. The only thing to do after a branch is predicted is to verify the predic-

tion, but the change in the control flow of the program has already occurred. Branch

prediction has been introduced in the late 1970s. Since the early 1990s, active research

has been conducted in the area beginning with Yeh and Patt’s Two-level Adaptive

branch predictor [54]. Currently, Seznec and Michaud’s TAGE predictor [46] is con-

sidered to be the state-of-the-art. Additional research is being conducted on branch

predictors using neural networks [53].
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2.5 Summary

We have classified dependencies and existing dependency classification techniques

in this chapter. In this dissertation, we target two major dependency collapsing

mechanisms. First, we explore a technique which collapses data dependencies through

the use of fused instructions. As well, we target resource dependencies by exploring

a technique which leverages critical path extensions caused by resource dependencies

into larger scale superscalar processors.
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Chapter 3: LaZy Superscalar

LaZy Superscalar 1 is a novel, partially demand-driven micro-architecture which aims

to aggressively collapse data dependencies when possible through instruction fusion.

Instructions are executed when a consumer demands their result, and consumers fuse

to their producers during this demand process. LaZy Superscalar achieves the task

of fusing distant dependencies as well as data dependencies which exist across control

dependencies.

While we focus on collapsing data dependencies in general, we limit ourselves to

collapsing fusible dependencies within the LaZy Superscalar framework in this dis-

sertation. We define fusible dependencies as two instructions which both compute

a simple arithmetic operation that are data dependent. Such a limitation is neces-

sary due to fused execution units only being capable of executing such instructions

fused as described in Section 2.4.1. Therefore we do not collapse control flow, mem-

ory or pipelined arithmetic instructions such as floating point operations in LaZy

1Parts of the material contained in this chapter was previously published in Proceedings of the

42nd Annual International Symposium on Computer Architecture (ISCA ’15) [2], ©ACM. Reuse

of any portion of the work is permitted to the author in any future work. The copyright transfer

agreement can be found in Appendix A.
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Superscalar.

In addition to collapsing the dependency graph, a demand-driven processor also

naturally prunes it of unnecessary instructions. Since instructions do not execute if

their result is not demanded by a consumer, an instruction which has no consumers

should not execute in a demand driven processor. In other words, code that is stat-

ically or dynamically dead is automatically eliminated. As a result, instructions in

LaZy Superscalar have three paths to follow: (1) The instruction is executed by itself

due to a demand from a non-fusible instruction (or it is non-fusible itself); (2) The

instruction executes fused as part of a fused pair; (3) The instruction is discarded due

to being dead.

3.1 Motivation

We approach this novel processor design by motivating the need to collapse distant

and mutable dependencies. We show in Figure 3.1 that when fusion is sought, many

dependent pairs of fusible instructions are only available with an interrupting control

flow instruction. Figure 3.1 justifies exploring data dependency collapsing techniques

that seek beyond control dependencies. On the other hand, delaying the execution

of instructions until they are demanded may cause the processor to perform poorly

compared to a similar processor executing instructions as they arrive due to resource

constraints.

We show through a simple example in Figure 3.2 that with dependency collapsing,
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Figure 3.1: Branches Between Fusible Instructions[2]

LaZy Superscalar will at least perform no worse than an eager superscalar when

execution resources are available. For this example, we only consider the instructions

labeled i1 and i2 for execution, and ignore branch instructions and pipeline start-

up times. We also assume the loop keeps executing. The P column indicates the

predicate controlling the branch that leads to i2. When the P column indicates T ,

the branch leading to i2 is taken for that loop iteration. In the example, the subscripts

for the instructions refer to the cycle in which the copy of the instruction was fetched.

The table in Figure 3.2 shows at which cycle the execution of each instruction

would be complete. Note that, in the example, i1 is dead when the predicate is

false, since a is not used anywhere else in the loop. For each of the six cycles of

execution, an eager superscalar executes one instruction, yielding an IPC of 1. While
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a = b + 1

b = a − 2

P

i1:

i2:

1 T

T

F

F

F

T6

5

4

3

2T
F

Cycle P Superscalar LaZy Superscalar

i11

i22

i13

i14

i15

i26

i11 + i22

Eliminate i13

Eliminate i14

i15 + i26

Figure 3.2: Eager Evaluation vs Lazy Evaluation with Fusion[2]

LaZy Superscalar remains idle for four out of the six cycles of execution, it completes

the execution of all necessary code at the same time as the eager superscalar, while

squashing two unnecessary instructions. For this example, LaZy Superscalar can

make up for time lost through delaying instructions with dependency collapsing.

In the example shown in Figure 3.2, LaZy Superscalar achieves the same perfor-

mance as the eager superscalar but does not improve performance despite collapsing

dependencies. This is because the example is executing and issuing one instruction

at a time. Consider a case where all six instructions in the example were fetched in

the same cycle. LaZy Superscalar would be able to execute two fused pairs within

one cycle, completing four instructions. The eager superscalar, on the other hand,

would at least need to wait another cycle to complete all instructions. This perfor-

mance increase is achieved by collapsing dependencies, therefore increasing available

parallelism. Such parallelism cannot be exploited by traditional approaches.
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3.2 Demand-driven Execution

addu $2, $4, $6

addu $5, $12, $21

addu $8, $13, $22

addu $14, $5, $23

addu $9, $5, $24

addu $3, $14, $26

addu $11, $4, $6

Instructions

addu $10, $8, $5

addu $7, $3, $9

Executing Sleeping

Data−Demand Flow Graph
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i5
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Figure 3.3: Demand-driven Execution with Fusion[2]

We briefly described demand-driven execution and scheduling in the previous sec-

tions. We now discuss the details of how consumer instructions activate their producer

instructions. LaZy Superscalar accomplishes demand-driven instruction activation

through demand signals. Figure 3.3 shows an example set of instructions scheduled

using demand signals. To illustrate, we will be assuming our processor can fetch

three instructions per cycle. For ease of following, each layer in the Data-Demand

Flow Graph corresponds to instructions fetched within a single cycle. In the same

graph, dependencies are shown with solid arrows, while demand signals are shown

with dashed arrows.
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When instructions i1, i2 and i3 are fetched in the first cycle, all three instructions

are buffered as none have been demanded yet. In the second cycle, instructions i4,

i5 and i6 are fetched, with all three instructions demanding i2. i4 is fused to i2, and

can start executing, while i5 and i6 are buffered. In the third cycle, i7, i8 and i9 are

fetched. Instruction i7 demands i4, but i4 has already fused to i2. Instruction i8, on

the other hand, demands i7 and i5, i7 and i8 fuse and are ready for execution. Note

that i5 will also be set for execution since i8 demanded it, despite not being fused

to it. Finally, instruction i9 is independent of any instruction in our snippet, and

therefore is buffered. The bottom-right graphs show the status of the processor after

all three cycles have completed and all nine instructions have been fetched.

Figure 3.3 illustrates how the critical path through the program has been collapsed.

The original critical path passes through i2 → i4 → i7 → i8, resulting in a dependency

height of four. After dependency collapsing, the new critical path is through i2|i4 →

i5 → i7|i8, with a dependency height of three.

Although this example clearly shows how we can track data dependencies through

registers, it does not illustrate how we can manage data dependencies through memory

or control dependencies. Typical superscalar processors manage these dependencies

through queues. Memory instructions are directed to a load-store queue, and con-

trol dependencies are resolved at retire time, typically through a reorder buffer. To

simplify and unify dependency management, in addition to assigning register names

to instructions producing register results, we assign a register name to dependencies
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that are normally managed by a queue. In this scheme, architectural registers are

assigned physical register names as usual from a free register pool. Each name in

this pool corresponds to an actual hardware storage location. Load instructions are

assigned a second name aside from their register result to represent their data de-

pendencies over memory. This name comes from a different pool of names unique

to load instructions, and does not have a corresponding hardware storage location.

A third name pool without storage backing is used to rename the store instructions.

The final register pool is used to rename control-flow instructions, and it also does

not have storage backing.

When all dependencies are “renamed” in this manner, LaZy Superscalar is able

to store all the dependency information in a single bit matrix structure, detailed in

Section 3.4.1.

3.3 Processor State Handling

As with any high performance processor design, LaZy Superscalar also makes use of

speculation. However, when instruction execution is lazy, which means some instruc-

tions may execute very late (or not at all), determining the correct state to recover in

the event of a misspeculation is a significant additional challenge. Typical superscalar

processors solve this issue by enforcing in-order exit of instructions through a queue

structure, commonly known as the reorder buffer. Instruction identifiers are inserted

into this buffer in-order, and make final changes to processor state only when they
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are leaving this buffer, also in-order. Should an instruction have a misspeculation,

the final in-order state is well known as the misspeculated instruction is leaving the

reorder buffer2.

Reorder buffer based ordering implementations rely on the fact that instructions

are complete when they exit the reorder buffer. With demand-driven execution, that

may no longer be the case. If we attempt the naive solution and hold instructions

in the reorder buffer until they complete in a demand-driven environment, we will

eventually encounter a situation where the reorder buffer is blocked by an undemanded

instruction. If the instruction remains until resources run out, the processor will

deadlock. On the other hand, we cannot allow an incomplete instruction to leave

the processor. The solution is to split the idea of state completion (commit) from

instructions being allowed to leave the processor (retire). Now, instructions that are

not speculative can commit their identifiers to the processor state without necessarily

being complete. Instructions that are speculative must wait for their speculative

status to clear to be able to commit. Commit being separate from retire allows LaZy

Superscalar to store instructions in the processor until they are demanded, or the

instruction is shown to be dead.

2There are also various implementations of the checkpointing mechanism, which takes a snap-

shot of the in-order processor state at certain intevals and restores that snapshot directly upon

encountering a misspeculation.
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3.4 Implementation Details

In this section, we describe the implementation details of LaZy Superscalar’s pipeline.

In addition, we discuss potential deadlock scenarios evident in demand-driven execu-

tion and how LaZy Superscalar avoids such scenarios.

3.4.1 LaZy Matrix Scheduler

In order to realize lazy scheduling we use a dependence matrix. Using a matrix based

scheduler for conventional superscalar processors has been explored before based on

the inventions by Zaidi [55] and Henstrom [19]. Our approach however differs signif-

icantly. These techniques are designed primarily for scheduling instructions, whereas

our approach combines both demand and data signalling and the entire retire process

is driven by the matrix based design.

The dependency matrix (DEPMAT) shown in Figure 3.4 is a single bit matrix

where each line in the matrix represents the dependencies of a single instruction. A

set bit at a column c at any line means that instruction represented by that line has

a dependency on the instruction at line c. This could be a data dependency, memory

dependency or a control dependency. The matrix is divided into four sections. The

first section (S-ALU) is reserved for instructions which need a physical destination

register such as arithmetic/logic and load instructions and each row of the section

corresponds one-to-one to a physical register. The second section (S-MEM) is used
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Figure 3.4: Demand Driven Matrix Scheduler[2]

for memory dependencies and provides one row per in-flight store instruction. The

third section (S-LPD) is used for load predicates. A load predicate is assigned to each

load instruction to represent its memory dependencies. Finally, the fourth section (S-

CDP) is used to track control dependencies and provides one row per in-flight branch

instruction. S-MEM, S-LPD, S-CDP do not provide physical registers. Assuming the

number of physical registers is V, number of store queue entries is S, number of load

predicates is L and the number of in-flight branches is given by B, the dependence

matrix will have T = V + S + L + B rows and columns, i.e., TxT .

Each line in the matrix represents an instruction, either completed or waiting to

be completed. An instruction occupying a matrix line implies a hold on a physical

register. A matrix line is only released when the physical register corresponding to
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this line is released. The obvious exceptions are load predicate, branch and store

sections in the matrix, which do not occupy physical registers. Branch and store lines

are released as they are completed and confirmed. Load predicates are released when

their partner load executes.

In the matrix, the OR result of a column c is true if another instruction is de-

pendent on the instruction in line c. The result of a horizontal OR of the B entries

indicates if the instruction at that line has any unresolved control dependencies. Sim-

ilarly, the result of a horizontal OR of L or S entries yields if the instruction has any

load or store dependencies.

The renaming subsystem follows Alpha 21264 style [24]. A simple vector of RAM

holds instructions until they are retired. This vector is accompanied by several

other vectors which provide supporting information to track instruction status in the

pipeline and processor state, as well information about which instructions are fused.

In addition, LaZy Superscalar includes a general dependency register (GenDepR) to

identify persistent dependencies. For instance, every instruction will be control de-

pendent on all unresolved branches preceding them.

3.4.2 LaZy Superscalar Pipeline

LaZy Superscalar’s pipeline shown in Figure 3.5 follows identical structures to conven-

tional superscalar processors at the front and the rear of the pipeline. The renaming

mechanism has been enhanced to rename all instructions. Since dependency checking
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is unified, the machine does not incorporate load queues. A store queue is provided

for buffering the speculative values from store instructions until they can retire. The

Commit phase of the pipeline commits instructions in program order irrespective

of their completion status, as each instruction is flagged to belong to the in-order

state. Instructions are retired later in an out-of-order manner as they are completed

or squashed. In the following sections, we follow the pipeline flow and describe the

operation of each stage in relation to registers and other storage that needs to be

updated.

ALU

ALU

ALU

ALU

Load x 2

Store x 2

File

Register

L1

DCache

Reg Read MemoryExecute

Store Queue

Rename

Register

ICache
L1

Predictor

Branch

Fetch
Rename

Decode
Issue

Matrix

GenDepR

Selector

Retire

Figure 3.5: LaZy Superscalar Pipeline[2]

Instruction Fetch and Decode The instruction fetch unit supplies the rest of

the processor with a predicted instruction stream as in a conventional superscalar

processor. Instructions which complete two separate operations, such as memory in-

structions (address computation and memory access) and jump and link instructions

58



(set return address and change PC), are dynamically split into two separate instruc-

tions for each operation. Memory instructions are dynamically split into an addition

and memory operation only if the immediate value in the original memory instruction

is nonzero. From then on, the split instructions are treated as separate instructions in

the pipeline. This assumption also implies that for multi issue fetch units, each split

instruction counts as two instructions fetched. For instance, an 8 issue fetch unit can

only fetch 4 store word instructions if their immediate fields are non-zero.

Renaming LaZy Superscalar renames all instructions as described above. There-

fore, there will be a stall if there is no free matrix line of the requisite type (value

producing, load predicate, store or branch). One special case is a load instruction

which requires a data result as well as a memory access result. As a result, load in-

structions are assigned two registers: one physical register for storing their data and

one load predicate to indicate the memory dependencies. Physical source registers

are read through the front-end map table. After renaming, the dependency vector

to be inserted into the dependency matrix is prepared. Instructions encode all their

dependencies using their source operands and global dependency information from

the general dependency register.

Instruction fusion is also done during this stage. Each instruction attempts to

read the supporting information vectors of its source operands to identify if they are

able to fuse to their sources. If fusion availability is detected, appropriate pointers

are added to the supporting information vectors for both instructions. In addition,
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the dependency matrix is updated to reflect the new dependency relationship formed

between the fused instructions. If an instruction A is fused to instruction B, A should

no longer be dependent on B, as they will execute in a fused fashion. As replacement,

A should be dependent on the operands of B, and B should be dependent on any

remaining operands of B. All such changes are reflected in the new dependency vector

to be inserted into the matrix and the prepared dependency vector is then passed along

to the matrix to be inserted in the slot obtained from the renamer. At the same time,

the instruction’s matrix line number is inserted into the ROB, the instruction is

written into the instruction buffer, and appropriate state control vectors are updated

to reflect the instruction’s state. The general dependency vector is also updated to

reflect any new global dependencies.

Instruction Selection In this stage, instructions are selected for execution based

on information output from the DEPMAT. For an instruction to be selected for

execution, another instruction must be dependent on that instruction. We call such

an instruction a demanded instruction. Being demanded is not the only requirement

for an instruction to issue - all its operands must also be ready. If the processor is

currently in the process of recovering from an exception, operand readiness is not

sought since the instruction results will not be used. If any instruction has a fused

pair, the paired instruction is also sent for execution in the same unit.

When more instructions are available for execution than available execution units,

instructions without control dependencies are given preference, as they are among the
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oldest instructions in the processor and pose no chance of being wasted execution due

to a misprediction. Otherwise, instruction selection is done through the physical order

of instructions in the matrix.

Execution Instructions read their registers, execute their operation and write back

their results in this stage of the pipeline. A completed instruction updates all relevant

information in the support vectors to identify completion and updates to the state.

In addition, any instructions which are part of the general dependency register are

cleared out. Finally, the completed instruction’s line in the DEPMAT is cleared since

a completed instruction by definition is no longer dependent on any value.

ROB Commit When an instruction reaches the head of the ROB, it leaves im-

mediately after doing some bookkeeping with a few exceptions. Branch instructions

must check to see if they’ve completed before leaving the ROB. A successfully specu-

lated branch instruction will clear its corresponding column in the matrix to indicate

the resolution of the control dependency it represents. A mispredicted branch will

trigger the misprediction recovery mechanism.

During misprediction recovery, the processor needs to do the following: (1) The

retirement map table (RMAP) must be copied to the front end map table (FMAP);

(2) Since everything fetched after this branch is incorrect, and branches and stores

do not leave the ROB until they are complete, any remaining branch and store in-

structions in the matrix must be discarded and all corresponding bits must be reset;
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(3) Any remaining instructions which depend on the mispredicted branch (encoded

by DEPMAT) are marked as an exception; (4) Fetch, decode and rename stages as

well as the ROB must be flushed.

Note that the only selective operation we have to do to recover from a mispredic-

tion is the modification of some support vector information to indicate an exception.

The instruction retire stage will retire these incorrect instructions whenever conve-

nient - no additional logic is required. In fact, with instruction fusion across branches

in place, discarding these instructions may require breaking a fused pair, which would

be a costly operation in hardware.

Instruction Retire An instruction may be cleared out of the matrix, free its in-

struction buffer entry and release any registers it’s holding when the following condi-

tions are met: (1) Instruction has left the ROB (or the instruction had an exception

bit); (2) No other instruction depends on the instruction (indicated by the demand

signals on the DEPMAT); (3) The instruction can no longer possibly be part of the

in-order state;

Any instruction fitting this criteria is guaranteed to have no more effect on the

output of the processor. Therefore, all resources used by these instructions are im-

mediately released and all control bits pertaining to their operation are cleared. Note

that an instruction being complete is not a requirement for it to retire.
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Deadlock Prevention A demand-driven processor that holds instructions for an

arbitrary amount of time may be at a risk of deadlock. Here we will show that LaZy

Superscalar will never deadlock given appropriate resources. Stores are demanded

automatically in LaZy Superscalar, and on completion will set themselves as ready to

retire. While not automatically demanded, branches also set themselves as ready to

retire after confirming their speculation result. This release scheme ensures there will

be no deadlock due to load predicate, branch and store line unavailability. As long

as the processor contains at least one more physical register than double the number

of logical registers, there will also be no deadlock for result producing instructions.

Consider the pathological case of a series of n load immediate instructions each writing

to a different logical register in a machine with n logical registers. None of these

instructions would demand another. However, the next result producing instruction

has to either demand one of those load immediate instructions, in which case that

instruction will get executed and retired, or, the instruction will end up using a

logical register already in use. In this case, the previous definition of the register will

be marked to be dead and squashed.

Incorrectly applied fusion may cause dependency cycles which will cause dead-

locks. An example case is given in Figure 3.6. Instructions i1 and i2 are dependent

on i0, but i1 is not a fusible instruction. Instruction i2 is additionally dependent on

i1. If i2 is fused to i0, the i0,i2 pair must now wait for i1 to execute. However, i1

also can’t execute since it is dependent on i0. To prevent such dependency cycles,
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Inst. Code Sequence Fusion Status Action

i0 add r1, ... Fusible (ALU) Awaiting demand

i1 lw r2,r1 Not Fusible (Load) Demands r1

i2 add ...,r1,r2 Fusible (ALU) Demands r1 and r2

Figure 3.6: Fusion Dependency Cycle Example[2]

we follow the policy of marking each instruction as non-fusible each time fusibility

information is read during instruction rename. With this policy, i0 would be marked

as non-fusible once i1 reads its sources during renaming. Therefore i2 will not fuse to

i0 since at this point i0 is marked to be a non-fusible instruction.

3.5 Evaluation and Experiments

In order to evaluate LaZy Superscalar, we simulated a typical superscalar processor

as our baseline as well as LaZy Superscalar itself. Simulators were automatically

synthesized from descriptions written in the ADL processor description language [32].

Both simulators are cycle accurate and their ADL implementations respect timing at

the RTL level. The baseline processor shown in Figure 3.7 uses centralized scheduling

using broadcasting and wake-up/select is completed in a single cycle. Load and store

instructions are issued directly to memory units since address computation is done

via splitting the computation into another instruction.

We kept the processors as identical as possible. Both processors use identical fetch
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Figure 3.7: Baseline Superscalar Pipeline[2]

engines, fetch, decode and execute the same number of instructions and have identical

execution units. It should be noted that both processors also have the same number

of read and write ports on their register file. If LaZy Superscalar attempts to execute

a fused instruction and there are not enough ports to write both results during that

cycle, it will stall. In order to have a fair comparison in terms of issue capability,

LaZy Superscalar is provided with a 32 entry store buffer and 32 load predicates as

it does not have a load queue and the baseline is given a 64 entry load-store queue.

The matrix implementation faithfully implements the operation of the matrix at the

bit level.

Experimental parameters are summarized in Tables 3.2 and 3.4. Baseline super-

scalar enjoys full age based scheduling (oldest ready instruction in the window always

schedules first). LaZy Superscalar issues instructions which are dependent on no
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branches with priority. The matrix in LaZy Superscalar already provides a single

bit output that is 1 if an instruction is dependent on any branch. This issue policy

lets LaZy Superscalar approximate age based scheduling. Otherwise, instructions are

issued based on their location in the matrix.

Simulation Architecture

Parameter Baseline LaZy

Front End Width 8 wide

Commit Width 16 wide

Issue Width 8 wide

Issue Window Size 128 entries N/A

Load Predicates N/A 32

Execution Units 4 int/fp units

Memory Units 1 Load/1 Store - 2 Load/2 Store

Rename Registers 128 registers

Reg. File Ports 16 read, 8 writes

Table 3.2: Architectural Parameters Used in Experiments (Part 1)[2]

We executed Spec2006 integer benchmarks which were compiled using gcc version

4.3 with the highest optimization setting (-O3). The software environment used is

Binutils version 2.22. Binaries were compiled to MIPS instruction set for Linux kernel

2.6. O/S kernel was not simulated but C library code was included in the simulation.

uClibC version 0.9.33 was used to link the benchmarks. We ran the ref inputs for the

given benchmarks for 500 million instructions for cache and branch predictor warm
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up, then for an additional 1 billion instructions to gather performance and other data.

Simulation Architecture

Parameter Baseline LaZy

In Flight Branches 16

Load/Store Queue 64 entries N/A

Store Queue N/A 32 entries

Reorder Buffer 176 entries

L1 Data Cache 32KB 2-way, 1 cycle lat.

L1 Inst Cache 32KB 2-way, 1 cycle lat.

L2 Unified Cache 512KB 8-way, 12 cycle lat.

Main Memory 80 Cycle lat

PHT Size 16KB

Branch Prediction GShare with 4KB BTB

Mispred. Recovery 4 cycles

Table 3.4: Architectural Parameters Used in Experiments (Part 2)[2]

Fused instruction distribution over the benchmarks and the performance data are

shown in Figure 3.8. The data has been collected by running all input sets for a partic-

ular benchmark and taking the average of each run. As can be seen, a large fraction

of total instructions are fused successfully using the implemented LaZy scheduling

algorithm. However, as expected, fusing a large number of instructions does not nec-

essarily lead to improved performance. Bzip2 is an exception showing a wide range

of performance depending on the input set (e.g., chicken.jpg: 19.63%, liberty.jpg: -
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10.18 %). Our investigation yielded that the simulation parameters of warming-up

for 500,000M and simulating 1B instructions is not a good fit for this benchmark as

it cannot finish loading the liberty.jpg in 1.5B instructions, therefore it still is in its

initialization phase. Gcc, mcf and perlbench do not show a commensurate increase

in performance to that of number of fused instructions. On the other hand, some

benchmarks show a larger than expected performance increase, given the number of

fused instructions. This is due to the fact that in these benchmarks, the majority

of fused instructions are on the critical path. Collapsing such dependencies enables

available dependent parallelism to be harvested significantly earlier in the program

flow. As LaZy Superscalar is an unguided dependency collapsing technique, we rely

on the aggressive fusion technique to direct fusion towards the critical path.
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Figure 3.8: Fused Instructions as Fraction of Total and LaZy Superscalar Speed-up

We show an example fragment from the P7Viterbi function in the hmmer bench-
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mark in Table 3.5. In the fragment, 3 out of 12 instructions are fused (25%), which

yields a 50% speed-up. Fusing shortens a dependence chain of length 4 (i06→ i07→

i08 → i09) to 2. Hmmer spends 99% of it’s execution in this function, and P7Viterbi

contains many similar sequences back to back and in loops.

Excerpt from P7Viterbi in Hmmer

Instruction Baseline Ex Cycle LaZy Ex Cycle

i01 lw $2,36($fp) 1 1

i02 sll $2,$2,2 2 2

i03 lw $3,80($fp) 1 1

i04 addu $2,$3,$2 3 2 (fused to i02)

i05 lw $4,36($fp) 2 2

i06 li $3,1073676288 1 1

i07 ori $3,$3,0xffff 2 1 (fused to i06)

i08 addu $3,$4,$3 3 2

i09 sll $3,$3,2 4 2 (fused to i08)

i10 lw $4,92($fp) 2 2

i11 addu $3,$4,$3 5 3

i12 lw $4,0($3) 6 4

Table 3.5: Execution Profile Fragment from P7Viterbi in Hmmer[2]

Since LaZy Superscalar only fuses integer instructions, we focus on the integer

benchmarks in the Spec2006 set. For completeness, we also evaluated the float-

ing point benchmarks. FP benchmarks get an average performance improvement of

9.06%. Performance profiles are similar to the integer benchmark set.
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Figure 3.9: LaZy Superscalar Speed-up with Different Load/Store Units

Dependency collapsing techniques improve available parallelism by allowing the

processor to harvest dependent parallelism. However, sometimes the additional par-

allelism cannot be harvested due to a lack of resources. In LaZy Superscalar, depen-

dency collapsing comes at the cost of additional delays due to the demand-driven,

lazy execution paradigm. If the additional parallelism cannot be harvested, clearly

LaZy Superscalar will do poorer in performance. To illustrate the point, we varied the

number of load-store units between 1-2. The result is shown in Figure 3.9. With one

load and one store unit, which may not be able to harvest the available parallelism in

most of these benchmarks, LaZy Superscalar actually loses performance in two of the

benchmarks whereas increasing the number of load and store units in both the LaZy

Superscalar and the baseline superscalar yields results in which LaZy Superscalar is

clearly superior across the entire suite.
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Figure 3.10: LaZy Superscalar Speed-up with Fusing Over N Branches

We also evaluated a limited version of LaZy Superscalar by disabling instruction

fusion when there is a branch between the two instructions (Fuse 0), when there are

no more than a single branch (Fuse 1), no more than two branches (Fuse 2) and un-

limited number of branches (Fuse Unlimited) with the goal of showing the significance

of collapsing distant and mutable dependencies (Figure 3.10). While there are bench-

marks which can benefit from fusing in a single fetch block, without exception all

benchmarks benefit from fusion across branches, validating our motivation to develop

a technique which can collapse distant and mutable dependencies.

3.5.1 Power Analysis

We incorporated power models and estimated the power consumption for both LaZy

Superscalar and the baseline. Power values have been obtained by adapting Wattch[5]
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to the ADL simulator framework. The power results have been validated against the

McPAT[26] tool tested with a very similar superscalar pipeline to ensure correctness.

The breakdown of power consumption is shown in Table 3.6 in watts. LaZy Super-

scalar consumes less total power in four of the reported benchmarks. In general,

LaZy Superscalar consumes more power for ALU operations as expected, but makes

up for it through reduced power of the matrix implementation. This information

agrees with Safi et al.[43]’s work on the physical characteristics of a matrix sched-

uler. LaZy Superscalar appears to consume more power when performance increase

is high, with mcf and sjeng being exceptions. Libquantum consumes more power in

LaZy Superscalar due to increased number of data cache accesses.

The calculated energy delay product (EDP) of LaZy Superscalar over the baseline

implementation is 0.92 on average. Assuming both machines can be implemented at

the same clock speeds, we believe LaZy Superscalar promises to be a better approach

than conventional eager scheduling with its lower EDP.
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Baseline LaZy Superscalar

Total Inst

Win

ALU RegFile Total Inst

Win

ALU RegFile

bzip2 24.3419 5.3863 1.6016 1.846 23.7724 2.95 2.6083 0.8778

gcc 26.739 6.1104 2.0164 2.0082 24.7298 2.85 2.8366 0.8912

mcf 18.0578 3.7762 1.1973 1.2332 18.2716 3.012 1.7223 0.5534

gobmk 22.6356 4.8681 1.59 1.7178 24.5608 3.01 2.836 0.8543

hmmer 26.3296 5.6902 2.0607 2.2308 28.359 2.89 3.5401 1.1101

sjeng 35.6064 7.4474 2.5745 2.4457 34.1901 2.845 4.0962 1.1526

libquantum 35.6022 7.8922 2.5969 2.8325 43.0629 3.01 5.4218 1.9866

h264ref 27.0862 6.0292 2.0526 2.2135 28.2634 2.802 3.4117 1.1523

astar 30.517 6.9825 2.1313 2.5826 33.5478 2.92 3.9513 1.3287

perlbench 22.656 5.4913 1.825 1.7021 20.8651 2.665 2.4505 0.7612

Table 3.6: Power Analysis (watts)[2]
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Chapter 4: Collapsing Resource De-

pendencies

In this chapter, we discuss collapsing dependencies which arise from architectural

constructs in the micro-processor as opposed to dependencies which arise from pro-

gram semantics1. The effects of such dependencies are most pronounced when the

dependent data is stored in physically distinct locations. Further, such architectural

dependencies also play a significant role in scheduling decisions. In this chapter, we

explore a novel scheduling technique to allow multiple physical structures for archi-

tectural data storage in a superscalar processor with minimal impact on performance.

This technique allows the issue window, register files, execution units, bypass networks

and potentially memory units to be clustered without requiring explicit inter-cluster

communication.

1Parts of the material contained in this chapter will be submitted for publication in a conference.
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4.1 Overview

As superscalar processors grow in the number of available register read and write

ports, cache size, issue width, number of available execution units and size of by-

pass networks, the power consumption and access latency of these structures grow in

a larger-than-linear fashion. This physical reality prevents computer architects from

designing larger monolithic processors, even when there is additional parallelism avail-

able to be extracted with larger structures. Since these structures poorly scale when

grown, but linearly scale when multiple instances of them exist (such as having multi-

ple register files), some architects have chosen to duplicate smaller instances of these

structures, effectively dividing the processor into clusters.

Such clusters allow scaling resources that would be too prohibitive to scale in a

monolithic fashion. On the other hand, clusters require additional policies and rules

in place to allow inter-cluster communication. For instance, if a processor contains

two separate register files instead of a single one, operands for an instruction must

be potentially collected from multiple register files. Clustering therefore introduces

additional dependencies to the processor that are not defined by the program seman-

tics.

Historically, additional dependencies introduced by clustering are handled in a

number of different ways. One common approach is to allow for extra delay in ac-

cessing multiple structures such that data from a distant cluster can be appended
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to existing data. Other techniques attempt to minimize this additional latency by

dynamically scheduling dependent instructions to the same cluster when possible.

In the following section, we introduce a novel approach where an instruction is

scheduled to a cluster such that instructions producing its source operands have not

executed in that cluster. In other words, we only permit each instruction to write to

a different cluster than the one in which it executes. We show that doing so allows for

an arbitrary number of clusters of register files, bypass networks and issue windows to

be used in which all inter-cluster data dependencies are transparently handled during

the rename stage. Hence, each cluster acts as a truly independent computation unit

within the same processor.

4.2 Introduction

In a superscalar processor, increasing the issue width requires scaling up many struc-

tures, such as the number of register read and write ports, the size of bypass networks,

as well as the number of cache ports. All of these structures yield a non-linear in-

crease in the power consumption and access latency when scaled-up [56], which can

be remedied by clustering these structures.

To the best of our knowledge, all existing clustering techniques are based on

the premise of gathering the data values from another cluster when the required

data is not available in the cluster in which the instruction is scheduled to execute.

However, they differ on their scheduling techniques to minimize such communication.
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Gathering of data from other clusters is accomplished by providing extra connectivity

in the form of inter-cluster bypass networks as shown in Figure 4.1. In addition to this

inter-cluster bypass network, each cluster contains a local bypass network attached

to its own functional units, as shown in the figure. The local bypass network provides

operands of dependent instructions executing in the same cluster whereas register

values not found in the cluster are transferred from other cluster(s) using the inter-

cluster bypass network. Transferring values over the inter-cluster bypass network

typically introduces additional penalties.
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Figure 4.1: Typical Clustered Register File Architecture

In this chapter, we present a novel approach where the local bypass network is

eliminated and a uni-directional inter-cluster network instead is utilized to connect the

clusters together as shown in Figure 4.2. We call this organization a uni-directional
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Figure 4.2: A 4-cluster Uni-directional Cluster Architecture

In this approach, a given cluster always writes to other cluster(s), and two depen-

dent instructions are never scheduled to execute in the same cluster. Since there are

no dependent instructions in a given cluster, there is no need to have a local by-pass

network, as the operands of a given instruction will either be locally read from the

register file, or, they will come from another cluster. Hence, the by-pass network of a

given cluster is connected to the output of another cluster in which producers of the

instructions in this cluster execute. In other words, in our clustered architecture, the

physical layout of the architecture represents a dependent chain of operations and the

instructions are scheduled onto each cluster based on their dependencies. As a result,

the data-flow among instructions is naturally mapped to the available architectural

communication paths.
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The steering of instructions into the appropriate clusters is easily accomplished by

modifying the renamer which keeps track of which clusters have the desired operands

to minimize communication. If a desired operand is not available in the target cluster

where an instruction will be executed, a copy operation is scheduled to the preceding

cluster. Since the communication is uni-directional and computed data values are

not locally consumed, global and local traffic do not compete. The 4-cluster uni-

directional cluster architecture shown in Figure 4.2 utilizes four register files, each

with two read ports and one write port. This is an enormous amount of simplification

compared to a 4-wide superscalar which would need a register file with 8 read ports

and 4 write ports, provided the ILP can be sustained under the new paradigm.

As it can be seen, the clustering mechanism shown in Figure 4.2 is extremely

efficient for handling dependence chains. Consider a dependent chain of instructions

i, j, and k such that j is dependent on i and k is dependent on j. If i is scheduled to

cluster zero, j is scheduled to cluster one, and k is to cluster two. There are no delays

and full utilization of clusters is accomplished. This design however suffers when we

have a dependence sequence such that i produces a value, which is consumed by both

j and k. In this case, instruction i can be scheduled to cluster zero, and j to cluster

one. However, scheduling k also to cluster one increases pressure on this cluster when

cluster two would be idle. Scheduling k to any other cluster requires a copy operation

to be scheduled to propagate the value from cluster one. In order to remedy this

situation, we can permit a cluster to write to more than one cluster. This approach
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in effect duplicates the produced value in multiple clusters, hence both j and k can

simultaneously proceed, each executing at the target clusters of cluster zero. Under

this organization, due to multiple destinations from each cluster, each cluster needs

a register file with two read and two write ports and each by-pass network needs to

have two access ports.

In this clustering mechanism, it is possible to cluster only the register file and the

execution units, the register file, execution units as well as the issue queues, or, even

the entire back-end of the processor, including the reorder buffer. As it can be seen,

the design space for this clustering mechanism is quite large with each design point

having different advantages and disadvantages. Before we explore various designs in

that space, we first discuss the rename and steer mechanism in the next section.

4.3 Instruction Steering

Given that an instruction executing in a given cluster can only read its source operands

from the register file in that cluster, or, from the by-pass connected to the upstream

cluster, a given value needs to reside in more than one register file, and we need to

keep the values coherent. We therefore partition the physical register name space,

allocating an equal chunk of physical names to each cluster. A very easy way to

partition the name space is to use physical register number modulo number of clusters

to identify which cluster it belongs to. For instance, in a two-cluster organization,

physical registers with an even number would belong to cluster zero, and physical
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registers with an odd identifier would belong to cluster one.

Once this partitioning is done, we can map a given logical register to multiple

physical registers, each residing in a different cluster. Since each logical register

can map to physical registers up to the number of clusters (i.e. in a four cluster

organization, a logical register can map to up to four registers, each being in a different

cluster), we extend the register map table to have as many columns as there are

clusters. In this manner, the renamer is guaranteed to find at least one mapping for

a given logical source register, but it may find mappings up to the number of clusters

in the organization.

With this set-up, instructions can be easily steered to a cluster at the rename

stage. When an instruction is processed, the renamer checks the extended map table

to get the current logical to physical mapping. For each operand, this read may return

multiple physical registers, from which we can precisely know in which cluster(s) a

given source operand is available. Given this information, we steer the instructions

as follows:

1. If the current instruction is a single operand instruction, it is dispatched to the

cluster with the smallest utilization which has its operand. The utilization for

each cluster is easily checked from the size of the available register pool for that

partition of the register name space.

2. For dyadic instructions, if there is a cluster which has both of the operands,

the instruction is dispatched to that cluster. Should multiple clusters satisfy
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this condition, the instruction will be scheduled to the cluster with the lowest

utilization.

3. If there is no cluster which contains both of the operands of a dyadic instruction,

a cluster which contains one of the instruction’s operands is selected, and a

copy instruction is injected into the pipeline. The copy instruction is placed

to execute in the upstream cluster of the selected cluster. For this purpose,

the cost in terms of number of copy operations needed for the other operand is

calculated for each of the clusters which has the operand and the instruction is

steered to that cluster. As before, the tie breaker is the utilization.

Once a cluster is selected in which the instruction will be executing which we refer

to as the source cluster, its destination register is allocated from the register pool of

the cluster to which it will write, i.e., its target cluster.

In this architecture, a copy instruction is an instruction that reads from the same

logical register that it is writing to, e.g., $r = $r;, where $r represents the logical

register whose data is being copied to another cluster. Hence, $r will be copied from

the cluster it exists on to the following cluster in the ring, since data propagation is

always uni-directional in the architecture. As it should be clear, a copy instruction

is equivalent to a no-op. The only special handling required by a copy instruction is

that the source physical mapping is not invalidated despite being ”overwritten”. This

change ensures the data is copied, instead of simply being moved. In a two-cluster

ring, generating a single copy instruction is always sufficient. In a cluster ring made

83



up of more than two clusters, multiple copy operations may need to be generated.

During renaming, the copy instruction is emitted alongside the original instruction

to be dispatched and there is no particular order that needs to be imposed in issuing

them. This is because, once renamed, the consumer instruction will wait for the

availability of the data and will be woken up by the select logic once the data becomes

available (i.e., the copy instruction executes).

4.4 Renaming of Instructions

Clustering in this manner primarily affects the mechanisms used for renaming and

retiring instructions in a superscalar processor. This is due to the fact that a given

logical register will have multiple physical registers assigned to it and we need to have

the proper mechanisms for the allocation and freeing of these registers. In this section,

we describe the details of the renaming mechanism by following a simple example of

renaming in a two-cluster uni-directional ring architecture as shown in Figure 4.3 and

then illustrate the primary changes which need to be done to the processor pipeline

for the retire logic for correct execution.

In our discussion of the algorithm, we assume the register name space is partitioned

into two partitions such that even numbered registers reside in cluster zero, and, the

odd numbered registers reside in cluster one. Furthermore, the architecture maintains

two free physical register lists, one for each cluster. The map table, which is part of

the steering logic is outside the clusters and is centrally maintained.
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Figure 4.3: A 2-cluster Uni-directional Ring Architecture

Let r0, r1, r2 and r3 represent the logical registers used in a program. Further,

let P0, P1, P2 and P3 represent physical registers assigned to the corresponding

register values at the start of the program.

The map table at the start of the program is shown in Figure 4.4. A blank at a

given entry of the table indicates that a physical register has not been assigned to

that logical register in that cluster (i.e., that column).

Consider the following instruction:

i1 : $r0 = $r1 + $r3

A cluster for i1’s execution will be selected as i1 is being renamed. The physical

source registers for i1 are P1 and P3, both of which are in cluster C1. The execution

cluster is then selected as C1. Due to the uni-directional data-flow, the destination

register will be assigned from C0. Therefore, the instruction is renamed as follows:

i1R : $P4 = $P1 + $P3
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Map Table

Cluster 0 (C0) Cluster 1 (C1)

r0 P0

r1 P1

r2 P2

r3 P3

Figure 4.4: Initial Map Table

and the map table is updated as shown in Figure 4.5.

Map Table

Cluster 0 (C0) Cluster 1 (C1)

r0 P4

r1 P1

r2 P2

r3 P3

Figure 4.5: Map Table After i1

Let us consider the following instruction next:

i2 : $r1 = $r0 + $r3

i2’s sources are shown to be P4 and P3, which are in different clusters. In this

case, the processor chooses C0 as the execution cluster. P3 then must be moved into
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C0 before execution. The following move instruction is emitted to accomplish this:

i2m : $r3 = $r3

The new move instruction will execute in C1, since its only operand is in C1. i2m’s

result register will be chosen from C0, and i2’s result register will be chosen from C1

due to the uni-directional data-flow. The move instruction combined with the original

i2 instruction are then renamed like so:

i2mR : $P6 = $P3i2R : $P7 = $P4 + $P6

The rename operation produces the map table shown in Figure 4.6.

Map Table

Cluster 0 (C0) Cluster 1 (C1)

r0 P4

r1 P1

r2 P7

r3 P6 P3

Figure 4.6: Map Table After i2

Of note in Figure 4.6, the move instruction does not invalidate the physical register

in the front-end map table for r3 since each move instruction is guaranteed to not

change the value of the register between the clusters. However, as r2 is redefined by

i2, all previous mappings at each cluster become invalid.
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Retiring Instructions

There are several ways the state maintenance is done in a superscalar processor, such

as using a reorder buffer coupled with front and back-end (in-order) map tables, as

well as checkpointing. Here, we assume that the processor maintains a front-end map

table which is speculatively updated and a retirement map table which represents

the in-order program state, which is updated by the retire logic. In such a processor

without clustering, each instruction must update the in-order-map table to indicate

which physical register contains the most up-to-date in-order version of any of its

destination registers. The previous physical register must then be released.

However, in a clustered architecture, each logical register may have valid physical

mappings in each cluster. Coherent operation in the presence of multiple copies of a

given register is easily accomplished by treating all copies as if they represent a single

assignment. When retiring an instruction, we now free all previous mappings of a

register regardless of the cluster its defined in, a new definition of a logical register

invalidates all existing copies. Accordingly, any freed registers are returned to their

own pool in their cluster.

Generated copy instructions need a special treatment as they should not free any

registers. Any destination registers allocated to the copy instructions are naturally

released when that logical register is redefined.
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4.5 Exploring the Design Space

The design space of the proposed uni-directional clustering mechanism is huge. There

are many variations which lead to different performance characteristics with a possibly

significant variation and impact on the complexity of an actual implementation for

each approach.

In this dissertation, we explore the clustering of the register file only, clustering

of the register file, the instruction shelves and wake-up/select logic, and finally, the

connectivity of the clusters as an independent parameter for each of these designs.
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Figure 4.7: Unified window uni-directional two cluster architecture

In its simplest form, the approach can be used to cluster only the register file and

the execution units attached to register file lanes. Such an architecture will have a

unified instruction issue queue, but have separate register files and execution units
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as shown in Figure 4.7. In such a design, the instructions can be steered by using

either their source or destination register numbers. The advantage in this design

would be better utilization of instruction shelving space (i.e., reservation stations),

but the complexity of wake-up/select logic is not reduced, despite the register file

being clustered. Combined with an instruction replay mechanism and speculative

wake-up, the complexity of the instruction shelves and wake-up/select logic will be

similar to that of a unified design.

An alternative organization is to cluster both the register file and the issue window

as shown in Figure 4.3. Such a design significantly reduces the complexity of wake-

up/select logic at the risk of possibly imbalanced utilization of instruction shelving

space. This is a well-known disadvantage of distributed reservation stations. As

stated at the beginning, in the rest of the chapter, we explore both designs, but add

a third dimension, namely, connectivity.

In the chapter, so far, we have only discussed uni-directional clustering where each

cluster writes to the next cluster in sequence. Yet a third dimension is the number

of down-stream clusters, i.e., how many clusters should receive a value produced in a

given cluster. At the expense of increasing the write ports, a cluster can write to more

than one cluster, which may significantly reduce the number of copy instructions that

might be needed. As we illustrate later, this aspect is crucial for having a clustered

architecture with near zero impact on the total instructions per cycle (IPC) compared

to a unified design.
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In order to understand the impact of various decisions, we have developed a num-

ber of cycle-accurate simulators, which faithfully implement a typical superscalar

processor that is clustered by following the primary design space layouts.

Simulation Architecture

Parameter Baseline

Front End Width 4 wide

Commit Width 8 wide

Issue Width 4 wide

Issue Window Size 64 entries

Execution Units 4 int units, 2 fp units, 2 address computation units

Memory Units 2 Load/2 Store

Rename Registers 320 registers

Load/Store Queue 64 entries

Reorder Buffer 256 entries

L1 Data Cache 32KB 2-way, 1 cycle lat.

L1 Inst Cache 32KB 2-way, 1 cycle lat.

L2 Unified Cache 512KB 8-way, 10 cycle lat.

Main Memory 100 Cycle lat

PHT Size 16KB

Branch Prediction GShare with 4KB BTB

Table 4.2: Architectural Parameters Used in Experiments

Table 4.2 shows the common architectural parameters used in all experiments,
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unless the specific experiment indicates otherwise. In most designs, we study a two

cluster variant and a four cluster variant. Assuming only the register file is clustered,

compared to the baseline depicted in Table 4.2 which has a unified register file of eight

read ports and four write ports, a two clustered architecture (2-cluster) would have

two register files with four read ports and two write ports. Similarly, a four-cluster

architecture (4-cluster) would have four register files, each with two read and one

write ports. Unless stated otherwise, we keep the total number of registers the same

in all designs. In other words, our 4-cluster architecture has four register files, each

having a total of 80 registers, yielding the same total as the baseline.

We simulated all designs by using MIPS-I ISA without delayed branching. This

ISA is very similar to PISA ISA, used by SimpleScalar [6]. GCC 4.9.2 tailored to this

ISA is used to compile the benchmarks and generate binary code with the highest

optimization (”-O3”) set. We choose Spec 2006 as our benchmark suite. All sim-

ulation models were designed with Architecture Description Language (ADL) [33].

The ADL compiler can automatically generate the assembler, the disassembler and a

cycle-accurate simulator which respects timing at the register transfer level from the

description of the microarchitecture and its ISA specified in ADL language.

In order to efficiently simulate our mechanisms, we incorporated Simpoint 3.2 [38,

47] to minimize the simulation time. For each benchmark, a set of checkpoint images

were generated where each checkpoint image contains the complete memory data

segments, the register file and the program counter (PC). Other architecture related
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structures were not included, such as cache, branch predictor, memory dependence

predictor, etc. Hence, the simulation of each interval has a cold start. In order to

compensate for this effect, we selected a large size, 100 million retired instructions, to

simulate each interval. Since each interval simulation was independent of others, we

simultaneously simulated all of the intervals to further shorten the simulation time.

4.6 Clustering the Register File Only

Figure 4.8 shows the performance difference between the baseline configuration com-

pared to a configuration where the register file is clustered into two clusters as well the

configuration where the register file is clustered into four clusters. In both designs,

a unified issue window drives the rest of the processor made-up of split register files

and execution units, as shown in Figure 4.7.

As it can be seen, for a 2-cluster, IPC loss is relatively small, yielding a geometric

mean of less than four percent, whereas for a 4-cluster, IPC loss is significant, par-

ticularly for some benchmarks such as 464.h264ref (20%). This performance loss is

directly correlated in most benchmarks with the number of copy operations generated,

some of which have excessive number of copies, particularly for 4-cluster configura-

tion. However, this is not always the case. What we observed is, when the ILP in a

given benchmark is high, clusters run out of registers, owing to much smaller number

of registers per cluster. Furthermore, while in a 2-cluster architecture, both register

files eventually start to have a lot of common values, in a 4-cluster, individual cluster
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Figure 4.8: IPC Loss with Multiple Clusters

pressure forces instructions to other clusters which will need the data values propa-

gated using copy instructions. Figure 4.9 illustrates the point. As the figure shows,

the ratio of copy instructions generated for 4-cluster is significantly higher than a

2-cluster configuration.

4.7 Dual Write Clustering

Reducing the number of copy operations is possible by connecting each cluster to

more than one cluster and allowing instructions to write to two physical registers,

each in a separate cluster. In this manner, generated values can rapidly propagate

to other clusters and the approach reduces the pressure on clusters which have these

values. For this approach, the processor pipeline, primarily the renamer, by-pass
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Figure 4.9: Generated Copy Instructions as a Percentage of Total

ports and retirement and register free logic need to be modified to allocate, update,

and free more than one register. While the spectrum of the issue of connectivity

range from one to the number of clusters, in this dissertation, we evaluate several

designs by allowing each cluster to write to two destination clusters. We refer to

these configurations as dual-write.

Figure 4.10 shows IPC loss compared to the baseline with a dual-write, unified

issue window architecture with clustered register files and execution units.

In a dual-write clustered architecture, arithmetic operations and load instructions

are allocated two physical registers, one in each target cluster by the renamer. The

map table does not need to change compared to our previous design, as a given logical

register may be associated with a number of physical registers, namely, as many as
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Figure 4.10: IPC Loss with Dual Write

the number of clusters. Accordingly, the by-pass now needs to accept data from two

sources. Recall that in a single-write cluster organization, the in-order map table

was updated with the destination physical register and all registers in the previous

mapping were released. In this configuration, the in-order map table is updated with

two destination registers and all registers in the previous mapping are released.

These experiments show that dual-write is effective for most benchmarks yielding

a geometric mean of less than 4% for a 2-cluster and less than 8% for a 4-cluster

architecture. On the other hand, libquantum shows significant performance loss in

both configurations. Our investigation indicates that this benchmark needs a lot of

renaming registers. With dual-write, the number of registers in each partition is half

(or quarter) of the baseline, leading to many stalls by the renamer for lack of rename
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Figure 4.11: Generated Copy Instructions as a Percentage of Total For Dual-Write

registers.

Figure 4.11, which shows the ratio of copy instructions generated for the dual-write

experiment. We observe a significant reduction in the number of copy operations

across the suite. Compared to the single-write configuration which has 18% copy

instructions introduced, dual-write generates less than 5% copy operations.

Further analysis of both the IPC data including key processor stalls, particularly

for benchmarks 462.libquantum and 464.h264.ref indicates that many dual-written

registers are not read but take-up resources, whereas a large number of them are

useful in reducing the required number of explicit copy operations as well as better

balancing instruction steering, as instructions can find their operands in multiple

clusters. Can we have the advantages of dual-write without the increased register
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pressure?

4.8 Dual-write with Lazy Register Allocation

The key concept we have developed in this regard is to allocate two destination

registers for each arithmetic and load instruction, but mark them as primary and

secondary. As in a single-write architecture, the primary physical register is removed

from the free register pool and it is committed to the current instruction’s logical

destination register. On the other hand, although the secondary physical register is

removed from the free register pool and is assigned to the instruction, it is entered to a

spare free register pool. The instruction’s reorder buffer entry number is also entered

to the spare free register pool as a coupled value with the physical register number.

If a subsequent instruction reads this physical register, the register is removed from

the spare free register pool and committed to the instruction’s logical destination. In

this case, it too becomes a primary register. If an instruction’s secondary register is

stolen in this manner from an instruction, the instruction needs to be informed before

the register write takes place. The application of this technique means the second

register for the dual-write is lazily allocated, since the allocation is not finalized until

it becomes certain the register will be used.

For this purpose, we add a one bit secondary register writable field to each re-

order buffer entry. This bit indicates if the corresponding register is still owned by

the instruction. When the renamer runs out of physical registers in the main pool

98



and allocates a register from the spare pool, the writable bit of the owner instruc-

tion is cleared. Note that the, secondary register writable field can be coupled with

instruction complete flag in the reorder buffer for efficient access.
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Figure 4.12: IPC Loss with Unified Window - Dual Write, Lazy Allocation

With these changes added, we again collect performance data in terms of IPC.

Figure 4.12 illustrates the performance of dual-write with lazy register allocation and

Figure 4.13 gives the distribution of copy operations generated under the scheme.

These figures show the effectiveness of the technique. Even with a 4-cluster archi-

tecture, which means, instead of an 8-read port 4 write port register file, four 2 read

port one write port registers files are used, the geometric mean of IPC loss is less

than 5%. For a 2 cluster, it is below 2%.

These experiments illustrate that although the geometric mean IPC loss is quite
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Figure 4.13: Generated Copy Instructions as a Percentage of Total (Unified Window)

- Dual Write, Lazy Allocation

small for such a large degree of clustering, 462.libquantum and 464.h264ref still have

rather significant IPC loss. As we have discussed before, this is directly related to the

number of available registers in each cluster and their sensitivity to extending of the

dependence chains. Another factor is the large fan-out from instructions in critical

sections of the programs.

In our attempt to keep the total registers constant with respect to the baseline, we

leave very few registers in each cluster which can be used for renaming as a significant

fraction of these registers hold the in-order state data. This is a very conservative

way to assume constant resources, which we had been following all along with these

experiments. In other words, one can assume that when we divide the register file into
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clusters, each cluster can have as many registers as the original register file to keep

the access time relatively constant as the process of clustering significantly reduces

the required number of ports.

However, reducing the number of ports significantly reduces the area and delay

requirements for any memory structure used within a processor. Therefore, another

view point in this regard is the total area size, which will be dependent on the number

of ports, number of registers in each cluster, as well as the particular technology that

can be used to implement the register file. Exploration of the design space with a

constant area perspective is necessary to optimize a given implementation with respect

to the exact number of registers which can be allocated to each cluster. We leave this

exploration to future work.

4.9 Clustering the Issue Window and the Register

File

While clustering of the register file is important for high performance with reduced

complexity, the issue window itself is a significant bottleneck in scaling up superscalar

designs. In this section, we explore the impact of clustering the issue window as well

as the register file, as shown in Figure 4.3. Such a design has significant advantages

in terms of delay, compared to a unified issue window architecture.

When the issue window as well as the register file is divided, we end-up with a
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much cleaner design than a unified window. This is because, the issue lanes are private

to each cluster, each register file is connected to its own issue lanes and the execution

units, and thanks to our novel interconnection mechanism of uni-directional clus-

tering, the wake-up/select logic complexity is also reduced. These benefits however

come with a price. In our proposed architecture, the scheduler schedules instructions

based on the availability of their registers as well as minimizing the requirements for

additional copy instruction generation. This policy inevitably leads to cases where

the target issue window that is optimal for scheduling the current instruction is full

while a sub-optimal target issue window has available space. Such competition does

not occur with a unified window.

On the other hand, it is important to remember that processor performance is

not merely IPC. Reduced delays may lead to a better clock rate and the overall

performance of the architecture can indeed be better, despite having a lower IPC.

Since such an evaluation will require nearly complete designs, in this chapter we

continue to rely on the instructions per cycle figures, and conclude that the lower it

is the better it will be, if we seek out micro-architecture approaches which reduce

complexity. The question then is, how much additional IPC loss do we burden in

such a design?

Figure 4.14 shows performance comparison results between the baseline and the

clustered architectures where the issue queue is clustered as well as register files, as

in Figure 4.3. This is a single-write design and this figure must be compared with
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Figure 4.8.

Comparing the two figures, we see about 2% further performance loss in geometric

means for both clusters and 464.h264ref jumps to 24% from 20%. Overall, this is

expected and the price that needs to be paid for great simplification in routing and

wake-up/select, which also should lead to significant power savings due to significantly

reduced reservation station complexity.
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Figure 4.14: IPC Loss when Window is Split (Single Write)

Figure 4.15 shows the ratio of copy instructions generated for this configuration

that splits the issue window as well as the register file. These figures are compara-

ble to that of Figure 4.9, indicating that splitting the instruction window does not

significantly alter the behavior of the scheduler with respect to copy generation as

expected.
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Figure 4.15: Generated Copy Instructions as a Percentage of Total (Single Write)

Clustered issue window and dual-write

Figure 4.16 shows the performance difference between baseline and clustered architec-

tures where the issue queue is clustered and also uses dual-write. Figure 4.17 shows

the ratio of copy instructions generated for this experiment.

This experiment shows that combined effects of clustering with the increased reg-

ister pressure resulting from dual writes is enormous for 462.libquantum, 464.h264ref

as well 429.mcf, and the geometric means also illustrate significant IPC loss of up to

10%. This is observed despite having a non-significant change in the number of copy

instructions generated, as shown in Figure 4.17.

These graphs clearly indicate that the number of registers available in each cluster
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Figure 4.16: IPC Loss when Window is Split - Dual Write
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Figure 4.17: Generated Copy Instructions as a Percentage of Total (Split Window,

Dual Write)
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is a significant factor under this design. Can lazy allocation mechanism remedy the

situation when the issue window is clustered as well?

Clustered issue window, dual-write, lazy allocation

Figure 4.18 shows the performance difference between baseline and clustered archi-

tectures where the issue queue is clustered and uses dual-write with lazy register

allocation. These results indicate excellent performance with the exception of two

benchmarks, 462.libquantum and 464.h264ref with geometric means of less than 2%

for a 2-cluster and about 5% for a 4-cluster architecture. We do not report the number

of copy instructions as they are vey similar to previous configurations.
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Figure 4.18: IPC Loss when Window is Split - Dual Write, Lazy Allocation

Note that, a two-cluster architecture has an IPC loss of about 5 and 3.8% for
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libquantum and h264ref, respectively. These results clearly indicate that with Lazy

allocation and dual write, uni-directional clustering offers a competitive and alterna-

tive dimension in the design superscalar processors.

4.10 Energy and Power Analysis

Register File Energy Analysis (22nm)

Used In Configuration Dyn.

Read

Energy

(nJ)

Dyn.

Write

Energy

(nJ)

Total

Leakage

Power

(mW)

Baseline 320 regs 8R 4W 0.00259572 0.00283489 2.91964

2 Cluster,

Single

Write

160 regs 4R 2W 0.000839903 0.00129223 1.02726

2 Cluster,

Dual Write

160 regs 4R 4W 0.00101048 0.00156153 1.17798

4 Cluster,

Single

Write

80 regs 2R 1W 0.000473665 0.000609474 0.372189

4 Cluster,

Dual Write

80 regs 2R 2W 0.000377798 0.000841728 0.439894

Table 4.3: Per Read/Write Energy Values for Split Register Files
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Read Power Write Power

2 Cluster, Single Write -65% -51%

2 Cluster, Dual Write -58% 19%

4 Cluster, Single Write -78% -74%

4 Cluster, Dual Write -83% -30%

Table 4.4: Register File Dynamic Power Difference

Leakage Power Difference

2 Cluster, Single Write -65%

2 Cluster, Dual Write -60%

4 Cluster, Single Write -87%

4 Cluster, Dual Write -85%

Table 4.5: Register File Leakage Power Difference

We also study the impact of clustering the register file on its power consumption. We

used CACTI 7[4][49] to model the register files as SRAM structures. The dynamic

read and write energy of various configurations, as well as their leakage power can be

seen in Table 4.3. We show that the dynamic read power required for the register files

is significantly lower for all configurations, even when accounting for the additional

generated copy instructions. We show these results in Table 4.4. The dynamic write

power required is also lower in all cases except one. Due to dual-write organizations

writing to double the number of registers, the 2-cluster, dual-write organization con-

sumes more power compared to the baseline since the efficiency gained by reducing
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the complexity of the register file is not enough to compensate for writing twice the

number of registers. Finally, in addition to lower dynamic power consumption in

most cases, we also show that the leakage power of the less complex register files are

significantly lower as can be seen in Table 4.5.

4.11 Related Work

Palacharla et al. discuss a queue based clustered microarchitecture in [36]. In this

clustered architecture, instructions are placed in queues if they are part of the same

dependency chain. Therefore, only instructions from the head of each queue could

be issued, simplifying the issue logic. Eggers et al. discuss an architecture where

the front-end is duplicated, namely a simultaneous multithreading architecture[11],

to allow a single superscalar microarchitecture to execute instructions from multiple

threads. In contrast, our proposal clusters the back-end of the processor, and is

orthogonal to simultaneous multithreading.

The Multicluster Architecture[12] is a close point of comparison to our proposal.

The Multicluster Architecture partitions the processor registers as well, and relies

on copy instructions but the partitioning is done at the logical level, and requires

compiler support to schedule instructions.

Canal et al. discuss repurposing the commonly found intrinsic “clustering” found

in most superscalar processors used to divide the integer and floating point functional

units [7], and therefore use smaller register files. This work highlights that this
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intrinsic clustering works due to the fact that they normally do not share registers,

which is one of the observations we exploit in our mechanism.

Balasubramonian et al. explore ways to reduce the complexity of the register

file, which includes a multi-level register file organization to reduce the register file

size as well as banking to reduce number of ports[3]. Our mechanism achieves both

goals by clustering the entire back-end of the architecture. A more efficient way

of implementing register banking is also discussed by Tseng et al.[50]. Park et al.

approach the issue of reducing register ports and bank conflicts by decoupling the

rename stage[37]. This work proposes virtually tagging registers at the front-end of

the processor and assigning physical tags only during write-back to avoid instructions

retiring in the same group to have bank conflicts.
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Chapter 5: Conclusion

In this dissertation, we have introduced the concept of dependency collapsing and

dependent parallelism. This is the first categorization of dependencies according to

the method by which they are broken in order to parallelize the bound instructions.

Then, we explored two novel techniques of our own to collapse dependencies.

In our first technique, LaZy Superscalar, we present a novel architecture which

schedules instructions based on demand signals from other instructions. The ar-

chitecture naturally eliminates dead code and fuses instructions which can be fused

together to remove delays from the critical path of the program. There are several

contributions we make:

1. We contribute an alternative superscalar pipeline which implements a general

dependency tracking mechanism for all instruction types. We show that such

a mechanism is viable for superscalar processors. This general dependency

tracking mechanism allows unification of dependence checking for all instruc-

tion types and results in a cleaner layout of the pipeline. In this organization,

memory operations can be treated very much like any other instruction and can

be combined into the main scheduler.
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2. We contribute a fine-grain state handling mechanism which permits instructions

to be retired in any order and over a large time span. The fine-grain state

mechanism should work with other novel approaches in which in-program order

of instruction retire may not be possible.

3. We show that aggressive instruction scheduling is not a must for good perfor-

mance and show that a lazy architecture can be effective in improving perfor-

mance, particularly with those benchmarks with highly dependent code.

4. We show that a combination of shallow pipelines with operation fusing is another

dimension of processor optimization, as opposed to removing delays through

deeper pipelining.

In our second technique, we present a uni-directional clustered processor architec-

ture which has not been explored before. We believe that our approach will provide

another perspective in designing complex components of superscalar processors, such

as the reservation stations and multi-ported register files. A back-end of a processor

designed in this manner can also be utilized in a simultaneous multi-threading ar-

chitecture. Our design relies on a unified front-end. However, the front-end of the

processor can also be clustered by simultaneous multi-threading techniques, further

breaking apart large structures that would otherwise be needed to avoid introducing

resource dependencies.

The dependency collapsing classification introduced in this dissertation illustrates

that significant performance gains or power savings are possible by collapsing depen-
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dencies. Many techniques exist which use dependency collapsing. LaZy Superscalar,

in its evolution, started as a dependency collapsing technique that fundamentally

targets immutable dependencies. It has developed into the current form described

in Chapter 3 where mutable dependencies can also be collapsed, considering exist-

ing techniques that collapse mutable dependencies, such as branch prediction and

predication. Similarly, the innovation in our uni-directional clustering design comes

from exploring techniques that collapse resource dependencies, then extending the

idea into its full form as described in Chapter 4.

In conclusion, we show that a better fundamental understanding of the dependency

classes introduced in this dissertation can lead to innovation in dependency collapsing

techniques. We demonstrate this by the two dependency collapsing techniques we

develop, explore and evaluate.
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