1244

IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO. 10, OCTOBER 2004

Late Allocation and Early Release
of Physical Registers

Teresa Monreal, Victor Vinals, Member, IEEE, José Gonzalez, Member, IEEE Computer Society,
Antonio Gonzalez, Member, IEEE Computer Society, and Mateo Valero, Fellow, IEEE

Abstract—The Register File is one of the critical components of current processors in terms of access time and power consumption.
Among other things, the potential to exploit instruction-level parallelism is closely related to the size and number of ports of the register
file. In conventional register renaming schemes, both register allocation and releasing are conservatively done, the former at the
rename stage, before registers are loaded with values, and the latter at the commit stage of the instruction redefining the same
register, once registers are not used anymore. In this paper, we introduce VP-LAER, a renaming scheme that allocates registers later
and releases them earlier than conventional schemes. Specifically, physical registers are allocated at the end of the execution stage
and released as soon as the processor realizes that there will be no further use of them. VP-LAER enhances register utilization, that is,
the fraction of allocated registers having a value to be read in the future. Detailed cycle-level simulations show either a significant
speedup for a given register file size or a reduction in the register file size for a given performance level, especially for floating-point

codes, where the register file pressure is usually high.

Index Terms—Register renaming, out-of-order processors, register file optimization, physical register allocation and releasing, precise

exceptions.

1 INTRODUCTION

UT-OF-ORDER superscalar processors exploit instruction-

level parallelism by executing instructions as soon as
their operands are ready, bypassing prior instructions in the
sequential program order. Register renaming removes false
register-dependences [18], [32] (output and anti-depen-
dences) and creates a new register version for each register
destination. Register versions are written only once and
read as many times as needed to satisfy flow dependences.
Among the versions of a given register, all but the
committed one are speculative and may become useless if
an exception or a branch misprediction occurs.

Most contemporary superscalar processors perform reg-
ister renaming, but they differ in the architecture of the
register versions storage and in the particular way versions
are accessed and recovered after a branch misprediction or an
exception occurs. Register versions can either be distributed
among different data structures or centralized in a single file.
There exist processors that keep noncommitted versions in
the reorder buffer and copy these versions into the register file
at commit [14]; other processors have a register file for
noncommitted versions and another file for the committed

o T. Monreal and V. Virals are with the Departamento de Informdtica e
Ingenieria de Sistemas, Area de Arquitectura y Tecnologia de Computa-
dores, Centro Politécnico Superior, Universidad de Zaragoza, Edificio Ada
Byron, Maria de Luna, 1, E-50018 Zaragoza, Spain.

E-mail: {tmonreal, victor}@unizar.es.

o |. Gonzdlez is with Intel Barcelona Research Center, Intel Labs, Barcelona,
Spain. E-mail: pepe.gonzalez@intel.com.

o A. Gonzilez and M. Valero are with the Computer Architecture
Department, Universitat Politécnica de Catalunya, ¢/ Jordi Girona 1-3,
Modul D6, 08034 Barcelona, Spain. E-mail: {antonio, mateo}@ac.upc.es.

Manuscript received 17 July 2003; revised 29 Jan. 2004; accepted 24 Mar.
2004.

For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-0003-0403.

0018-9340/04/$20.00 © 2004 IEEE

ones [21]; and there are also some processors which have a
single register file that merges together both committed and
noncommitted versions [38]. In this work, we are interested in
that last case, called merged register file in [32]. Details about
the way we assume versions are accessed and recovered are
shown in Section 2.

In dynamically scheduled processors, two key structures
limit instruction overlapping: Issue Windows and Reorder
Structures (Reorder or History buffers [33]). The Issue
Window (IW) keeps track of data dependences and issues
ready instructions to idle functional units, while the
Reorder Structure retains the program order to enable
recovery from exceptions and misspeculations. The instruc-
tion overlapping degree is highly dependent on the size of
the IW and, thus, wide issue processors require large IW
[36]. Besides, large IWs are needed to support high memory
latencies. Unfortunately, the IW size is limited due to strict
cycle time constraints [28]; however, some recent proposals
are directed toward achieving the memory latency tolerance
of large windows while maintaining the high clock rate of
small windows [5], [8], [20]. Anyway, the support for many
in-flight instructions (a large Reorder Structure) has
negative implications for other critical parts of the micro-
architecture such as the physical register file. Large register
files are required to offer more registers, with more ports
and a low latency [11], [28], [30]. For instance, Simultaneous
Multithreaded processors need large register files to fulfill
the above requirements in order to achieve their whole
performance potential [35].

Many works point out that the register file access can
impact the processor cycle time [2], [9], [11], [10], [39]. One
solution proposed is to pipeline the register file access [16],
[34]. The same techniques used for pipelining RAMs can be
employed to pipeline the register file [27]. However,
pipelining the register file is not trivial and significantly
limits the processor performance. In particular, a multistage

Published by the IEEE Computer Society

MONREAL ET AL.: LATE ALLOCATION AND EARLY RELEASE OF PHYSICAL REGISTERS

register file would increase the length of critical portions of
the pipeline that are traversed by key microarchitectural
loops. Loose loops, such as the branch resolution loop and
the memory dependence loop, are shown to be critical in
the issue-to-execute path and proposals such as the
Distributed Register Algorithm (DRA) are targeted to
remove the register file access out of that path [4].

On the other hand, the register file size (P registers) and
the number of ports (T in total, read and write) determine
silicon area, power consumption, and access time. For a
range of interest of P and T (say P < 160, T' < 60), the area
and power consumption are proportional to P -T2 and the
access time to VP - T [31].

Therefore, a more direct way to reduce register file delay
is by reducing P, T, or both. To do this, common approaches
trade off IPC for IPS (instructions per second). A first group
of approaches address the file internal organization,
basically without changing the interface with the functional
units (T is unchanged), but reducing P in some way. Some
examples are the Minimally-Ported Banked register file [2]
or the two-level register hierarchy managed in an inclusive
[9] or exclusive [2] way.

A second group of approaches suggest clustered micro-
architectures, where the register file is sliced into banks,
each bank feeding a functional unit cluster directly. Many of
these solutions have been targeted to decentralize several
critical structures and not only the register file. One
example is the Dependence-Based architecture [28], where
each bank is a complete copy of the register file (= P, < T),
as in the Alpha 21264 two-cluster case [19]. Other examples
are the Multicluster architecture [10] (each bank is assigned
a subset of the ISA registers. < P, < T'), schemes related to
the distribution of physical registers [3], [7], and the Energy-
Efficient Multicluster architecture [40] (each bank contains a
subset of physical registers. < P, < T)).

Both hierarchical register files and clustered microarch-
itecture ideas are collected in the DRA proposal [4]. DRA
reduces the issue-to-execute latency by moving the time-
consuming register file access out of that path. DRA uses
clustered issuing logic and assigns instructions to a
particular execution cluster at decode time. The monolithic
register file is placed in the decode-to-issue path and a
subset of all registers is distributed across small register
caches which are placed within each execution cluster.

Finally, a third approach focuses on the mechanism that
controls the allocation and release of physical registers,
trying to reduce the average number of required registers.
Current processors require many more physical registers
than those strictly necessary to store the live register
versions, that is, those versions that will be read in the
future. This occurs because registers are allocated too early
and released too late. Every instruction with a destination
register allocates a physical register at the rename stage
long before the result to be written into it is available. On
the other hand, a physical register is sometimes released
long after its last consumer-instruction commits, just when
the first instruction writing the same logical register
commits. In this paper, we concentrate on reducing the
register waste due to both factors.

In order to delay allocation, we will use the virtual-
physical register concept we proposed in previous works
[12], [13], [24]. Virtual-physical registers (VP) allow the
processor to delay the allocation of physical registers until

1245

the values they must store are available (at the end of the
execution stage). In particular, we will use virtual-physical
registers to perform on-Demand allocation with Stealing from
Younger (VP-dsy), [24]. In short, this policy consists of an on-
demand allocation of registers combined with a stealing
mechanism that prevents older instructions from being
delayed by younger ones.

On the other hand, to anticipate the release of registers
we will adapt the Last-Use, Next-Version (LU-NV) concept
we proposed in [25]. Under the LU-NV policy, a physical
register is released as soon as it is known that no further use
of it will be made. LU-NV release operates in processors
supporting control speculation and precise exceptions,
therefore, a register is not released if an exception handler
or an alternative control-flow path could need it.

Our contribution in this work is the design and
evaluation of VP-LAER, a renaming policy that simulta-
neously performs Late Allocation, based on VP-dsy, and
Early Release, based on LU-NV. We will describe how these
two components work in the VP-LAER extension, showing
that VP-LAER is feasible and outperforms the best of the
two previous schemes working alone.

This paper is structured as follows: Section 2 presents
background on conventional renaming and the potential
gains that a more aggressive policy could produce. Section 3
presents the rationale behind VP-LAER, while Section 4
details all the hardware resources needed and their
collective operation. Section 5 presents the experimental
framework and discusses the performance or savings of
alternative design points. Finally, Section 6 outlines some
related work and Section 7 summarizes the main conclu-
sions of the paper.

2 CONVENTIONAL RENAMING POLICIES:
IMPLEMENTATION AND EFFICIENCY

In this section, we introduce some terminology, review the
conventional model for allocating and releasing registers,
and, finally, give experimental evidence of its low efficiency.

Table 1 shows the number of physical registers (P) and
ports (T) of four example processors with merged register
files: MIPS R10/12K [38], [15], Alpha 21264 [19], and Intel
P4 [16]. Tt also shows the size (N) and the name of the buffer
containing the uncommitted instructions.

MIPS R10K supports up to N = 32 uncommitted instruc-
tions ina Reorder Structure called Active List. Since MIPSISA
has L =32 logical integer registers and P = 64 physical
registers, this processor never stalls due to a lack of physical
registers. We call this kind of scenario a loose register file
(P = L + N). By contrast, in MIPS R12K and Alpha 21264, a
long enough instruction sequence without branches and
stores can stall the renaming process. We call this alternative a
tight register file (P < L 4+ N). With a tight register file a
sequence with less than N instructions writing P — L
registers consumes all physical registers, forcing the proces-
sor to stop filling the Reorder Structure. Intel P4 has large
register files (128int + 128fp), but, because we do not have
enough details about the mapping of ISA instructions into
uops, we cannot conclude whether they are loose or tight.

Loose designs allow the whole Reorder Structure to be
filled under any conditions, whereas tight designs may
contribute to reducing processor cycle time if the register
file is in the critical timing path. As we will see later, the

1246 IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO. 10, OCTOBER 2004
TABLE 1
Number of Registers and Ports of Merged Register Files in Some Out-of-Order Processors
MIPS R10K MIPS R12K ALPHA 21264 INTEL P4

P =# of Phys. Reg. in Integer File 64 2x 80 128

T'=# of Read and Write Ports 7R 3W (4R 6W) x22 n.a.

P =# of Phys. Reg. in FP File 64 72 128

T =# of Read and Write Ports 5R3W 6R 4W na.

N = Reorder Structure Size 32 48 80 126 pops

Reorder Structure Name Active List Active List In-Flight Window | Reorder Buffer

a.Replicated because a single file with 14 ports (8 rd + 6 wr) could not be realized without compromising cycle time.

performance impact of a given renaming scheme depends
on whether it is applied to loose or tight register files.

As a baseline renaming, we assume a conventional
mechanism similar to that of processors in Table 1. Fig. 1
shows the involved components: Map Table, Reorder
Structure, Free List, and In-Order Map Table. The Map
Table (MT) keeps the logical to physical mapping [18]. The
Free List provides the destination physical register identi-
fiers (pd). A Map Table copy is made at each branch
prediction so that the processor state can be recovered on a
mispredicted branch [17].

The Reorder Structure (ROS) keeps information about all
uncommitted instructions in program order. We assume a
FIFO behavior implemented with an SRAM and read /write
pointers. Therefore, an ROS address can be used as a unique
instruction identifier.

While instructions are renamed, three fields are written
into the Reorder Structure bottom entry: < old_pd,rd, pd > .
The identifier of the physical register containing the previous
version (old_pd) is read from MT. The logical and physical
identifiers of the destination register (the current version)
are rd and pd,' respectively.

As instructions commit, the pd and rd entries are used
for updating the In-Order Map Table (IOMT), and the
old_pd identifier is used to release the previous version
physical register by adding it to the Free List. The IOMT
keeps the logical to physical architectural mapping. When
an exception has to be serviced, IOMT avoids the need to
roll back the Reorder Structure to recover the architectural
state [33]. In Intel P4, IOMT is called the Retirement Register
Alias Table [16].

Physical registers can be Free or Allocated, and Allocated

Therefore, p7 is Empty from the rename of instruction V
until its execution ends. Next, p7 shifts to the Ready state,
from where it is available to be delivered to consumer
instructions. Later on, p7 is Idle from the LU commit to the
NV commit and, eventually, p7 will be released when
instruction NV commits.

2.1 Efficiency of Conventional Renaming
Mechanisms

We define IPC loss as the average number of noncom-
mitted instructions per cycle due to lack of registers.
Table 2 shows the IPC loss of an eight-way superscalar
processor with tight register files of 64 registers (L = 32,
P = 64int + 64fp, N =128) in relation to a loose config-
uration (P = 160int + 160fp) for a subset of SPEC 95
programs. The last row shows the speedup of the loose
configuration in relation to the tight one. We consider
only integer registers for integer programs and FP
registers for FP programs. The experimental framework
is detailed in Section 5.

It can be observed that integer codes could reach a
modest, though not negligible, speedup (1.08 on average—
harmonic mean), whereas FP codes would benefit the most
(1.50 on average—harmonic mean).

To get an insight into the renaming behavior, the average
number of Allocated registers being either in the Empty,
Ready, or Idle states is plotted in Fig. 3 along with the register
file Utilization. Utilization is defined as the percentage of
allocated registers having a value to be read in the future
(Ready registers over Allocated registers). Results are again
significantly different depending on the code type.

registers can be either Empty, Ready, or Idle, according to the Fetch _

usefulness of their content (Fig. 2a). A physical register is Queue Map Table Free List

Empty from the moment it is allocated until it is actually reren—{| | || -[@ e 'M";Oprﬁaegle
written. A register is Idle from the commit of the instruction !

using that register for the last time until the commit of the
instruction producing the next version. An Allocated
register is Ready when it is neither Empty nor Idle.

Fig. 2b shows the execution of a sample program with
instructions labeled V, LU, and NV, where the physical
register p7 experiences all states. Instruction V (version)
creates a new register version for its logical destination r2,
which is renamed to physical register p7. Later on,
instruction LU (last-use) reads r2 for the last time. After-
ward, instruction NV (next-version) rewrites r2.

1. Each entry in the Reorder Structure stores the result identifier, as in an
indirect Reorder Buffer. But, it also contains the previous-version identifier, as
in an indirect History Buffer [33]. This is the reason why we have adopted
Reorder Structure as a more general term.

Reorder
Structure

rd =rs1 op rs2 l R ‘ old pdl rd | pdl

current-version
physical register
identifier

logical register
identifier

previous-versiol
physical register
identifier

— writing
- - - - = indexing

Fig. 1. Conventional renaming. Instructions enter the pipeline from the
left, are placed in the Reorder Structure, and commit toward the right.
Detail of an ROS entry showing the fields related to registers old_pd, rd,
and pd.

MONREAL ET AL.: LATE ALLOCATION AND EARLY RELEASE OF PHYSICAL REGISTERS

1247

p7 state FREE X ALLOCATED X FREE

[' !

Empty " EMPTY READY IDLE !

instruction rename i | —
i A
r] | value computed i . B EI L _ _____ '
] 2 d !
Free Allocated :0 :;name !

Ready

J

: last-use commit
next-version commit

b 4 1o use
Idle of r2
- v

(a)

LU: r4 = r2 + r3 ___IE‘ ___________

p7 released

Fig. 2. (a) Breakdown of the ALLOCATED state and (b) example of state evolution of the physical register p7 under a conventional rename policy.

R = rename, Ex = execution, C = commit.

Integer codes have very low Utilization (39.3 percent on
average) due to the heavy weight of Empty and Idle states
(20.6 Idle and 11.9 Empty registers, on average). On the
other hand, as expected from the modest attainable
speedups just reported, integer codes are not strictly limited
by lack of physical registers. Excluding compress and 1i,
all applications have more than 11 free registers on average.
Therefore, for this kind of programs improving renaming
should mainly allow the integer register file to tighten
without loosing IPC.

FP codes show higher Utilization (59.1 percent on average).
The relative weight of the Idle state has decreased remarkably
(12.2 Idle and 12.4 Empty registers, on average). But, in
contrast tointeger codes, FP codes put high pressure on the FP
register file. Mgrid, tomcatv, and swim almost use all the
available physical registers and the overall average number of
free registers is as low as 3.8. Here, the main consequence of
improving renaming should be an IPC increase.

Next, we introduce VP-LAER renaming, which removes
the Empty state completely by delaying register allocation
and reduces the Idle state stay by releasing registers earlier.

3 VP-LAER: VIRTUAL-PHYSICAL LATE
ALLOCATION WITH EARLY RELEASE

In this section, we first describe the schemes used for
allocation and release in VP-LAER separately and then the

TABLE 2
IPC Loss and Speedup for an 8-Way Processor with
64int +64 fp Register File and a 128-Entry Reorder Structure

integer
comp | gcc go Ii perl
IPC loss 048 | 012 | 014 | 022 | 0.16
Speedup 1.18 1.06 | 1.06 | 1.07 | 1.06
floating point
mgri | tomc | appl | swim | hydr
IPC loss 1.23] 068 | 1.02 | 1.20 | 0.78
Speedup 1.60 | 1.43 | 1.40 | 1.67 | 1.39

joint architecture is presented. Implementation details and
examples are included in the next section.

3.1 Allocating Physical Registers in VP-LAER

The conventional renaming mechanism allocates physical
registers in the rename stage. However, instructions do not
really require physical registers until results are available.
The reason for this early allocation is that physical registers
are used both to store values and to keep track of
dependences. However, only the latter objective requires
bookkeeping at rename time, while the allocation of a
storage location could be delayed if the processor used a
separate artifact for tracking dependences. Such an artifact
is what we call virtual-physical (VP) registers [12], [13], [24].

VP registers are tags and do not require any physical
storage. In order not to stall the processor due to lack of
VP registers, we need as many of them as the maximum
number of in-flight instructions (number of ROS entries)
plus the number of logical registers (int + fp). When an
instruction is renamed, its logical destination register is
mapped onto a VP register obtained from the list of free
VP registers. Later on, when the instruction is in the last
cycle of the execution stage, the VP register is mapped onto
a physical register taken from the list of free physical
registers. At the time the release is performed, both the VP
and the physical registers return to their respective free
lists. In our previous works, releasing operated in the
conventional way, but VP-LAER uses the more aggressive
approach outlined in the next section.

Allocated

WEmpty [Ready [lide
70 70

P=64

@
S
]
S

»
S
g
S

)
o
I
o
@
o
J
]
=
o
P
©

N
<]
9
L
o
@
&
by

number of integer registers
N
8

&
8
o

number of FP registers

S
o

o
o

comp gcc go li perl Am mgri tomc appl swim hydr Am
integer floating point

Fig. 3. Number of Allocated registers being either in the Empty, Ready,

or Idle states for an 8-way processor with 64int + 64fp register file and a

128-entry Reorder Structure. The Register file Utilization appears close

to the Ready bars.

1248

IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO. 10, OCTOBER 2004

;r2 renamed to p7
LU: 14 = xr2 + 13

no use
of r2

V,LU: xr2 = ... ;r2 renamed to p7

no use
of r2

+“—

NV: x2

(b)

Fig. 4. Two examples of the early release potential under VP-LAER. In both codes, physical register p7 can be released when LU commits instead of

waiting until NV commits.

When an instruction finishes execution and there are
no free physical registers, the instruction has to wait to be
reexecuted later on, with the expectation that some
physical register will be released in the meantime.
However, if this instruction was the oldest instruction
in the processor, no instruction would commit and, thus,
no physical register would be freed. To avoid this
deadlock situation, a feasible allocation policy is to
guarantee that a given number of the oldest instructions
will obtain a register when they reach the write-back
stage. We call this implementation parameter Number of
Reserved Registers. In short, this allocation scheme assigns
NRR registers to the oldest instructions with destination
operand, whereas the rest of the physical registers are
allocated on-demand, that is, they are assigned to the
instructions that first reach the write-back stage. More
details about the NRR scheme and its performance
appear in [12], [13].

The NRR allocation scheme is not the only approach that
may guarantee deadlock avoidance. Finding the optimal
physical register allocation seems to be an unsolvable
problem even with a perfect knowledge of future register
references. However, we have found an implementable
heuristic that outperforms the NRR approach and approx-
imates such an optimal scheme [24]. This heuristic we have
called on-Demand with Stealing from Younger (dsy) follows
two register-handling rules:

e Registers should be allocated to those instructions
that can use them earlier. In this way, the average
number of unused registers is minimized.

e Given any two instructions fighting for the last free
physical register, the execution of the younger
instruction should be delayed, hoping that the
winning, older instruction will release a physical
register earlier (at commit time).

VP-LAER renaming uses this VP-dsy allocation scheme
in which every writing instruction allocates a physical
register in the last cycle of the execution stage if there are
free registers. This meets the first criterion since registers
will be allocated those instructions that finish execution
first. If an instruction S reaches the last cycle of the
execution stage and there is no free physical register, it is
checked whether there is a younger instruction that has
already allocated a register. If this is the case, it is better to
stall the younger instruction, based on the second criterion.
This can be achieved by stealing the register allocated to the
younger instruction and giving it to S.

The stolen instruction must be reexecuted in the future,
the reexecution factor being a significant overhead for the
VP-dsy scheme. VP-LAER reduces this negative effect since
the early release policy provides extra registers.

3.2 Releasing Registers in VP-LAER

Conventional renaming forces a physical register to be Idle
from the commit of its Last-Use (LU) instruction until the
commit of the first Next-Version (NV) instruction. In both
codes of Fig. 4, this is true for register p7, which is a
renamed version of r2. Fig. 4a shows the usual case where
the last use of r2 is a read and Fig. 4b shows the infrequent
case where the last use of r2 is a write and, so, the
instruction labeled V, LU plays the dual role of creating a
register version and using it for the last time.

Conventional renaming has a simple implementation
supporting both control speculation and precise exception
recovery (Section 2). However, the processor can run out of
registers and stall in spite of having a number of Idle
registers. By contrast, VP-LAER is able to release Idle
registers earlier, enabling execution of instructions other-
wise stalled for lack of registers. Under VP-LAER, in both
codes of Fig. 4, physical register p7 could be released when
the LU instruction commits.

The idea is to completely shift the release responsibility
from the NV instruction to the LU instruction. To this end,
each time an NV instruction is renamed, its corresponding
LU instruction pair is marked. Marked LU instructions
reaching the commit stage will release registers instead of
keeping them Idle until the commit of the corresponding
NV instruction. We view this marking as follows: The
NV instruction schedules an early release of a register for
the commit of its LU instruction pair. It may happen that the
LU instruction is already committed when renaming its NV
pair, then no scheduling needs to be done and releasing can
proceed immediately. This corresponds to the LU-NV early
release policy we proposed in [25].

Under control speculation, a specific recovery hardware
is used to undo the effects of a mispredicted path [17].
Likewise, if a speculative instruction NV has to be
squashed, we need to undo any early releases it has
scheduled. Recovery implementation in VP-LAER consid-
ers the following two cases:

e Case 1. Instruction NV is not speculative at rename.
It may or may not be in the same basic block as
instruction LU is. Any release scheduled by NV is
considered as safe.

e Case 2. Instruction NV is speculative at rename.
There are branches between LU and NV whose
verification is pending. Therefore, any release
scheduled by NV must be considered speculative
and subject to squashing as long as instruction NV
remains speculative.

All the concepts connected with release can be applied to

both physical and VP registers. In fact, VP-LAER always

MONREAL ET AL.: LATE ALLOCATION AND EARLY RELEASE OF PHYSICAL REGISTERS

General Map Table

1249

Free Lists

dst vp [[V
- -

---- |

srci, src2

vp dst
T

P VP [
4| execution end | P dst
v

<

Reg. File

o 3 Jon m e o Issue Window | Physical Map
. I'src1 op I'src2 : Teble
Tyt vp
: sret, sre2, dst Reorder Structure Tvp?
! s o |
. I —" '
' P .
Last Uses Table: ¥ {
- - . ’ RwWC&NS \:>’ RwNS ‘
src1, src2, dst ROSIid | k | ¢
ROSid, k A Release Queue
Yy
! match)
i) ————» writing r: logical reg
% commit ROSIK - » indexing . physical re
R r,r2,rd | ROS B [P M

Fig. 5. VP-LAER renaming process.

releases a register pair: a VP register and the physical register
which it is mapped to. Section 4.2 elaborates on the different
situations in which registers are released in VP-LAER.

As regards precise exception recovery, the point in
VP-LAER is that the value attached to a logical register r is
only discarded if it is guaranteed that the first use of r is a
write. With this, we can conclude that our mechanism does
not strictly hold the usual condition of being precise:

An interrupt is precise if the saved process state corresponds
with a sequential model of program execution where one
instruction completes before the next begins [33].

However, this definition of precise exceptions is sufficient
but not necessary to guarantee a proper recovery. The
optimization we propose is safe in that these discarded
values are guaranteed not to be used by the program. As
regards the use of discarded values inside an exception
handler, two different situations can arise depending on the
exception type. All exceptions not triggered by an anomalous
execution (external interrupts, system calls, software break-
points, undefined or illegal operation codes, etc.) find the
correct architectural state because such exceptions are treated
by the early release hardware as unconditional jumps. In
contrast, exceptions raised by an execution fault (page fault,
divide by zero, etc.) cannot use other than those referenced by
the faulting instruction as parameter registers. Any extra
parameter must be passed through memory (e.g., through
the stack). But, it is no common practice at all to feed this
kind of handlers with registers other than the instruction’s
own registers, whereby we consider that rewriting existing
software is worth the effort (probably belonging to
dynamic libraries) in view of the expected performance
benefits. Similar optimizations in software were proposed
elsewhere [22].

4 HARDWARE RESOURCES AND EXAMPLES

The global picture of the renaming process considered in
VP-LAER is summarized in Fig. 5. The VP-LAER allocation
part relies on a General Map Table which replaces the
conventional Map Table and an Issue Window. The release
part relies on a Last Uses Table, a Reorder Structure, and a
Release Queue.

=> instr. commit vp: virtual-physical reg

Two Free Lists and a Physical Map Table complement
both parts. The P Free List is a pool of free physical
registers, as in the conventional scheme, and the VP Free
List is a pool of free virtual-physical registers. The Physical
Map Table keeps the virtual-physical to physical mapping.
When a writing instruction completes its execution, a new
physical register is taken from the P Free List and the
Physical Map Table is updated to reflect the new virtual-
physical to physical mapping.

In VP-LAER, both renaming and releasing actions are
always directed by virtual-physical registers. The Physical
Map Table is the structure which stores, for each vp register,
its latest physical mapping and it is mainly used either at
branch misprediction in order to recover the proper physical
map or at release time in order to feed the P Free List.

Next, we describe the components involved and their
main interactions. Section 4.1 and Section 4.2 elaborate on
how registers are allocated and released, also giving
detailed examples.

General Map Table and Last Uses Table. The General Map
Table (GMT) plays the role of the Map Table in conventional
renaming. For each logical register, it keeps three fields:

e vp: current virtual-physical register identifier,
e p: current physical register identifier, if any,
e v:p field valid bit, that is, whether a physical register
has already been allocated to this logical register.
The Last Uses Table (LUST) identifies the instruction
using every logical register for the last time—the LU
instruction. It has three fields per entry:

e ROSid: identifier of the LU instruction (its ROS

address),

o k: kind of register use made by the LU instruction

(srcl, src2, dst),

e c: bit reporting whether instruction LU is still in the

pipeline or already committed.

The renaming process in VP-LAER starts at the rename
stage, where, for every instruction, two tasks proceed in
parallel, namely, renaming of logical registers and schedul-
ing of early releases. Let’s consider the rename of a single
instruction to make the explanation simpler.

1250

In the first task, the General Map Table entries
corresponding to the logical source registers are read in
order to obtain the virtual-physical and also the physical
fields once the physical allocation has already been
performed (v set). Besides, a fresh virtual-physical identifier
taken from the VP Free List is written into the vp field of the
logical destination register and v is reset. Now, the renamed
instruction can be dispatched to the Issue Window along
with all the renames made (three virtual-physical registers
and two, one, or zero physical registers). The instruction can
also be inserted into the Reorder Structure, requiring only
the three virtual-physical identifiers for release purposes.
Instructions remain in both the Issue Window and the
Reorder Structure until they are committed.

The second task identifies the instruction that used
the logical destination register for the last time (the
LU instruction) and schedules the early release of the
involved register pair (just the pair mapped to the previous
version of the destination register) for its commit. To this
end, the ROS address of the LU instruction is obtained by
reading the Last Uses Table entry corresponding to the
destination register; the k field directs the scheduling
towards the right LU instruction register. Using our
terminology, this task is performed by an NV instruction.
After this reading, the Last Uses Table is updated to reflect
the current register uses. This is accomplished by spreading
the ROS address of the instruction being renamed into the
Last Uses Table entries pointed by all its logical register
identifiers; k fields are also set with the proper values
(srcl,2, dst). Note that an NV instruction having coincident
destination and source registers should self-schedule the
release, skipping the Last Uses Table reading.

In order to support all the required accesses, the Last
Uses Table needs a significant bandwidth; nevertheless, its
small size allows an access time far below the smallest
reasonable physical register file, leaving the Last Uses Table
out of any critical processor path [25]. The same reasoning
can be applied to the General Map Table.

As in conventional renaming, at each branch prediction,
both the General Map Table and the Last Uses Table are
checkpointed [17]. Therefore, the branch misprediction
recovery mechanism can retrieve virtual-physical mappings
and register uses properly. The physical mappings are
restored from the Physical Map Table.

Issue Window. In order to support the allocation of
registers in VP-LAER, an entry in the Issue Window (IW)
has the following fields:

e vp_srcl,2; p_srcl,2: virtual-physical and physical
identifiers of source operands,

e rdyl,2: ready bits of source operands. When an
operand is ready, the corresponding physical field
has a valid identifier,

e vpd: virtual-physical destination register identifier.
It is used at execution time in order to index the
Physical Map Table and to record the physical
mapping,

e pd: physical destination register identifier. If the
instruction is selected as a theft victim, this field
supplies the physical identifier without using the
Physical Map Table,

2. Note that pd field does not take part in the wake up logic and, thus,
the entire pd array could be implemented as a separate structure in order
not to increase cycle time.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO. 10, OCTOBER 2004

e exec: execution flag. Bit indicating whether the
instruction has completed its execution.

An instruction can be issued when both operands are
ready. When an instruction is issued, it reads its register
operands from the physical register file or from the network
bypass using the p_src identifiers.

At the end of the execution, every instruction with a
destination register allocates a fresh physical register for its
virtual-physical destination (vpd). This physical register is
written in the pd field in the Issue Window entry of the
instruction and the exec bit is set. Then, the new mapping
< vpd,pd > is broadcast to the Issue Window to wake up
all the instructions waiting for the vpd register. In all
matching cases, the p_src field is updated with pd and the
ready bit is set. This pair of registers is also broadcast to the
General Map Table to update the p and v fields if some
vp field matches vpd. With this, any new renamed
instruction will find the physical mapping directly from
the General Map Table. Finally, the new mapping is
reflected in the Physical Map Table.

In VP-LAER, the allocated physical register pd is either
taken from the pool of free physical registers, if any, or it is
stolen from the youngest executed instruction in the Issue
Window. In order to identify the instruction to be stolen, the
Issue Window is searched for a younger entry with the exec
flag set. If several of these entries are found, the youngest is
chosen. The physical identifier is supplied from the pd field
of the stolen instruction and both the General Map Table and
Physical Map Table are updated to reflect that the mapping
has changed. In order to reexecute the stolen instruction, the
exec flag is reset in the Issue Window, enabling the issue
logic to choose it again in the future. Besides, the pd field of
the stolen instruction is broadcast to the Issue Window to
turn off the ready bits of all matching entries. Notice that a
steal operation can be done in a single cycle by tagging
currently not ready operands with matching virtual-physi-
cal registers as ready and tagging currently ready operands
with matching physical registers as not ready. This can be
done by attaching comparators to the Issue Window busses
to broadcast physical identifiers to source operands.
Section 4.1 explains more details about reexecution.

Reorder Structure and Release Queue. Both structures are
used to support register release in VP-LAER. At rename,
every NV instruction schedules an early release by marking
the ROS entry of its LU pair (see Fig. 6). The Reorder
Structure stores the safe releases coming from nonspecula-
tive NV instructions (Case 1 in Section 3.2), whereas the
Release Queue stores speculative releases coming from
speculative NV instructions (Case 2 in Section 3.2).
Specifically, the left part of the Release Queue (RWC&NS)
takes care of LU instructions still in the pipeline and the
right part (RWNS) takes care of committed LU instructions.

Let’s explain the Reorder Structure (ROS) role first. As
regards releasing, each entry has the following fields:

e r 1,r 2 r d:logical register identifiers (sources and
destination),

e vp_1, vp_2, vp_d: virtual-physical register identi-
fiers (sources and destination),

e rell, rel2, reld: These are safe release schedulings.
When set at commit time, they force releasing the
corresponding vp_ register and its physical pair.
The physical register is obtained by indexing the
Physical Map Table with the vp_ identifier. We
call Release-when-Commit (RWC) to all those bits

MONREAL ET AL.: LATE ALLOCATION AND EARLY RELEASE OF PHYSICAL REGISTERS

a non-commited LU instruction 41

1251

1| Reorder

Logical Registers

2| Structure

r.d
ve1 commit >
Virtual-Physical Registers vp_2
vp_d
rel
':‘:‘: Release-when-Commit bits jgégre'z
RwC id
© Release Queue
e W EN T
: i‘:’: RwC&NS 1 #2:#:4 5 - — I
: | g RWNS7 :
Q
. = RwCaNS2 —— [mm mm
TAIL commit RwNS2 :
— LI LI :
sp_rel1 :
——F RwCaNSmax g T i
sp_reld RwNSmax y

attached release schedulings 4——J

Virt-Phy Regs. bits :

Fig. 6. Reorder Structure and Release Queue. Instructions enter from the left and commit toward the right. Branch confirmations shift up Release

Queue levels.

belonging to all instructions entries in the Reorder
Structure.

When renaming a nonspeculative NV instruction, if its
LU pair is still in the pipeline, the suitable rel bit is set in the
RWC entry occupied by the identified LU instruction. In this
case, registers will be released when LU commits. On the
other hand, if an LU instruction is already committed when
renaming its nonspeculative NV pair, no scheduling is
needed and registers can be released immediately.

As has been said, the Release Queue holds speculative
releases that must be squashed if the responsible
NV instructions become part of a wrong control path. As
in a branch recovery mechanism, the Release Queue is used
to checkpoint all the speculative register releases at every
branch prediction. It has as many horizontal levels as
branches pending verification the processor supports (from
1 to max in Fig. 6). These levels of the Release Queue are
mainly managed in a FIFO way. Every time a branch is
decoded, a new level is stacked at the bottom of the queue.
Closer to the top are the levels related to older branches and
we assume the pointer TAIL identifies the level allocated to
the last branch decoded.

The left part of the Release Queue (RWC&NS) supports
left-to-right shifting in order to track commit evolution just
as the ROS does (commit arrow in Fig. 6). Therefore, when
renaming a speculative NV instruction whose LU pair is still
in the pipeline, the suitable sp_rel bit is set in the level
pointed by TAIL, just at the entry occupied by the identified
LU instruction (see the bottom part of the highlighted
column in Fig. 6). At every branch confirmation, these
speculative releases are shifted upward, becoming “less”
speculative or even safe (arrow br_confirm in Fig. 6). But, it
may occur that the LU instruction reaches the commit stage
having speculative releases marked in the Release Queue (in
RWC&NS). These are releases that are still subject to the
confirmation of pending branches and cannot be lost. The
same arises when, at rename of the speculative
NV instruction, the LU pair is already committed. In both
cases, releases have to be delayed until the confirmation of

the oldest branch, the right part of the Release Queue
(RWNS) keeping such releases.

Summarizing, every level n in the Release Queue is
implemented by means of the following two structures:

e Release-when-Commit & Non-Speculative (RWC&NSn).
It keeps speculative releases scheduled by specula-
tive NV instructions renamed past n branches
pending verification. As all the n pending branches
are being confirmed (before the LU instruction
reaches its commit stage), these releases flow until
reaching the RWC fields of the LU instruction by
crossing the Release Queue border. With this,
register releases will be effective at LU commit.

e Release-when-Non-Speculative bit array (RWNSmn). It
has one bit per every virtual-physical register. It
keeps speculative releases scheduled by speculative
NV instructions renamed past n branches pending
verification and whose LU instruction is already
committed. A level receives speculative releases in
two radically different cases. The first one arises
when committing LU instructions with speculative
releases attached to them; the second one when
renaming an NV instruction whose LU pair is
already committed. In the first case, the LU instruc-
tion with some sp_rel bits set in level n has to
transfer the equivalent release information into the
same level of RWNS.

The second case arises when the commit bit is set
in the Last Uses Table entry pointed by the logical
destination register of the NV instruction being
renamed. The scheduled target is the previous
virtual-physical destination register of the
NV instruction (the corresponding bit is set in the
level TAIL of RWNS).

At every branch confirmation, all levels from
TAIL to top are also shifted upward. At the
confirmation of the oldest branch, the top level
transfers its set bits to the VP Free List and P Free
List (through the Physical Map Table).

1252

Tk el

(]

I2% X2 S ans

IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO. 10,

OCTOBER 2004

pic =

vp p)
GMT
r vp1
2| v N 0«1 i3 i2 i1
! vp2 vp_srci
p5 = p_src1
10 rdy1
vp2 1
B vp2 | vp1|vpd
W ~ o
PMT [0 T T 979 Jexeo

E rename
ﬂ dispatch

Ex|execute

vp p Y
GMT
r1 vpl p5 1
2 vp2 $5 0 i3 i2 i1
vp2 vp_srci
5 p_srcl1
0 rdy1
vp1 p5
vp2 |vp1 | vpd
w 5 | po
vp2 »5 5 [p5 [P
—— [0 To[1]ee

(b)

Fig. 7. Example of VP-dsy allocation in VP-LAER. (a) First, i1, i2, and i3 are renamed and dispatched; second, arrows show changes after i2
completes and allocates p5. (b) i1 steals register p5 from i2 before i3 issues.

4.1 Example of VP-dsy Allocation in VP-LAER
Renaming

Fig. 7 shows a simple code and three samples of General Map
Table, Issue Window, and Physical Map Table during its
execution. Fig. 7a shows two snapshots, the first one after
renaming instructions i1, i2, and i3, and the second one (with
arrows) after instruction i2 completes and allocates p5. Fig. 7b
shows the situation after instruction i1 executes and stealsp5,
the physical register allocated to instruction i2. All the time
we are assuming that instruction i3 cannot be issued.

e Instructions i1, i2, and i3 are renamed and
dispatched, Fig. 7a. For instructions i1 and i2, the
virtual-physical identifiers vpl and vp2 are ob-
tained from the VP Free List, are written into GMT,
and their v bits reset. Besides, both instructions have
been dispatched to IW, filling their vpd destination
register fields with vpl and vp2.

For instruction i3, its logical source register r2 is

renamed through the GMT. The resulting virtual-
physical register—vp2—is written into the i3 entry of
IW while marking itasnotready. All three instructions
have been marked as not executed in IW.
Instruction i2 completes and allocates p5, see
arrows in Fig. 7a. Just before instruction i2 ends
execution, a physical register identifier is reclaimed
for vp2 from the P Free List. In the example, p5 is
supplied and the i2 entry in IW is properly updated:
p5 is written into the pd field and the instruction is
marked as executed.

Next, in order to reflect the new map, PMT, IW,
and GMT are updated with p5. So, PMT is indexed
with vp2 and written with p5. At the same time, the
virtual-physical source fields in IW are associatively
accessed to reflect that vp2 is mapped to p5
wherever vp2 appears and to set the ready bits. To
update GMT, vp2 is associatively searched in all the
vp fields, any matching entry is replaced with p5,
and the v bit is set.

Instruction i1 executes and steals p5 from i2, Fig. 7b.
Let us assume that instruction i1 finishes execution,
that there are no free physical registers, and that
instruction i2 has been selected as the theft victim.
For the stolen instruction, its vpd and pd fields are
read from IW: < vp2,p5 > in the example. All data
structures have to reflect that vp1l is now mapped to
p5 and vp2 is no longer associated to p5. In order to
do that, the mappings in GMT and PMT are reversed,
acting as described in the previous step.

Because the stolen instruction i2 must be reexe-
cuted, the exec flag is reset in the IW, which enables the
issue logic to select i2 again in the future. Moreover,
since i2 hasbeen executed in the past, the consumers of
vp2 (i3 in the example) have this operand marked as
ready. However, they are not ready anymore since the
physical register has been stolen (rdyl =0 in the
example). Note that a consumer instruction may be
executing at the same time as vp2 becomes detached
from p5. Such an instruction has read a correct source
operand and, thus, its result will be correct. At the time
itfinishes and allocates a register, it will be able to store
their result and dependent instructions will be
allowed to be issued.

4.2 Early Release Examples in VP-LAER Renaming
If there are no branches pending verification when
renaming NV instructions, either the release scheduling is
directly placed in the Reorder Structure (Section 4.2.1) or the
release is immediately performed (Section 4.2.2). Examples
where an NV instruction is speculative and its scheduling
checkpointed on the left or right part of Release Queue
appear in Section 4.2.3.

4.2.1 Nonspeculative NV Instruction Finds Its LU Pair
Not Yet Committed

Before renaming instruction LU in the code of Fig. 8a, we

assume the logical register r2 is mapped to vp2 and p2 (see

GMT contents). We will focus on the release of < vp2,p2 > .

MONREAL ET AL.:

LATE ALLOCATION AND EARLY RELEASE OF PHYSICAL REGISTERS

1253

vVp p VvV ROSid k ¢
LU: 14 = r2 + r3 ;T2—Vp2—p2
2[vp2| p2 |1 2[TUid|[1]0 e
re| Vb 14 v 1 IofrZandr4
NV #2i= s T2 VP9
GMT LUsT
(a)
NVid Luid
r_1 r2 ROS
vVp p VvV ROSid k ¢ r 2 3
rd| r2 rd
r2|vp9 0 r2|NVid|0|0 vp_1 vp2
vp_2 commit
vp_d | vp9
GMT LUsT RwG rell 1
w
(b)
NVid LUid
ROSid k ¢ et r2 | ROS
v 2 3 PMT
r2 [NVid|0 |0 ra P T4] L t’ee
r3[LUid|2 |1 v 2 | s
ra [LUId| 0|1 = N\
]
LUsT vod VD9 VP Free
RwCc _" List

(©)

Fig. 8. (a) Example code and GMT/LUsT state after LU is renamed. (b) NV is renamed and schedules an early release of vp2 in the LUid entry.

(c) < vp2,p2 > release at LU commit and LUST after LU commits.

1. Rename of instruction LU. This step writes the
entries r2, r3, and r4 of the Last Uses Table to
record register uses in program order. Fig. 8a shows
the updated r2 entry in LUST. The ROSid field is set
with the ROS address at which instruction LU is
placed (LUid).

Rename of instruction NV. Just before renaming
NV, the logical destination register r2 is used to
index GMT and LUST and to get the fields p from
GMT and < ROSid,k,¢ > from LUST. So, before
renaming r2, we read: < p2,LUid, 1,0 > . Because
the identified LU instruction is not committed (bit
¢ = 0), the action here is to schedule a safe release of
vp2. This is done by setting the k bit in the RWC
array, just in the LUid entry (bit rell set in Fig. 8b).
After that, we rename all NV registers and proceed
as described in the Step 1. Fig. 8b shows the updated
r2 entries in GMT and LUST.

Commit of instruction LU. Every logical register of
instruction LU indexes the LUST to obtain ROSid
fields, which are compared with LUid. Wherever a
match is found, the bit c is set (see Fig. 8c). Notice
that actions on bits c have to be extended to all LUST
copies to achieve a proper branch misprediction
recovery. Besides, as instruction LU commits the rell
bit set in the RWC forces the release of vp2 and its
attached register p2, which is obtained from PMT.

4.2.2 Nonspeculative NV Instruction Finds Its LU Pair
Committed

Here, the action is twofold: On the one hand, we
immediately release the physical register supplying it to

the P Free List. On the other hand, the VP register of the

previous version is directly granted to the incoming NV
instruction (instead of supplying it to the VP Free List).
Therefore the only required action in GMT is turning off the
v bit. If this were the case in our previous example, the r2
entry in GMT would remain as < vp2, —,0 > and p2 would
be added to the P Free List.

4.2.3 Speculative NV Instruction

All the bookkeeping done to update the Last Uses Table and
identify LU instructions remains the same, but now the
scheduled releases are speculative and have to be placed to
the left (the LU instruction is still in the pipeline) or right
(the LU instruction has already committed) parts of the
Release Queue.

Fig. 9a shows an example of an LU instruction which has
a release scheduling dependent upon one branch verifica-
tion. If the instruction commits before that branch verifica-
tion, the scheduling is moved from the commit front of
RWC&NSI to RWNSI, waiting for the branch execution.
This transfer requires decoding VP numbers to set RWNS
bits (see Mark in Fig. 9a).

On the other hand, when the pending branch related to
the level n is confirmed, the entire level n of the Release
Queue (left and right parts) is ored with the previous n — 1
level. At the same time, all younger conditional releases
(from level TAIL to level n + 1) move one level toward the
ROS. The confirmation of the oldest branch (n =1 case)
implies further action. Fig. 9b shows an example of the
oldest branch confirmation with three pending branches.
All register releases scheduled in RWC&NSI cross the
Release Queue border and are ored with RWC. But, at the
same time, the releases scheduled in RWNST take effect (see
the Branch-Confirm Release arrows in the figure). VP registers
are sent (in a decodified way) to the VP Free List and PMT is

1254
committing
instructions
mark RwNS)
Virtual-Phy-Reg.
ROS
B wc
s i 5 s S 5 70
1
| EE== Rwcans!
1 I
==
! I
—T
=)
1
VRELEASEQUEVE]

Branch-Confirm
Release

Virtual-Phy-Reg.

— P Free List

ROS
I:t:‘: RwC :‘:‘:‘
i ——=> VP Free List

R D | i s | el -
! T T] COIT) - — !

':ﬁ: RwC&NSI——
oldest branch : /||\ . [RwNSI :
is confirmed 1 mov]l™ . rweans2TH T Rv:/NISZI 1
1 pem— (:J 1
| \Inov i E T T OV 1
1 1
1 1
1 |
1 1

Fig. 9. Examples of the operations supported by the Release Queue.
(a) Marking a bit in RWNS 1 to keep a speculative release coming from a
committed LU instruction. (b) The oldest branch confirmation transforms
speculative in safe releases and triggers a Branch-Confirm Release.

indexed in order to obtain the physical identifiers which are
to be sent to the P Free List. We assume the interface
between RWNSI and PMT has been designed to avoid the
internal PMT address decoder.

Finally, if the prediction for the number n branch was
wrong, all levels in the Release Queue from n to TAIL are
cleared, then squashing all speculative releases scheduled
from the mispredicted path. Therefore, TAIL is left pointing
to the n — 1 level. Notice that VP-LAER allows branches to
be verified out of order.

To sum up, registers are released at three possible
moments: the two we described in Section 4.2.2 (immediate
release) and Section 4.2.1 (commit of instruction LU) and the
oldest branch confirmation case presented in this section
(Branch-Confirm Release). In all situations, the physical
register release performed by VP-LAER takes place earlier
than in the conventional scheme.

5 EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we first describe the experimental frame-
work used to evaluate VP-LAER and the individual
contribution of late allocation and early release. We then
analyze the performance benefits of replacing conventional
renaming with VP-LAER considering the two following
scenarios. In Section 5.3, we assume that the register file is
outside critical timing paths and, thus, processor cycle time
and register file size are unrelated. On the other hand,
Section 5.4 considers the opposite situation, where cycle
time is closely related to the register file access time.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO. 10, OCTOBER 2004

5.1 Experimental Framework

A cycle-based timing simulator derived from SimpleScalar
v3.0 [6] has been set up. The out-of-order simulator has
been modified to include physical register files (integer and
FP) which are managed either with the conventional policy
or with the proposed policies. Table 3 summarizes the
parameters of the simulated microarchitecture. We will
compare a baseline processor with conventional renaming
to a similar processor enhanced with VP-LAER. The
individual contributions of VP-dsy and early release will
be also obtained. All reported speedups have conventional
renaming as a baseline.

Ten benchmarks from the Spec95 suite are used: five
integer (compress, gcc, go, 1i, and perl) and five FP
programs (mgrid, tomcatv, applu, swim, and hydro2d).
All programs were simulated to completion (by changing
some inputs) excepting tomcatv, for which the initial part
that reads a huge input file was skipped. Table 4 lists the
inputs and the number of instructions executed.

5.2 Register File Utilization and IPC Analysis for a
64int + 64fp Register File

First, we review how Utilization improves when VP-LAER
is applied to a 64int + 64fp register file, the design point
formerly considered in Section 2.1. Fig. 10 shows the
average number of Allocated registers that are in the
Empty, Ready, or Idle states. As expected, there are no
Empty registers and the number of Idle registers has
decreased. Conversely, the average number of Ready and
Free registers has increased. In particular, Ready registers
increase by 19 percent and 32 percent and Idle registers
decrease by 16 percent and 33 percent for integer and
FP programs, respectively. Consequently, Utilization is
largely improved and there are more Free registers.
Utilization increases from 39 percent to 59 percent in
integer codes and from 59 percent to 85 percent in FP codes,
while the average number of Free registers more than
doubles in both code types.

On the other hand, Fig. 11 shows the average number of
instructions committed per cycle (IPC) for conventional
renaming and VP-LAER. VP-dsy and early release acting
alone are also plotted. A first observation is that FP programs
benefit the most from any form of improved renaming
because of their higher pressure on the FP register file.

Early release alone gives an average speedup of 2 percent
and 5 percent, while VP-dsy alone achieves 5 percent and
24 percent for integer and FP, respectively. VP-LAER
achieves 6 percent and 28 percent, which represents almost
an additive behavior.

5.3 IPC versus Register File Size

If register file delay fits into the target cycle time, the
performance trade offs can be established by just looking at
IPC. In this situation, the processor designer can incorpo-
rate VP-LAER either as an IPC booster without changing
the register file size or as a size tightener without losing
performance.

VP-LAER for IPC boost, without changing the register
file size. Fig. 12a illustrates how IPC varies according to the
number of physical registers. We see how the IPC gap
between conventional and VP-LAER renaming widens as
the register file becomes tighter. In other words, VP-LAER
makes the processor performance less dependent on

MONREAL ET AL.: LATE ALLOCATION AND EARLY RELEASE OF PHYSICAL REGISTERS

1255

TABLE 3
Processor Parameters
Parameter Value
Fetch width 8 instructions (up to 2 taken branches)
L1 I-cache 32 KB, 2-way set-assoc, 32 byte lines, 1 cycle hit time

Branch prediction

18-bit Gshare predictor with speculative updates, up to 20 outstanding branches

Window size 128 entries

Func. Units (/at)

8 simple int (), 4 mult int (7), 4 1d/st, 6 simple FP (4), 4 multFP (4), 4 divFP (16)

Load/Store Queue | 64 entries with store-load forwarding

Issue mechanism

out-of-order issue. Loads executed when all previously store addresses are known

Physical Registers | 40-160 int / 40-160 FP

(32 int/ 32 FP logical)

L1 D-cache 32 KB, 2-way set-assoc, 64 byte lines, 1 cycle hit time
L2 Unified Cache | 1 MB, 2-way set-assoc, 64 byte lines, 12 cycles hit time
Main Memory unbounded size, 50 cycles access time

Commit width 8 instructions

register file size. In integer codes, register files having as
few as 48, 56, or 64 registers become interesting because
they reach an IPC close to that of a loose register file
(15 percent, 9 percent, and 6 percent speedup, respectively).
In floating-point codes, speedup is quite striking in the
lower size range: from 70 percent to 25 percent for 40 to
72 registers. On the other hand, a 96 register file (12 percent
speedup) performs as well as a loose register file.

VP-LAER for register file size reduction without losing
performance. VP-LAER can be used to sustain a given IPC
while reducing the number of registers, which is linearly
related to the register file chip area [11]. Fig. 12b shows two
sample configurations reaching 90 percent and 85 percent of
the maximum average IPC, with and without VP-LAER.
Area savings range between 25 percent and 30 percent,
being slightly greater for FP codes.

Component analysis. As noted before, the IPC benefit
obtained with VP-LAER is close to the sum of the benefit of
its components acting separately. However, for very tight
register files (roughly between 40 and 56 registers) and
FP codes, VP-LAER is even higher than that sum. Overall,
the weight of VP-dsy in IPC is dominant, whereas the early
release contribution is modest. However, early release
reduces the reexecution overhead significantly.

As Fig. 12¢ shows, early release helps reduce the number
of reexecutions. For instance, on average, in a 64int + 64fp

TABLE 4
Benchmarks, Compag/Alpha Fortran, and C Compilers (Max-
imum Optimization Level: -O5 for Fortran and -O4 Migrate for C)

Executed

Application Inputs instr. (M)
compress | 40000 e 2231 170
gce genrecog.i 145
g0 99 146
li 7 queens 243
perl scrabbl.in 47
mgrid test (replacing the two first lines to 5 and 18) 169
tomcatv | test 191
applu train (changing dt=1.5¢-03 and nx=ny=nz=13) 398
swim train 431
hydro2d | test (replacing ISTEP=1) 472

register file, the total number of reexecutions decreases by
20 percent and 14 percent for integer and FP codes,
respectively. In 11 and tomcatv, this reduction reaches
34 percent and 25 percent, respectively.

In order to support reexecution, we assume an Issue
Window as big as the ROS and able to keep instructions
until they commit. This fact also eases selective recovery for
other kinds of data speculation (e.g., cache-hit or load-store
independence speculation), but big Issue Windows can
impact cycle time. In contrast, processors with smaller and
faster Issue Windows may work at higher frequencies, but
at the expense of not taking advantage of the VP-LAER’s
full potential unless efficient recovery mechanisms are
devised. And, although this study is out of the scope of this
papet, a possible solution could be to merge VP-LAER with
some recent proposals of big Issue Windows which are able
to operate at small cycle times [5], [8], [20].

5.4 IPS versus Register File Size

Heavily pipelined processors may have to choose between a
multiple-cycle register file, possibly limiting IPC, or a
single-cycle register file, possibly limiting the processor
cycle time [4], [11], [34], [35]. Fig. 13 shows performance
measured in BIPS assuming that processor cycle time equals
the access time of the slowest register file, which is the FP
register file here due to its higher number of ports. Results
have been computed according to the model of Rixner et al.
for a 0.184 technology [31].

With the register file placed in a critical timing path, the
designer’s job is to find the tighter register file giving the
higher performance. VP-LAER sets a design point which
simultaneously requires fewer registers and attains more
BIPS. In integer codes, the preferred size reduces from 72 to
48 registers, whereas BIPS increase by 9 percent. In FP
codes, the best design shifts from 120 registers to two
attractive design points, namely, 96 and 80 registers, which
increase BIPS by 7.2 percent and 6 percent, respectively.

If we want to optimize the design for a processor
executing both integer and FP applications, we can consider
the overall workload BIPS average. In this case, the best
design point shifts from 120 to 72 registers with a BIPS
increase of 9.1 percent.

6 RELATED WORK

Another approach to delaying the allocation of physical
registers was proposed by Wallace and Bagherzadeh to

1256

Ready [l Idle

N
o

)
=3

N
=3

62.2 59.0

number of integer registers

)

54.5 51.1

IEEE TRANSACTIONS ON COMPUTERS,

VOL. 53, NO. 10, OCTOBER 2004

70

@
=3

a
=]

»
o

W
=3

89.9 04.3

90.5

N
=]

2 65.7

number of FP registers

=)

=}

comp gce go li perl Am

integer

Fig. 10. VP-LAER renaming. The number of Allocated registers that are in
bars.

IPC
34 1

324

28 4
2,6 4
24 4
22

18 4
16
14 4
1.2 4

comp gcc go li perl Hm

integer
Fig. 11. IPC for a 64int + 64fp register file. The bar group to the right of

manage a merged register file organized in a scalable way.
Scalability relies on splitting the register file into multiple
banks with only a single write port per bank [37]. As in
VP-LAER, each register-writing instruction is renamed at
decode using a unique identifier (called itag). Later on, the
functional units arbitrate for a physical place to store the
result, which implies the simultaneous allocation of a bank
port and a free register of that bank. This delayed allocation
is called dynamic result renaming (DRR) and it allows dealing
with the multiple banks without conflicts. Nevertheless, this
scheme has the same type of deadlock hazard as virtual-
physical registers have. Their proposed solution relies on
shifting the processor to a scalar mode when the oldest
instruction is unable to complete because all physical
registers have been allocated. In scalar mode, only the
oldest instruction is allowed to execute and its result will be
stored in the register that this instruction will release at
commit (the old_physical register recorded in the Reorder
Structure). Compared with VP-dsy, i.e., the Late Allocation
scheme used in VP-LAER, DRR provides a less aggressive
solution to deadlock avoidance.

In [29], Park et al. also use banking to reduce register file
write port requirements and, thus, energy. While the use of
multiple banks reduces energy by maintaining fewer ports
per bank, this port reduction results in more bank conflicts.
To resolve these conflicts, the authors use the concept of
virtual-physical tags (assigned at the rename stage) and
delay physical register and bank allocation until writeback.
Their technique is called decoupled rename and, by avoiding
write bank conflicts, it succeeds in mitigating the perfor-
mance degradation caused by write banking. To avoid the
deadlock problem, they use the same number of virtual-
physical and physical registers.

In the context of earlier physical register release, Farkas
et al. compare an imprecise-exception early release model to
the conventional one [11]. They propose releasing registers

o

tomc appl swim hydr Am

floating point

mgri

the Ready or Idle states. Register file Utilization is listed next to the Ready

IPC conv

W early release
W VvP-dsy
[] VP-LAER

32

2,8 4
2,6
2,4 4
221

1,8 4
1,6 4
1,4 4
1,2 4

mgr tomc appl swim hydr Hm

floating point
each plot is the harmonic mean.

when all the instructions between two redefinitions have
completed their execution instead of waiting for the last-use
commit as is done in VP-LAER. Because they are mostly
interested in performance bounds, no implementation was
proposed for this model.

Another approach intended to release registers earlier
was suggested by Moudgill et al. in [26]. In this work, they
suggest releasing physical registers eagerly, as soon as the
last-use instruction completes out of order. Last-use track-
ing is based on counters which record the number of
pending reads for every physical register. This initial
proposal did not support precise exceptions since counters
were not correctly recovered when instructions were
squashed. Later in the same paper, they present a simplified
approach that supports precise exceptions by delaying the
release and associating it to the commit of the instruction
computing the next version. This is the baseline in our
experiments using conventional release (conv and VP-dsy).

A similar mechanism is the base approach used by
Balasubramonian et al. in [2] and in [1]. In [2], a two-level
register file organization is proposed to reduce the register
file size requirements. The first-level (L1) register file
contains only those values that are active providers for
the functional units and the second-level (L2) contains those
values that are waiting for precise conditions to be released.
Registers are allocated from L1 at dispatch time and moved
toward L2 using the Moudgill et al. early-release mechan-
ism. Values are retained within L2 to ensure program
correctness because they might be needed in the event of a
branch misprediction or an excepting instruction. On the
other hand, in [1], all available registers are dynamically
allocated between two threads: the primary and the future
thread. Once again, using the imprecise early-release
mechanism, the future thread is able to make forward
progress by examining a very large instruction window and
by jumping far ahead to execute ready instructions. The

MONREAL ET AL.: LATE ALLOCATION AND EARLY RELEASE OF PHYSICAL REGISTERS

IPC
3 Integer
2,8
2,6
24
22
2
1,8
1,6
1,4
1,2

—e— cONV

—=— early release
—a— VP-dsy

—— VP-LAER

40 48 56 64 72 80 88 96 104 112120128160
number of registers

1257

IPC

3 FP
2,8
2,6
2,4
2,2

2
1,8
1,6
1,4
1,2

40 48 56 64 72 80 88 96 104 112120 128160
number of registers

(a)

integer FP

%IPC oty VP- saved a6y VP- saved

max LAER % LAER %

90% 59r 441 | 254%]|| 100r| 72r | 28%

85% 55t 40r | 27.3% N2r 641 |30.4%

(b)

o 70 - o 800 -
% 60 Integer VP-LAER % 7004 FP
é 50 | B VP-dsy g 600 4
= = 500
g g 400
3 30 3]
© & 300
: o H 3w H
g 10 3 100
: = - £ % n
2 comp gcc go li perl Am 2 mgri tomc appl swim hydr Am

()

Fig. 12. (a) IPC harmonic mean versus number of physical registers for conventional, early release, VP-dsy, and VP-LAER. (b) Register file sizes
affording some slight IPC degradations with and without VP-LAER. (c) Total number of reexecutions in VP-dsy and VP-LAER with 64int + 64fp

registers.

IPS x 10°
1,81

—— conv
—e— VP-LAER

integer

0,94
0,8
0,71

IPS x 10°
1,7+
1,61
1,51
1,41
1,34
1,21
1,11

14

FP

2
40 48 56 64 72 80 88 96 104 112120128136 144 152160
number of registers

6 40 48 56 64 72 80 88 96 104 112120 128 136 144 152 160
number of registers

Fig. 13. BIPS harmonic mean versus number of physical registers for conventional and VP-LAER renaming.

future thread is dynamically spawned by the hardware
when the primary thread runs out of physical registers and
stalls. This thread consists of only a program counter and a
register state and it serves the purpose of warming up the
register file, data, and instruction caches, and of resolving
mispredicted branches early. Later on, when the primary
thread is not stalled, it will reexecute these instructions in
order to ensure in-order commit and program correctness.

Other researchers also use the compiler to detect last-use
instructions in order to release physical registers early [22],

[23]. The compiler can identify registers containing dead
values and inform the hardware. To do this, either extra
instruction bits or new instructions are added to the ISA so
that the compiler can schedule software releases. On the
other hand, the compiler has a limited knowledge of the
dynamic control flow and the release scheduling must be
conservative. By contrast, hardware solutions like the Early
Release approach of VP-LAER have the potential to
dynamically identify last-use instructions, releasing more
registers early.

1258

7 CONCLUSIONS

In this paper, we have introduced VP-LAER, an alternative
renaming mechanism for out-of-order processors. VP-LAER
increases the register file utilization so that the average
number of allocated physical registers having pending
reads is increased. Increasing utilization will boost perfor-
mance on applications with a relatively high ILP which put
significant pressure on the register file. This situation
typically arises in FP applications (over a wide range of
register file sizes) and in integer applications with tight
register file configurations.

VP-LAER optimizes register file utilization by using two
complementary approaches. On the one hand, physical
registers are allocated as late as possible, just at the end of
instruction execution. Virtual-physical registers enable the
late allocation by decoupling dependency tracking from
value storage management. On the other hand, registers are
released as soon as the processor can guarantee no further
use, which usually occurs earlier than with the conventional
approach, but the capability of a precise recovery from
exceptions is still maintained.

VP-LAER is a more complex alternative than conven-
tional renaming, but that complexity is located out of
critical timing paths. Besides, the storage cost devoted to
VP-LAER is quite reasonable in the context of a high-
performance microprocessor.

Designs having a moderate clock rate where the register
file delay fits well into the processor cycle time can either
use VP-LAER to increase IPC while maintaining the size of
the register file or reduce its size while maintaining IPC. For
instance, a tight 64fp register file configuration managed
with VP-LAER gives 28 percent more IPC. Alternatively,
the number of registers can be reduced from a loose 55int to
a 40int register file without any IPC loss if conventional
renaming is replaced with VP-LAER.

On the other hand, when the processor cycle time is set
by the register file delay, the designer goal is to find the
smallest size giving the highest IPS rate. In our combined
workload (integer + FP), in comparison with conventional
renaming, VP-LAER increases IPS by 9.1 percent while
reducing the register file size by 40 percent for a
0.18y: technology.

ACKNOWLEDGMENTS

This work was supported by the Ministry of Education and
Science of Spain (CICYT TIC2001-0995-C02-02), by the
Diputaciéon General of Aragéon (Grupo Emergente de
Investigacién) and by the computing resources of CEPBA.
The authors would like to thank the Associate Editor for his
useful suggestions and the referees for their insightful
comments. They would also like to thank Elena Castrillo for
her contributions in editing this paper.

REFERENCES

[1] R. Balasubramonian, S. Dwarkadas, and D.H. Albonesi, “Dyna-
mically Allocating Processor Resources between Nearby and
Distant ILP,” Proc. 28th Ann. Int'l Symp. Computer Architecture
(ISCA '01), pp. 26-37, June 2001.

[2] R. Balasubramonian, S. Dwarkadas, and D.H. Albonesi, “Redu-
cing the Complexity of the Register File in Dynamic Superscalar
Processors,” Proc. 34th Ann. ACM/IEEE Int’l Symp. Microarchitec-
ture (MICRO '01), pp. 237-249, Dec. 2001.

B3]

(4

[5]

[6]

(]

(8]

]

(10]

(1]

(12]

(13]

(14]
(15]

[16]

(171

(18]

[19]

(20]

(21]

(22]

(23]

(24]

[25]

[26]

IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO. 10, OCTOBER 2004

A. Baniasadi and A. Moshovos, “Instruction Distribution Heur-
istics for Quad-Cluster, Dynamically-Scheduled, Superscalar
Processors,” Proc. 33rd Ann. ACM/IEEE Int’l Symp. Microarchitec-
ture (MICRO "00), pp. 337-347, Dec. 2000.

E. Borch, E. Tune, S. Manne, and J. Emer, “Loose Loops Sink
Chips,” Proc. Eighth Int’'l Symp. High-Performance Computer
Architecture (HPCA '02), pp. 299-310, Feb. 2002.

E. Brekelbaum, J. Rupley, C. Wilkerson, and B. Black, “Hierarch-
ical Scheduling Windows,” Proc. 35th Ann. ACM/IEEE Int’l Symp.
Microarchitecture (MICRO '02), pp. 27-36, Dec. 2002.

D. Burger and T. Austin, “The Simplescalar Tool Set v2.0,”
Technical Report TR-1342, Computer Science Dept., Univ. of
Wisconsin-Madison, June 1997.

R. Canal,]J. Parcerisa, and A. Gonzalez, “Dynamic Cluster
Assignment Mechanisms,” Proc. Sixth Int’l Symp. High-Performance
Computer Architecture (HPCA '00), pp. 133-144, Jan. 2000.

R. Canal and A. Gonzélez, “Reducing the Complexity of the Issue
Logic,” Proc. 15th Int’l Conf. Supercomputing (ICS '01), pp. 312-319,
June 2001.

J.L. Cruz, A. Gonzélez, M. Valero, and N.P. Topham, “Multiple-
Banked Register File Architectures,” Proc. 27th Ann. Int’l Symp.
Computer Architecture (ISCA '00), pp. 316-325, June 2000.

K.I. Farkas, P. Chow, N.P. Jouppi, and Z. Vranesic, “The
Multicluster Architecture: Reducing Cycle Time through Parti-
tioning,” Proc. 30th Ann. ACM/IEEE Int’l Symp. Microarchitecture
(MICRO ’97), pp. 149-159, Dec. 1997.

K. Farkas, N. Jouppi, and P. Chow, “Register File Considerations
in Dynamically Scheduled Processors,” Proc. Second Int'l Symp.
High-Performance Computer Architecture (HPCA "96), pp. 40-51, Feb.
1996.

A. Gonzélez, J. Gonzalez, and M. Valero, “Virtual-Physical
Registers,” Proc. Fourth Int’l Symp. High-Performance Computer
Architecture (HPCA '98), pp. 175-184, Jan.-Feb. 1998.

A. Gonzélez, M. Valero,]J. Gonzalez, and T. Monreal, “Virtual
Registers,” Proc. Third Int'l Conf. High Performance Computing
(HiPC '97), pp. 364-369, Dec. 1997.

L. Gwennap, “Intel’'s P6 Uses Decoupled Superscalar Design,”
Microprocessor Report, vol. 9, no. 4, pp. 9-15, Feb. 1995.

L. Gwennap, “Mips r12000 to Hit 300 Mhz,” Microprocessor Report,
Micro Design Resources, vol. 11, no. 13, pp. 1-4, Oct. 1997.

G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean, A. Kyker,
and P. Roussel, “The Microarchitecture of the Pentium 4
Processor,” Intel Technology J. Q1, Feb. 2001.

W.W. Hwu and Y.N. Patt, “Checkpoint Repair for Out-of-Order
Execution Machines,” Proc. 14th Ann. Int'l Symp. Computer
Architecture (ISCA '87), pp. 18-26, June 1987.

RM. Keller, “Look-Ahead Processors,” ACM Computing Surveys,
vol. 7, no. 4, pp. 177-195, Dec. 1975.

R.E. Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro,
vol. 19, no. 2, pp. 24-36, Mar./Apr. 1999.

AR. Lebeck, J. Koppanalil, T. Li, J. Patwardhan, and E. Rotenberg,
“A Large, Fast Instruction Window for Tolerating Cache Misses,”
Proc. 29th Ann. Int’l Symp. Computer Architecture (ISCA '02), pp. 59-
70, May 2002.

D. Levitan, T. Thomas, and P. Tu, “The PowerPC 620 Micro-
processor: A High-Performance Superscalar Risc Microproces-
sor,” Proc. 40th IEEE CS Int’l Conf., (COMPCON ’95), pp. 285-291,
Mar. 1995.

J.L. Lo, S.S. Parekh, S.J. Eggers, HM. Levy, and D.M. Tullsen,
“Software-Directed Register Deallocation for Simultaneous Multi-
threaded Processors,” IEEE Trans. Parallel and Distributed Systems,
vol. 10, no. 9, pp. 922-933, Sept. 1999.

M.M. Martin, A. Roth, and C.N. Fischer, “Exploiting Dead Value
Information,” Proc. 30th Ann. ACM/IEEE Int’l Symp. Microarchi-
tecture (MICRO ’97), pp. 125-135, Dec. 1997.

T. Monreal, A. Gonzalez, M. Valero, J. Gonzalez, and V. Vinals,
“Delaying Physical Register Allocation through Virtual-Physical
Registers,” Proc. 32nd Ann. ACM/IEEE Int’l Symp. Microarchitecture
(MICRO 99), pp. 186-192, Nov. 1999.

T. Monreal, V. Vinals, A. Gonzalez, and M. Valero, “Hardware
Schemes for Early Register Release,” Proc. Int’'l Conf. Parallel
Processing (ICPP “02), pp. 5-13, Aug. 2002.

M. Moudgill, K. Pingali, and S. Vassiliadis, “Register Renaming
and Dynamic Speculation: An Alternative Approach,” Proc. 26th
Ann. Int’l Symp. Microarchitecture (MICRO 93), pp. 202-213, Nov.
1993.

MONREAL ET AL.: LATE ALLOCATION AND EARLY RELEASE OF PHYSICAL REGISTERS

[27] K. Nowka and M. Flynn, “Wave Pipelining of High Performance
CMOS Static Ram,” Technical Report TR-94/615, Computer
Systems Laboratory, Jan. 1994.

S. Palacharla, N.P. Jouppi, and J.E. Smith, “Complexity-Effective
Superscalar Processors,” Proc. 24th Ann. Int’l Symp. Computer
Architecture (ISCA '97), pp. 206-218, June 1997.

L. Park, M.D. Powell, and T.N. Vijaykumar, “Reducing Register
Ports for Higher Speed and Lower Energy,” Proc. 35th Ann. ACM/
IEEE Int’l Symp. Microarchitecture (MICRO '02), pp. 171-182, Dec.
2002.

Y.N. Patt, SJ. Patel, M. Evers, D.H. Friendly, and J. Stark, “One
Billion Transistors, One Uniprocessor, One Chip,” Computer,
vol. 30, no. 9, pp. 51-57, Sept. 1997.

S. Rixner, W. Dally, B. Khailany, P. Mattson, U. Kapasi, and J.
Owens, “Register Organization for Media Processing,” Proc. Sixth
Int’l Symp. High-Performance Computer Architecture (HPCA '00),
pp- 375-386, Jan. 2000.

D. Sima, “The Design Space of Register Renaming Techniques,”
IEEE Micro, vol. 20, no. 5, pp. 70-83, Sept./Oct. 2000.

J.E. Smith and A.R. Pleszkun, “Implementation of Precise
Interrupts in Pipelined Processors,” Proc. 12th Ann. Int'l Symp.
Computer Architecture (ISCA '85), pp. 36-44, June 1985.

D.M. Tullsen, S.J. Eggers, J.S. Emer, HM. Levy, J.L. Lo, and R.L.
Stamm, “Exploiting Choice: Instruction Fetch and Issue on an
Implementable Simultaneous Multithreading Processor,” Proc.
23rd Ann. Int’l Symp. Computer Architecture (ISCA '96), pp. 191-
202, May 1996.

D.M. Tullsen, S.J. Eggers, and H.M. Levy, “Simultaneous Multi-
threading: Maximizing On-Chip Parallelism,” Proc. 22nd Ann. Int’l
Symp. Computer Architecture (ISCA '95), pp. 392-403, June 1995.
D.W. Wall, “Limits of Instruction-Level Parallelism,” Proc. Fourth
Int’l Conf. Architectural Support for Programming Languages and
Operating Systems (ASPLOS "91), pp. 176-188, Apr. 1991.

S. Wallace and N. Bagherzadeh, “A Scalable Register File
Architecture for Dynamically Scheduled Processors,” Proc. 1996
Conf. Parallel Architectures and Compilation Techniques (PACT '96),
pp. 179-184, Oct. 1996.

K.C. Yeager, “The Mips R10000 Superscalar Microprocessor,”
IEEE Micro, vol. 16, no. 2, pp. 28-40, Apr. 1996.

J. Zalamea,]J. Llosa, E. Ayguadé, and M. Valero, “Two-Level
Hierarchical Register File Organization for Vliw Processors,” Proc.
33rd Ann. ACM/IEEE Int’l Symp. Microarchitecture (MICRO ’00),
pp. 137-146, Dec. 2000.

V.V. Zyuban and P.M. Kogge, “Inherently Lower-Power High-
Performance Superscalar Architectures,” IEEE Trans. Computers,
vol. 50, no. 3, pp. 268-285, Mar. 2001.

(28]

(29]

(30]

(31]

(32]

[33]

(34]

(35]

(36]

[37]

(38]

(39]

[40]

Teresa Monreal received the MS degree in
mathematics and the PhD degree in computer
science from the Universidad de Zaragoza in
1991 and 2003, respectively. She is an assistant
professor in the Informatica e Ingenieria de
Sistemas Department at the University of
Zaragoza, Zaragoza, Spain. Her research inter-
ests are register management, superescalar
N processors, and register file optimization. She
is also a member of the Grupo de Arquitectura
de Computadores de la Universidad de Zaragoza (gaZ).

Victor Vinals received the MS degree in
telecommunication and the PhD degree in
computer science from the Universitat Politecni-
ca de Catalunya (UPC) in 1982 and 1987,
respectively. Currently, he is an associate pro-
fessor in the Informatica e Ingenieria de Siste-
mas Department at the University of Zaragoza,
Zaragoza, Spain. His research interests include
processor microarchitecture, memory hierarchy,
and parallel computer architecture. He is mem-
ber of the ACM, the IEEE, and the IEEE Computer Society. He is also
founding member of the Juslibol Midday Runners.

1259

José Gonzalez received the MS and PhD
degrees from the Universitat Politecnica de
Catalunya (UPC). In January 2000, he joined
the Computer Engineering Department of the
University of Murcia, Spain, and became an
associate professor in June 2001. In March 2002,
he joined the Intel Barcelona Research Center,
where he is a senior researcher. Currently, he is
working on new paradigms for the 1A-32 family, in
particular, Thermal and Power-Aware clustered
microarchitectures. He is member of the IEEE Computer Society.

Antonio Gonzalez received the MS and PhD
degrees from the Universitat Politécnica de
Catalunya (UPC), Barcelona, Spain. He has
been a faculty member of the Computer Archi-
tecture Department of UPC since 1986 and he is
currently a professor in this department. He
leads the Intel-UPC Barcelona Research Cen-
ter, whose research focuses on new microarch-
itecture paradigms and code generation
techniques for future microprocessors. His re-
search has focused on computer architecture, compilers, and parallel
processing, with a special emphasis on processor microarchitecture and
code generation. He has published more than 150 papers in the areas
power-aware microarchitectures, clustered microarchitectures, specula-
tive multithreaded processors, data value and data dependence
speculation and reuse, cache architectures, register file architecture,
modulo scheduling, code analysis and optimization, mapping parallel
algorithms to multicomputers, prolog-oriented architectures, instruction
fetching mechanisms, and digital image processing. He is an associate
editor of the |IEEE Transactions on Parallel and Distributed Systems,
ACM Transactions on Architecture and Code Optimization, and Journal
of Embedded Computing. He has served on more than 50 program
committees for international symposia in the field of computer
architecture, including ISCA, MICRO, HPCA, PACT, ICS, ICCD,
ISPASS, CASES, and IPDPS. He has been program cochair for ICS
2003, ISPASS 2003, and MICRO 2004. He is a member of the IEEE
Computer Society.

Mateo Valero received the MS degree from the
Technical University of Catalonia (UPC) in 1974
and the PhD degree UPC in 1980. He has been
teaching at UPC since 1974 and, since 1983, he
‘ has been a full professor in the Computer
Architecture Department. He has served as the
. Computer Architecture Department chair (1983-
¢ 1984, 1986-1987, 1989-1990, and 2001-current)
ﬁ\ and the dean of the Computer Science School
(1984-1985). His research topics are centered in
the area of computer architecture, with a special emphasis on high-
performance computers. He has coauthored more than 200 publica-
tions. He has served on organization committees for more than
180 international conferences. He has been an associate editor for
several journals, such as the IEEE Transactions on Parallel and
Distributed Systems and Parallel Programming Languages, and as a
guest editor of special issue for IEEE Transactions on Computers and
Computer. His research has been recognized with several awards,
including the King Jaime 1 by the Geralitat Valenciana presented by the
Queen of Spain, the Spanish national award “Julio Ray Pastor” to
recognize research on IT technologies by the Spanish Ministry of
Science and Technology, presented by the King of Spain, and the
“Distinction to recognize and promote research at the university”
presented by the Generalitat, Government of Catalonia. In December
1994, he became a founding member of the Royal Spanish Academy of
Engineering. In 1998, he was appointed “Favorite Son” of his bith town,
Alfamén (Zaragoza). In 2001, he was made a fellow of the IEEE and, in
2002, he was named an Intel Distinguished Research Fellow and a
fellow of the ACM.

i

> For more information on this or any computing topic, please visit
our Digital Library at www.computer.org/publications/dlib.

