28,104 research outputs found

    Time-Staging Enhancement of Hybrid System Falsification

    Full text link
    Optimization-based falsification employs stochastic optimization algorithms to search for error input of hybrid systems. In this paper we introduce a simple idea to enhance falsification, namely time staging, that allows the time-causal structure of time-dependent signals to be exploited by the optimizers. Time staging consists of running a falsification solver multiple times, from one interval to another, incrementally constructing an input signal candidate. Our experiments show that time staging can dramatically increase performance in some realistic examples. We also present theoretical results that suggest the kinds of models and specifications for which time staging is likely to be effective

    Compositional Falsification of Cyber-Physical Systems with Machine Learning Components

    Full text link
    Cyber-physical systems (CPS), such as automotive systems, are starting to include sophisticated machine learning (ML) components. Their correctness, therefore, depends on properties of the inner ML modules. While learning algorithms aim to generalize from examples, they are only as good as the examples provided, and recent efforts have shown that they can produce inconsistent output under small adversarial perturbations. This raises the question: can the output from learning components can lead to a failure of the entire CPS? In this work, we address this question by formulating it as a problem of falsifying signal temporal logic (STL) specifications for CPS with ML components. We propose a compositional falsification framework where a temporal logic falsifier and a machine learning analyzer cooperate with the aim of finding falsifying executions of the considered model. The efficacy of the proposed technique is shown on an automatic emergency braking system model with a perception component based on deep neural networks

    Low-Effort Specification Debugging and Analysis

    Get PDF
    Reactive synthesis deals with the automated construction of implementations of reactive systems from their specifications. To make the approach feasible in practice, systems engineers need effective and efficient means of debugging these specifications. In this paper, we provide techniques for report-based specification debugging, wherein salient properties of a specification are analyzed, and the result presented to the user in the form of a report. This provides a low-effort way to debug specifications, complementing high-effort techniques including the simulation of synthesized implementations. We demonstrate the usefulness of our report-based specification debugging toolkit by providing examples in the context of generalized reactivity(1) synthesis.Comment: In Proceedings SYNT 2014, arXiv:1407.493

    Control Synthesis for Multi-Agent Systems under Metric Interval Temporal Logic Specifications

    Full text link
    This paper presents a framework for automatic synthesis of a control sequence for multi-agent systems governed by continuous linear dynamics under timed constraints. First, the motion of the agents in the workspace is abstracted into individual Transition Systems (TS). Second, each agent is assigned with an individual formula given in Metric Interval Temporal Logic (MITL) and in parallel, the team of agents is assigned with a collaborative team formula. The proposed method is based on a correct-by-construction control synthesis method, and hence guarantees that the resulting closed-loop system will satisfy the specifications. The specifications considers boolean-valued properties under real-time. Extended simulations has been performed in order to demonstrate the efficiency of the proposed controllers.Comment: 8 pages version of the accepted paper to IFAC World Congres

    Desynchronization: Synthesis of asynchronous circuits from synchronous specifications

    Get PDF
    Asynchronous implementation techniques, which measure logic delays at run time and activate registers accordingly, are inherently more robust than their synchronous counterparts, which estimate worst-case delays at design time, and constrain the clock cycle accordingly. De-synchronization is a new paradigm to automate the design of asynchronous circuits from synchronous specifications, thus permitting widespread adoption of asynchronicity, without requiring special design skills or tools. In this paper, we first of all study different protocols for de-synchronization and formally prove their correctness, using techniques originally developed for distributed deployment of synchronous language specifications. We also provide a taxonomy of existing protocols for asynchronous latch controllers, covering in particular the four-phase handshake protocols devised in the literature for micro-pipelines. We then propose a new controller which exhibits provably maximal concurrency, and analyze the performance of desynchronized circuits with respect to the original synchronous optimized implementation. We finally prove the feasibility and effectiveness of our approach, by showing its application to a set of real designs, including a complete implementation of the DLX microprocessor architectur

    Trojans in Early Design Steps—An Emerging Threat

    Get PDF
    Hardware Trojans inserted by malicious foundries during integrated circuit manufacturing have received substantial attention in recent years. In this paper, we focus on a different type of hardware Trojan threats: attacks in the early steps of design process. We show that third-party intellectual property cores and CAD tools constitute realistic attack surfaces and that even system specification can be targeted by adversaries. We discuss the devastating damage potential of such attacks, the applicable countermeasures against them and their deficiencies
    • …
    corecore