Trojans in Early Design Steps—An Emerging Threat

Ilia Polian*, Georg T. Becker', and Francesco Regazzonii
*Universitdt Passau, Germany
THorst Gortz Institute for IT Security, Ruhr-Universitit Bochum, Germany
iALARL University of Lugano, Switzerland

Abstract—Hardware Trojans inserted by malicious foundries
during integrated circuit manufacturing have received substantial
attention in recent years. In this paper, we focus on a different
type of hardware Trojan threats: attacks in the early steps of
design process. We show that third-party intellectual property
cores and CAD tools constitute realistic attack surfaces and that
even system specification can be targeted by adversaries. We
discuss the devastating damage potential of such attacks, the
applicable countermeasures against them and their deficiencies.

I. INTRODUCTION

Historically, IT security concentrated on attack scenarios
targeting software and communication networks, but more
recently, the system hardware moved into the focus of attack-
ers. Hardware-related threats are relevant even for extremely
software-dominated systems, which still contain some amount
of hardware on which the software runs; compromising this
hardware makes the entire system vulnerable. Even worse,
many software-centric security solutions rely on a hardware-
based root of trust which stores secret keys and provides
essential security functions; successful attacks on such root-
of-trust blocks renders the entire security concept ineffective.
With the emergence of paradigms like cyberphysical systems,
internet of things, or Industrie 4.0 that unify the physical world,
IT systems and global connectivity, hardware blocks are at risk
to become the Achille’s heel of entire infrastructures.

This paper considers one emerging attack scenario: Hard-
ware Trojans. These are malicious modification of system
hardware with the purpose to gain control over its functionality
and, e.g., be able to deactivate the affected block at the
attacker’s will (“kill switch”), or establish a side-channel to
access confidential data processed by the device (“backdoor”).
The term “hardware Trojans” was traditionally associated with
threats stemming from external, untrusted foundries. However,
this paper is specifically concerned with Trojans that are intro-
duced into the system during early design steps by a rogue in-
house designer, by an external provider of intellectual property
blocks integrated into the design, or even by a computer-aided
desing (CAD) tools. An under-investigated attack surface is the
system specification which is created in a lengthy and complex
process. If an attacker succeeds in planting a Trojan during the
specification phase, such a Trojan is extremely hard to detect,
because any trusted reference is completely lacking.

The remainder of this paper is organized as follows. In
the next section, background information on hardware Trojans
is given. Two underestimated classes of threats: Trojans that
directly affect the circuit specification and Trojans in CAD
tools, are discussed in Sections IIT and IV, respectively. Known
countermeasures and detection methods are reviewed in Sec-
tion V, and their applicability and efficacy to Trojans in early
design steps is evaluated. Section VI concludes the paper.

II. BACKGROUND

The term “hardware Trojans” historically referred to threats
associated with outsourcing of advanced semiconductor man-
ufacturing into potentially untrustworthy countries [1]. The
foundry would receive circuit layout information (in GDS 1II
or a similar format) and, possibly, further design data, in order
to produce masks and manufacture the circuit. The alleged
threat consists in an intentional—and malicious—modification
of the circuit by the foundry before manufacturing, such that
the fabricated chip has critical deviations from its layout as
provided by its author.

However, the modern understanding of hardware Trojans
includes all malicious modifications of a circuit during its cre-
ation: by an untrusted foundry (as discussed above), but also by
rogue in-house designers, by third-party intellectual-property
(3PIP) cores, and by CAD tools. Some early publications refer
to the threats in early design steps (before manufacturing), by
names like “malicious insertions” or “rogue silicon” [2] but
recent publications use the name “hardware Trojans” to include
both pre-manufacturing and foundry-level scenarios [3].

Fig. 1 shows the standard integrated circuit design flow
and indicates sources of possible Trojan threats. Moreover, the
lower part of Fig. 1 shows both: standard quality-assurance
techniques which have the potential to identify Trojans, and,
in blue, approaches specifically designed to counter Trojans.
Table I provides a more detailed overview of different types
of hardware Trojans. In the following, we discuss the current
understanding of both foundry-level Trojans and Trojans in
early design steps, whereas subsequent sections will treat
under-investigated classes of hardware Trojans in more detail.

A. Foundry-level hardware Trojan threats

Suppose that a sensitive industrial or military system has a
restriction of its geographical location, i.e., it can be operated
at its legitimate buyer’s site but cannot be moved to a different

TABLE 1. ATTACK SURFACES FOR DIFFERENT TYPES OF TROJANS

| Trojans in circuit specification ‘

Trojans in early design steps
Third-party IP core CAD tools
Trojans in 3PIP core’s Trojans inserted by
RTL description high-level synthesis tool
Trojans in 3PIP core’s Trojans inserted by
gate-level netlist logic synthesis tool
Trojans in 3PIP core’s Trojans inserted by
GDS2 layout physical design tool

| Foundry-level Trojans |

Paper 55

manich
Texto escrito a máquina
Paper 55

ﬂ Third-Party IP Cores p Trojans in IP Cores
©
()] Synthesizable Synthesized GDS2 Standard Cell ad
. rojans in CAD Tool
— HDL Netlist Data Library ya ojans in C. 00's
<
- e Foundry-level Trojans
C ’/ g III
©) ‘ J
8 Design Flow
S
|— specifi- TR RTL Logic Gate-level Physical Layout Integrated :> Operation
cation SUUENS Description Synthesis netlist Design (GDS2) Circuit (in field)
(7)) Conventional Quality Assurance: Pre-silicon Post-silicon
]
— | Formal Verification || Layout-vs Schematic | Manufacturing On-line
=) Test monitoring
(7p] | Simulation | | Design Rule Check | —
© Post-silicon Self-
Q | Timing Analysis | Validation checking
GLJ Pre-silicon Trojan Countermeasures Post-silicon Trojan Countermeasures
-+ Trust Susceptible Functional Split Manu- Ring Concurent Error
[Verification Signal Scoring Test facti Oscillators Detection / TPAD
>S5
o Obfuscation Correlation Optical Side-channel Security Built-in Self-
U Analysis Inspection Analysis Monitors authentication

Fig. 1. Overview of circuit design flow, Trojan threats and countermeasures

site or given to a third party. To implement this functionality,
one of this system’s circuits includes a module that checks GPS
coordinates and disables the system when they don’t match
specification. The foundry-level attacker could find this module
by reverse-engineering and deactivate the protection by dis-
connecting its output—a minimal modification which does not
require extensive redesign. A further easy manipulation would
be to determine cryptographic blocks that drive an encrypted
bus and to disconnect them, such that the bus receives the
data in cleartext. Then, an attacker who has physical access
to the chip can read out the protected data from the now-
unencrypted bus. If the malicious foundry is concerned about
legitimate users noticing the absence of encryption, it could
replace original crypto modules by self-designed blocks which
modify the data in a way that is easily reversed by an attacker.

The key question in this context is why a foundry would
want to introduce malicious modifications into circuits of
their customers. The foundry does not have a direct benefit
from deactivation of GPS-powered location checker module.
In theory, a potential illegitimate buyer of the equipment in
question (e.g., one residing in a country to which export
restrictions are in place) could bribe the foundry to deactivate
the protection. In practice, it is extremely unlikely that the
buyer even knows which foundry will fabricate the circuits for
the equipment of interest, and the sheer number of factors that
have to fit together for this scenario to happen render it more
a conspiracy theory than a realistic threat.

In case of the information-leakage Trojan via deactivation
of bus encryption, the foundry itself could later buy systems
that incorporate their manipulated circuits, extract the protected
data and use them (e.g., resell this data). Obviously, this activ-
ity, when carried out on large scale, will attract attention and

will likely lead to discovery of the manipulation. The outcome
will be enormous legal claims against both the foundry and
the individual(s) responsible and a complete collapse of the
foundry’s reputation. In contrast to other hardware security
threats which can be performed by individual, anonymous
attackers (like extracting secret data from smart cards by side-
channel analysis), foundries are relatively few in number and
inseparably attached to their equipment that cannot be quickly
relocated. As a consequence, all Trojan manipulations are
extremely risky for the foundry, because it would be pretty easy
to hold accountable. While it would be wrong to rule out their
possibility by this argument, not a single fully documented case
was reported by now (the manipulation in [4] turned out to be
an undocumented test-access feature rather than an attack).

B. Early-design-step hardware Trojan threats

One of the first hardware Trojan demonstrations was a
manipulation of the fuel rod position control block in a nuclear
reactor [5]. The Trojan affected the hardware module which
forwards the temperature readings, thus making the reactor
unstable despite redundancy and failsafe mechanisms. King et
al. [6] developed techniques to disable memory protection in
a microprocessor and introduce a “shadow mode” where full-
privilege instructions could run invisible to software. Based on
these mecanisms, they demonstrated privilege escalation, login
backdoor and password stealing. Hicks et al. [7] demonstrated
footholds for unauthorised entering of the supervisor mode,
granting unpriviliged malicious software access to protected
memory, and allowing the attacker to inject and execute
arbitrary code. Wang et al. [8] reported six Trojans triggered
by specific instruction/operand sequence which either leaked
protected information (protected software code or secret keys)
or created malfunctions.

The authors of these papers did not provide a thorough
analysis how exactly the Trojans would be inserted. In fact,
they assumed that a rogue in-house designer could have done
the manipulations. However, these Trojans could also be in-
serted by a malicious EDA tool (discussed in the next section)
or be part of a 3PIP core. A number of Trojan taxonomies
[9, 3] distinguish different types of Trojans by their trigger
(activation condition) and payload (malicious activity per-
formed upon activation). The trigger condition can consist in
a combinational rare-event (low-probability signal assignment)
[10], a sequence of input values or operations [11] or in an
analog conditions such as lowered voltage [12] or aging [13].
The payload can be roughly categorized into denial-of-service
attacks (“kill switch”), which disable the circuit or cripple
some of its functions (e. g., reduce the quality of a random-
number generator [14]), active manipulations to alter or add its
functionality [15]), and information leakage. The latter include
Trojans that assist in side-channel analysis of cryptographic
hardware [16, 12], or communicate confidential information
(including but not restricted to cryptographic secret key) via
covert or side-channels like transient power [17] or amplitude
of the transmitted wireless signal [18].

III. TROJANS IN CIRCUIT SPECIFICATIONS

Design specifications are often discussed by several players
(customers, hardware and software designers, domain experts,
marketing specialists). These players usually come from differ-
ent communities, each one using a specific “language”, often
hard to be completely understood by other players. Several ef-
forts have been carried out in the past to analyze and formalize
the collection of design specification, using languages such as
UML [19], but the analysis of requirements and the finalization
of design specifications is still, very often, a somewhat chaotic
process. It is thus very likely that a modification inserted in
this phase would be pretty hard to identify. Furthermore, all
the following design and verification step will directly depend
on the specification. As a result, a Trojan inserted during
specifications would be almost impossible to detect.

For these reasons, circuit specification seems to be an ideal
design step for the insertion of a Trojan. However, to date,
this attack scenario is largely unexplored. Trojans inserted
during circuit specifications can have mainly three goals. The
adversary modifies the specifications to directly include a
Trojan circuit, to significantly simplify the insertion of Trojans
in following design steps, or to reduce the capabilities of
Trojan detection techniques. In the following part of the section
we will detail these scenarios.

A. Trojans directly inserted during specification phase

This is the most straightforward attack. The adversary sim-
ply modifies the specifications to weaken the overall system,
for instance by reducing the number of key updates in a
smart card to facilitate a side-channel attacker, by selecting
compromised libraries for the design, or by adding debug
ports which can be later used to tamper with the device
content. More advanced Trojans which can be inserted during
specifications are the ones which might look like a device
feature. An example can be the insertion of additional circuitry,
which looks like the design’s watermark but instead allows to

leak information about the processed data via a side channel
or another covert channel.

B. Simplify Trojan insertion in following steps

Malicious modification of specifications might also have
the goal of enabling (or, at least, simplifying) the insertion of
a Trojan in subsequent steps of the design process. This can
be achieved, for instance, by adding extra circuits which an
adversary could modified later to leak information. An example
can be the addition of an LFSR to an encryption engine, in
order to reveal its functionality. This additional block would
justify the addition of extra PADs to the circuit and would
allow a malicious designer, in a following step of the design,
to connect these PADs also to few bits of the secret key and
convey them directly to the adversary.

C. Reduce detection capability

Specifications can even be modified to significantly reduce
the detection capabilities applied to the finalized circuit. For
instance, an adversary which aims at fooling a Trojan detection
algorithm which identifies paths very rarely executed can alter
the circuit specification to make appear normal that the Trojan
circuit is rarely activated. During the Trojan detection phase,
the Trojan circuit will be identified as a rarely executed path.
However, since this would match the specification, it would be
ignored and the Trojan would remain undetected.

IV. TROJAN TOOLCHAIN

The majority of scientific results reported so far focused on
Trojans inserted by malicious foundries or found in 3PIP cores.
While it has been observed that malicious CAD software can
create hardware Trojans [20], this scenario was largely ignored
in the following years. We argue that CAD tool based hardware
Trojan insertion is indeed an absolutely realistic scenario. CAD
software has nearly perfect control over the circuit and can add
malicious circuitry in an automatic and stealthy manner. In the
following, we will first discuss the motivation of a potential
adversary to mount a hardware Trojan attack using a CAD tool
as a vehicle. Then we will narrow down technical challenges
when executing such an attack and formulate requirements for
a successful tool-backed hardware Trojan insertion.

A. Why would a CAD tool be malicious?

CAD tools are an integral part of every practical design
flow, and even companies which heavily rely on manual
circuit optimization make intensive use of automatic tools in
every design step. These tools can be roughly divided into
synthesis tools working on different levels (shown by black
arrows in Fig. 1) and analysis tools for tasks like verification,
timing analysis or power estimation. In practice, synthesis and
analysis tools are deeply intertwined. The market for such tools
is currently divided between three major tool vendors, a large
number of small commercial companies typically offered one
or very few highly specialized tools, and some amount of free
and other non-commercial software. In context of hardware
Trojan threats, it is important that most of these tool give their
users a very far-reaching flexibility to access their internal data
structures via special scripting languages, including SKILL.

When evaluating the possibility of a CAD tool being
malicious, the most obvious option is that the company which
develops and markets this tool would intentionally incorporate
adversarial capabilities into their product. At least for the
major providers of tools which are widely used by many
customer, the risk of detection is quite high, and its potential
consequences would be devastating for the affected tool vendor
and for the design-automation industry as a whole. If design
houses conclude that they cannot trust CAD tools available on
the market, they will either develop their own tools or support
development of alternative tools, including open-source tools.
These risks can be considered a viable deterrence at least for
the larger tool vendors.

Similar argumentation holds for possible political
pressure—or legal compulsion—to implement malicious
functionality on request of national secret services. While such
speculations gained momentum after Snowden revelations, the
political and economical consequences of such requirements,
should they become public, would be enormous. Companies
located in different countries would likely break ties with
the affected tool vendors, and governments would support
the creation of national tool vendors independent of other
countries’s services. Such events can spark a spiral of
protective measures, sanctions and countersanctions, in the
circuit design area and beyond, at the cost of economic
efficiency, international collaboration and scientific progress.

Even though the argumentation so far indicates that tool
vendors themselves are unlikely to provide malicious versions
of their software to customers, attackers other than the tool
vendors can still produce such adversarial software without the
vendor’s consent. This does not mean that an attacker has to
develop from scratch a version of the software that is identical
to the authentic one except that it adds hardware Trojans to
circuit it creates or optimizes. As was mentioned above, most
CAD tools are configured, customized and scripted. Changing
the default settings may already be sufficient for an attack, as
explained in Section IV-B. Moreover, they are modular, and
exchanging one module by a malicion variant may easily go
undetected.

Once a manipulated version of the CAD tool exists, the
attacker must make sure that customers actually use this
version and not the Trojan-free software available from the
vendor. This can be achieved by social engineering, involving
a malicious distributor and/or salesperson. Even more realistic
would be a “traditional” computer security breach, where
the attacker penetrates the corporate network of the tool-
user company and replaces the Trojan-free software by the
malicious CAD tool. Once in the network, an attacker could
perform further detrimental actions, e.g., replace legitimate
3PIP cores in the customer’s database by versions that in-
clude hardware Trojans or install a software Trojan which
monitors and manipulates the design process (e.g., prevents
verification software from being called in order to prevent
Trojan detection). Attacks on corporate networks are routinely
reported, and in many cases their initiators remain unidentified.
Therefore, the “cyberattack” scenario is associated with far
less deterrence than malicious tools being provided directly
by their vendors. While the attacker will require some degree
of knowledge about the internal data organization of the victim
company, a competent attacker will be able to obtain this

information, possibly from the company’s current or past
employees. In general, this scenario is realistic and has full
damage potential.

B. The technical aspect: How would a Trojan-CAD tool work?

Engineering a malicious CAD tool such that it can reli-
ably insert powerful hardware Trojans into arbitrary circuits
without being detected is a much more challenging task that
inserting a Trojan into a given circuit, e.g., and 3PIP core.
The solution must be fully automatic and completely robust,
i.e., no trial-and-error strategies are acceptable. A complete
solution for a malicious CAD tool necessitates the following
three components:

1) Detection algorithm
2) Payload generator
3) Insertion and hiding procedure

The exact functionality of the three parts depends on the
type of Trojan to be employed. For example, if a malicious
synthesis tool attempts to plant a Trojan which leaks secret
keys out of cryptographic blocks, the tool must first decide
whether the circuit being synthesized indeed includes crypto
blocks and find where they are located. This activity is related
to reverse engineering, except that RE is usually done by
a combination of automatic and manual techniques whereas
the manipulated tool must locate the Trojan site without any
external help.

Once the tool decided whether and when to insert a Trojan,
its payload must be generated. For example, if the Trojan will
store the secret key in an additional memory which can be
later read out, the tool must add this memory to the crypto
engine in a manner that will not be detected during subsequent
quality-assurance steps. For example, the tool could search for
an embedded memory already present in the block and replace
it by a slightly larger embedded memory; the extra cells will
be used for key storage. If the Trojan is triggered (e.g., by
application of a specific plaintext to the circuit’s inputs), this
trigger must also be generated and added to the circuit.

Since most industrial designs go through a thorough vali-
dation, verification and testing process (indicated in the lower
part of Fig. 1), Trojan insertion must be accompanied by
hiding and obfuscation methods to prevent Trojan detection
during quality-assurance procedures. This can be achieved
by attacking test procedures simultaneously, e.g., replacing
simulation testbenches used for validation by testbenches that
never excite the added Trojan functionality, or simply skippiing
certain steps (e.g., layout-vs.-schematic checks when Trojans
are inserted on layout level during place & route). If vectors
used for postmanufacturing testing excite the Trojan (and lead
to invalied test responses), the expected responses must be
replaced by consistent values.

It is possible to combine CAD tool and 3PIP core Trojans
in a simple manner. If malicious versions of 3PIP cores
are available on the corporate network, the malicious CAD
tool may attempt to replace original, Trojan-free cores by
manipulated versions. For example, assume that a core re-
alizes encryption using a balanced design style such as to
prevent information leakage exploitable by power analysis.
If an attacker can plant a functionally equivalent version of

the core which performs exactly the same encryption but
without side-channel countermeasures into the victim network,
the malicious tool could simply include the unprotected core
instead of the protected version.

Using the three above-mentioned building blocks, a very
powerful malicious CAD tool can be constructed that can
automatically infect a large number of different designs. But
how to construct these building blocks in detail has not been
explored so far. Designing such a flexible and powerful tool is
quite complex but would be particularly dangerous. Therefore,
more research is needed to better understand the danger of
malicious CAD tools and develop both technical as well as
legal/behavioral countermeasures.

V. DETECTION AND COUNTERMEASURES

Circuit design can be understood as a sequence of synthesis
steps, from specification down to manufactured silicon, where
each step takes a higher-level description and generates a
lower-level description. These steps should be consistent, i.e.,
the output of each synthesis step should either be equivalent to
its input, or it should refine it. Insertion of a Trojan breaks up
this consistency, and Table II (which follows the structure of
Table I) summarizes which abstraction levels are still correct
and which are Trojan-affected, depending on their insertion
method.

A. Countermeasures against foundry-level hardware Trojans

Foundry-level Trojans do not modify any design descrip-
tion, and the complete design stack is consistent. Therefore,
pre-silicon methods such as simulation or formal equivalence
checking, will not indentify these Trojans and post-silicon
methods such as optical inspection [21], functional test [22,
23, 24] or side-channel analysis [25, 26, 27] must be used.
Note, however, that it is very much possible to use pre-
silicon information to assist in later Trojan detection by, e.g.,
determining locations where the attacker will likely insert
Trojan triggers [28, 10], or to incorporate features that will
complicate Trojan insertion [29] or assist in their detection
[30]. A very powerful technique to detect foundry-level Trojans
is run-time monitoring of either circuit functionality [31] or its
parametric behavior [32, 33].

B. Countermeasures against Trojans in early design steps

When considering the middle part of Table II, one un-
expected finding is that Trojans in 3PIP cores and in EDA
tools are equivalent from detection point of view. For ex-
ample, Trojans in a gate-level netlist of a 3PIP core and
Trojans inserted by a malicious logic-synthesis tool lead to
conceptually identical situations, namely that the circuit’s RTL
description is consistent with its specification but not with its
gate-level netlist and lower abstraction levels derived from
it. Therefore, any test or verification method that checks
consistency (equivalence or refinement) between one the levels
above the Trojan insertion point and one of the levels below
can potentially detect the Trojan. While there is a plethora of
such verification and test methods (indicated in Fig. 1), we
will now discuss their potential and shortcomings.

Out of the scenarios in Table II, layout-level Trojans are
perhaps the least problematic threat. Efficient and scalable

TABLE II. ABSTRACTION LEVELS AFFECTED BY DIFFERENT TROJANS
Type of Trojan Attack Abstraction levels affected by the Trojan
Spec RTL Gate Layout Silicon
Trojans in specification Trojan Trojan Trojan Trojan Trojan
Early-design-step

Trojans in Trojans in
3PIP core CAD tool

RTL High-level synth. OK Trojan Trojan Trojan Trojan

Netlist Logic synthesis OK OK Trojan Trojan Trojan

Layout Physical design OK OK OK Trojan Trojan

Foundry-level Trojans OK OK OK OK Trojan

automatic layout-vs-schematic (LvS) tools are available and
widely used. They establish a formal equivalence between the
gate-level description and the GDS II layout, so any malicious
deviations will be reported. Parts of the circuit which are
exempt from LvS (like analog blocks) are usually not well
suitable for Trojan insertion and can be checked manually.
Moreover, design rule checks (DRC) should identify any
dopant-level manipulation attempts [14, 12] (note that these
techniques were designed for foundry-level, not design-level
attacks).

Trojans in gate-level descriptions can be identified by
simulation or formal equivalence checking. Simulation is an
inherently incomplete technique, and a Trojan with a non-
trivial activation condition (e.g., certain instruction sequence
in a microprocessor) may go undetected. A successful formal
equivalence check would prove the absence of (functional)
Trojans, however, state-of-the-art tools are not applicable to
arbitrary-sized circuits or require abstraction techniques during
which Trojan functionality might be simplified away.

Trojans inserted at the highest abstraction level, namely
into an RTL description, appear to be hardest from the de-
tection point of view. The only option to detect them is to
check the RTL description against the specification. However,
specification is, in practice, often incomplete and lacks impor-
tant details (such as cycle-accurate execution models). State-
of-the-art high-level verification tools cannot handle full-chip
descriptions if they include analog or microelectromechanical
blocks. Much of practical validation effort is conducted via
largely manual techniques such as HDL code review, which
provide no guarantee that a Trojan hidden in the code will not
be overlooked.

In the ideal case, a specification is accompanied by a
comprehensive set of formal properties which can be auto-
matically checked. A Trojan that leads to violation of at least
one of these properties will be detected. At the same time, it is
extremely hard to prove absence of a system mis-behavior that
is not known in advance. Approaches which create a complete
property-based description of a circuit which covers its entire
functionality [34] might become a viable solution in the future.

Run-time monitoring, which is expensive but effective
against foundry-level Trojans [31], does not cover early-
design-step Trojans, because checking structures are generated
when the circuit’s Boolean function is known, i.e., at RTL or
gate level. While it is possible to generate check conditions
directly out of specification (like “monitoring triangles” in
[35]), such conditions are not guaranteed to comprehensively
cover the circuit functionality.

C. Countermeasures against Trojans in specification

Counteract Trojan inserted during specification is ex-
tremely hard, since generally there is no ‘“golden” specifi-
cation to compare with (once specifications are in place, it
is possible to compare the original one and detect eventual
modifications, but this is not possible while specifications are
still under preparation). The use of formal approached and
languages for requirements collection and system specification,
would certainly help to avoid malicious changes of system
specification since would allow to use formal methods to
verify the properties. However, the most straightforward and
effective way to guarantee the correctness of specification is
a careful review of the specification documents by the whole
team involved in the design.

VI. CONCLUSION

In this paper we discuss the potential of Trojan inserted
in the early steps of design process. We focused on third-
party intellectual property cores, CAD tools, and on the system
specification step, and we discuss the devastating damage
potential of such attacks as well as the possible measures which
designer can apply to counteract these attacks.

REFERENCES

[1]1 S. Adee. The Hunt for the Kill Switch. http://spectrum.ieee.
org/semiconductors/design/the-hunt-for-the-kill-switch. 2008.

[2] M. Banga and M. S. Hsiao. “VITAMIN: Voltage Inversion
Technique to Ascertain Malicious Insertions in ICs”. In:
HOST. IEEE Computer Society, 2009, pp. 104-107.

[3] S. Bhunia et al. “Hardware Trojan Attacks: Threat Analysis
and Countermeasures”. In: Proceedings of the IEEE 102.8
(2014), pp. 1229-1247.

[4] S. Skorobogatov and C. Woods. “Breakthrough Silicon Scan-
ning Discovers Backdoor in Military Chip”. In: CHES.
Vol. 7428. Lecture Notes in Computer Science. Springer,
2012, pp. 23-40.

[51 S. C. Smith and J. Di. “Detecting Malicious Logic Through
Structural Testing”. In: IEEE Region 5 Tech. Conf. 1EEE
Computer Society, 2007, pp. 217-222.

[6] S. T. King et al. “Designing and Implementing Malicious
Hardware”. In: LEET. USENIX Association, 2008.

[71 M. Hicks et al. “Overcoming an Untrusted Computing Base:
Detecting and Removing Malicious Hardware Automatically”.
In: IEEE Symposium on Security and Privacy. IEEE Computer
Society, 2010, pp. 159-172.

[8] X. Wang et al. “Software exploitable hardware Trojans in
embedded processor”. In: DFT. IEEE Computer Society, 2012,
pp. 55-58.

[9] M. Tehranipoor and F. Koushanfar. “A Survey of Hardware
Trojan Taxonomy and Detection”. In: IEEE Design & Test of
Computers 27.1 (2010), pp. 10-25.

[10] S. Dupuis et al. “New testing procedure for finding insertion
sites of stealthy hardware Trojans”. In: DATE. ACM, 2015,
pp. 776-781.

[11] S. Narasimhan et al. “TeSR: A robust Temporal Self-
Referencing approach for Hardware Trojan detection”. In:
HOST. IEEE, 2011, pp. 71-74.

[12] R. Kumar et al. “Parametric Trojans for Fault-Injection At-
tacks on Cryptographic Hardware”. In: Fault Diagnosis and
Tolerance in Cryptography. 2014, pp. 18-28.

[13] Y. Shiyanovskii et al. “Process reliability based Trojans
through NBTI and HCI effects”. In: AHS. IEEE, 2010,
pp. 215-222.

[14]

[15]

[16]

(171

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

[32]

(33]

[34]

[35]

G. T. Becker et al. “Stealthy Dopant-Level Hardware Trojans”.
In: Cryptographic Hardware and Embedded Systems — CHES
2013. Vol. 8086. 2013, pp. 197-214.

J. Zhang et al. “VeriTrust: Verification for Hardware Trust”.
In: IEEE Trans. on CAD of Integrated Circuits and Systems
34.7 (2015), pp. 1148-1161.

S. Ali et al. “Multi-level attacks: An emerging security con-
cern for cryptographic hardware”. In: DATE. IEEE, 2011,
pp. 1176-1179.

L. Lin, W. Burleson, and C. Paar. “MOLES: Malicious off-
chip leakage enabled by side-channels”. In: ICCAD. ACM,
2009, pp. 117-122.

Y. Liu, Y. Jin, and Y. Makris. “Hardware Trojans in wireless
cryptographic ICs: silicon demonstration & detection method
evaluation”. In: ICCAD. IEEE, 2013, pp. 399-404.
International Organization for Standardization. ISO/IEC
19501: information technology-open distributed processing-
unified modeling language (UML) version 1.4. 2. 1SO, 2005.
M. Potkonjak. “Synthesis of trustable ICs using untrusted
CAD tools”. In: DAC. ACM, 2010, pp. 633-634.

S. Bhasin et al. “Hardware Trojan Horses in Cryptographic IP
Cores”. In: Fault Diagnosis and Tolerance in Cryptography.
2013, pp. 15-29.

M. Banga et al. “Guided test generation for isolation and
detection of embedded Trojans in ICs”. In: ACM Great Lakes
Symposium on VLSI. ACM, 2008, pp. 363-366.

R. S. Chakraborty et al. “MERO: A Statistical Approach for
Hardware Trojan Detection”. In: CHES. Vol. 5747. Lecture
Notes in Computer Science. Springer, 2009, pp. 396-410.
M. Banga and M. S. Hsiao. “Trusted RTL: Trojan Detection
Methodology in Pre-silicon Designs”. In: HOST. IEEE Com-
puter Society, 2010, pp. 56-59.

J. Aarestad et al. “Detecting Trojans Through Leakage Current
Analysis Using Multiple Supply Pad Ippqs”. In: IEEE Trans.
Information Forensics and Security 5.4 (2010), pp. 893-904.
Y. Alkabani and F. Koushanfar. “Consistency-based charac-
terization for IC Trojan detection”. In: ICCAD. ACM, 2009,
pp. 123-127.

B. Cha and S. K. Gupta. “Trojan detection via delay measure-
ments: a new approach to select paths and vectors to maximize
effectiveness and minimize cost”. In: DATE. EDA Consortium
San Jose, CA, USA / ACM DL, 2013, pp. 1265-1270.

F. G. Wolff et al. “Towards Trojan-Free Trusted ICs: Problem
Analysis and Detection Scheme”. In: DATE. ACM, 2008,
pp. 1362-1365.

R. S. Chakraborty and S. Bhunia. “Security against hardware
Trojan through a novel application of design obfuscation”. In:
ICCAD. ACM, 2009, pp. 113-116.

K. Xiao and M. Tehranipoor. “BISA: Built-in self-
authentication for preventing hardware Trojan insertion”. In:
HOST. IEEE Computer Society, 2013, pp. 45-50.

T. F. Wu et al. “TPAD: Hardware Trojan Prevention and
Detection for Trusted Integrated Circuits”. In: IEEE Trans.
CAD Accepted (2016).

S. Narasimhan et al. “Improving IC Security Against Trojan
Attacks Through Integration of Security Monitors”. In: /IEEE
Design & Test of Computers 29.5 (2012), pp. 37-46.

J. Rajendran et al. “Design and analysis of ring oscillator based
Design-for-Trust technique”. In: VTS. IEEE Computer Society,
2011, pp. 105-110.

J. Urdahl et al. “Path predicate abstraction by complete interval
property checking”. In: FMCAD. IEEE, 2010, pp. 207-215.
A. Waksman and S. Sethumadhavan. “Tamper Evident Micro-
processors”. In: IEEE Symposium on Security and Privacy.
IEEE Computer Society, 2010, pp. 173-188.

