28 research outputs found

    STATEFUL METHOD FOR ACCESS POINT DISCOVERY OF WIRELESS LOCAL AREA NETWORK CONTROLLER

    Get PDF
    Access points (APs) for a wireless local area network (WLAN) can discover a wireless LAN controller (WLC) address (in order to establish a management session with the WLC) through a variety of mechanisms, such as Dynamic Host Configuration Protocol (DHCP) option 43 mechanisms, Domain Name System (DNS) server mechanisms, and Layer 2 (L2) broadcast discovery mechanisms. The DHCP discovery mechanism is the most commonly used mechanism for WLC discovery but is a laborious and manual task that may be prone to errors. Techniques proposed herein provide an easy to use, stateful, and reliable mechanism through which an AP can discover a WLC by leveraging a DHCP relay agent that can forward DHCP packets between clients and servers. The techniques involve various functionalities including, but not limited to, a stateful process that can be used to measure reachability and latency to each configured WLC Internet Protocol (IP) address, the creation of an updated priority list of WLC IP addresses based on network latency, and the inline insertion of the list of WLC IP addresses in the DHCP exchange between a server and AP

    An Open Management and Administration Platform for IEEE 802.11 Networks

    Get PDF
    The deployment of Wireless Local Area Network (WLAN) has greatly increased in past years. Due to the large deployment of the WLAN, the immediate need of management platforms has been recognized, which has a significant impact on the performance of a WLAN. Although there are various vendor-specific and proprietary solutions available in the market to cope with the management of wireless LAN, they have problems in interoperability and compatibility. To address this issues, IETF has come up with the interoperability standard of management of WLANs devices, Control And Provisioning of Wireless Access Points (CAPWAP) protocol, which is still in the draft phase. Commercial implementation of this draft protocol from WLAN equipment vendors is rather expensive. Open source community, therefore, tried to provide free management solutions. An open source project called openCAPWAP was initiated. However, it lacks a graphic user interface that makes it hard to implement for novice network administrators or regular customers. Therefore, the researcher designed and developed a web interface framework that encapsulates openCAPWAP at the bottom to provide user-friendly management experience. This application platform was designed to work with any remote web server in the public domain through which it can connect to access points or access controllers through a secure shell to configure them. This open platform is purely open source-based. It is operating system independent: it can be implemented on any open source environment such as regular Linux operating system or embedded operation system small form factor single board computers. The platform was designed and tested in a laboratory environment and a remote system. This development contributes to network administration in both network planning and operational management of the WLAN networks

    Attention to Wi-Fi Diversity: Resource Management in WLANs with Heterogeneous APs

    Get PDF
    Many home networks integrate a small number (typically 2-4) of Wi-Fi Access Points (APs), with heterogeneous characteristics: different 802.11 variants, capabilities and security schemes. This paper proposes the consideration of these specific characteristics in order to improve the management of network resources. Three use cases are presented in order to showcase the potential benefits. By the use of a user-space AP, which works in coordination with a controller, the network is able to assign each connected station to the AP that best fits with its characteristics. The system also manages security, avoiding the need of adding specific elements for authentication, encryption or decryption. Extensions are proposed to an existing protocol that defines the communication between the AP and the controller, in order to communicate and store the specific characteristics of each AP and end device. This includes new association and handoff schemes that do not introduce any additional delay. The system has been implemented in a real environment, and a battery of tests has been run using three hardware platforms of different characteristics. The results show that handoffs between bands are possible, and estimate the processing delays, the Round-Trip Time and the handoff delay, which is small enough in order not to produce any significant disruption to the user (10-50 ms). Finally, the scenarios of interest have been replicated in a simulation environment, showing that significant benefits can be achieved if the specific characteristics of each AP and station are considered

    Development and integration of Honeywell’s One-Wireless network

    Get PDF
    The purpose of this project has been to develop upon the Honeywell One-Wireless network in the Murdoch University Pilot Plant and integrate it into the Distributed Control System. This will give future students exposure to developing process control schemes around industrial wireless technology in a small plant setting. Industrial Wireless is still on the cutting edge of technology and it will challenge the status quo in Industry with its many advantages. A brief review of Industrial wireless technology has been included in this thesis report to provide the reader a background to the communications technology. Also included is Honeywell’s One-Wireless Network solution which was used in this project. There, where significant challenges in getting the network operational, and as a result a systematic troubleshooting process was followed. Once the network was operational additional wireless instruments where added to expand the network and set up in the system. From here the One-Wireless network was integrated into the Distributive Control System which operates the pilot plant, this was done using Modbus TCP/IP. To determine the effectiveness of the network a post Radio Frequency assessment was carried out to determine the impact of the network and ensure that it was following best practices. Relevant documentation on the network was developed as a handover for future students to build upon the work carried out

    Beacon-Based Service Publishing Framework in Multiservice Wi-Fi Hotspots

    Get PDF
    In an expected future multiaccess and multiservice IEEE 802.11 environment, the problem of providing users with useful service-related information to support a correct rapid network selection is expected to become a very important issue. A feasible short-term 802.11-tailored working solution, compliant with existing equipment, is to publish service information encoded within the SSID information element within beacon frames. This makes it possible for an operator to implement service publishing in 802.11 networks while waiting for a standardized mechanism. Also, this straightforward approach has allowed us to evaluate experimentally the performance of a beacon-based service publishing solution. In fact, the main focus of the paper is indeed to present a quantitative comparison of service discovery times between the legacy scenario, where the user is forced to associate and authenticate with a network point of access to check its service offer, and the enhanced scenario where the set of service-related information is broadcasted within beacons. These discovery times are obtained by processing the results of a measurement campaign performed in a multiaccess/service 802.11 environment. This analysis confirms the effectiveness of the beacon-based approach. We also show that the cost in terms of wireless bandwidth consumption of such solution is low

    Data Communications and Network Technologies

    Get PDF
    This open access book is written according to the examination outline for Huawei HCIA-Routing Switching V2.5 certification, aiming to help readers master the basics of network communications and use Huawei network devices to set up enterprise LANs and WANs, wired networks, and wireless networks, ensure network security for enterprises, and grasp cutting-edge computer network technologies. The content of this book includes: network communication fundamentals, TCP/IP protocol, Huawei VRP operating system, IP addresses and subnetting, static and dynamic routing, Ethernet networking technology, ACL and AAA, network address translation, DHCP server, WLAN, IPv6, WAN PPP and PPPoE protocol, typical networking architecture and design cases of campus networks, SNMP protocol used by network management, operation and maintenance, network time protocol NTP, SND and NFV, programming, and automation. As the world’s leading provider of ICT (information and communication technology) infrastructure and smart terminals, Huawei’s products range from digital data communication, cyber security, wireless technology, data storage, cloud-computing, and smart computing to artificial intelligence

    Data Communications and Network Technologies

    Get PDF
    This open access book is written according to the examination outline for Huawei HCIA-Routing Switching V2.5 certification, aiming to help readers master the basics of network communications and use Huawei network devices to set up enterprise LANs and WANs, wired networks, and wireless networks, ensure network security for enterprises, and grasp cutting-edge computer network technologies. The content of this book includes: network communication fundamentals, TCP/IP protocol, Huawei VRP operating system, IP addresses and subnetting, static and dynamic routing, Ethernet networking technology, ACL and AAA, network address translation, DHCP server, WLAN, IPv6, WAN PPP and PPPoE protocol, typical networking architecture and design cases of campus networks, SNMP protocol used by network management, operation and maintenance, network time protocol NTP, SND and NFV, programming, and automation. As the world’s leading provider of ICT (information and communication technology) infrastructure and smart terminals, Huawei’s products range from digital data communication, cyber security, wireless technology, data storage, cloud-computing, and smart computing to artificial intelligence

    Channel Scanning and Access Point Selection Mechanisms for 802.11 Handoff: A Survey

    Get PDF
    While the cellular technology has been evolving continuously in recent years and client handoffs remain unnoticed, the 802.11 networks still impose an enormous latency issue once the client device decides to roam between the Access Point (AP). This latency is caused by many factors reckoning on scanning the channels and searching for APs with better signal strength. Once data from all the nearby APs has been collected, the client picks the most suitable AP and tries to connect with it. The AP verifies if it has enough capability to serve the client. It also ensures that the client has the required parameters and supported rates to match with the AP. The AP then processes this request, generates a new Association ID and sends it back to the client, thereby granting access to connect. Throughout this re-association process, the client fails to receive or send any data frames and experiences a lag between leaving the old and associating with a new AP. Originally, 802.11 authentication frames were designed for Wired Equivalent Privacy protocol, but later it was found to be insecure and thus got depreciated. Keeping these security aspects concerning shared key authentication in mind, few additional drafts were introduced by IEEE that concerned many key exchanges between the devices. IEEE 802.11r was introduced in 2008 that permits wireless clients to perform faster handoff along with additional data security standards. The key exchange method was redefined and also the new security negotiation protocol started serving wireless devices with a better approach. This enables a client to set up the Quality of Service state and security on an alternative AP before making a transition which ends up in minimal connectivity losses. Although this was an excellent step towards minimizing the service disruption and channel scanning, failure to remain connected with consecutive suitable APs within the minimum time continued to be a challenge. Different manufacturers use their custom-built methodology of handling a client handoff and hence the latency costs differ based on the type of handoff scheme deployed on the device. This thesis focuses on the foremost economical researches throughout recent years which targets minimizing the delays involved with channel scanning and AP selection. A wide sort of enhancements, whether it is on a client device or the AP, has been discussed and compared. Some modifications are associated with enhancing channel scan period or using beacons, and probe requests/responses in an efficient manner. Others concentrate on modifying the device hardware configuration and switching between Network Interfaces. Central controllers are a solution to handoff delays that may track the status of each device within the network and guide them to provide the appropriate Quality of Service to the end-users

    Future Trends and Challenges for Mobile and Convergent Networks

    Get PDF
    Some traffic characteristics like real-time, location-based, and community-inspired, as well as the exponential increase on the data traffic in mobile networks, are challenging the academia and standardization communities to manage these networks in completely novel and intelligent ways, otherwise, current network infrastructures can not offer a connection service with an acceptable quality for both emergent traffic demand and application requisites. In this way, a very relevant research problem that needs to be addressed is how a heterogeneous wireless access infrastructure should be controlled to offer a network access with a proper level of quality for diverse flows ending at multi-mode devices in mobile scenarios. The current chapter reviews recent research and standardization work developed under the most used wireless access technologies and mobile access proposals. It comprehensively outlines the impact on the deployment of those technologies in future networking environments, not only on the network performance but also in how the most important requirements of several relevant players, such as, content providers, network operators, and users/terminals can be addressed. Finally, the chapter concludes referring the most notable aspects in how the environment of future networks are expected to evolve like technology convergence, service convergence, terminal convergence, market convergence, environmental awareness, energy-efficiency, self-organized and intelligent infrastructure, as well as the most important functional requisites to be addressed through that infrastructure such as flow mobility, data offloading, load balancing and vertical multihoming.Comment: In book 4G & Beyond: The Convergence of Networks, Devices and Services, Nova Science Publishers, 201
    corecore