256 research outputs found

    Elastic timber gridshells. from the finding form process to the erection of efficient lightweight structures

    Get PDF
    Doctoral Thesis (International Doctoral Programme in Sustainable Built Environment)Elastic timber gridshells emerged in the last century, essentially related to ephemeral buildings, setting a ‘new’ benchmark for lightweight, cost-effective, sustainable and temporary constructions. Timber gridshells are adaptable and can be used in rehabilitated buildings as well as, new buildings, new systems like roofs, or as small additions in nonstructural elements and act as a simple partition. However, the main feature is not its use, but its shape and how it allows some freedom in its design; an attractive characteristic for designers due to its structural behaviour. Based on the advantages of the structural system, it should be expected that timber gridshells have a wider presence in contemporary architecture. However, this is not the case, there are very few examples being built. One reason why this happens, is because of the difficulty to reach the desired design since there is a lack of information about the tools that can help to define such complex systems. Until today, the design and construction of elastic, or post-formed timber gridshells, have only been based on a case to case basis and have not been studied or used as a type of structure that can be repeated in several different applications. The aim of this thesis is to contribute to answer this difficulty, i.e. working on overcoming the lack of design guidelines, by presenting a state of the knowledge on elastic timber gridshells and by case studies analysing the process involved in building this kind of a structures. The thesis is addressing elastic timber gridshells, from the design phase to the construction phase. The results obtained show that this type of structure can be very interesting at a functional level with numerous tectonics characteristics that make elastic timber gridshells attractive as a structural solution in contemporary architecture.As malhas elásticas de madeira surgiram no século passado, essencialmente relacionadas com construções temporárias, estabelecendo uma "nova" referência para construções leves, econômicas, sustentáveis e efêmeras. As malhas de madeira são adaptáveis e podem ser usadas em edifícios a reabilitar, bem como, novos edifícios, coberturas, ou em pequenas modificações como elementos não estruturais. No entanto, a principal característica não é seu uso, mas sua geometria e como isso permite uma enorme liberdade formal torna-se uma característica atraente para todos os projetistas. Com base nas vantagens deste sistema estrutural, é de esperar que as malhas elásticas de madeira tivessem uma presença mais ampla na arquitetura contemporânea. Contudo, não é o caso, existem poucos exemplos construídos. Um motivo para isso acontecer é a dificuldade em projetar as formas desejadas, pois existe uma lacuna de informação sobre as ferramentas que podem ajudar a definir estas geometrias complexas. Por exemplo, as ferramentas baseadas em softwares computacionais têm um grande potencial para o processo de projeção das malhas de madeira nas fases de projeto e construção, onde a localização da malha e a otimização ocorrem, seguidas por um processo de produção industrial. Até hoje, o projeto e a construção destas estruturas, foram estudados apenas de caso a caso e não foram estudados ou usados como um tipo de solução que pode ser repetida em várias aplicações diferentes. O objetivo desta dissertação é contribuir para a resolução desse problema, ou seja, trabalhar na superação da falta de diretrizes de projeto, apresentando um estado do conhecimento sobre as malhas elásticas de madeira e analisando e explicando o processo envolvido na construção deste tipo de estruturas. Esta tese aborda as malhas elásticas de madeira, desde a fase de projeto até à fase de construção. Os resultados obtidos mostram que este tipo de estrutura pode ser muito interessante a um nível funcional, com numerosas características com valor tectônico que tornam as malhas elásticas de madeira atrativas como uma solução estrutural na arquitetura contemporânea.This work it was financed by FEDER funds through the Competitively Factors Operational Programme - COMPETE and by national funds through FCT – Foundation for Science and Technology within the scope of the project POCI-01-0145-FEDER-007633. The support of the Foundation for Science and Technology (FCT) through doctoral fellowship SFRH/BD/104677/2014 is grateful

    Design og styring av smarte robotsystemer for applikasjoner innen biovitenskap: biologisk prøvetaking og jordbærhøsting

    Get PDF
    This thesis aims to contribute knowledge to support fully automation in life-science applications, which includes design, development, control and integration of robotic systems for sample preparation and strawberry harvesting, and is divided into two parts. Part I shows the development of robotic systems for the preparation of fungal samples for Fourier transform infrared (FTIR) spectroscopy. The first step in this part developed a fully automated robot for homogenization of fungal samples using ultrasonication. The platform was constructed with a modified inexpensive 3D printer, equipped with a camera to distinguish sample wells and blank wells. Machine vision was also used to quantify the fungi homogenization process using model fitting, suggesting that homogeneity level to ultrasonication time can be well fitted with exponential decay equations. Moreover, a feedback control strategy was proposed that used the standard deviation of local homogeneity values to determine the ultrasonication termination time. The second step extended the first step to develop a fully automated robot for the whole process preparation of fungal samples for FTIR spectroscopy by adding a newly designed centrifuge and liquid-handling module for sample washing, concentration and spotting. The new system used machine vision with deep learning to identify the labware settings, which frees the users from inputting the labware information manually. Part II of the thesis deals with robotic strawberry harvesting. This part can be further divided into three stages. i) The first stage designed a novel cable-driven gripper with sensing capabilities, which has high tolerance to positional errors and can reduce picking time with a storage container. The gripper uses fingers to form a closed space that can open to capture a fruit and close to push the stem to the cutting area. Equipped with internal sensors, the gripper is able to control a robotic arm to correct for positional errors introduced by the vision system, improving the robustness. The gripper and a detection method based on color thresholding were integrated into a complete system for strawberry harvesting. ii) The second stage introduced the improvements and updates to the first stage where the main focus was to address the challenges in unstructured environment by introducing a light-adaptive color thresholding method for vision and a novel obstacle-separation algorithm for manipulation. At this stage, the new fully integrated strawberry-harvesting system with dual-manipulator was capable of picking strawberries continuously in polytunnels. The main scientific contribution of this stage is the novel obstacle-separation path-planning algorithm, which is fundamentally different from traditional path planning where obstacles are typically avoided. The algorithm uses the gripper to push aside surrounding obstacles from an entrance, thus clearing the way for it to swallow the target strawberry. Improvements were also made to the gripper, the arm, and the control. iii) The third stage improved the obstacle-separation method by introducing a zig-zag push for both horizontal and upward directions and a novel dragging operation to separate upper obstacles from the target. The zig-zag push can help the gripper capture a target since the generated shaking motion can break the static contact force between the target and obstacles. The dragging operation is able to address the issue of mis-capturing obstacles located above the target, in which the gripper drags the target to a place with fewer obstacles and then pushes back to move the obstacles aside for further detachment. The separation paths are determined by the number and distribution of obstacles based on the downsampled point cloud in the region of interest.Denne avhandlingen tar sikte på å bidra med kunnskap om automatisering og robotisering av applikasjoner innen livsvitenskap. Avhandlingen er todelt, og tar for seg design, utvikling, styring og integrering av robotsystemer for prøvetaking og jordbærhøsting. Del I omhandler utvikling av robotsystemer til bruk under forberedelse av sopprøver for Fourier-transform infrarød (FTIR) spektroskopi. I første stadium av denne delen ble det utviklet en helautomatisert robot for homogenisering av sopprøver ved bruk av ultralyd-sonikering. Plattformen ble konstruert ved å modifisere en billig 3D-printer og utstyre den med et kamera for å kunne skille prøvebrønner fra kontrollbrønner. Maskinsyn ble også tatt i bruk for å estimere soppens homogeniseringsprosess ved hjelp av matematisk modellering, noe som viste at homogenitetsnivået faller eksponensielt med tiden. Videre ble det foreslått en strategi for regulering i lukker sløyfe som brukte standardavviket for lokale homogenitetsverdier til å bestemme avslutningstidspunkt for sonikeringen. I neste stadium ble den første plattformen videreutviklet til en helautomatisert robot for hele prosessen som forbereder prøver av sopprøver for FTIR-spektroskopi. Dette ble gjort ved å legge til en nyutviklet sentrifuge- og væskehåndteringsmodul for vasking, konsentrering og spotting av prøver. Det nye systemet brukte maskinsyn med dyp læring for å identifisere innstillingene for laboratorieutstyr, noe som gjør at brukerne slipper å registrere innstillingene manuelt.Norwegian University of Life SciencespublishedVersio

    Proceedings of the European Conference on Agricultural Engineering AgEng2021

    Get PDF
    This proceedings book results from the AgEng2021 Agricultural Engineering Conference under auspices of the European Society of Agricultural Engineers, held in an online format based on the University of Évora, Portugal, from 4 to 8 July 2021. This book contains the full papers of a selection of abstracts that were the base for the oral presentations and posters presented at the conference. Presentations were distributed in eleven thematic areas: Artificial Intelligence, data processing and management; Automation, robotics and sensor technology; Circular Economy; Education and Rural development; Energy and bioenergy; Integrated and sustainable Farming systems; New application technologies and mechanisation; Post-harvest technologies; Smart farming / Precision agriculture; Soil, land and water engineering; Sustainable production in Farm buildings

    Mobile Robots Navigation

    Get PDF
    Mobile robots navigation includes different interrelated activities: (i) perception, as obtaining and interpreting sensory information; (ii) exploration, as the strategy that guides the robot to select the next direction to go; (iii) mapping, involving the construction of a spatial representation by using the sensory information perceived; (iv) localization, as the strategy to estimate the robot position within the spatial map; (v) path planning, as the strategy to find a path towards a goal location being optimal or not; and (vi) path execution, where motor actions are determined and adapted to environmental changes. The book addresses those activities by integrating results from the research work of several authors all over the world. Research cases are documented in 32 chapters organized within 7 categories next described

    Low-Cost Inventions and Patents

    Get PDF
    Inventions have led to the technological advances of mankind. There are inventions of all kinds, some of which have lasted hundreds of years or even longer. Low-cost technologies are expected to be easy to build, have little or no energy consumption, and be easy to maintain and operate. The use of sustainable technologies is essential in order to move towards a greater global coverage of technology, and therefore to improve human quality of life. Low-cost products always respond to a specific need, even if no in-depth analysis of the situation or possible solutions has been carried out. It is a consensus in all industrialized countries that patents have a decisive influence on the organization of the economy, as they are a key element in promoting technological innovation. Patents must aim to promote the technological development of countries, starting from their industrial situations

    Langattomien anturiverkkojen sotilas-, agroteknologia- ja energiatutkimussovelluksia

    Get PDF
    The physical quantities nowadays are widely measured by using electronic sensors. Wireless sensor networks (WSNs) are low-cost, low-power electronic devices capable of collecting data using their onboard sensors. Some wireless sensor nodes are equipped with actuators, providing the possibility to change the state of the physical world. The ability to change the state of a physical system means that WSNs can be used in control and automation applications. This research focuses on appropriate system design for four different wireless measurement and control cases. The first case provides a hardware and software solution for camera integration to a wireless sensor node. The images are captured and processed inside the sensor node using low power computational techniques. In the second application, two different wireless sensor networks function in cooperation to overcome seeding problems in agricultural machinery. The third case focuses on indoor deployment of the wireless sensor nodes into an area of urban crisis, where the nodes supply localization information to friendly assets such as soldiers, firefighters and medical personnel. The last application focuses on a feasibility study for energy harvesting from asphalt surfaces in the form of heat.Fysikaaliset suureet mitataan nykyisin elektronisten anturien avulla. Langattomat anturiverkot ovat kustannustasoltaan edullisia, matalan tehonkulutuksen elektronisia laitteita, jotka kykenevät suorittamaan mittauksia niissä olevilla antureilla. Langattomat anturinoodit voidaan myös liittää toimilaitteisiin, jolloin ne voivat vaikuttaa fyysiseen ympäristöönsä. Koska langattomilla anturi- ja toimilaiteverkoilla voidaan vaikuttaa niiden fysikaalisen ympäristön tilaan, niiden avulla voidaan toteuttaa säätö- ja automaatiosovelluksia. Tässä väitöskirjaty össä suunnitellaan ja toteutetaan neljä erilaista langattomien anturi- ja toimilaiteverkkojen automaatiosovellusta. Ensimmäisenä tapauksena toteutetaan elektroniikka- ja ohjelmistosovellus, jolla integroidaan kamera langattomaan anturinoodiin. Kuvat tallennetaan ja prosessoidaan anturinoodissa vähän energiaa kuluttavia laskentamenetelmiä käyttäen. Toisessa sovelluksessa kahdesta erilaisesta langattomasta anturiverkosta koostuvalla järjestelmällä valvotaan siementen syöttöä kylvökoneessa. Kolmannessa sovelluksessa levitetään kaupunkiympäristössä kriisitilanteessa rakennuksen sisätiloihin langaton anturiverkko. Sen anturinoodit välittävät paikkatietoa rakennuksessa operoiville omille joukoille, jotka voivat tilanteesta riippuen olla esimerkiksi sotilaita, palomiehiä tai lääkintähenkilökuntaa. Neljännessä sovelluksessa toteutetaan langaton anturiverkko, jonka keräämää mittausdataa käytetään arvioitaessa lämpöenergian keräämismahdollisuuksia asfalttipinnoilta.fi=vertaisarvioitu|en=peerReviewed

    5 European & African Conference on Wind Engineering

    Get PDF
    The 5th European-African Conference of Wind Engineering is hosted in Florence, Tuscany, the city and the region where, in the early 15th century, pioneers moved the first steps, laying down the foundation stones of Mechanics and Applied Sciences (including fluid mechanics). These origins are well reflected by the astonishing visionary and revolutionary studies of Leonardo Da Vinci, whose kaleidoscopic genius intended the human being to become able to fly even 500 years ago… This is why the Organising Committee has decided to pay tribute to such a Genius by choosing Leonardo's "flying sphere" as the brand of 5th EACWE

    Small business innovation research. Abstracts of completed 1987 phase 1 projects

    Get PDF
    Non-proprietary summaries of Phase 1 Small Business Innovation Research (SBIR) projects supported by NASA in the 1987 program year are given. Work in the areas of aeronautical propulsion, aerodynamics, acoustics, aircraft systems, materials and structures, teleoperators and robotics, computer sciences, information systems, spacecraft systems, spacecraft power supplies, spacecraft propulsion, bioastronautics, satellite communication, and space processing are covered
    corecore