1,822 research outputs found

    Surface networks

    Get PDF
    © Copyright CASA, UCL. The desire to understand and exploit the structure of continuous surfaces is common to researchers in a range of disciplines. Few examples of the varied surfaces forming an integral part of modern subjects include terrain, population density, surface atmospheric pressure, physico-chemical surfaces, computer graphics, and metrological surfaces. The focus of the work here is a group of data structures called Surface Networks, which abstract 2-dimensional surfaces by storing only the most important (also called fundamental, critical or surface-specific) points and lines in the surfaces. Surface networks are intelligent and “natural ” data structures because they store a surface as a framework of “surface ” elements unlike the DEM or TIN data structures. This report presents an overview of the previous works and the ideas being developed by the authors of this report. The research on surface networks has fou

    Visualization of Uncertain Contour Trees

    Get PDF

    Data Requirements for WAsP, CFD & WRF

    Get PDF

    In pursuit of linear complexity in discrete and computational geometry

    Get PDF
    Many computational problems arise naturally from geometric data. In this thesis, we consider three such problems: (i) distance optimization problems over point sets, (ii) computing contour trees over simplicial meshes, and (iii) bounding the expected complexity of weighted Voronoi diagrams. While these topics are broad, here the focus is on identifying structure which implies linear (or near linear) algorithmic and descriptive complexity. The first topic we consider is in geometric optimization. More specifically, we define a large class of distance problems, for which we provide linear time exact or approximate solutions. Roughly speaking, the class of problems facilitate either clustering together close points (i.e. netting) or throwing out outliers (i.e pruning), allowing for successively smaller summaries of the relevant information in the input. A surprising number of classical geometric optimization problems are unified under this framework, including finding the optimal k-center clustering, the kth ranked distance, the kth heaviest edge of the MST, the minimum radius ball enclosing k points, and many others. In several cases we get the first known linear time approximation algorithm for a given problem, where our approximation ratio matches that of previous work. The second topic we investigate is contour trees, a fundamental structure in computational topology. Contour trees give a compact summary of the evolution of level sets on a mesh, and are typically used on massive data sets. Previous algorithms for computing contour trees took Θ(n log n) time and were worst-case optimal. Here we provide an algorithm whose running time lies between Θ(nα(n)) and Θ(n log n), and varies depending on the shape of the tree, where α(n) is the inverse Ackermann function. In particular, this is the first algorithm with O(nα(n)) running time on instances with balanced contour trees. Our algorithmic results are complemented by lower bounds indicating that, up to a factor of α(n), on all instance types our algorithm performs optimally. For the final topic, we consider the descriptive complexity of weighted Voronoi diagrams. Such diagrams have quadratic (or higher) worst-case complexity, however, as was the case for contour trees, here we push beyond worst-case analysis. A new diagram, called the candidate diagram, is introduced, which allows us to bound the complexity of weighted Voronoi diagrams arising from a particular probabilistic input model. Specifically, we assume weights are randomly permuted among fixed Voronoi sites, an assumption which is weaker than the more typical sampled locations assumption. Under this assumption, the expected complexity is shown to be near linear

    Towards the Implementation of a MPC-based Planner on an Autonomous All-Terrain Vehicle

    Get PDF
    Planning and control for a wheeled mobile robot are challenging problems when poorly traversable terrains, including dynamic obstacles, are considered. To accomplish a mission, the control system should ïŹrstly guarantee the vehicle integrity, for example with respect to possible roll-over/tip-over phenomena. A fundamental contribution to achieve this goal, however, comes from the planner as well. In fact, computing a path that takes into account the terrain traversability, the kinematic and dynamic vehicle constraints, and the presence of dynamic obstacles, is a ïŹrst and crucial step towards ensuring the vehicle integrity. The present paper addresses some of the aforementioned issues, describing the hardware/software architecture of the planning and control system of an autonomous All-Terrain Mobile Robot and the implementation of a real-time path planner

    09251 Abstracts Collection -- Scientific Visualization

    Get PDF
    From 06-14-2009 to 06-19-2009, the Dagstuhl Seminar 09251 ``Scientific Visualization \u27\u27 was held in Schloss Dagstuhl~--~Leibniz Center for Informatics. During the seminar, over 50 international participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general

    Flood history in the karst environment of Castellana-Grotte (Apulia, southern Italy)

    Get PDF

    A survey on multi-robot coverage path planning for model reconstruction and mapping

    Get PDF
    There has been an increasing interest in researching, developing and deploying multi-robot systems. This has been driven mainly by: the maturity of the practical deployment of a single-robot system and its ability to solve some of the most challenging tasks. Coverage path planning (CPP) is one of the active research topics that could benefit greatly from multi-robot systems. In this paper, we surveyed the research topics related to multi-robot CPP for the purpose of mapping and model reconstructions. We classified the topics into: viewpoints generation approaches; coverage planning strategies; coordination and decision-making processes; communication mechanism and mapping approaches. This paper provides a detailed analysis and comparison of the recent research work in this area, and concludes with a critical analysis of the field, and future research perspectives
    • 

    corecore