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Dinko Osmanković, Adnan Tahirović

Abstract— Planning and control for a wheeled mobile robot
are challenging problems when poorly traversable terrains,
including dynamic obstacles, are considered. To accomplish a
mission, the control system should firstly guarantee the vehicle
integrity, for example with respect to possible roll-over/tip-over
phenomena. A fundamental contribution to achieve this goal,
however, comes from the planner as well. In fact, computing
a path that takes into account the terrain traversability, the
kinematic and dynamic vehicle constraints, and the presence of
dynamic obstacles, is a first and crucial step towards ensuring
the vehicle integrity.
The present paper addresses some of the aforementioned issues,
describing the hardware/software architecture of the planning
and control system of an autonomous All-Terrain Mobile Robot
and the implementation of a real-time path planner.

I. INTRODUCTION

The popularity of the research on wheeled mobile robots

has been recently increasing, due to their possible use in dif-

ferent outdoor environments. Planetary explorations, search

and rescue missions in hazardous areas [1], surveillance,

humanitarian de-mining [2], as well as agriculture works

such as pruning vine and fruit trees, represent possible ap-

plications for autonomous vehicles in natural environments.

Differently from the case of indoor mobile robotics, where

only flat terrains are considered, outdoor robotics deals with

all possible natural terrains. The unstructured environment

and the terrain roughness, including dynamic obstacles [3],

and poorly traversable terrains, make the development of an

autonomous vehicle a challenging problem.

The aim of our research is to develop an All-Terrain

Mobile Robot (ATMR), based on a commercial All-Terrain

Vehicle (ATV), that is suitable for a wide range of different

outdoor operations. The ATMR should be able to operate

in any natural environment with a high level of autonomy.

The advantage of using ATVs is represented by their good

traversability potential for poorly traversable terrains and by

the short time spent for reaching the goal, as well as by the

possibility to operate in unsafe environments. On the other

hand, the main disadvantage of ATVs is their low stability
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margin due to dynamic constraints, roll-over and excessive

side slip [4].

ATVs are highly unstable, especially during fast turns and

uphill/downhill riding, and a roll/tip-over can often occur. To

overcome those problems the development of some active

control systems [5], and in particular an Anti-Roll-over Sys-

tem [6], would certainly enhance their drivability. Moreover,

it becomes necessary once the vehicle is teleoperated or

autonomous. The design and development of an All-Terrain

Mobile Robot is thus a challenging task, especially when a

high level of autonomy is required. Indeed, due to the com-

plex tasks the robot is supposed to perform, the design of the

entire control architecture is anything but trivial [7]: different

kind of requirements come from software engineering (e.g.

modularity or maintainability), control theory (e.g. stability,

robustness, hard real-time-ness) and mobile robotics (e.g.

path planning, obstacle avoidance). The hardware/software

architecture should fulfil them all in the simplest way.

A natural way to achieve those requirements is to design a

multi-layered software architecture, in order to map higher

levels of algorithmic abstraction to the top layers of the ar-

chitecture. The control level that will act as an interface from

these high level tasks (action planning, goal prioritisations,

etc.) and the vehicle itself will be called “virtual rider”. The

aim of the virtual rider is to interpret commands from planner

and execute them avoiding dangerous manoeuvres that could

result in instability. Together with the virtual rider algorithm,

a low level control software will be necessary in order to

execute simple commands such as steering or braking.

All the aforementioned issues, crucial to ensure the vehicle

integrity, can be addressed at two different levels. On one

side, the virtual raider should operate in real-time to keep,

as much as possible, the vehicle in a safe condition, or

to recover it from dangerous situations. On the other, the

planner plays a crucial role in computing a safe path, that a

priori avoids dangerous manoeuvres.

The present paper describes the implementation and pre-

liminary validation of a MPC-based planner that allows

to compute in real-time a path from a starting to a goal

position, taking into account obstacles, terrain characteristics

and vehicle dynamic and kinematic constraints. The planner

is implemented using an optimal control software (ACADO)

to solve an initial value optimal control problem in receding

horizon manner. Performance function and cost-to-go term

are based on the terrain roughness. We locally interpolate

roughness data at each time horizon with differentiable func-

tions making it possible to use optimal control techniques
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provided by ACADO.

II. THE ATMR

The vehicle considered in this research (see Figs. 1 and 2)

is a YAMAHA GRIZZLY 700, a commercial fuel powered

All-Terrain Vehicle (ATV) equipped with an electric power

steering (EPS).

The GRIZZLY 700 is a utility ATV and is thus specifically

designed for agriculture work. As a result it has a total load

capacity of 130 Kg, and it is equipped with a rear tow hook.

The main characteristics of the vehicle are listed in Table I.

Fig. 1. The Yamaha Grizzly 700 ATV

Fig. 2. The vehicle with the new cover

For the purposes of the project, the original vehicle cover

has been removed and substituted with an aluminium cover,

that allows to easily accommodate for the control hardware

and the sensors (Fig. 2).

III. CONTROL SYSTEM ARCHITECTURE

In order to make the vehicle teleoperated, or even au-

tonomous, an on-board hardware/software control platform

Main characteristics of the vehicle

Engine type 686cc, 4-stroke, liquid-cooled, 4 valves
Drive train 2WD, 4WD, locked 4WD
Transmission V-belt with all-wheel engine braking
Brakes dual hydraulic disc (both f/r)
Suspensions independent double wishbone (both f/r)
Steering System Ackermann
Dimensions (LxWxH) 2.065 x 1.180 x 1.240 m
Weight 296 Kg (empty tank)

TABLE I

VEHICLE CHARACTERISTICS

has to be added. While the implementation of the whole

architecture is still under development, a functional diagram

that shows the main components of the control system and

their relationships is shown in Fig. 3.

The architecture can be divided into three different layers.

The top level is a high level planner responsible for the task

acquisition and for the medium-long range navigation and

planning functionalities. The virtual rider is an intermediate

level and is responsible for short range navigation, planning

and vehicle stabilisation. It has to ensure vehicle integrity

with respect to roll-over/tip-over instabilities, obstacles and

terrain traps, etc., replacing the typical low-level riding

skills of a human. The lower level represents an interface

between the vehicle commands and the virtual rider. Such

level interacts with the vehicle measuring the steering angle,

throttle ratio, vehicle speed, etc., and acting on the steering

column, the throttle leverage and/or the brake pedal through

suitable sensors and actuation systems (see [8] for further

details).

To implement such a complex architecture that includes

high level and low level tasks, the former characterised by an

heavy computational load but slower sampling frequencies,

the latter being simpler but needing a faster time response,

a multi-layered and multiprocessor hardware/software archi-

tecture is required. In this way, one can separate complex

(localisation and navigation on rough terrains, obstacle avoid-

ance, sensor fusion, etc.) from simple tasks (motion control

and servo actuation) and faster from slower ones.

The hardware/software architecture should be as modular

as possible, in order to be simply reconfigurable and up-

gradeable. Indeed, the different computational complexity

of the tasks calls for different layers of the control system,

thus a multiprocessor architecture is an obvious choice. On

the other hand, the navigation control system requires the

complete knowledge of the state of the vehicle (in terms of

what the sensors are perceiving) to take the best decision

autonomously. Thus a very large amount of data must be

shared between the system’s layers.

The selected hardware architecture (Fig. 4) consists of:

• a low level CPU (PLC) with several I/O modules to

perform the control of the steering angle, the throttle

position, the pressure of the hydraulic braking circuit,

etc. An industrial PLC provided by B&R AUTOMATION

(X20 CPU: Celeron 650, 64 MB DRAM, 1 MB SRAM,

maximum bus frequency 2 kHz) was selected for its



Fig. 3. Functional diagram of the controller architecture

dependability and robustness. Indeed, the choice of a

PLC is a good compromise between the hard real-time

requirement and the possibility of high level program-

ming.

• a high level PC to implement the high level algo-

rithms: the so called “virtual rider” (vision, terrain

perception, localisation and mapping, obstacle and roll-

over avoidance, etc.), the medium-long range navigation

an planning, etc. For this purpose, an Industrial PC

(2.16 GHz Intel Core Duo T7400, 2 MB L2 cache,

1024 MB DDR2 RAM, 5 PCI slots) provided by B&R

AUTOMATION was selected.

A standard Ethernet communication link was selected to

connect the two CPUs.

IV. SOFTWARE ARCHITECTURE

Fig. 5 shows the main modules of the software architecture

implemented on the ATMR (as previously introduced, the

functional architecture presented in Section III has been only

partially implemented).

In the upper part there are the modules running on the

PC, while in the lower part the tasks running on the PLC.

On the PC two different middle-wares have been used to

implement the overall system: ROS [9] and OROCOS [10].

While the former provides useful functionalities out of the

box (e.g., laser sensor acquisition, mapping and planning)

and thus it helps in speeding up the development, the latter

has been used for critical control tasks having hard real-time

requirements.

As already stated, the PLC runs the low-level actuator

control loops and the sensor acquisition functionalities (e.g.,

speed, steering angle, stability indexes, etc.). The set points

are sent to the low-level control loops (i.e., speed, steer,

and brake) by the OROCOS task named MULTIPLEXER,

which has the role of deciding whether the ATMR should

be teleoperated, i.e. guided by a wireless JOYPAD, or a

REMOTE CONTROL STATION (RCS), or autonomous, i.e.

the CONTROLLER is in charge of trajectory following.

A simple trajectory follower has been implemented, decou-

pling the geometrical path following, that is accomplished

acting on the steering angle, from the speed control. Follow-

ing this idea, two independent PID control loops have been

realised: one controlling the steering angle on the basis of

the vehicle alignment and distance error [11], computed by

the SEQUENCER module, the other one regulating the vehicle

speed.

The ATMR position is estimated by an EXTENDED

KALMAN FILTER (EKF) that uses the Ackerman kinematic

model and integrates speed and steer measurements from the

ATV sensors together with the position provided by a RTK-

GPS with external correction (up to few centimetres accu-

racy). At the present stage, the magnetometer measurements

of an inertial measurement unit are used to initialise the EKF

heading estimate, but we plan to integrate them in the EKF

once a proper dynamic model of the vehicle is developed.

The pose computed by the EKF module is also provided

to the modules implemented under ROS, and it is used to

align the point clouds acquired by a Sick LD-MRS laser

range finder with the map of the environment.

This map in turn is used by a Model Predictive Control

(MPC) based planner to generate the desired trajectory for

the ATMR. This task is performed by a set of ROS nodes

since most of the routines where already available under

that middle-ware and the loose real-time requirements of

planning were satisfied by ROS scheduling. It should be

noticed that planning is a critical aspect when moving in

rough terrains since, by carefully taking into account the

constraints of the vehicle, safe trajectory can be planned. The

result of this planning activity is then fed to the SEQUENCER

module to be executed under real-time conditions.

When navigating an unknown environment unexpected, or

unmapped, obstacles might appear; in this case the map need

to be updated and the planning activity re-executed to take

into account the new information. In our case the MPC based

planner is re-executed continuously so this map update is

managed in a natural way. However, MPC planning might



Fig. 4. Hardware architecture

Fig. 5. Software architecture

take some time to compute a new plan or the computation

can even fail. To cope with this possibility, a SAFETY

module that, observing the point cloud generated by the

sensor, overrides the maximum speed allowed for trajectory

following has been introduced.

V. A MPC-BASED PLANNER

Including the vehicle model into the motion planning stage

provides a planner which generates trajectories that can be

easily followed by a mobile robot. This especially comes to

the fore when a vehicle moves with high speed and operates

on rough terrains. Using a simpler planner that does not

take into account the mobile vehicle model might cause a

fatal error due to the difference between the planned and

executed trajectories. For this reason, the gradient based

algorithms such as the navigation function or a variant of

the D∗ [12], [13], [14], in our case are not considered an

acceptable solution.

Finding an optimal path on rough terrains, given a vehicle

model and all information about the terrain, can be expressed

as a two point boundary value optimal control problem

(OCP). Including the terrain shape into an objective function

for the OCP might result into a problem difficult to solve.

Namely, the OCP softwares, including ACADO [15], the

software used in this work, require a differentiable objective

function. To overcome this problem, a kind of interpolation

of the terrain shape must be applied. However, such an

interpolation might be computationally intensive even for

medium size terrains, and finding the best path solving an

OCP might be impractical for real-time implementation.

The approaches [16], [17], [18], [19], [20], all consider

the vehicle model to find the final path from an initial to

the goal position. They use an appropriately selected state-

space sampling technique, in which a planner propagates the



vehicle model over these states toward the goal position.

However, these approaches might easily miss some key state

spaces yielding a solution being far from optimal. If the

vehicle discovers different information during the execution,

these approaches re-plan from scratch finding a new path to

the goal position. In case of uncertain terrains, a frequent

complete replanning makes it difficult to use the approach

for real-time implementation.

In this work, we use an adapted real-time Model Predictive

Control (MPC) based motion planner, introduced in [21]

and [22]. At each time sample, the planner finds the best

local trajectory (within the sensor range) given the current

vehicle state and terrain information. Such an “on-line”

optimisation during the task execution is in accordance with

the MPC approach, hence the name. The MPC based motion

planner easily accommodates for a vehicle model and any

form of constraints into the optimisation set-up. In [21], the

optimization has been performed using genetic algorithms

in order to cover the control space of the vehicle model and

to find the best solution at each time sample. In this paper,

the objective function and the cost-to-go term are based on

the terrain roughness. We locally interpolate roughness data

(within the vehicle sensor range) at each time horizon into

differentiable functions making it possible to use optimal

control techniques provided by ACADO.

The MPC optimization problem can be expressed as an

initial value OCP problem with an end-free position (eqs. 1-

5). The task of this optimization is to find the input u of the

vehicle (velocity and steering angle momentum for kinematic

model) along the optimization horizon t ∈ (t0, t0+T ), that is

over all potential candidate paths, by minimizing the cost

function J(u) given in (1). The integrand γ(x,u) represents

the local roughness estimated by the vehicle within the

sensor range. We use the roughness-based navigation RbNF,

which represents a cost-to-go map, to extract a cost-to-

go term Γ required by the MPC optimization. The RbNF

might be computed as an optimal or approximated cost-

to-go map [23]. The former gives better results, but is

computationally expensive for large scale terrains. Since in

our work we experiment with a small-scale terrain, the com-

putational issue is not addressed. When the vehicle senses

new information during the task execution, the RbNF can be

updated similarly to [13]. Eqs. (2-5) represent optimization

constraints including the differential constraint related to the

vehicle model (2), control constraints (3), the safe stopping

constraint (4) and the constraint which ensures the decrease

of the Γ in order to guarantee that the plan reaches the goal

position (5).

J(u) =
∫ t0+T

t0

γ(x, u)dt +Γ(t0 +T ) (1)

d

dt
x = f (x)+g(x)u (2)

u(t)≤ umax (3)

v(t0 +T ) = 0 (4)

Γ(r(t0 +T ))< Γ(r(t0 +T1))< Γ(r(t0)) (5)

In some rare cases when ACADO fails, bringing back an

infeasible solution or no solution, we use a backup strategy

to guide the vehicle forward. In those cases, a planner selects

a close way-point which is located along the steepest descent

of the RbNF and solves for a two point boundary value OCP

problem.

In the sequel, the aforementioned advantages of an MPC

motion planner are summarised. An MPC based motion

planner can easily accommodate for a vehicle model with all

the required constraints. The planner might be near optimal

(giving the current state information) due to “the optimality

principle” since the RbNF is a near optimal estimator of the

cost-to-go optimisation term. Since the MPC horizon can be

arbitrarily chosen, a terrain shape interpolation required to

get a differentiable objective function can be locally applied

as in [24]. Having a differentiable objective function allows

for using an OCP software. Using a software to solve a local

OCP problem, like ACADO, covers much of the control and

state space comparing to [16], [17], [18], [19], [20]. Finally,

instead of repeating the complete path planning procedure

from scratch when the vehicle senses new information, the

RbNF can be easily updated similarly to [13].

VI. SIMULATION RESULTS

Fig. 6 illustrates a path generated by an MPC based

planner. The path is drawn over a contour plot of the terrain

roughness map. The terrain roughness map is computed by

using terrain heights as in [25] and [22].

The example shows that the generated path avoids obstacles,

follows less roughness regions (blue regions in Fig. 6) and

reaches the goal position (start and goal positions are marked

with a red and a pink disk, respectively).

Fig. 6. An example of an MPC based solution

Finding a trajectory from an initial to the goal position

using an OCP software is hardly feasible in real-time,

especially for a large-scale terrain. The OCP solution finds

the control inputs (velocity and steering angle for a kinematic

model which is used in the simulations) that minimise



traversed roughness, taking into account the required con-

straints. Some of the possible constraints might include:

avoiding obstacles, velocity and steering limitations, vehicle

stability and the RbNF decreasing to guarantee reaching the

goal (see, e.g. [22]).

In some cases where the terrain is small-scale, it is possible

to compute a solution in a reasonable time by an OCP

software such as ACADO. For this reason, we have used a

small terrain 50m x 50m to compare an optimal and a MPC

based solutions exploring the MPC sub-optimality. Fig. 7

depicts 10 simulations in which the same rough terrain and

different vehicle initial positions are used. The average sub-

optimality of the MPC based path planner can be computed

as

α =
1

N
∑

roughnessOCP

roughnessMPC
= 0.43

where N is the number of simulations. One might see that in

the 9th and 10th simulations, ACADO did not find a feasible

solution for the OCP problem (depicted by 0 in the picture).

Fig. 7. I: Small-scale terrain. MPC and OCP solutions.

Fig. 8 depicts another example with 10 simulations on

the same terrain with the same vehicle initial position and

roughness shape, but with different obstacles. There are some

examples where a MPC based solution has given a better

result. This can be explained by the fact that an OCP software

parametrises the control space in order to find the best

solution. This might produce a solution that is not necessary

the optimal one. In this example, the sub-optimality of the

MPC path planner is much higher (α = 0.93).

A two boundary value problem is difficult to solve in a

feasible time on a large-scale terrain. For this reason, we

use three different planners for a 500m x 500m terrain,

a MPC based planner, a gradient based planner and a

smooth gradient based planner. The gradient based planner

is generated by the steepest descent of the RbNF. As already

discussed, the gradient based planner is not considered as

an acceptable solution in our work, since it does not take

the vehicle model into account, and it is hard to predict how

Fig. 8. II: Small-scale terrain. MPC and OCP solutions.

well the vehicle will follow such path. However, in order to

validate the MPC based path planner, we introduce a smooth

gradient based path planner which picks a point on the path

obtained by the gradient based path planner and solves for a

two boundary problem. Then, it repeats the procedure going

towards the goal position. Fig. 9 compares the two planners

on 10 different rough terrains. The sub-optimality of the

MPC based path planner is α = 1.8, which means that the

MPC based planner performs better than the smooth gradient

path planner. Again, this can be explained by the fact that

the smooth gradient based path planner does take the vehicle

model into account but only to follow the gradient based path

planner.

Fig. 9. Large-scale terrain. MPC and smooth gradient based solutions.

VII. CONCLUSIONS

This paper describes part of the work devoted to the

development of an All-Terrain Mobile Robot, based on a

commercial All-Terrain Vehicle, for high speed riding on

difficult terrains.

Among the huge number of functionalities required to au-

tonomously take the vehicle from a start to a goal position



through a safe path, accounting for terrain traversability,

obstacles and vehicle constraints, the paper is focused on the

hardware/software architecture and, above all, on the real-

time implementation of a MPC-based planner. The issues

involved in the implementation of the planner, using the

open-source solver ACADO, are thoroughly discussed.

The simulation results show the effectiveness of the planner,

and compare the paths computed by the MPC planner with

those computed using a different approach.

An experimental validation of the MPC planning software,

using the vehicle described in Section II, is ongoing. The

results will be published soon.
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