1,081 research outputs found

    Active-Meshes

    Get PDF
    This paper describes the implementation of an active mesh that is to be automatically created and configured directly from a single frame of an image sequence The aim of this approach is to use the derived mesh to perform visual tracking in unconstrained motion environments allowing movement of the camera the scene and even the inclusion of background independent moving objects The main problem in initializing this mesh comes from the fact that there is little a priori information about the scene available The paper will discuss methods that are currently available for determining the initial position of active contour models within images also suggesting a method of initializing the active mesh The approach is further extended to using multiple meshes and region initialized meshes

    On Using Physical Analogies for Feature and Shape Extraction in Computer Vision

    No full text
    There is a rich literature of approaches to image feature extraction in computer vision. Many sophisticated approaches exist for low- and high-level feature extraction but can be complex to implement with parameter choice guided by experimentation, but impeded by speed of computation. We have developed new ways to extract features based on notional use of physical paradigms, with parameterisation that is more familiar to a scientifically-trained user, aiming to make best use of computational resource. We describe how analogies based on gravitational force can be used for low-level analysis, whilst analogies of water flow and heat can be deployed to achieve high-level smooth shape detection. These new approaches to arbitrary shape extraction are compared with standard state-of-art approaches by curve evolution. There is no comparator operator to our use of gravitational force. We also aim to show that the implementation is consistent with the original motivations for these techniques and so contend that the exploration of physical paradigms offers a promising new avenue for new approaches to feature extraction in computer vision

    Optimización en GPU de algoritmos para la mejora del realce y segmentación en imágenes hepáticas

    Get PDF
    This doctoral thesis deepens the GPU acceleration for liver enhancement and segmentation. With this motivation, detailed research is carried out here in a compendium of articles. The work developed is structured in three scientific contributions, the first one is based upon enhancement and tumor segmentation, the second one explores the vessel segmentation and the last is published on liver segmentation. These works are implemented on GPU with significant speedups with great scientific impact and relevance in this doctoral thesis The first work proposes cross-modality based contrast enhancement for tumor segmentation on GPU. To do this, it takes target and guidance images as an input and enhance the low quality target image by applying two dimensional histogram approach. Further it has been observed that the enhanced image provides more accurate tumor segmentation using GPU based dynamic seeded region growing. The second contribution is about fast parallel gradient based seeded region growing where static approach has been proposed and implemented on GPU for accurate vessel segmentation. The third contribution describes GPU acceleration of Chan-Vese model and cross-modality based contrast enhancement for liver segmentation

    Content-driven superpixels and their applications

    No full text
    This thesis develops a new superpixel algorithm that displays excellent visual reconstruction of the original image. It achieves high stability across multiple random initialisations, achieved by producing superpixels directly corresponding to local image complexity. This is achieved by growing superpixels and dividing them on image variation. The existing analysis was not sufficient to take these properties into account so new measures of oversegmentation provide new insight into the optimum superpixel representation. As a consequence of the algorithm, it was discovered that CDS has properties that have eluded previous attempts, such as initialisation invariance and stability. The completely unsupervised nature of CDS makes them highly suitable for tasks such as application to a database containing images of unknown complexity. These new superpixel properties have allowed new applications for superpixel pre-processing to be produced. These are image segmentation; image compression; scene classification; and focus detection. In addition, a new method of objectively analysing regions of focus has been developed using Light-Field photography

    Modelling and tracking objects with a topology preserving self-organising neural network

    Get PDF
    Human gestures form an integral part in our everyday communication. We use gestures not only to reinforce meaning, but also to describe the shape of objects, to play games, and to communicate in noisy environments. Vision systems that exploit gestures are often limited by inaccuracies inherent in handcrafted models. These models are generated from a collection of training examples which requires segmentation and alignment. Segmentation in gesture recognition typically involves manual intervention, a time consuming process that is feasible only for a limited set of gestures. Ideally gesture models should be automatically acquired via a learning scheme that enables the acquisition of detailed behavioural knowledge only from topological and temporal observation. The research described in this thesis is motivated by a desire to provide a framework for the unsupervised acquisition and tracking of gesture models. In any learning framework, the initialisation of the shapes is very crucial. Hence, it would be beneficial to have a robust model not prone to noise that can automatically correspond the set of shapes. In the first part of this thesis, we develop a framework for building statistical 2D shape models by extracting, labelling and corresponding landmark points using only topological relations derived from competitive hebbian learning. The method is based on the assumption that correspondences can be addressed as an unsupervised classification problem where landmark points are the cluster centres (nodes) in a high-dimensional vector space. The approach is novel in that the network can be used in cases where the topological structure of the input pattern is not known a priori thus no topology of fixed dimensionality is imposed onto the network. In the second part, we propose an approach to minimise the user intervention in the adaptation process, which requires to specify a priori the number of nodes needed to represent an object, by utilising an automatic criterion for maximum node growth. Furthermore, this model is used to represent motion in image sequences by initialising a suitable segmentation that separates the object of interest from the background. The segmentation system takes into consideration some illumination tolerance, images as inputs from ordinary cameras and webcams, some low to medium cluttered background avoiding extremely cluttered backgrounds, and that the objects are at close range from the camera. In the final part, we extend the framework for the automatic modelling and unsupervised tracking of 2D hand gestures in a sequence of k frames. The aim is to use the tracked frames as training examples in order to build the model and maintain correspondences. To do that we add an active step to the Growing Neural Gas (GNG) network, which we call Active Growing Neural Gas (A-GNG) that takes into consideration not only the geometrical position of the nodes, but also the underlined local feature structure of the image, and the distance vector between successive images. The quality of our model is measured through the calculation of the topographic product. The topographic product is our topology preserving measure which quantifies the neighbourhood preservation. In our system we have applied specific restrictions in the velocity and the appearance of the gestures to simplify the difficulty of the motion analysis in the gesture representation. The proposed framework has been validated on applications related to sign language. The work has great potential in Virtual Reality (VR) applications where the learning and the representation of gestures becomes natural without the need of expensive wear cable sensors
    corecore