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Abstract

Human gestures form an integral part in our everyday communication. We use

gestures not only to reinforce meaning, but also to describe the shape of objects,

to play games, and to communicate in noisy environments. Vision systems that

exploit gestures are often limited by inaccuracies inherent in handcrafted models.

These models are generated from a collection of training examples which requires

segmentation and alignment. Segmentation in gesture recognition typically in-

volves manual intervention, a time consuming process that is feasible only for a

limited set of gestures. Ideally gesture models should be automatically acquired

via a learning scheme that enables the acquisition of detailed behavioural knowl-

edge only from topological and temporal observation.

The research described in this thesis is motivated by a desire to provide a frame-

work for the unsupervised acquisition and tracking of gesture models. In any

learning framework, the initialisation of the shapes is very crucial. Hence, it would

be beneficial to have a robust model not prone to noise that can automatically cor-

respond the set of shapes. In the first part of this thesis, we develop a framework

for building statistical 2D shape models by extracting, labelling and corresponding

landmark points using only topological relations derived from competitive heb-

bian learning. The method is based on the assumption that correspondences can

be addressed as an unsupervised classification problem where landmark points

are the cluster centres (nodes) in a high-dimensional vector space. The approach

is novel in that the network can be used in cases where the topological structure of

the input pattern is not known a priori thus no topology of fixed dimensionality is
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imposed onto the network.

In the second part, we propose an approach to minimise the user intervention

in the adaptation process, which requires to specify a priori the number of nodes

needed to represent an object, by utilising an automatic criterion for maximum

node growth. Furthermore, this model is used to represent motion in image se-

quences by initialising a suitable segmentation that separates the object of interest

from the background. The segmentation system takes into consideration some il-

lumination tolerance, images as inputs from ordinary cameras and webcams, some

low to medium cluttered background avoiding extremely cluttered backgrounds,

and that the objects are at close range from the camera.

In the final part, we extend the framework for the automatic modelling and

unsupervised tracking of 2D hand gestures in a sequence of k frames. The aim

is to use the tracked frames as training examples in order to build the model and

maintain correspondences. To do that we add an active step to the Growing Neu-

ral Gas (GNG) network, which we call Active Growing Neural Gas (A-GNG) that

takes into consideration not only the geometrical position of the nodes, but also the

underlined local feature structure of the image, and the distance vector between

successive images. The quality of our model is measured through the calculation

of the topographic product. The topographic product is our topology preserving

measure which quantifies the neighbourhood preservation.

In our system we have applied specific restrictions in the velocity and the ap-

pearance of the gestures to simplify the difficulty of the motion analysis in the ges-

ture representation. The proposed framework has been validated on applications

related to sign language. The work has great potential in Virtual Reality (VR) ap-

plications where the learning and the representation of gestures becomes natural

without the need of expensive wear cable sensors.
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Chapter 1

Introduction

”Whereas verbal behavior is assumed to be closely tied to a speaker’s thoughts,

non verbal behavior, including gesture, has traditionally been assumed to re-

flect the speaker’s feelings or emotions.”

W. Wundt

1.1 Motivation

Accurate nonrigid shape modelling and tracking is a challenging problem in ma-

chine vision with applications in human computer interaction, motion capture,

nonlinear registration, image interpretation and scene understanding. In the area

of human computer interaction, the last decades with the availability of more pow-

erful computers and a wide range of camcorders, it only became natural to search

for more intriguing and natural interfaces to interact with computers.

Human gestures form an integral part in our verbal and non-verbal communi-

cation. We use them to reinforce meaning not always conveyed through speech,
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to describe the shape of objects, to play games, to communicate in noisy environ-

ments, and to convey meaning to elderly people and people with special needs. We

can use gestures as expressive body motions or to translate non-verbal languages

that consist of a set of well defined gestures and hand postures with complete lex-

ical and grammatical specifications as in the case of sign languages. Our visual

system is able to interpret a remarkable variety of different gestures with often

subtle characteristics of hand configuration, posture and orientation.

Throughout this thesis we use gestures found in sign languages with underly-

ing spatial and temporal structure defined only by the hand motion. Our system

integrates the vision module, and not high calibre wear cable sensors attached to

the users, and can operate on a low to medium cluttered environment. The system

receives images from acquisition devices at video frequency and take decisions

under a set of requirements such as time constraints, accurate segmentation, and

medium processing speed of hand gestures.

Machine vision systems that exploit gestures are often limited by inaccuracies

inherent in handcrafted models. These models are generated from a collection of

training examples which requires segmentation and alignment. This task is ill-

conditioned due to measurement noise, manual intervention and hand labelling

of image sequences, and human variation in the performance of a gesture. Ide-

ally models should be automatically acquired via a learning scheme that enables

the acquisition of detailed behavioural knowledge only from topological and tem-

poral observation. As such, a robust model not prone to noise that empirically

evolves over time using contextual information directly derived from an observa-

tion sequence is required. In addition, this model should vary its shape and can

segment, match and track images of anatomic structures. In the case of non-rigid

shape matching where natural gestures belong to the modelling can be performed
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using deformable models which can be classified as:

• Statistical models where a priori knowledge is incorporated in the model such

as expected size, position, shape and appearance [32, 39, 80, 124, 130].

• Flexible models which can deform to any shape, with no a priori knowledge

about the object domain and with object-specific varying parameters [92, 106,

158, 188].

• Self-Organising Neural Network Models where no restrictions are applied

upon the network model [10, 60, 93, 94, 117, 118].

From the statistical models, the most well known models are the Finite Ele-

ment Models and the Statistical Shape Models. These models share in common

the prior knowledge the user has about the object of interest [48]. The finite ele-

ment models capture the variability of the different objects by incorporating a priori

knowledge about the expected physical attributes of the object [32, 39]. Nastar and

Ayache [124], for example, build models from a prototype represented by a set of

nodes attached to springs. By solving a generalised eigenmode problem they de-

rive different modes of vibrations with the first modes used to model 2D and 3D

medical images. The statistical shape models capture the variability of a class of

objects by estimating the population statistics from a set of training examples. The

training set consists of a set of points along the contour of the object. The collec-

tion of training examples requires the manual segmentation and alignment of an

observation sequence, which is an ill-conditioned task due to measurement noise

and human variation in the observation. However, if the manual intervention, a

time consuming and labor intensive process that is only feasible for a limited set

of examples, can be replaced by semi-automatic or fully automatic methods, these

models are very compact since they deform in ways only similar to the training
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set [40, 80]. Cootes et al. [32], for example, model and segment 2D medical im-

ages by constructing Point Distribution Models (PDMs) from training sets of 2D

boundaries. New shapes are generated by solving an eigenshape problem and re-

constructed by the principal vectors that best capture the variation of the training

set. With these models we build statistical human brain MRI and hand gesture

models since are the most prominent in terms of specificity and generalisation.

From the flexible models, the most well known models are the Hand Crafted

Models [79, 83, 106], the Fourier Series Shape Models [19, 150], and the Active Con-

tour Models (Snakes) [92]. These models share in common that no a priori knowl-

edge is applied, but object-specific parameters are used as constrains for the model

deformation. Hand crafted models can be built up from simple subcomponents,

such as circles, lines or arcs, which are allowed object-specific deformations [32].

Yuille et al. [188], for example, model parts of a face, such as eyes and mouth, by

allowing only specific parameters, such as the radius of the iris, to deform. Modify-

ing the trigonometric basis functions from the Fourier Series, shapes are modelled

as a function with specific parameters [32]. Staib and Duncan [158], for example,

use Fourier models to interpret medical images. By varying the parameters and

the number of terms used, different shapes can be generated. These models have

no prior shape information and can deform infinitely since no shape constraints

are applied. The Active Contour Models (Snakes) were popularised by Kass et

al. [92] and describe energy minimising spline curves attracted toward features,

such as lines and edges. The snake can deform to any smooth contour with few

constrains on the overall shape. The constrains are defined by a combination of

internal and external forces and the snake converges when the forces achieve equi-

librium. Furthermore, the snake has global constrains and it has no mechanism to

minimise its energy function at desirable (local) image properties. A comparison
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of our proposed method to the snake’s methodology is presented in Chapter 5.

From the Neural Network models, the most well known Self-Organising Net-

works are the Self-Organising Maps (SOMs) or Kohonen Maps [93, 94], the Grow-

ing Cell Structures (GCS) [59], the Neural Gas (NG) [117] and the Growing Neural

Gas (GNG) [60]. These models share in common the attributes of dynamically gen-

erating and removing processing elements (vectors of a network) and dynamically

generating and removing synaptic links (neighbourhood connections). Further-

more, these models make no assumption about the global structure of the shape

to be modelled or more generally of the problem to be learned [9, 162]. From the

above models, which are quite similar in the system architecture, we have used the

GNG model since is superior in terms of computational efficiency, is robust against

noise, and can handle complex distributions [7, 55, 164, 168]. Furthermore, Heinke

and Hamker [78] made a comparative study between fuzzy ARTMAP (FAM), GCS

and GNG, and found that a well trained GNG outperforms the other incremental

networks with respect to the number of inserted nodes, the number of epoches and

convergence speed.

In the statistical and flexible models, the segmentation of the training examples

typically involves manual intervention and hand labelling of image sequences, a

time consuming and labor intensive process that is only feasible for a limited set

of gestures [80]. Moreover, most of the common tracking schemes require a good

representation of the posterior distribution so that low-degree parametric mod-

els can be applied to the observation [11]. This has motivated many researchers

to consider nonparametric representations, including particle filters and nonpara-

metric belief propagation [110, 166, 167]. In the case of the nonparametric belief

propagation the geometric hand model’s configuration like the structural and the

kinematic constrains of the hand are considered. In this thesis, the tracking is based
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only on the given 2D image observation.

Since we want our model to converge both globally and locally, in this thesis

we introduce a nonparametric approach to modelling the gestures which makes it

ideally suited for learning in dynamic environments. A nonrigid shape modelling

framework should be able to (1) generalise and capture the natural variability of

the objects; (2) self-organise to reflect the nonlinear correlations between inputs

and outputs, and should have no topological constraints; (3) model motion so the

object of interest can be tracked in a sequence of frames; (4) preserve topological

relations based on global and local transformations; (5) use as few parameters as

possible; (6) have a low computational complexity.

In the above framework, it is important that a reliable segmentation system

exists that takes into consideration some illumination tolerance, images as inputs

from ordinary cameras and webcams, some low to medium cluttered background

avoiding extremely cluttered backgrounds, and that the objects are at close range

from the camera. In the case of shape variation and modelling where the extracted

feature of the object is the contour, a strong segmentation between foreground and

background is required since any failure will prevent the successful extraction of

the feature. However, when the topology of an object is incorporated into the

model the segmentation can be relaxed since the gestures can be recovered from

features already saved in the network.

Besides segmentation hand gestures, which are effectively a 2D projection of

a 3D object, can become very complex for any recognition system. Systems that

follow a model-based method [1, 126, 168], require an accurate 3D model that

captures efficiently the hand’s high Degrees of Freedom (DOF) articulation and

elasticity. The main drawback of this method is that it requires massive calcula-

tions which makes it unrealistic for real-time implementation. Since this method
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is too complicated to implement, the most widespread alternative is the feature-

based method [36, 95] where features such as the the geometric properties of the

hand can be analysed using either Neural Networks (NN) [171, 184] or stochastic

models such as Hidden Markov Models (HMMs) [49, 180]. We decided to use the

former for the representation of human gestures since our model should perform

at high computational efficiency making it ideal for real time environments, have

low quantisation error, and obtain accurately the topology of the hand.

1.2 Contributions

The research described in this thesis is motivated by a desire to address the above

model building limitations and to provide a framework for the automatic model

acquisition and unsupervised tracking of nonrigid objects using topological rela-

tions and underline features. In particular the main contributions are:

• We develop a method for the automatic extraction and correspondence of

landmark points using only topological relations derived from Competitive

Hebbian learning. Correspondences, which are the point-to-point matching

between two or more shapes, are the vectors (nodes) of a network without

topological constrains and are solved in nonlinear manifolds. The automatic

generation of the nodes is performed with the Growing Neural Gas (GNG)

network and we show how it can be applied automatically in a set of objects.

Furthermore, we have improved its parameters by removing wrong edges

and re-ordering the network. The re-ordered list of nodes is then projected

into the shape space where synthesised shapes similar to the training set are

generated using statistical models.

• Based on the capabilities of GNG to readjust to new input patterns without
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restarting the learning process, we propose an approach to minimise the user

intervention in specifying the number of nodes needed to represent an object

by utilising an automatic criterion for maximum node growth. The termi-

nation of the network uses knowledge obtained from information-theoretic

considerations. The model is then used to the representation of motion in im-

age sequences by initialising a suitable segmentation that separates the object

of interest from the background.

• This approach is extended by adding an active step to the GNG network,

which we call Active Growing Neural Gas (A-GNG) that takes into consider-

ation not only the geometrical position of the nodes, but also the underlying

local feature structure of the image and the distance vector of the maps be-

tween successive images. The network has both global and local properties,

and the nodes move at key areas in the image and no training set is required.

This extended framework allows us to automatically model and track in an

unsupervised manner 2D hand gestures in a sequence of k frames.

• Based on the tracked frames provided by Active-GNG we measure the valid-

ity of the best model, in terms of maintaining correspondences, by comput-

ing the distance in successive frames between neighbouring nodes in both

the input and the latent space. The advantage of this representation is that

the similarity of a pair of nodes before and after the mapping can be cal-

culated, which means that a mapping preserves neighbourhood relations if

nearby points in the input space remain close in the latent space. The best

neighbourhood preservation is measured by the topology preserving mea-

sure, the topographic product. This measure evaluates the similarity of pairs

of points before and after the neighbourhood mapping by computing the
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distance and taking into account the structure of the Delaunay triangulation

between neighbours in both the input and the latent space.

1.3 Thesis Outline

The remaining part of this thesis is structured as follows. In Chapter 2 we provide

a review of related research in the field of solving correspondences across a set of

2D shapes. The review focuses on the importance of correspondences in automatic

shape modelling and on methods that best approach the correspondence problem.

In Chapter 3 we develop a framework for building 2D statistical shape models of

hand gestures using only topological relations. For validity, we have also experi-

mented with other nonrigid objects such as human brain MRI, which are discussed

in Appendix C. We first discuss the Growing Neural Gas (GNG) network and then

we show how it can be used for the automatic extraction and correspondence of

nodes in a set of objects. The validity of the model, in terms of maintaining cor-

respondences, is measured with a topology preserving function. Based on the ca-

pabilities of the GNG network, in Chapter 4 we propose an approach to minimise

the user intervention in the adaptation process. We achieve that by defining an

optimal number of nodes without overfitting or underfitting the network, based

on the knowledge obtained from information theoretic considerations. In Chap-

ter 5 we extend the framework for the automatic modelling and unsupervised

tracking of 2D hand gestures in a sequence of k frames. The modified network

consists of descriptors obtained from a spatial transformation of the network, an

automatic criterion for maximum node growth and local features for object track-

ing. In Chapter 6 we conclude with a formal discussion, an outline of future work,

and possible applications like the online tracking and representation of previously
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unmodelled objects and their incorporation in environments such as augmented

reality. This work can also be used in cases where minimum time is required like

online learning for detecting obstacles in robotics. In addition, in the Appendices

we give an overview of unsupervised learning and the GNG algorithm as used in

this thesis, an introduction to shape alignment, experimental results for MRI data

sets, an overview of the EM algorithm for skin colour segmentation, and a list of

publications that established the basis for this thesis.
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Chapter 2

Solving the Correspondence Problem

Across Sets of 2D Shapes

In this chapter we review related research in shape modelling, a principal ap-

proach in many computer vision applications. In particular, we discuss the

ideas of constructing optimal models of shape variation, which are fundamen-

tals for the methods proposed in the following chapters. Additionally, we in-

troduce the idea of unsupervised learning and show how the self-organising

models can improve shape modelling.

2.1 Shape Modelling

In shape modelling a robust model is a model that can generalise to legal unseen

instances of the selected class of shapes. The generalisation is successful if and

only if correct correspondences have been established between shapes. One com-

mon approach is to hand-annotate the shapes from the training set by placing land-

mark points around the contours. This process is both laborious, time-consuming
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and error-prone in 2D and 3D - especially if the person doing the annotation is

non-expert- that an accurate, rapid and automated system should be developed

and deployed. In literature, several approaches have been proposed to automate

the process of model building [3, 11, 40, 81, 97, 146]. In all cases the aim is to

build automatically a model that best captures the shape variation with minimal

representation error [30].

In this chapter the methods that best describe the correspondence problem in

2D shapes have been grouped accordingly: the equally spaced method [11, 40, 81],

the pairwise method [13, 69, 81, 91, 151, 169], the groupwise method [39, 97, 98],

the non correspondence [14, 23, 176], and the proposed unsupervised learning

method. In the following sections we give a review of related research, and con-

clude the chapter with our proposed method based on growing neural models.

2.2 Equally Spaced Correspondence

Equally spaced is a semi-automatic or automatic method that can be used to con-

struct models by equally spacing control points along the boundaries of the train-

ing set. It is a semi-automatic method if it is used in conjunction with a small

number of manually placed points at key locations, like points placed manually

at the tip of each finger. Researchers have used this method as comparison to

their automatically generated models [40, 81]. In this thesis this method was used

for comparison and results are presented in Chapter 3. Since the method uses a

number of hand-annotated points in key locations (curvature points) it gives good

results but is considered semi-automatic and time consuming. It is an automatic

method if it is used by selecting a starting point on each example from the training

set and equally space a number of points on each boundary.
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Baumberg and Hogg [11] have used this automatic technique to build statisti-

cal shape models. At first they obtain a set of un-ordered boundary points from

walking pedestrians. The boundary points are re-ordered according to a refer-

ence point. The reference point is selected as the lowest point of the principal axis

that passes though the centroid of the boundary points, the principal axis is de-

fined by using the least square approximation method. Then, they construct the

model by approximating the boundary points to equally spaced B-spline control

points around the boundaries of walking pedestrians. The model is then refined

by adding direction of motion to the model and is used to extrapolate direction

from shape.

This method generally results in poor models because a) the length of each

shape differs, b) points do not correspond at physical locations across the set, and

c) the points are not allowed to redistribute around the boundaries.

2.3 Pairwise Correspondence

Pairwise correspondence is a method that seeks to automate the manual process

of identifying similar points on each example from the training set by perform-

ing a sequence of point-to-point correspondences between a pair of shapes and

by optimising a pairwise metric [97]. The pairwise correspondence can be per-

formed either between a pair of point sets [13, 69, 136, 146, 151, 152] not neces-

sarily connected or between two curvatures by minimising their difference [29, 47,

81, 91, 169]. The difference between the two is that the former treats all points of

equal importance while the later uses as a measure of correspondence points with

maximum curvature. However, the problem with pairwise correspondence is gen-

eralisability, since the metric is optimised over a pair of shapes rather than over
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the whole set and therefore global properties of the model are lost. In addition

the pairwise metric like curvature-based matching is arbitrary and adapted to the

problem at hand.

2.3.1 Point Sets

Scott and Longuett-Higgins [151] developed an algorithm of matching 2D fea-

tures such as edges and corners across a pair of shapes using a weighted prox-

imity matrix. The mapping scheme is based on the criteria of favouring matches

across shorter distances between a pair of features and favouring only one-to-one

matches. This is achieved by performing Singular Value Decomposition (SVD)

on the Gaussian-weighted proximity matrix which holds all the possible distances

between a pair of features. Only strong correspondences are selected from the

proximity matrix and an overall minimum squared distance mapping is ensured.

This technique however fails, if the shape undergoes large rotations and distortion

such as skewness.

Shapiro and Brady [152] have extended this technique by incorporating in the

proximity matrix intra-image feature distances rather than inter-image feature dis-

tances; distances between features within the image and not between two images.

This matrix and its corresponding eigenvectors form an orthogonal basis that cap-

tures the modes of the shape. In other words, shape description is added to the al-

gorithm at a low level. Corresponding points are found by comparing the modes of

a pair of shapes which they call it modal matching. This algorithm was implemented

and the result is that it works well for rigid shapes and for transformations such

as rotations, translations and uniform scaling but it becomes unstable when the

shape performs nonrigid transformations. This is due to the fact that there is no

mechanism behind to allow for redistribution of the points around the boundaries.
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Sclaroff and Pentland [146] find correspondences between features of pair of

shapes via modal matching similar to Shapiro and Brady [152], but the method is

extended to nonrigid correspondences and with greater generalisability and ac-

curacy. The algorithm builds a finite element model (FEM) based on the cloud

of feature points for each shape. Modal analysis of the FEM produces the eigen-

modes or shape modes (rigid-body modes, intermediate modes and high-order

modes) for each shape. Correspondences are computed by matching the two sets

of modes directly. Hill and Taylor [82] have implemented this algorithm and found

that works well on certain shapes (airplanes, cars, etc.) but it fails on deformable

shapes such as hands, ventricles and generally medical shapes. The reason is that

since no connectivity of the data to form boundaries is enforced the parameterisa-

tion of the data points is not restricted to the surface of the object and this does not

guarantee legal set of correspondences.

Rangarajan et al. [136] use the softassign procrustes matching algorithm to es-

tablish correspondences between a pair of point sets. Correspondences are achieved

via a binary match matrix that assigns points in one set to points in the other and

discarding points that do not match as outliers. An optimisation method similar to

solving the assignment problem is used to produce a match matrix of correspon-

dences. The problem with this method is similar to Sclaroff and Pentland [146].

Since there is no notion of boundary connectivity invalid correspondences can be

achieved.

Gold et al. [69] solve the correspondence problem between a pair of 2D and 3D

point sets by using a combination of optimisation techniques and minimising an

objective function which handles both pose and correspondences. The algorithm is

a two step iterative algorithm. In the first step the correspondence parameters are

estimated using the softassign optimisation technique while in the second step the
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pose parameters are estimated using coordinate descent. The pose and the corre-

spondence are calculated simultaneously in an iterative manner. The problem with

this method is similar to the previous methods. It works well for rigid object with

transformations such as scaling, rotation or swearing but not with nonrigid objects

since no connectivity is enforced. Furthermore, there is no mechanism behind that

allows for redistribution of the points around the boundaries.

2.3.2 Curvature Information

Kambhamettu and Goldgof [91] use Gaussian curvature changes of the surface at

a given point to estimate point correspondences in nonrigid motion. To determine

point correspondences they assume small motion of the surface and hypothesize

all the possible correspondences the point of interest can have with its neighbours.

Curvature changes are then computed for each hypothesis. Then an error metric

is used to evaluate the hypotheses. The hypothesis with the minimum error gives

true point correspondences and surface stretching.

Similar to Kambhamettu and Goldgof [91], Cohen et al. [29] use curvature in-

formation based on the idea that curvature points possess anatomical meaning (for

example, on a face curvature points correspond to the nose, chin and eyebrows) to

track nonrigid motion of deformable 2D shapes. Their method is based on energy

minimisation between a pair of curves to be matched and is obtained through the

mathematical framework of Finite Element Analysis. The idea is to weight differ-

ently the salient regions where points of high curvature exist from other points in

the boundaries. Their method is an improvement to Duncan et al. [47] method and

can generalise to 3D.

Hill and Taylor [81] use the curvature of the boundary to define correspondence

between a pair of closed 2D shapes. Their algorithm is a two-stage process. At
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first a curvature matching dynamic programming algorithm is used to generate a

pixel-to-pixel mapping between pair of shapes. Then for each matched pair a mean

shape is constructed until there is one generic mean shape. The construction of the

mean shape follows the structure of a bottom-up binary tree. A set of landmarks

are now generated automatically on the mean shape and a top-down approach is

followed. In the second stage an optimisation scheme is performed. The objective

function is the trace of the model covariance matrix plus a correction term that

penalises points moving outside the boundary. Although the method works well

the corresponding metric is arbitrary and the method is not easily extensible to

3D [97].

Tagare et al. [169] have shown that the above methods based on curvature in-

formation are problematic for two reasons:

1. Curvature is a rigid invariant of shape. Rigid invariance means that points

separated by a certain distance in one curve are paired with points separated

with the same distance in the other curve. If the distance is different then the

pairing is nonrigid. Thus, methods that use numerical values as curvature

based difference at corresponding points will fail in nonrigid shapes.

2. The curvature based difference objective function is not symmetric since the

optimal correspondence from one curve to another is not guaranteed in the

reverse direction.

Their method in finding correspondences is based on the notion of taking the prod-

uct of a pair of curves and creating the relevant product space with its topological

structure. These biomorphism correspondences follow a pairwise mapping. These

correspondences can be one-to-one or many-to-one. With the later allowing curve

segments to shrink to points and vice versa. Since the correspondences are based
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on biomorphism properties can only be defined for closed shapes. An objective

function is then used to measure the quality of the correspondences by compar-

ing the local shape and local stretching of the curves. The algorithm gives very

good results both to rigid and nonrigid shapes but is not extensible to open shapes

since it contradicts the definition of what is biomorphism or to 3D. Furthermore,

the authors claim the algorithm may not be relevant for correspondences based on

landmarks [169, 170].

In [81] Hill and Taylor used a dynamic programming algorithm based on cur-

vature difference to establish pairwise correspondences between points. They

found this method problematic because of the reasons pointed out by Tagare [170].

In [80, 82] they have improved their framework by using a polygonal approxima-

tion method between a pair of boundaries without comparing curvature differ-

ence. Their algorithm performs in three stages:

• A sparse polygonal approximation to one of the two nonrigid closed bound-

aries is first performed. The sparse polygon is generated with the critical

point detection (CPD) algorithm described by Zhu and Chirlian [191]. CPD

is an effective algorithm of detecting points with maximum curvature on

boundaries. The algorithm separates the critical points from the rest of the

points by applying a critical level to every point and keeping those with the

highest level. The critical level is the area of the triangle confined by the given

point and its two neighbour points. In a recursive manner the points with

the lowest critical level are deleted until no point has lower critical level than

the specified level. When this threshold is reached the algorithm converges.

This threshold is set up by the user and depends on the level of details of

the object. The idea behind the polygonal approximation is to determine the

number of ordered pairs between the two shapes.
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• Then a back projection based on a path matching correspondence algorithm

is performed onto the second boundary resulting on an initial estimate of

the corresponding polygon. At this stage a rigid pairing between points is

established.

• Finally, these initial set of correspondences are then refined and an optimisa-

tion greedy algorithm is used to minimise a cost function.

The algorithm gives good results in nonrigid shapes but it cannot handle multiple

open/closed boundaries, the objective function is arbitrary - based on the repre-

sentation error of two shapes- and computationally expensive to be extended to

3D surfaces.

2.4 Groupwise Correspondence

Groupwise correspondence is a method similar to pairwise with the only differ-

ence that correspondences are calculated by optimising an objective function across

the whole set of shapes. Since the correspondence metric is optimised over the

volume of the shape space and not between a pair of shapes, as in the case of the

pairwise method, the global properties of the model are perceived. This method is

preferable compared to pairwise since the similarity of shapes is measured glob-

ally thus the quality of the model is measured in a more precise mathematical form

which leads to compact models.

Kotcheff and Taylor [97, 98] address the correspondence problem in terms of

finding the correct pose and parameterisation of each shape in the training set

such as a chosen objective function is minimised. As an objective function they

have used the determinant of the covariance matrix which effectively measures
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the volume of the shape space and concentrates the variance into a few modes

with large variances, thus by minimising it should lead to more compact models.

Correspondences are calculated by explicitly re-parameterasing, using a piecewise

linear function, the original arc-length parametesised shapes. Points are then al-

lowed to move on the boundary of each shape. For legal correspondences to exist

the mapping between the arc-length parameterisation and re-parameterisation of

the points should be ”1− 1”. In their method this problem is addressed by explic-

itly reordering the points within each shape. This constrain is problematic since it

is very computational consuming, the method takes many hours to converge, and

cannot be extended in 3D. A Genetic Algorithm (GA) is used to optimise the objec-

tive function by manipulating the re-parameterisation function of each shape. The

method of Kotcheff and Taylor [98] is improved by Davies et al. [39] who modify

the re-parameterisation function so that it can be differentiable. This improvement

has direct extension to surface re-parameterisation. Davies et al. [39] measure the

quality of their model by optimising the Minimum Description Length (MDL) ob-

jective function. The method is very promising and it leads to automatically built

shape models. However, due to very large number of function evaluations and

nonlinear optimisation the method is computationally expensive.

2.5 Non Correspondence

The equally-spaced, pairwise and groupwise methods solve the correspondence

problem either by equally spacing the shape function, and no redistribution of the

points along the shape path is involved, or by grouping the points into higher

level structures such as lines, curves or surfaces and parameterising the points

along these attributes. An optimal transformation/mapping such as estimating

20



CHAPTER 2. SOLVING THE CORRESPONDENCE PROBLEM ACROSS SETS
OF 2D SHAPES

the mean, the covariance or the probability distribution between rigid or nonrigid

objects is then achieved. The accuracy of the mapping is assessed by minimising

an objective function either over a pair of shapes or along the shape space. The

more global it is the better the quality of the built model.

The method discussed here bypasses the correspondence problem rather than

solve it and is known as the non correspondence method [39]. With this method

the shapes are modeled either linearly by solving a linear optimisation problem

such as the least-square problem or nonlinearly by configuring correspondences

in nonlinear manifolds.

When using nonlinear methods correspondences are calculated either as a prob-

ability density estimation function where both correspondence and shape trans-

formation are solved in an iterative manner or as we propose vectors derived from

competitive hebbian learning where the landmark points are the cluster centres in

a high-dimensional space. In the former the probability distributions can be Dirac

Delta functions represented as isotropic or oriented Gaussian mixtures [23, 176]

and in the latter neurons with or without topological constrains. The objective

of unsupervised classification is: given a high dimensional data distribution find

a topological structure that best defines the topology of the data distribution. In

this paper the correspondence problem, with its applications to nonrigid tracking

and unsupervised model generation, is addressed as a topology learning problem

and the automatic extraction and correspondence of landmark points is achieved

through the calculation of the topographic product.

2.5.1 Correspondence and Shape Transformation

Belongie et al. [13, 14] solve the correspondence problem between a pair of shapes

and the transformation for shape-based recognition by introducing a descriptor to
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each point. Each chosen point is connected by lines to the rest of the points and

the length and the orientation of each line is calculated. This distribution of the

length and the orientation of the lines is computed through histogram difference

and is used as the shape context descriptor for the first point. A cost function be-

tween all pairs of points from the first and the second shape is then minimised

and correspondences are obtained by solving a bipartite matching problem. These

correspondences are then used to estimate the transformation that best aligns the

two shapes. By using the thin plate spline model shape deformations are allowed

and the best transformation map is achieved. Their model is then used for object

recognition. The results on various databases including handwriting recognition

are good and the algorithm can work for both open and closed boundaries. How-

ever, the convergence properties of this algorithm are unclear since there is no

global objective function that is being minimised.

Chui et al. [28] extend their previous work on pose estimation and correspon-

dence by including spline-based deformations to their transformation scheme, orig-

inally restricted to affine and piecewise-affine mapping, and by developing a gen-

eral purpose nonrigid point matching algorithm. Their thin plate spline robust

point matching (TPS-RPM) algorithm is very similar to the Iterative Closest Point

(ICP) algorithm but with improvements such as one-to-one correspondences are

guaranteed and outliers can be part of the point sets. In an iterative process both

correspondence and transformation are solved by minimising a linear assignment

least square energy function. Optimisation problems such as the linear assign-

ment discrete problem and the least square continuous problem are handled with

the techniques of softassign and deterministic annealing [69, 136]. Although the

algorithm gives good results for both rigid and nonrigid objects there is no notion

of connectivity which means that in large deformations (e.g. caterpillar images)
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the algorithm fails and invalid correspondences are ensued.

Wang et al. [176] use the probabilistic correspondence method to simultane-

ously compute the mean shape from unlabeled 2D and 3D rigid and nonrigid

point sets and to register them nonrigidly. The point sets are modelled as kernel

probability distributions and the distance between these distributions is quantified

by the Jensen-Shannon (JS) divergence measure. This cost function is then opti-

mised, using a gradient based numerical optimisation technique such as the Quasi-

Newton method, over a space of coordinate transformations yielding to the de-

sired registration. The JS cost function is used to measure the similarity/closeness

between the distributions. If these distributions are statistically similar then the

point sets can be properly aligned under nonrigid transformations. The advantage

of their work is that it can be used in atlas construction since it emerges during the

registration process. The alignment of the unlabeled point sets and the atlas con-

struction work very well but the location of the points need to be known a priori

since there are manually extracted by experts. This is time consuming and it is not

relevant to our approach which is both the automatic extraction and correspon-

dence. Furthermore, this method like the previous will fail in large deformations

since points are not connected and therefore not parameterised.

2.6 Proposed Method - Unsupervised Learning

In recent years, there have been a number of papers that have used self-organising

models in applications related to computer vision, man-machine interaction, and

biometric systems including: image compression [12, 18, 65], segmentation and

representation of objects [53, 144, 182], tracking objects [6, 22, 55], recognition of

gestures [16, 64], biomedicine [4, 37], and 3D reconstruction [2, 35, 73, 84, 138].
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These share in common the attributes of dynamically generating and removing

processing elements (vectors of a network) and dynamically generating and re-

moving synaptic links (neighbourhood connections). Furthermore, these models

make no assumptions about the global structure of the shape to be modelled or

more generally of the problem to be learned [162]. In this thesis, and based on

Fritzke’s neural networks architecture, Growing Neural Gas (GNG) [60], we over-

come temporary restrictions on problems such as tracking objects or the recogni-

tion of gestures, by processing and matching them over time, using the positions

of the nodes in the network.

Many researchers have modified growing models to make them adapt to differ-

ent applications. Fritzke [61] presented variations of the original GNG algorithm

to deal with non-stationary distributions, which he called the Growing Neural

Gas with Utility (GNG-U), and a semi-supervised variation SNG [58] combined

with Radial basis function (RBF) networks. In recent years, many variations of

the GNG algorithm have been proposed. Marsland et al. [114] present a vari-

ation, named Grow When Required (GWR) algorithm able to add nodes when-

ever the network does not sufficiently match the input. Furao and Hasegawa [62]

introduced an incremental learning GNG model to handle online non-stationary

problems. Prudent and Ennaji [133] also proposed an incremental learning model

based on the Adaptive Resonance Theory (ART) mechanism, called the Incremen-

tal GNG (IGNG), to handle semi-supervised learning. Qin and Suganthan [134]

proposed the Robust GNG (RGNG) algorithm for unsupervised clustering. The

algorithm added several techniques to the original GNG algorithm to reduce the

sensitivity of the algorithm to prototype initialization, input sequence, and out-

liers. Fatemizadeh et al. [51] modified the growing neural gas to automatically

correspond important landmark points from two related shapes. The algorithm
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treats the problem of correspondence as a cluster-seeking method by adjusting the

centers of points from the two corresponding shapes. Angelopoulou et al. [5] also

used the GNG to automatically obtain interest points in medical shapes and built

statistical shape models. Frezza-Buet [55] has slightly modified the original GNG

algorithm, called GNG-T, by continuously performing vector quantisation over a

distribution that changes over time. This method has been applied to people track-

ing. Wu et al. [182] and Stergiopoulou et al. [165] suggest the use of self-organising

networks for human-machine interaction. Xiang Cao et al. [22] and Vasquez et

al. [172] propose amendments to self-organising models for the characterisation of

the movement. From the cited works, only [55] represents both the local as well

as the global movement, however there is no consideration of time constraints, no

exploitation of knowledge gained from previous frames, and the condition of final-

isation for the GNG algorithm is defined by the insertion of a predefined number

of nodes.

Considering the work in the area and previous studies about representation

capabilities of self-growing neural models, we present an enhanced model which

accelerates the learning process and makes it suitable for modelling and tracking

an object in a sequence of k frames. Specifically, we present a model where (1)

the automatic extraction and correspondence of points are derived from compet-

itive hebbian learning; (2) the network preserves the topology independently of

global or local transformations; (3) the input space derived from the Expectation-

Maximisation (EM) algorithm is incorporated in the model to track objects in a se-

quence of k frames; (4) the classification of the gestures takes into account domain

knowledge information that respects always some proportions found in hands; (5)

the topology is best preserved with an optimal similarity threshold that maximises

topology learning versus adaptation time.
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Based on the above, we address the correspondence problem as an unsuper-

vised classification problem where landmark points are the cluster centres (nodes)

in a high-dimensional vector space [3]. The automatic extraction of landmark

points is achieved using the GNG network and the model is built by using nearest

neighbour relationships derived from competitive hebbian learning. The approach

is novel in that the network can be used in cases where the topological structure

of the input pattern is not known a priori thus no topology of fixed dimensional-

ity is imposed onto the network. Furthermore, the correspondence of the nodes is

achieved by adding an active step to the GNG network, which we call Active Grow-

ing Neural Gas (A-GNG) that allows the model to re-deform locally, and update

its position [6]. The Active-GNG takes into consideration not only the geometrical

position of the nodes but also the underlying local feature structure of the image,

and the distance vector between the modal image and any successive images.

To measure the quality of our model we use the topographic product, our topol-

ogy preserving function, which quantifies the neighbourhood preservation of the

map by computing the distance between neighbouring nodes in both the input

and the latent space. The advantage of this representation is that the similarity

of a pair of nodes before and after the mapping can be calculated. These features

(e.g. topographic product, colour and distance vector) of Active-GNG allow us to

automatically model and track in an unsupervised manner 2D hand gestures in a

sequence of k frames. The experiments include nonrigid shapes like medical MRI

brain ventricular images, hands, and rigid artificial data like squares and circles.

The algorithm gives good results in rigid and nonrigid shapes, it is computation-

ally inexpensive, it can handle multiple open/closed boundaries and it can easily

be extend to 3D surfaces.
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2.6.1 Constraints Applied to the Proposed Method

Specific restrictions have been applied to simplify the difficulty of the motion anal-

ysis in the gesture representation. In most systems these are based on the detection

and tracking of the object of interest. Below we summarise our assumptions.

• There are limited changes in the velocity and the direction of the gestures.

It is assumed that neither the speed nor the direction of the hand changes

drastically.

• The camera does not move and any motion from the objects is in a plane

parallel to the camera.

• The backgrounds are low to medium cluttered avoiding extremely cluttered

scenes.

• There are no occlusions.

• Relative motion: a movement is assumed relative with respect to the mor-

phological changes in the object. Local and global changes are perceived by

the observer.

2.7 Summary

Research on nonrigid shape modelling provides the base for image understanding

and classification. The most important fact however is that the model should be

robust not prone to noise and able to handle occlusions. In order for the model to

be robust correct correspondences should be established between a set of shapes.

However, because of the complexity of nonrigid shape transformation/mapping,

most methods simplify the task and either equally space the point sets along the
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shape or group the points into higher level structures such as lines, curves or sur-

faces and parameterise the points along these attributes. An optimal transfor-

mation/mapping such as estimating the mean, the covariance or the probability

distribution between rigid or nonrigid objects is then achieved. The accuracy of

the mapping is assessed by minimising an objective function either over a pair of

shapes or along the shape space. The more global the objective function is the

better the quality of the built model. An alternative method to the equally and

one-to-one or many-to-one correspondences is to bypass the correspondence prob-

lem. With this method the shapes are modeled either linearly by solving a linear

optimisation problem such as the least-square problem or nonlinearly by config-

uring correspondences in non-linear manifolds. The correspondence problem is

modeled either as a probability density estimation problem or as an unsupervised

classification problem.

Since we want to solve for correspondences and in parallel use the model to

track objects in a sequence of k frames, we bypass the correspondence problem

and we built topology preserving graphs based on nearest neighbour relationships

derived from competitive hebbian learning. By following this representation and

by incorporating in the network features such as the topographic product, local

grey-level and distance vector, we can automatically model and track in an unsu-

pervised manner 2D objects.
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Chapter 3

Object Representation with

Self-Organising Neural Networks

The contribution of this chapter is the automatic extraction, labelling and cor-

respondence of points using only topological relations derived from competitive

hebbian learning. In the beginning, we discuss the self-organising neural net-

work Growing Neural Gas (GNG) and show how it can be used for the auto-

matic extraction and correspondence of nodes in a set of objects. Additionally,

now that we have obtained the points, we build statistical human brain MRI

and hand gesture models using the Point Distribution Model (PDM).

3.1 Introduction

The objective of accurate nonrigid shape modelling is the construction of deci-

sion boundaries based on unlabeled training data that can solve for correct corre-

spondences between a set of shapes. Such correspondences can be classified as the

problem of finding homogeneous landmark points in a multidimensional data set.
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In medical imaging, Magnetic Resonance Imaging (MRI) techniques provide a

non-invasive and accurate method for determining the ultra-structural features of

human anatomy. The cerebral ventricles are buried within the centre of the brain

parenchyma and are the source of cerebral spinal fluid, which provides nutritive

and cushioning support to the brain and spinal cord. Neuropathologies involv-

ing the ventricles range from severe hypertrophy diagnostic for hydrocephalus,

to mild and diffuse enlargements associated with AIDS, Alzheimer’s Disease and

Schizophrenia [44, 67]. Currently, MRI techniques are employed routinely in the

diagnosis of ventricular related diseases. In many cases, the extent of disease pro-

gression can be determined by quantifying the extent of the change in ventricular

morphology and/or volume [44]. The usual practise in a clinical setting is to per-

form a high resolution T1-weighted MRI followed by laborious post-processing

steps. These post-processing steps are laborious and must be very accurate if the

purpose of the scan is to help determine the extent of disease progression. In very

overburdened medical facilities, performing this task manually may not be feasi-

ble. In addition, in a multi-centre study or when a patient visits multiple medical

facilities, there is little assurance that the post-processing steps will be performed

in an identical fashion. An automated procedure may provide the means of yield-

ing objective and consistent results across various institutions. It is imperative

therefore that an accurate, rapid and automated algorithm be developed and de-

ployed.

There are several algorithms that have been employed in the medical imaging

domain which can be broadly classified into landmark and non-landmark based

approaches. Typical non-landmark based techniques have been published using

region-growing algorithms [148], level set [8], and rough sets based [179].

Landmark based techniques can be classified as manual, semi-automatic and
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automatic. Because the first two are laborious and subjective especially when ap-

plied to 3D images, various attempts have been made to automate the process of

landmark based image registration and correct correspondences among a set of

shapes. Souza and Udupa [157] use the landmarks of the mean shape of an MRI

foot data set as a reference to automatically generate the landmarks to the training

set by locally searching the distance between the given landmark point from the

mean shape and the nearest strong edge in the image. This method is arbitrary

since the mean shape can be defined only for closed boundaries and for set of im-

ages that are mainly aligned and have small variations. Davies et al. [40] method

of automatically building statistical shape models by re-paremeterising each shape

from the training set and optimising an information theoretic function to assess

the quality of the model has received a lot of attention recently. The quality of the

model is assessed by adopting a minimum description length (MDL) criterion to

the training set. This is a very promising method and the models that are pro-

duced are comparable to and often better than the manual built models. However,

due to very large number of function evaluations and nonlinear optimisation the

method is computationally expensive. Fatemizadeh et al. [51] have used modified

Growing Neural Gas (MGNG) to automatically correspond important landmark

points from two related shapes by adding a third dimension to the data points and

by treating the problem of correspondence as a cluster-seeking method by adjust-

ing the centers of points from the two corresponding shapes. This is a promising

method and has been tested to both synthetic and real data, but the method has not

been tested on a large scale for stability and accuracy of building statistical shape

models.

In this chapter we develop a framework for an automatic, unsupervised statisti-

cal hand pose model using only topological relations. One way of extracting land-
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mark points along the contour of shapes is to use a topographic mapping where

a low dimensional map is fitted to the high dimensional manifold of the contour,

whilst preserving the topographic structure of the data. A common way to achieve

this is by using self-organised neural networks where input patterns are projected

onto a network of nodes such that similar patterns are projected onto nodes adja-

cent in the network and vice versa. As a result of this mapping a representation of

the input patterns is achieved that in postprocessing stages allows one to exploit

the similarity relations of the input patterns.

Such models have been successfully used in applications such as speech pro-

cessing [76, 93], robotics [66, 111, 113, 116, 143], biology [125, 177, 186], cluster-

ing [26, 187], medicine [5, 24, 37, 51], and image processing [123, 140]. These mod-

els share in common the attributes of dynamically generating and removing pro-

cessing elements (vectors of a network) and dynamically generating and remov-

ing synaptic links (neighbourhood connections). Furthermore, these models make

no assumptions about the global structure of the shape to be modelled or more

generally of the problem to be learned. The method is based on the assumption

that correspondences are the nodes (the cluster centres in a high-dimensional vec-

tor space) of a network. The automatic extraction, labelling and correspondence

of nodes is performed with the Growing Neural Gas (GNG) network introduced

by Fritzke [60]. GNG allows us to extract in an autonomous way the contour of

any object as a set of edges that belong to a single polygon and form a topology

preserving graph (Figure 3.1). Statistical nonrigid shape models are then built by

using the point distribution model (PDM) introduced by Cootes et al. [31].

The rest of this chapter is organised as follows. Section 3.2 describes the self-

organising models and the modifications we have applied to the network to elim-

inate wrong edges and to reorder the nodes in the map. Section 3.3 shows how
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A B

Figure 3.1: Examples of the two most common topologies. Image A represents the

topology preserving graph (TPG) of a triangular grid while image B the topology

of a line. In both cases the TPG = 〈A,C〉 is defined by a set of nodes A and a set

of connections (edges) C that connect them.

we can build statistical shape models. Section 3.4 presents the evaluation criteria

we have used in all our experiments. These topology measures are also used in

Chapters 4 and 5. Experiments on different data sets and comparisons with other

self-organising models are presented in Section 3.5. We summarise our method in

Section 3.6.

3.2 Self-Organising Neural Networks

The term ’Neural Networks’ is a biological term, and it’s being used interchange-

ably with the term Artificial Neural Networks (ANNs). Neural Networks have

been inspired from studies of biological nervous systems, and they attempt to cre-

ate machines that work in a similar way to the human brain. They are called like

that because the networks consist of interconnected elements similar to the archi-
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tecture and operation of biological neurons [132, 178]. Most of them, apart from the

Boolean ones, are composed of elements which are direct descendants of the model

of a biological neuron created by McCulloch and Pitts [120]. A neural network is

composed of a number of nodes or units, connected by links. Each link has a nu-

meric weight associated with it, and learning takes place by updating the weights.

The training or the learning phase of these networks can be categorised into two

areas - supervised learning and unsupervised learning [132, 147]. In supervised

learning the output is provided by the user during training and the learning pa-

rameters re-adjust until the data can be correctly analysed by the network. With

unsupervised learning the network is allowed to produce its own output which

is then further evaluated. The advantage of unsupervised learning is that the net-

work finds its own energy minima and therefore tends to be more efficient in terms

of the number of patterns that it can store and recall.

3.2.1 Preliminaries

Self-organising neural networks introduce the concepts of self-organisation and

unsupervised learning. These networks have been used in recent years in differ-

ent applications: compression [65], segmentation of objects [182], reconstruction

of surfaces [138], economics [107], industrial applications [139], and biology [125].

The aim of self-organisation is to represent high-dimensional data as a low di-

mensional array of numbers that captures the structure in the original data [178].

Representing an unknown continuous density probability function by a finite set

of few vectors reduces the information and allows us to analyse, compress or rep-

resent the complexity of the problem.

There are a number of self-organising neural models which share several archi-

tectural properties as presented below.
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A self-organising network A is formed by a set of N nodes:

A = {c1, c2, ....., cN} (3.1)

where each of the nodes has an associated reference vector (weight) belonging to

the space of input signals Rq:

{xc}Nc=1 ∈ Rq (3.2)

to indicate the area of the input space to which the node is more influenced. These

reference vectors or weights in self-organising networks represent the coordinates

of the topological map (rectangular or hexagonal) and are adjusted during the

adaptation process.

Between the nodes of the network there exists a (possibly empty) set

C ⊂ AxA (3.3)

of symmetric neighbourhood connections.

(i, j) ∈ C ⇔ (j, i) ∈ C (3.4)

These connections have nothing to do with the weighted connections found, for

example, in multi-layer perceptrons. They are used so that a node c has a set of

topological neighbours Nc:

Nc = {i ∈ A/(c, i) ∈ C} (3.5)

Learning is based on a set of q-dimensional input signals that are generated fol-

lowing a probability density function

p(W ),W ∈ Rq (3.6)

For each input signal ξw, through a competitive process between q nodes, the win-

ner node xν(xν ∈ A) is the node with the nearest reference vector to ξw:

xν = arg min
c∈A
‖ξw − xc‖ (3.7)

35



CHAPTER 3. OBJECT REPRESENTATION WITH SELF-ORGANISING
NEURAL NETWORKS

where ‖ · ‖ denotes the Euclidean vector norm.

Subsequently, all or part of the nodes of the network (based on the neighbour-

hood) adapt their reference vectors to the input signal according to the Hebb’s

law [115]:

∆xc = α · (xc − ξw) (3.8)

where α weights the adaptation step.

Once the self-organising process is finished, we obtain a map of the input sig-

nals Rq onto the neural network A such that:

fx : Rq → A,W ∈ Rq → fx(W ) ∈ A (3.9)

where fx(W ) is obtained from the condition:

‖ Xf x(W ) − ξw ‖= min
c∈A
‖ξw − xc‖ (3.10)

An introduction to competitive learning and the principles of computational

geometry is presented in Appendix A.1.

3.2.2 Growing Neural Gas (GNG)

GNG [60] is an unsupervised incremental self-organising network independent of

the topology of the input distribution or space. It uses a growth mechanism inher-

ited from the Growth Cell Structure [59] together with the Competitive Hebbian

Learning (CHL) rule [118] to construct a network of the input date set. In some

cases the probability distribution of the input data set is discrete and is given by

the characteristic function ξw : Rq → {0, 1}with ξw defined by

ξw =

 1 if ξ ∈ W

0 if ξ ∈ W c
(3.11)
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In the network ξw represents the random input signal generated from the set W ⊆

Rq and W c is the complement of W ∈ Rq. The growing process starts with two

nodes, and new nodes are incrementally inserted until a predefined conditioned

is satisfied, such as the maximum number of nodes or available time. During the

learning process local error measures are gathered to determine where to insert

new nodes. New nodes are inserted near the node with the highest accumulated

error and new connections between the winner node and its topological neigh-

bours are created.

The GNG algorithm consists of the following:

• A set A of cluster centres known as nodes. Each node c ∈ N has its associ-

ated reference vector {xc}Nc=1 ∈ Rq. The reference vectors indicate the nodes’

position or receptive field centre in the input distribution. In our examples, the

input probability distribution is a discrete distribution (Figures 5.3, 5.7) and

a mixture of Gaussians probability density function representing skin colour

(Figure 4.4). The nodes move towards the input distribution by adapting

their position to the input’s geometry using a winner take all mapping. Gen-

erating ξw input signals from the random vector W , we want to find a map-

ping G : Rq −→ RA and its inverse F : RA −→ Rq such that ∀c = 1, ..., | N |,

f(x) = EW |g(W ){W |g(W ) = x},∀x ∈ {xc}Nc=1 ⊆ Rq (3.12)

g(W ) = arg min
ν∈{xc}Nc=1

‖W − xν‖ (3.13)

where E is the distance operator of the data points from the random vector

W projecting onto f(x), g(W ) is the projection operator, {xc}Nc=1 ⊆ Rq are the

reference vectors of the network and xν is the winner node. Equations (3.12)

and (3.13) show that while the forward mapping G is approximated as a pro-

jection operator, the reverse mapping F is nonparametric and depends on
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the unknown latent variable x. In order to compute f(x) the GNG algorithm

evaluates (3.12) and (3.13) in an iterative manner. q and A denote the dimen-

sionality of the input space and the reduced latent topology. In this work,

current experiments include topologies of a line which is the contour of the

object (A = 1) and triangular grid which is the topology preserving graph

(A = 2). Figure 3.2 shows an example of a 1D GNG network.

w

w

Figure 3.2: Every sample pointw on the target space is defined as the best matching

of all nodes x projecting within a topological neighbourhood of w. For example,

the best matching node denoted by the largest arrow, moves towards the sample

point while its topological neighbors adjust their position.

Figure 3.3 shows an example of a 2DGNG network with its associated Voronoi

diagram in 2D discrete distribution.

• Local accumulated error measurements and insertion of nodes. Each node

c ∈ N with its associated reference vector {xc}Nc=1 ∈ Rq has an error variable

Exc which is updated at every iteration according to:

∆Exν = ‖ξw − xν‖2 (3.14)
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xw

W

Figure 3.3: A random signal ξw on the discrete input distribution and the best

matching within the topological neighbourhood of {xc}Nc=1 ⊆ Rq. In this example,

the green node is the winner node of the network among its direct topological

neighbours (orange and yellow nodes). The orange node is the second nearest

node to the random signal ξw.

The local accumulated error is a statistical measure and is used for the inser-

tion and the distribution of new nodes. Nodes with larger errors will cover

greater area of the input probability distribution, since their distance from

the generated signal is updated by the squared distance. Knowing where the

error is large, if the number of the associated reference vectors belonging to

the input space is an integer multiple of a parameter λ, a new node xr is in-

serted halfway between the node with the largest local accumulated error xq

and its neighbour xf .

xr =
xq + xf

2
(3.15)

All connections are updated and local errors are decreased by:

∆Exq = −αExq (3.16)
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∆Exf = −αExf (3.17)

A global decrease according to:

∆Exc = −βExc (3.18)

is performed to all local errors by a constant β. This is important since new

errors will gain greater influence in the network resulting in a better repre-

sentation of the topology.

• A set C of edges (connections) between pair of nodes. These connections

are not weighted and its purpose is to define the topological structure. The

edges are determined using the competitive hebbian learning method. The

updating rule of the algorithm is expressed as:

∆xν = εx(ξw − xν) (3.19)

∆xc = εn(ξw − xc),∀c ∈ N (3.20)

where εx and εn represent the constant learning rates for the winner node xν

and its topological neighbours xc. An edge aging scheme is used to remove con-

nections that are invalid due to the activation of the node during the adapta-

tion process. Thus, the network topology is modified by removing edges not

being refreshed by a time interval αmax and subsequently by removing the

nodes connected to these edges.

The learning process of the GNG in the form of a pseudo code is summarised in

Algorithm 1. The analytical steps of the algorithm are discussed in Appendix A.2.

Algorithm 1 The GNG algorithm

Input: input vectors xc

Output: TPG
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1. Initialise two vector prototypes A = {c1, c2} at random positions {xc1 , xc2},

and the connection set C, C ⊂ AxA to an empty set C = ∅
2. while the current number of prototypes ≤ to the maximum number of pro-

totypes do

(a) for every input signal ξw do

• Determine the winner prototype xν and the second nearest xυ(xν , xυ ∈

A) by Equation 3.7
• Add the squared distance between the input vector ξw and the win-

ner xν to a local accumulated error variable (Equation 3.14)
• Adjust xν position and its topological neighbours by Equations 3.19

and 3.20
• Update connections between prototypes
• Remove any dead nodes

i. if the current number of prototypes is an integer multiple of a

parameter λ then

– Add a new prototype by Equation 3.15
– Update the connections between the prototypes
– Decrease local errors by Equations 3.16 and 3.17

ii. end if
(b) end for

3. Decrease the error for all prototypes by Equation 3.18
4. end while

The current problems with the GNG are the dead nodes, when a non-stationary

input distribution occurs, and keeping nodes correspondence between successive

frames. The second is very important in cases where subtle changes to the shape of

the objects occur. Examples can be found in morphology where shape differences

can suggest a connection or not between normal structures [39]. Thus, instead of

adopting a global approach where all the nodes need to re-adapt their position,
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local adaptations of the nodes would be more appropriate since they will maintain

the correspondences without violating the network. We tackle the above problems

by proposing Active-GNG in Chapter 5.

3.2.3 Characterising 2D Objects Using GNG

Identifying the points of the image that belong to objects allows the network to ob-

tain an induced Delaunay triangulation of the objects. Let an object O = [OG,OA]

be defined by its geometry and its appearance. The geometry provides a mathe-

matical description of the object’s shape, size, and parameters such as translation,

rotation, and scale. The appearance defines a set of object’s characteristics such as

colour, texture, and other attributes.

Given a domain S ⊆ R2, an image intensity function I(x, y) ∈ R such that

I : S→ [0, Imax], and an object O, its standard potential field ΨT (x, y) = fT (I(x, y))

is the transformation ΨT : S → [0, 1] which associates to each point (x, y) ∈ S the

degree of compliance with the visual property T of the object O by its associated

intensity I(x, y).

Considering:

• The input distribution as the set of points in the image:

A = S (3.21)

ξw = (x, y) ∈ S (3.22)

• The probability density function according to the standard potential field ob-

tained for each point of the image:

p(ξw) = p(x, y) = ΨT (x, y) (3.23)
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Learning takes place with the GNG algorithm. So, during this process, the neu-

ral network is obtained which preserves the topology of the object O from a certain

feature T . Therefore, from the visual appearance OA of the object is obtained an

approximation to its geometric appearance OG. Henceforth, the Topology Preserv-

ing Graph TPG = 〈A,C〉 is defined with a set of vertices (nodes) A and a set of

connections (edges) C. To speed up the learning we used the faster Manhattan

distance [121] compared to the Euclidean distance in the original algorithm. Fig-

ure 3.4 shows that different TPGs can be obtained from different features T of

objects without changing the learning algorithm of neural gas. It is only necessary

to define a different potential field. Different potential field ΨT (x, y) can cause dif-

ferent structures in the network. Figure 3.4 (d) represents the topology of a 2D

object while Figure 3.4 (e) represents the contour.

It is useful to obtain a contour composed solely of sequentially linked nodes, so

that angles of curvature can be analysed. In many cases, the GNG can be formed

with more than two edges emanating from some nodes, such as in Figure 3.5. This

can happen when there are either sharp corners or complicated junctions in the

silhouette, particularly when the network is not given enough time or sufficient

number of nodes to model the contour more accurately. Thus, we need a method

to convert a complicated network into one comprised only of sequentially linked

nodes. This problem is both fast and easy to solve by defining a rule to delete the

edges drawn onto a part of the input space that does not belong to the contour,

or by removing from the list of nodes created in the learning process all the inap-

propriate cycles produced. The rule is with respect to the reordering of the nodes

(Figure 3.6). In the process of reordering the nodes when we find a node with more

than two neighbours we need to calculate what is the best candidate to include in

the list of nodes that define the contour. For this purpose, we compare the slope
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Figure 3.4: (a) Intensity image under normal illumination. (b) Binary image of

the hand input space. (c) Binary image of the contour. Different adaptations of

the GNG to the same object: (d) TPG of a 2D object, (e) TPG of a 1D contour

representation.
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Figure 3.5: Modification of the GNG network to eliminate multiple connections

and to attempt to reduce the network to a single series of sequentially linked

nodes. model A is the original network with the wrong connections (circled cor-

ners), while model B is our modified network.

defined by the edge formed from the last two nodes inserted, with the slopes of

the edges defined by the last node inserted and any of the candidate neighbours.

We choose to add to the list the one with the least change of the slope.

• For example, n1 is an extreme and it has only one neighbour the node n2.

• Once we have inserted n1 in the ordered list if in the future we find n1 as a

neighbour of any other node we must ignore it because it is already in the

list.

• node n2 has as neighbours nodes n1 (already in the list) n3 and n4. In this

case we have two possibilities, so we need to calculate the slope and decide

45



CHAPTER 3. OBJECT REPRESENTATION WITH SELF-ORGANISING
NEURAL NETWORKS

Figure 3.6: Reordering of neighbouring nodes.

if node n3 or n4 is the correct one to add to the list. In this example it is n3

because if we compare the slope of the edge n1-n2 to n2-n3 and to n2-n4, the

change of the slope is clearly smaller for n2-n3.

• n3 has now two nodes since n2 is already in the list n4 is added to the list as

well.

• n4 has three options, but if all of the previous steps are correct the nodes n2

and n3 have already been inserted in the list and the correct option is n5.

• If n5 is an extreme it has only one neighbour.

In summary, if a node has more than two neighbours connected by edges (struc-

ture of Delaunay Triangulation) like the node n2 in Figure 3.6, which has n3, n4,

and n1 as neighbours, we consider the slope of the edges of the last node inserted

in accordance to these neighbours (Epost1, Epost2, Epost3). We calculate the slope

of the edge formed by the last two nodes inserted (Eprev) and we consider the cor-

rect neighbour is the one with the least change of slope. In Figure 3.6 the change of
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slope of the edge n1− n2 (Eprev) respect to n2− n3 (Epost1) and n2− n4 (Epost2)

is clearly smaller for n2− n3 and we would add node n3 to the list. The procedure

is summarised in Algorithm 2.

Algorithm 2 Eliminating Wrong Edges

Input: TPG

Output: reduced TPG

1. We start with a set of nodes AN defined by coordinates (xi, yi) and edges

C(As, At) s 6= t, and aim to represent these in terms of a sequence of lengths

lj and turning angles θj . The distance between two nodes xv and xu is their

Euclidean distance d(xv, xu). If ∃Ai ∈ S : S = {C(Ai, Ay)∪C(Ay, Ai)}, |S| = 1,

then the contour network has hanging ends consisting of some nodes with

only one emanating edge. We select one of these as the starting node. If

not, then every node xc has two neighbours, so the contour is closed and we

arbitrarily select some starting node xc.
2. Initialise new representation with As = xc, j = 0 and previously considered

node f = −1.
3. Set θj = 0 and lj = d(xv, xu).
4. Set f = c and c = y.
5. Find new neighbour xz of node xc along edge C(Az, Ac) such that z 6= f .
6. for j = 1, ....., N do

Set θj = Θ(Aj−1, Aj+1, Aj+1)

if [Θ(Aj−1, Aj) and Θ(Aj, Aj+1)] < [Θ(Aj−1, Aj) and Θ(Aj, Aj+2)] then

update GNG, remove C(Aj, Aj+2)

end if
7. end for
8. Repeat from Step 4.
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The list of nodes define a graph. To normalise the graph that represents the

contour we must define a starting point, for example the node on the left-bottom

corner. Taking that node as the first we must follow the neighbours until all the

nodes have been added to the new list. If necessary we must apply a scale and

a rotation to the list with respect to the centre of gravity of the list of nodes. We

achieved the required alignment by applying a transformation T composed by a

translation (tx, ty), rotation θ, and a scaling s:

T

 xi

yi

 =

 s(cosϑ)xi −s(sinθ)yi
s(sinϑ)xi s(cosθ)yi

 +

 tx

ty

 (3.24)

The ordering of the nodes is summarised in Algorithm 3.

Algorithm 3 Graph Normalisation

Input: reduced TPG

Output: nodes re-ordered

1. Start with reduced TPG = 〈A,C〉.
2. Assign starting node one of the two terminating nodes defined by coordi-

nates AN(xi, yi) and edges C(As, 1).
3. Find nextNode, the one connecting from the last found node (in this case first

node) and update previousNode.

for i = 1, ....., S do

if C(Ai, 1) == nextNode do

previousNode == nextNode

nextNode == C(Ai, 2)

end if

if C(Ai, 2) == nextNode do

previousNode == nextNode

nextNode == C(Ai, 1)
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end if

end for

Remove the connection that has already been followed.

Reduce the number of connections and update list.
4. while the stopping criteria such as the network size is not satisfied do

(a) Find if there are more than one follow ons.

if none exist then

C(Ai, 1) == 0

else if decide which one is next based on their difference

prevPrevNode = prevNode

prevNode = nextNode

nextNode = C(Ai, 2)

C(Ai, :) = []

for j = 1, ....., N do

xV ec = Nodes(prevPrevNode, :)

yV ec = Nodes(prevNode, :)

zV ec = Nodes(nextNode, :)

grad1 = diff(xV ec− yV ec)
grad2 = diff(yV ec− zV ec)
angleV als(j) = grad1− grad2

Find minimum angle.

end for

end if
(b) Update list, update connections.

5. end while

The non-ordered nodes and the normalised nodes can be seen in Figure 3.7 A,

and B. Figure 3.8 shows another example of normalised nodes for a closed shape.
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Figure 3.7: Image A shows the automatic node extraction and position before any

reordering is applied. B shows the nodes after normalisation is performed. The

shape of the hand is represented with a GNG map of 143 nodes.

Figure 3.8: Normalisation of nodes in an MRI image after segmentation is per-

formed. The starting node is on the left-bottom corner. The shape of the brain

hemisphere is represented with a GNG map of 49 nodes.
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3.3 Statistical Shape Models

Statistical shape models [30, 96, 159] are flexible models that have been used to

capture the variance of the shape of a class of deformable objects by performing

statistical analysis on the training set. Shape can be defined as any positive real

function of points connected together, which is invariant under some transforma-

tion, and remains unchanged when the shape of the object is moved, rotated or

scaled [30, 163]. By using the statistical shape models the variations in the shape

are analysed over the training set and the derived models synthesise shapes simi-

lar to the training set.

To build a statistical shape model the set should include the types of varia-

tions one wishes to represent with the model. For example, if there is interest only

in hands with changes in the position of the fingers then the training set should

include only the required changes. If, however, more complex variations are re-

quired, like the bending of different fingers or changes in the pose of the hand, the

training set should include these changes. Figure 3.9 shows the training sets of the

hands and the ventricles from a series of high-resolution T1-weighted MRI brain

images as used in this study.

The most well known statistical shape models are the Point Distribution Mod-

els (PDMs) [31], the Active Shape Models (ASMs) [32], and the Active Appearance

Models (AAMs) [50]. In particular the PDM, which is the shape descriptor for

both the ASM and the AAM models, models the shape of an object and its varia-

tion by analysing the statistics of the landmarks placed manually, semi-automatic

or automatic in the training set. Each landmark has a certain distribution in the

image space, thus the name point distribution model. These landmarks are used

to represent the correspondences across the training set. Thus the same number
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Training set of hands

Training set of ventricles

Figure 3.9: The training sets of hands and ventricles with various displacements.

of landmarks should be used for each image in the training set and at equivalent

positions -in a 2D or 3D space- on different instances of the shape.

Below we review the four stages needed to obtain a PDM.

3.3.1 Labelling the Training Set

Every shape from the training set is represented by locating a number of points

along the outline. Dryden et al. [46] named these points as landmarks where a

landmark is a point of correspondence on each object that matches the same fea-

ture in the shape of the class of objects. The labelling is very important since it

represents a particular part of the object such as eyes or nose in face recognition

or high curvature points along the fingers in hand silhouettes. In order to estab-

lish correct correspondences among the shapes the following constraints should

appear:

52



CHAPTER 3. OBJECT REPRESENTATION WITH SELF-ORGANISING
NEURAL NETWORKS

• The number of points used to describe each shape should be the same.

• The ith point on each shape should correspond to the same feature in the

shape. For example, in the hand model the first and the last point represents

the beginning and the end of the boundary. If the labelling is incorrect, with

a particular point placed at different sites then the model building process

will incorporate variation in the positioning of points into the model rather

than simply the variation of the shape itself. If that happens then the model

cannot be used for generalisation and specificity since illegal variations of the

shapes will be synthesised.

• Enough points to adequately describe the shapes. Complex shapes require

greater number of points.

In this thesis, the 2D shape of an object is represented as a set of np automati-

cally extracted points in a vector x = [xi0, xi1, ...., xinp−1 , yi0, yi1, ..., yinp−1 ]
T . Given

Si training shapes Si such vectors x are generated. In order to build statistical

shape models the Si shapes are aligned in a 2D Euclidean transformation (trans-

lation, rotation and scaling) and normalised (removing the centre-of-gravity and

placing it at the origin) to a common set of axes. The data were aligned using the

Generalised Procrustes Analysis technique as derived by [17, 31, 72].

3.3.2 Aligning the Training Set

The alignment is necessary in the statistical shape modelling since ill-conditioned

shapes will be generated based on the fact that the derived statistics would be

based on the comparison of non-equivalent points. Figure 3.10 shows an exam-

ple of non-aligned and aligned hand shapes. We achieved the required alignment

by applying the transformation that minimises the sum of the squared distances

53



CHAPTER 3. OBJECT REPRESENTATION WITH SELF-ORGANISING
NEURAL NETWORKS

Figure 3.10: Image A represents aligned shapes with the centre-of-gravity removed

and the mean shape (red shape) superimposed while Image B represents original

non-aligned shapes.

between equivalent points on different shapes. The best fit may be found by min-

imising in a least-squares approach the expression:

E = |xi − T (xj)|2 (3.25)

where xi and xj represent the ith and the jth pair of shapes to be aligned and T

is the transformation matrix composed of a translation (tx, ty), a rotation θ, and a

scaling s such as:

T (xj) = R

 xj

yj

 +

 tx

ty

 =

 s(cosϑ)xj −s(sinθ)yj
s(sinϑ)xj s(cosθ)yj

 +

 tx

ty

 (3.26)

By partially differentiating E with respect to the unknowns (θ, s, tx, ty) and equat-

ing to zero four linear equations need to be solved. This approach is based on

Cootes et al. [31] formulation. Details are given in Appendix B.1. The above

method is known as the Unweighted Orthogonal Procrustes Analysis [34] and as-

sumes that each point in the training set varies equally. If this is not the case, a

weighted matrix should be used to signify those points which vary less than the
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others. This is important since points which vary a lot with respect to the others

would be given a low weight, and vice versa. The weighted matrix is a diagonal

matrix of weights which are chosen to give more significance to the points that

vary less. This method is know as the Weighted Orthogonal Procrustes Analy-

sis [34]. This weighted matrix as described by [31, 75] computes the distance be-

tween points k and l in a shape. Then the variance of the distance between every

pair of points over all the shapes is calculated. Vkl is the variance in these distances.

If the sum of variances is large which means high mobility of particular points then

a low weight wk should be given to those points and vice versa. This can be done

by introducing a diagonal weighted matrix W into Equation (3.25):

E = W |xi − T (xj)|2 (3.27)

where

W =
n∑
k=1

wk =
n∑
k=1

(
1∑N

l=1 Vkl
) (3.28)

and n is the number of landmark points. A weighted least-squares approach is ex-

plained in Appendix B.2. A different formulation is presented by Hamarneh [75].

If more than two shapes need to be aligned then the procrustes analysis can

be modified to allow for this and is termed Generalised Procrustes Analysis [34].

To solve numerically the above method different algorithms exist [34]. In our case

the alignment of the hands is performed by using the following algorithm derived

by [156]:

• Rotate, scale, and translate each shape xi from the training set to the first

shape x1, for i = 2, 3, ...,M .

• Calculate the mean x̄ of the transformed shapes.

• Rotate, scale, and translate the mean shape x̄ to the first shape x1.
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• Rotate, scale, and translate each of the shapes xi to the adjusted mean x̄′.

• If the adjusted mean x̄′ has not converged return to step 2.

The algorithm for aligning all shapes is given in Appendix B.3. After convergence

the training set is analysed for shape variations.

3.3.3 Statistical Modes of Variation

Let us say a set of np points as vectors in δ dimensions from a training set of M

shapes exists. These vectors form a distribution in npδ dimensional space. In or-

der to model this distribution, the assumption of being Gaussian is made since

the training sets contain modest viewpoint variations with no rotations and no

occlusions, a parameterised model of the form x = M(βi), where βi is a vector

of weights for the ith shape is used. This model can be used to generate new ex-

amples similar to those in the training sets and to examine the validity of these

examples. One core goal in model building is to select these parameters from the

model that best describe the training set and be as few as possible. An effective

approach in minimising the parameters while retaining as much information as

possible is to apply principal component analysis (PCA) [85, 87, 129] also known

as Karhunen-Love transformation (KLT) [108, 154] to the data.

Below we summarise the steps of PCA as used in the PDM model:

Let X be the M x N data matrix whose rows x1, ...., xM , xM ∈ <N are obser-

vations of a signal; in the context of hand recognition and modelling, M is the

number of available hand images in the training set, and N = npδ is the number of

points in δ dimensions. In our case δ = 2.
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• Calculate the mean shape:

x̄ =
1

M

M∑
i=1

xi (3.29)

• Calculate the normalised covariance matrix:

Σ =
1

M

M∑
i=1

(xi − x̄)(xi − x̄)T (3.30)

• Solve for the eigenvalues {λk} and corresponding eigenvectors V = {vk} of

Σ such as:

Σvk = λkvk (3.31)

Any shape can be back-projected to the input space by a linear model of the form:

x = x + Vsβi (3.32)

where x is the mean shape, Vs = (v1|v2|....|vt) describes a set of t orthogonal modes

of shape variations (the eigenvectors), and βi is a vector of weights for the ith shape

(the principal components). Instead of computing the covariance of the data one

can compute the singular value decomposition (SVD). Both are intimately related

as can be seen by [54, 75, 153]. To ensure that the above weight changes describe

reasonable variations the weight βi is restricted to the range −3
√
λ ≤ βi ≤ 3

√
λ

and the shape is back-projected to the input space.

3.3.4 Choice on Number of Modes

The number of the t orthogonal modes of shape variations that best describe the

data set was chosen by first checking the percentage of the variance captured. A

common proportion is 96% to 98% and corresponds to the first six to eight modes
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of variations. The calculation is performed by first taking the sum of all the eigen-

values in the training set, ΛT =
∑
λi. We then choose the highest t eigenvalues

such that
∑
λi ≥ PTΛT , where PT defines the proportion of the variance captured.

Additional confidence was obtained by calculating the root-mean-square error

(RMSE) between the training set and the back-projected. The root-mean-square

error (RMSE) is given as:

RMSE =

√
1

np

∑∑
[M − xi]2 (3.33)

where np are the points as vectors, M are the shapes in the training set and xi are

the generated shapes.

3.4 Evaluation Criteria

In this section, we discuss the evaluation criteria for our experiments. We first in-

troduce the concept of topology preservation, and then we discuss the measure we

used to quantify the network. For problems such as object categorisation the eval-

uation criteria are well defined. In fact, a classifier is evaluated on a single image

and the decision may either be correct or wrong. In contrast, in topology preserv-

ing networks a mapping between input space and network is perfectly topology

preserving if and only if connected nodes i, j that are adjacent in the network A

have weight vectors xi, xj adjacent in the input space Rq. In other words, a network

can only perform a perfectly topology preserving mapping if the dimensionality

of the map reflects the dimensionality of the input space.
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3.4.1 Topology Preserving Networks

In any self-organising network the result of the competitive learning; the output neu-

rons of the network compete among themselves to be activated or fired with the

result that only one output neuron or one neuron per group is on at any one time,

is a Delaunay triangulation graph. Traditionally, it has been suggested that this

triangulation was sufficient to preserve the topology of the input space. However,

Martinetz and Schulten [118] introduce a new condition which restricts this qual-

ity.

It is proposed that the mapping fx of Rq in A preserves the vicinity when vec-

tors that are close in the input space Rq are mapped to nearby neurons from net-

work A. It is also noted that the inverse mapping preserves the neighborhood if

and only if nearby neurons of A have associated feature vectors close in the input

space.

f−1
x : A→ Rq, c ∈ A→ xc ∈ Rq (3.34)

Combining the two definitions, can be established the Topology Preserving Net-

work (TPN) as the network A whose mappings fx and f−1
x preserve the neigh-

bourhood.

Thus, self-organizing networks such as Kohonen maps or Growing Cell Struc-

tures [57] are not TPN as has traditionally been considered, since this condition

only would happen in the event that the topology or dimension of the map and

the input space coincide. Since the network topology is established a priori, pos-

sibly ignoring the topology of the input space, it is not possible to ensure that the

mappings fx and f−1
x preserve the neighborhood.

In the case of the NG and GNG, the mechanism for adjusting the network

through a competitive learning generates an Induced Delaunay triangulation (Fig-
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ure 3.11 (b)), a graph obtained from the Delaunay triangulation, which has only

edges of the Delaunay triangulation of points which belong to the input space Rq.

Martinetz and Schulten [118] demonstrate that these models are TPN.

This feature is very important in the representation and the tracking of 2D hand

gestures in a sequence of k frames.

Figure 3.11: (a) Delaunay triangulation. (b) Induced Delaunay triangulation.

3.4.2 Measuring Topology Preservation

This section describes the measure we used to quantify the topology preservation

of the GNG network. This measure is used to estimate the impact of time and

network parameters in the topology preservation of different input spaces.

The adaptation of a self-organising neural network is often obtained by its reso-

lution and its topology preservation of the input space. The measure of resolution

can be calculated by minimising the quantisation or distortion error, which is to find

the values of the reference vectors {xc}|N |c=1 ∈ Rq from the set W ⊆ RA such that the
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error:

E =
∑
∀ξw∈Rq

‖ wsξw − ξw ‖
2 P (ξw) (3.35)

is minimised, where wsξw is the nearest node to the input signal ξw.

With regards to the preservation of the topology, there are several measures

used in the literature [63, 114]. The most relevant are: the Topographic Product

(TP) by Bauer and Pawelzik [10], the topographic function by Villman et al. [174]

and the C measure by Goodhill and Sejnowski [70]. All of these measures permit

to quantify the preservation of the topology of the input space, however since our

data sets are limited to linear data manifolds the best measure to use, regarding

efficiency and computational cost, is the topographic product.

3.4.2.1 Topographic Product

The topographic product P introduced by Bauer and Pawelzik [10] is our topology

measure which quantifies the neighbourhood preservation of the map by comput-

ing the Euclidean distance between neighbouring nodes, in both the input and the

latent space. This measure is used to detect deviations between the dimensionality

of the network and the input space. Folds in a network indicate that it is trying to

approach a different input space dimension. A mapping preserves neighbourhood

relations if and only if nearby points in the input space remain close in the latent

space. In other words, there is no violation to the topology of the network.

The neighbourhood relationship between each pair of nodes in the latent space

RA and its associative reference vectors in the input space Rq is given by:

P1(c, k) = [
k∏
l=1

dA(c, nAl (c))

dA(c, nql (c))
]1/l (3.36)

P2(c, k) = [
k∏
l=1

dq(xc, xnA
l

(c))

dq(xc, xnq
l
(c))

]1/l (3.37)
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where c is a node, xc is its reference vector, nql is the l-th closest neighbour to c in

the input space Rq according to a distance dq and nAl is the l-th nearest node to c

in the latent space RA according to a distance dA. Combining (3.33) and (3.34) a

measure of the topological relationship between the node c and its k closest nodes

is obtained:

P3(c, k) = [
k∏
l=1

dq(xc, xnA
l

(c))

dq(xc, xnq
l
(c))
· d

A(c, nAl (c))

dA(c, nql (c))
]1/2k (3.38)

To extend this measure to all the nodes of the network and all the possible neigh-

bourhood orders, the topographic product P is defined as:

P =
1

N(N − 1)

N∑
c=1

N−1∑
k=1

log(P3(c, k)) (3.39)

Figure 3.12 shows an example of a well preserved line topology mapping between

two successive frames, where the network has grown sufficiently to reflect the di-

mensionality of the input distribution. As the input distribution moves the topo-

logical relations are updated and correct correspondences are established. A vi-

Figure 3.12: Neighbourhood relations are perfectly preserved since nearby points

in the input space remain close to the nearby nodes in the latent space. The map-

ping is indicated by the lines.
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olation of the topology occurs in Figure 3.13(a) since the distance relations of the

data points do not correlate with that of the reference vectors in the network. Fig-

ure 3.13(b) shows the ideal correlation if correct correspondences have been pre-

viously established. The problem with the topographic product in cases like in

Figure 3.13(a) is its limitation to take into account the structure of the input dis-

tribution since the map of the data points and the reference vectors is one-to-one.

In order to overcome this problem where neighbourhood relations are based only

on distance measures and not on topological relations, e.g. common borders of

Voronoi cells, in every iteration step we update the position of the map towards

the image according to the mean vector.

Figure 3.13: A set of nodes with their reference vectors x1, x2, up to x21. As the in-

put distribution moves and the network re-adapts, the distance relations between

the data points and the reference vectors are violated (Image a). In the new adap-

tation the nearest neighbour of x1 with its topological neighbours is not x1 but x21.

Image b shows correct correspondences if topological information such as closest

Voronoi regions and not only metric information has been used.
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3.5 Experiments

In this section, we conduct our experiments on a hand data set and compare the

GNG algorithm with the Kohonen maps and the Neural Gas (NG) algorithms. Ex-

periments on ventricles from human brain MRI, where accurate topology preser-

vation can discriminate between correct and incorrect shape variations; an ap-

proach very important in applications such as morphological analysis [17, 119],

are also presented in Appendix C. Both training sets can be seen in Figure 3.9.

3.5.1 Hand Model

Our proposed method has been evaluated on a data set of 16 hands, segmented

by adaptive thresholding from video images with image resolution 800× 600. The

images were obtained from participants from the Computer Vision and Imaging

Research Group1, University of Westminster, UK. The outlines are represented

as open curves to better represent the parameterisation of the nodes. The hand

database, was composed of images of four individuals who contributed with four

images of their right hand and at different poses (two of the fingers, the middle and

the ring were captured at various displacements). For computational efficiency, we

have resized the images to 395× 500 pixels.

All constant parameters have been fixed based on Fritzke [60] original paper

and on our experience representing different objects in images. The parameters

should not be set too high, as this will result in an unstable network with nodes

moving too fast, thus violation of the TPG, or too low, as this will make the adapta-

tion slow and ineffective. Experimenting with these values has lead to the follow-

ing boundary values: εx = 0.05, εn = 0.0006, αmax = 150, ∆xs1 = 0.5, ∆xi = 0.0005,

1http://perun.hscs.wmin.ac.uk/cvir/
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and λ = 1000 to 10000. All experiments have been performed on a 2.26 GHz Pen-

tium IV processor and MATLAB and C++ Builder have been used to code and

compile the algorithms.

3.5.1.1 Extracting landmark points

Three different topology preserving networks were used for the evaluation. The

testing involved two cases where the number of nodes were too few or too exces-

sive for the training set of the images. In the former the topological map is lost, not

enough nodes to represent the contour of the hands and in the later an overfit is

performed.

To illustrate the performance of the convergence algorithm we present quali-

tative (Figure 3.15 and 3.16) and quantitative (Table 3.1) results for both manually

and automatically generated models. The comparison was made by taking two ref-

erence models, a manually hand built model with 60 landmarks manually located

around the boundaries, and an automatically hand built model with 144 nodes au-

tomatically generated around the boundaries (Figure 3.14). The optimum number

of nodes in the network are determined by the topographic product.

In Figure 3.15 the modes are displayed by varying the first three shape param-

eters βi{±3σ} over the training set.The first mode β1 varies the shape of the thumb

and increases the distance between the middle and the index finger. The second

mode β2 varies the distance between the thumb and the index finger, and bends

the middle finger. The third mode β3 varies the shape of the middle finger and the

thumb.

In Figure 3.16 two shape variations from the automatically generated land-

marks were superimposed to the training set and the in between shape instances

are drawn which shows the flexing of middle finger and hand rotation. These
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Figure 3.14: First row manually annotated landmarks. All landmarks are major

and have been located manually. Second row hand adaptation with 144 nodes.

Figure 3.15: Model A shows the first three modes of variation of the automatically

hand built model. Model B shows the first three modes of variation of the manually

hand built model. Range of variation −3
√
λ ≤ βi ≤ 3

√
λ.

modes effectively capture the variability of the training set and present only valid

shape instances.

The quantitative results (Table 3.1) show that the automatically generated mod-

els are more compact than the manual models since less variance is captured per
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Figure 3.16: Superimpose instances to the training set and taking the in-between

steps.

mode. It is interesting to note the big difference in the total variance between the

two reference models. This may be because of errors in the manual annotation

since all points were manually located. In Table 3.1 VT represents the variance for

the first six eigenvectors. TP measures the topology preservation before and after

the neighborhoud mapping between the input and the latent space. In the manual

annotated model the match is too high since P > 0. In the automatic model P ≈ 0

which indicates an approximate match.

Table 3.2 shows the total variance achieved by maps containing varying num-

ber of nodes (25, 64, 100, 144, 169) used for the automatic annotation (Figure 3.17).

The map of 144 nodes is the most compact since it achieves the least variance. This

is consistent with the optimal mapping selected by the topographic product. It

is interesting to note that whilst there is significant difference between 25, 64 and

100 nodes the mapping with 169 is good and has no difference, in terms of topo-

graphic representation, with the map obtained inserting 144 nodes. The reason
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Table 3.1: Performance evaluation for different variances

Mode Manual model (60 landmarks) Automatic model (144 nodes)

1 5.6718 1.5253

2 2.3005 1.1518

3 1.6976 0.9808

4 0.9896 0.3968

5 0.6357 0.3716

6 0.4713 0.1980

VT 13.227 5.1783

TP 0.039 0.012

Table 3.2: A quantitative comparison of various nodes adapted to the hand model

with variances for the first six modes, total variance and the topographic product

Mode 25 (nodes) 64 (nodes) 100 (nodes) 144 (nodes) 169 (nodes)

1 2.1819 4.2541 3.2693 1.5253 2.5625

2 1.2758 2.2512 1.4869 1.1518 0.9266

3 0.6706 0.5681 0.6154 0.9808 0.5734

4 0.4317 0.4645 0.4977 0.3968 0.3101

5 0.3099 0.2844 0.3532 0.3716 0.2491

6 0.2305 0.2489 0.1292 0.1980 0.1927

VT 5.7486 8.6170 6.4108 5.1783 5.2470

TP -0.053 0.037 0.025 0.019 0.022
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Figure 3.17: Adaptation to an object with network of 25 (Image A), 64 (Image B),

100 (Image C), 144 (Image D), and 169 (Image E), nodes.

is that for the current size of the images (395 × 500 pixels) the distance between

the nodes is short enough so adding extra nodes does not give more accuracy in

placement. Thus, the topographic product for 144 and 169 nodes at 1000 input

patterns is nearly the same as can be seen from the Table 3.2. Table 3.3 shows

the topographic product at different nodes and at different patterns. A qualitative

representation of the topographic product is given in Figure 3.18. Furthermore,

the insertion of more nodes increases the computation time and slows down the

adaptation process. Figure 3.19 shows a comparative diagram of the learning time

of various nodes and at different number of input patterns λ. The adaptation with

the 144 nodes is faster compared to the 169, and it takes 22 seconds at 5000 patterns

to adapt to the contour of the hand.

Figure 3.20 shows the adaptation process using three different topology pre-

serving networks. The topology preservation of the Kohonen maps in comparison
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Table 3.3: The topographic product at different input patterns

Patterns 25 (nodes) 64 (nodes) 100 (nodes) 144 (nodes) 169 (nodes)

1000 -0.053 0.037 0.025 0.019 0.022

5000 -0.099 0.028 0.024 0.015 0.015

10000 -0.07 0.028 0.022 0.012 0.016

Figure 3.18: Topographic product at different input patterns and at different num-

ber of nodes as a measure of the topology preservation of the network.

to GNG is very poor. This is the case because in the original Kohonen map, the

topology is constrained to be a two-dimensional grid and does not change during

the self-organization. Furthermore, in order to provide good neighbourhood and

topology preservation the logical structure of the input pattern (two-dimensional

grid) should be known a priori. In other words, it specifies in advance the number

of nodes in the network and the graph that represents topological relationships
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Figure 3.19: Learning time for various nodes and at different input patterns.

between the nodes. On the contrary, with the NG the topology preservation is

well defined but the learning time is more than ten times higher than the time for

GNG. This happens because in step 3 of the algorithm all the nodes in NG need to

be ordered according to their distance and this is computationally very expensive

compared to GNG where only the first and the second nearest nodes are ordered.

3.6 Summary

We developed an approach to automatically extract and label the contour of an

MRI and hand-pose module using only topological relations derived from com-

petitive hebbian learning. We defined the landmark points as the cluster centres

in a high-dimensional vector space where correspondences are solved in nonlinear

manifolds. The landmark points were extracted in two steps. First, the complete

training set was segmented and the contours of the objects were extracted using an
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Figure 3.20: Adaptation process using three different topology preserving net-

works. 2D representation of the hand using (a) Kohonen maps, (b) NG, and (c)

GNG networks.

edge detection scheme. Second, GNG was used to extract landmark points along

the contours and to form topology preserving maps. The result of this adaptation

was a list of non-ordered nodes that defined a graph. The graph was then nor-

malised by defining a re-ordering rule of the nodes. The re-ordered list was then

projected into the shape space where synthesised shapes similar to the training set

were generated using the PDMs. These synthesised shapes are generated by inde-

pendently varying the shape parameters from the distribution and reconstructed

by the principal vectors that best capture the variation of the training set. Fur-

thermore, we have improved the parameters of GNG by removing wrong edges

between nodes that can be obtained either due to limited time of the network to

adapt or the nodes are too close and the topology preserving graph cannot dif-

ferentiate between winner and immediate neighbours. We have achieved that by

defining a rule that compares the slope defined by the edge formed from the last

two nodes inserted, with the slopes of the edges defined by the last node inserted

and any of the candidate neighbours. By doing so we remove from the list all
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nodes created in the learning process with inappropriate cycles.

Experiments were performed on a training set of ventricles and hand poses. In

both cases we have shown that GNG adapts successfully to the high dimensional

manifold of the ventricles and the hands, allowing good eigenshape models to

be generated completely automatically from the training set. The accuracy of our

method was compared to other related self-organising networks.
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Chapter 4

Adaptive Learning

Based on the capabilities of neural models to readjust to new input patterns

without restarting the learning process, we propose an approach to minimise

the user intervention in specifying the number of nodes needed to represent an

object by utilising an automatic criterion for maximum node growth. Further-

more, this model is used to the representation of motion in image sequences by

initialising a suitable segmentation that separates the object of interest from

the background.

4.1 Introduction

In the previous chapter, we have demonstrated the capabilities of GNG to repre-

sent 2D objects by improving its parameters (e.g. removing wrong edges, node re-

ordering) and we have automatically initialised a statistical model given the input

distribution from the GNG algorithm based on binary or gray level images. In the

learning framework, it is very crucial the initiliasation of the object, i.e. different

segmentation methods can be applied depending on the application, to be correct
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because only then the model can be used for learning. The main idea is to find a

suitable segmentation that separates the object of interest from the background.

Segmentation is a pre-processing step in many computer vision applications.

The goal is to determine pixels in an image that are significantly different to other

previous images. These applications include visual surveillance [27, 38, 77, 100,

104], and object tracking [99, 128, 145, 190]. While a lot of research has been fo-

cused on efficient detectors and classifiers, little attention has been paid to effi-

ciently labeling and acquiring suitable training data. The collection of training

data requires the segmentation and alignment of an observation sequence, which

is an ill-conditioned task due to measurement noise and human variation in the

observation. Furthermore, it is a time consuming and tedious task.

Obtaining a set of training examples automatically is a more difficult task. Ex-

isting approaches to minimise the labeling effort [103, 105, 122, 155] use a classifier

which is trained in a small number of examples. Then the classifier is applied on

a training sequence and the detected patches are added to the previous set of ex-

amples. Levin et al. [105] start with a small set of hand labeled data and generate

additional labeled examples by applying co-training of two classifiers. Nair and

Clark [122] use motion detection to obtain the initial training set. Lee et al. [105]

use a variant of eigentracking to obtain the training sequence for face recognition

and tracking. Sivic et al. [155] use boosting orientation-based features to obtain

training samples for their face detector. However, to learn the model for the fea-

ture position and appearance a great amount (e.g., 1000 images) of hand-labeled

face images is needed.

A disadvantage of these approaches is that either a manual initialization [103]

or a pre-trained classifier is needed to initialise the learning process. Having a

sequence of images this can be avoided by using an incremental model. One of the
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most important characteristics of the GNG is that it does not require the restarting

of the initialisation of the network for every image in a sequence of k frames. This

is achieved by using the position of the nodes in the network as features to follow

where a new TPG representation is obtained for every image sequence. A detailed

discussion is given in Chapter 5.

In this chapter, we are interested in the initialisation of the first frame of the

GNG network. We are interested in the problem of background modelling where

the goal is to get a segmentation of the background, i.e. the irrelevant part of the

scene, and the foreground. If the model is accurate, the regions that represent the

foreground (objects of interest) can then be extracted. In our experiments, the key

to successful hand segmentation relies on reducing meaningless image data. We

achieve that by taking into consideration that human skin has a relatively unique

colour and we apply appropriate parametric skin distribution modelling.

The rest of this chapter is organised as follows. Section 4.2 summarises the

initialisation of the object using probabilistic colour models. Section 4.3 proposes

an approach to minimise the user intervention in the termination of the network

using knowledge obtained from information-theoretic considerations. In Section

4.4 our method is applied to real and artificial shapes before conclusions are drawn

in Section 4.5.

4.2 Background Modelling

We subdivide background modelling methods into two categories: (1) background

subtraction methods; and (2) statistical methods. In background subtraction meth-

ods, the background is modeled as a single image and the segmentation is esti-

mated by thresholding the background image and the current input image. Back-
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ground subtraction can be done either using a frame differencing approach or us-

ing a pixel-wise average or median filter over a number of n frames. A more de-

tailed discussion on background subtraction can be found in [74, 131]. In statistical

methods, a statistical model for each pixel describing the background is estimated.

The more the variance of the pixel values, the more accurate the multi-modal es-

timation. In the evaluation stage of the statistical models, the pixels in the input

image are tested if there are consistent with the estimated model. The most well

known statistical models are the eigenbackgrounds [42, 127], and the Single Gaus-

sian (SG) [21, 181] and Mixture of Gaussians models (MGM) [56, 160].

The methods based on background subtraction are limited in more compli-

cated scenarios. For example, if the foreground objects have similar colour to the

background these objects cannot be detected by thresholding. Furthermore, these

methods only adapt to slightly changing environmental conditions. Changes, like

turning on the light cannot be captured by these models. In addition, these meth-

ods are limited to segment the whole object from the background, but for many

tasks such as face recognition, gesture tracking, etc., this is not possible since spe-

cific parts need to be detected. Since most image sources (i.e. cameras) provide

colour images we can use this additionally information in our model for the seg-

mentation of the first image. This information can then be stored in the network

structure and used to detect changes between consecutive frames.

4.2.1 Probabilistic Colour Models: Single Gaussian and Mixture

of Gaussians

Image segmentation based on colour is a field studied by many researchers es-

pecially in applications of object tracking [20, 25, 109, 156] and human-machine
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interaction [16, 64, 182]. Also, a lot of research has been done in the field of skin-

colour segmentation [88, 89, 135] since the human skin can create clusters in the

colour space and thus be described by a multivariate normal distribution. First,

we attempt to model skin-colour using a Single Gaussian distribution. With SG

the model can be obtained via the maximum likelihood criterion which looks for

the set of parameters (mean and covariance) that maximises the likelihood func-

tion. Figure 4.1 illustrates the SG model into different colour spaces (normalised

rgb, HSV, CIE X,Y,Z, and CIE L*, a*, b*).

As can be seen in Figure 4.1, SGM model covers the entire area of the dis-

tribution for both skin and background. In some colour spaces the differentia-

tion is greater, but the overlapping between skin and non-skin regions is suffi-

cient to produce high FPR (False Positive Rate). It is evident that a SG distribu-

tion cannot model all possible variations in the skin-colour data. The existing ap-

proaches [21, 181] were extended by using Mixture of Gaussians [137, 185]. Below

we summarise the steps involved in a MG skin-colour model.

• Firstly, the variance caused by the intensity is removed. This is achieved

by normalizing the data or by transforming the original pixel values into a

different colour space (e.g., rg colour-space [149] or HSV colour-space [135]).

• Secondly, a colour histogram is computed, which is used to estimate an initial

mixture model.

• Finally, a Gaussian mixture model is estimated, which can efficiently be done

by applying the iterative EM-algorithm [43]. A detailed discussion of the EM

can be found in Appendix D.

The Gaussian Mixture Models obtained after 5 EM iterations are shown in Fig-

ure 4.2. The results were obtained from a database containing approximately half
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Figure 4.1: Blue line represents skin and red line represents background SGM.

(a) Estimated SGM for r-component of normalised-rgb. (b) Estimated SGM for g-

component of normalised-rgb. (c) Estimated SGM for H-component of HSV. (d)

Estimated SGM for S-component of HSV. (e) Estimated SGM for x-component of

CIE X,Y,Z. (f) Estimated SGM for y-component of CIE X,Y,Z. g) Estimated SGM for

a-component of CIE L*, a*, b*. (h) Estimated SGM for b-component of CIE L*, a*,

b*.
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million pixels. Figure 4.3 shows the probability map for the skin colour which can

then be used to initialise the network for the proposed learning algorithm.

In both probabilistic colour models the colour space used to represent the in-

put image plays an important part in the segmentation. Levels of illumination are

affected in a scene by changes in natural and artificial lighting present at different

times. Also, some models are more perceptually uniform than others and some

separate out information such as luminance and chrominance. We next discuss

how we deal with these problems and a suitable colour space to work in. At each

node of the network we experimented with the perceptually uniform colour model

CIE L*, a*, b*, and the non perceptually uniform colour models, the normalised

RGB, and CIE X,Y,Z (Figure 4.4). We also experimented with the HSV colour model

(Figure 4.4), which separates the brightness component from the hue and the sat-

uration, to compensate for changes in illumination. Unlike CIE L*, a*, b*, HSV is

not perceptually mapped to the human visual system, meaning changes in colour

values are not proportional to changes in the perceived significance of the change.

A detailed discussion of the different colour models can be found in [89, 161, 173].

Given consideration of perceptual uniformity our best option is the CIE L*, a*,

b* colour space. Thus, we converted the RGB values to the CIE L*, a*, b* values.

The colour conversion from RGB to CIE L*, a*, b* is undergoing a linear conversion

from RGB to CIE X,Y,Z, and a nonlinear conversion from CIE X,Y,Z to CIE L*, a*,

b*. 
X

Y

Z

 =


0.433910 0.376220 0.189860

0.212649 0.715169 0.072182

0.017756 0.109478 0.872915

 ∗

R

G

B

 (4.1)

80



CHAPTER 4. ADAPTIVE LEARNING

Figure 4.2: Blue line represents skin and red line represents background MGM.

(a) Estimated MGM for r-component of normalised-rgb. (b) Estimated MGM for

g-component of normalised-rgb. (c) Estimated MGM for H-component of HSV. (d)

Estimated MGM for S-component of HSV. (e) Estimated MGM for x-component of

CIE X,Y,Z. (f) Estimated MGM for y-component of CIE X,Y,Z. g) Estimated MGM

for a-component of CIE L*, a*, b*. (h) Estimated MGM for b-component of CIE L*,

a*, b*.
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Figure 4.3: Image segmentation based on skin colour information. (a) original

input image, and (b) probability map for the skin colour.

L∗ = 116 ∗ f
[
Y
Yn

]
− 16

a∗ = 500 ∗
[
f
[
X
Xn

]
− f

[
Y
Yn

]]

b∗ = 200 ∗
[
f
[
Y
Yn

]
− f

[
Z
Zn

]]
(4.2)

where

f(r) =

 r
1
3 if r > 0.008856

7.7867 ∗ r + 16
116

if r ≤ 0.008856
(4.3)

The Xn, Yn and Zn refer to the CIE X,Y,Z values for a specified white point.

4.3 Automatic criterion for GNG

To get the learning process started, we need a simple but robust method to obtain

the topology preserving graph with as minimum as possible user intervention. To

achieve that we propose an automatic method for maximum node growth based
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Figure 4.4: Skin colour images in cluttered backgrounds. Top row shows the origi-

nal images followed by the various colour spaces.

on the likelihood of the generated nodes to sufficiently describe the topology of

the objects of interest. In the following, we will discuss the method we have suc-

cessfully applied to the existing GNG for maximum node growth.

In the GNG algorithm, the stopping criterion or network termination can ei-
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ther be applied by specifying a predefined number of nodes or by applying time

constrains to the network. The critical point in both cases is that the quality of

the network depends either on the arbitrary selection of the maximum number of

nodes or the available time of the network to converge. For example, Figure 4.5

shows topology preservation for variant number of nodes of the same object. It is

evident that 20 nodes are not enough to describe the topology of the object. How-

ever, the mapping with 101 nodes is good enough and has no difference, in terms

of topology representation, with the map obtained inserting 181 nodes. In the lat-

ter case, 181 nodes is an example of overfitting which adds no further value to the

recognition of the gesture.

Figure 4.5: Mapping of the same object with image resolution 200 × 160 and net-

work map of (a) 20, (b) 101 and (c) 181 nodes.

Figure 4.6 shows the GNG growth on different objects. Based on the type of

the object and its parameters (e.g. size, more than one objects of interests or same

object re-scaled) the size of the network should differ. In figure 4.6 the hand re-

quires greater number of nodes to achieve topology preservation compared to the

two squares and the circles. If the stopping criterion is left to the user, this can be

an ill-conditioned task with human variation based on the observation, noise due
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to measurement, and a tedious task.

Figure 4.6: Representation of different objects with GNG. (a) hand is represented

with 133 nodes, (b) the four squares are defined with 92 nodes, and (c) the two

circles preserve topology with 32 nodes.

To overcome this problem, we introduce an automatic method of the stopping

criterion that defines the insertion of maximum nodes by calculating the image

size and the probability of the objects in the image. In GNG and RGNG [134]

the maximum number of nodes (prenumnode) to grow is set manually and chosen

according to the scale of the clustering tasks. In our case, the maximum number

of nodes is defined automatically by the system based on Equation (4.4). In our

examples we use hand configurations and we model the colour distribution pskin

of skin pixels by a Mixture of Gaussians in CIE L*, a*, b* space with mean and

covariance estimated from hand-selected training patches. We assume that non-

skin pixels have a uniform distribution pbkgd.

Let Ω(x) denote the set of pixels in the objects of interest based on the configura-

85



CHAPTER 4. ADAPTIVE LEARNING

tion of x (e.g. colour, texture, etc.) and Υ the set of all image pixels. The likelihood

of the required number of nodes to describe the topology of an image y is:

p(y|x) = {
∏

u∈Ω(x)

pskin(u)
∏

v∈Υ\Ω(x)

pbkgd(v)

∝
∏

u∈Ω(x)

pskin(u)

pbkgd(u) + pskin(u)
} ∗ eT (4.4)

and eT ≤
∏

u∈Ω(x) pskin(u) +
∏

v∈Υ\Ω(x) pbkgd(v). Figure 4.7 plots the likelihood node

ratios for different images. eT is a similarity threshold and defines the accuracy

Figure 4.7: Likelihood node ratios for images with same image resolution but dif-

ferent skin to background ratio. (a) Network adaptation to images of 46, 332 pixels

with maps of 102 and 162 nodes. (b) Network adaptation to images of 21, 903 pixels

with maps of 46 and 132 nodes.

of the map. If eT is low the topology preservation is lost and more nodes need

to be added. On the contrary, if eT is too big then nodes have to be removed so

that Voronoı̈ cells become wider. For example, let us consider an extreme case

where the total size of the image is I = 100 pixels and only one pixel represents

the object of interest. Let us suppose that we use eT = 100 then the object can

be represented by one node. In the case where eT ≥ I then overfit occurs since

twice as many nodes are provided. In our experiments the numerical value of eT
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ranges from 100 ≤ eT ≤ 900 and the accuracy depends on the size of the objects’

distribution. The difference between choosing manually the maximum number

of nodes and selecting eT as the similarity threshold, is the preservation of the

object independently of scaling operations. The automatic criterion for the GNG

algorithm is summarised in Algorithm 4.

Algorithm 4 Stopping Criterion for Maximum Node Growth

Input: Segmented pixels Ω(x) from an unknown image I

Output: likelihood p(y|x), TPG

1. Obtain skin colour pixels x by a Mixture of Gaussians in CIE L*, a*, b* space.
2. Set the eT value between 100 ≤ eT ≤ 900.
3. for every pixel x do

if 100 ≤ eT < 500 and eT ≥ 900 then

Set eT == 100.

Find the number of maximum prototypes.

if Number of prototypes xc ≤ 50 then

Increment eT until xc ≥ 120.

end if

if Number of prototypes xc > 200 then

Decrement eT until 120 ≤ xc < 200.

end if

else

500 ≤ eT ≤ 800

xc = maximum prototypes.

end if
4. Let p(y|x) by Equation 4.4 to find the xc most informative number of proto-

types.
5. end for
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4.3.1 On the number of Similarity Threshold

The determination of accurate topology preservation, requires the determination

of best similarity threshold and best network map without overfitting. We can de-

scribe the optimum number of similarity thresholds, required for the accuracy of

the map for different objects, as the unknown clusters K, and the network param-

eters as the mixture coefficients WK , with d-dimensional means and covariances

ΘK . To do that, we use a heuristic criterion from statistics known as the Mini-

mum Description Length (MDL) [142, 175]. Such criteria take the general form of

a prediction error, which consists of the difference of two terms:

E = modellikelihood− complexityterm (4.5)

a likelihood term that measures the model fit and increases with the number of

clusters, and a complexity term, used as penalty, that grows with the number of

free parameters in the model. Thus, if the number of cluster is small we get a low

value for the criterion because the model fit is low, while if the number of cluster

is large we get a low value because the complexity term is large.

The information-criterion MDL of Rissanen [142], is defined as:

MDL(K) = − ln[L(X|WK ,ΘK)] +
1

2
M ln(N) (4.6)

where

L(X|WK ,ΘK) = max
N∏
i=1

p(xi|WK ,ΘK) (4.7)

The first term − ln[L(X|WK ,ΘK)] measures the model probability with respect to

the model parameter WK ,ΘK defined for a Gaussian mixture by the mixture co-

efficients WK and d-dimensional means and covariances ΘK . The second term
1
2
M ln(N) measures the number of free parameters needed to encode the model

and serves as a penalty for models that are too complex. M describes the number
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of free parameters and is given for a Gaussian mixture by M = 2dK + (K − 1) for

(K − 1) adjustable mixture weights and 2d parameters for d-dimensional means

and diagonal covariance matrices.

The optimal number of similarity thresholds can be determined by applying

the following iterative procedure:

• For all K, (Kmin < K < Kmax)

(a) Maximize the likelihood L(X|WK ,ΘK) using the EM algorithm to cluster

the nodes based on the similarity thresholds applied to the data set.

(b) Calculate the value of MDL(K) according to Equations 4.6 and 4.7

• Select the model parameters (WK ,ΘK) that corresponds to minimisation of

the MDL(K) value.

Figure 4.8 shows the value of MDL(K) for clusters within the range of (1 <

K < 18) which correspond to the similarity thresholds 100 < eT < 900. We have

doubled the range in the MDL(K) minimum and maximum values so we can rep-

resent the extreme cases of 1 cluster which represents the whole data set, and 18

clusters which over classify the distribution and corresponds to the overfiting of

the network with similarity threshold eT = 900. A global minimum and therefore

optimal number of clusters can be determined for K = 9 which indicates that the

best similarity threshold that defines the accuracy of the map without overfitting

or underfitting the data set is eT = 500. To account for susceptibility for the EM

cluster centres as part of the MDL(K) initialisation of the mixture coefficients the

measure is averaged over 10 runs and the minimal value for each configuration is

selected.

The procedure is summarised in Algorithm 5.
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Figure 4.8: (a) Plot of hand distributions. (b) Plot of the MDL values versus the

number of cluster centres. The Minimum Description Length MDL(K) is calculated

for all cluster configurations with (1 < K < 18) clusters, and a global minimum is

determined at 9 (circled point).
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Algorithm 5 MDL(K) Value

Input: TPG

Output: MDL(K)

1. Initialise TPG (Algorithm 4)
2. while current number of prototypes = xc do

Calculate MDL(K) according to Equations 4.6 and 4.7.

Save position of all prototypes and average MDL(K) over 10 runs.
3. end while

4.4 Experiments

In this section we analyse and discuss the behaviour of the GNG network based on

the MDL criterion. We show that the topology is best preserved with an optimal

similarity threshold that maximises topology learning versus adaptation time as

defined in Section 4.3.1. For that purpose, we created a benchmark data set with:

(1) different gestures but similar image size; and (2) same object but scaled under

linear transformations. The insertion of maximum nodes per object distribution

and similarity threshold (eT ) determines the extent to which the topology mapping

is preserved or not.

4.4.1 Benchmark Data

We tested our method on a data set of hand images recorded from 5 participants

each performing a set of different gestures. A detailed description of the acquired

gestures can be found in Section 5.3.1. To create this data set we have recorded

images over several days and a simple webcam was used with image resolution

800× 600. In total, we have recorded over 7500 frames, and for computational effi-
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ciency, we have resized the images from each set to 300× 225, 200× 160, 198× 234,

and 124 × 123 pixels. We obtained the data set from the University of Alicante,

Spain and the University of Westminster, UK. Also, we tested our method with 49

images from Mikkel B. Stegmann1 online data set. In total we have run the exper-

iments on a data set of 174 images. We are interested in the topology preservation

of the hands and the time spent when different number of nodes is generated from

the similarity threshold (Figure 4.9). Since the background is unambiguous the

network adapts without ocllusion reasoning. For our experiments only complete

gesture sequences are included. There are no gestures with partial or complete oc-

cluded regions, which means that we do not model multiple objects that interact

with the background. If in our data set we have gestures concealed by the back-

ground, we discard them from the modelling process.

Figure 4.9: (a) Restricted topology of hand gestures with similarity threshold eT =

100. (b) Improved topology of the gestures with optimal similarity threshold eT =

500.

As with the constant parameters in Section 3.5.1, the parameters of the network

1http://www2.imm.dtu.dk/˜aam/
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Table 4.1: Topology Preservation and Processing Time Using the Quantisation Er-

ror and the Topographic Product for Different Variants

Variant Number of Nodes Time (sec) QE TP

GNGλ=100,K=1 23 0.22 8.932453 0.4349
GNGλ=100,K=9 122 0.50 5.393949 -0.3502
GNGλ=100,K=18 168 0.84 5.916987 -0.0303
GNGλ=300,K=1 23 0.90 8.024549 0.5402
GNGλ=300,K=9 122 2.16 5.398938 0.1493
GNGλ=300,K=18 168 4.25 4.610572 0.1940
GNGλ=600,K=1 23 1.13 0.182912 -0.0022
GNGλ=600,K=9 122 2.22 0.172442 0.3031
GNGλ=600,K=18 168 8.30 0.169140 -0.0007
GNGλ=1000,K=1 23 1.00 0.188439 0.0750
GNGλ=1000,K=9 122 12.02 0.155153 0.0319
GNGλ=1000,K=18 168 40.98 0.161717 0.0111

are as follows: λ = 100 to 1000, εx = 0.1, εn = 0.005, ∆xs1 = 0.5, ∆xi = 0.0005,

αmax = 125. For the MDL(K) value we have experimented with cluster centres

within the range of 1 < K < 18.

Table 4.1 shows topology preservation, execution time, and number of nodes

when different variants in the λ and the K are applied in a hand as the input

space. Faster variants get worse topology preservation but the network converges

quickly. However, the representation is sufficient and can be used in situations

where minimum time is required like online learning for detecting obstacles in

robotics where you can obtain a rough representation of the object of interest in a

given time and with minimum quality.
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4.4.2 Test performance of topology preservation: different object

shapes

The test consists of two processes: learning and evaluation. During learning, we

choose different similarity thresholds taken from a threshold vector set, then input

the results to the GNG, and report number of nodes per similarity threshold, com-

putational time of the network, and Mean Squared Error (MSE) as the results of

the adaptation. In the evaluation process, we measure the topology preservation

with the topographic product.

The termination of the network depends on the efficient selection of the simi-

larity threshold eT which ranges from (100 ≤ eT ≤ 900) and the likelihood that the

set of pixels belonging to the object’s of interest are above this similarity thresh-

old. It is worth noting that the network stabilises and can represent sufficiently the

object when eT = 500. This is an optimum number obtained by MDL(K) that max-

imises topology learning versus adaptation time and MSE (Table 4.2). Figure 4.10

shows the plots of the MDL(K) values versus the number of clusters for mini-

mum, maximum and approximate match similarity threshold (eT = 100, eT = 900,

and eT = 500). As the similarity threshold increases the optimum number for the

MDL(K) values increases as well with an optimum growth at K = 9. Figure 4.11

shows the topology preserving graphs for different similarity thresholds. As the

number of nodes increases the system recognises better the gesture.

Table 4.3 shows the topographic product for a number of nodes. A qualita-

tive representation of the topographic product is given in Figure 4.12. We can see

that the insertion of more nodes as eT increases makes no difference to the ob-

ject’s topology. The graph shows the Topographic Product (TP) for four different

hand postures and nodes varying from 26 to 230. The topology is best preserved
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Table 4.2: Execution time and performance for various number of nodes

Data sets Number of nodes Time (sec) MSE

Set300x225 HeT=100
24 1.63 5.83

HeT=200
51 4.22 2.10

HeT=300
77 9.80 1.33

HeT=400
102 15.60 0.75

HeT = 500 124 22.32 0.55
HeT=600

153 24.14 0.81
HeT=700

179 33.98 0.74
HeT=800

205 51.15 0.49
HeT=900

230 72.05 0.33
Set200x160 HeT=100

23 1.00 12.06
HeT=200

37 2.48 4.56
HeT=300

56 4.77 2.42
HeT=400

75 8.04 1.58
HeT = 500 112 12.02 0.98
HeT=600

122 17.65 0.87
HeT=700

131 24.64 0.68
HeT=800

150 32.19 0.56
HeT=900

168 40.98 0.47
Set198x234 HeT=100

26 1.80 5.15
HeT=200

54 6.19 1.82
HeT=300

81 11.16 0.99
HeT=400

108 17.59 0.64
HeT = 500 131 27.83 0.46
HeT=600

162 38.37 0.35
HeT=700

190 57.15 0.27
HeT=800

217 75.62 0.23
HeT=900

244 103.20 0.19
Set124x123 HeT=100

22 1.15 13.26
HeT=200

44 3.20 4.67
HeT=300

66 6.27 2.55
HeT=400

88 10.58 1.66
HeT = 500 125 15.92 0.90
HeT=600

132 24.14 0.81
HeT=700

154 32.98 0.72
HeT=800

176 43.95 0.59
HeT=900

198 57.85 0.49

Table 4.2, shows the number of nodes for different similarity thresholds on differ-

ent data sets. The optimal similarity threshold that maximises topology learning

versus adaptation time and MSE is eT = 500.
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Figure 4.10: (a), (b), and (c) Plot of data set for similarity thresholds eT = 100, eT =

500, and eT = 900. (d), (e), and (f) Plot of the MDL(K) values versus the number of

clusters centres generated by the similarity thresholds during the growth process

of the GNG.

with maps containing enough nodes (> 100) to represent the topology but without

overfitting the network (< 155) while fewer nodes (< 60) are not enough to the

recognition of the gesture. Furthermore, the more nodes added during the learn-

ing process the more time it takes for the network to grow (Figure 4.13).

4.4.3 Test performance of topology preservation: scaled image

Figure 4.14 presents the adaptation with a network map of 72 nodes to the same

object (class probability of pixels belonging to the objects of interest P (O) is set to

reflect the size of objects in an image and be 1− P (B) the background probability)

but with different image size. The image has been re-scaled by half the size of the
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Figure 4.11: Topology preserving graphs with similarity thresholds eT = 100 and

eT = 500. (a) network is split into two clusters and the maximum number of

nodes is 26 (left image) and 131 (right image). (b), (c), and (d) single gestures with

maximum number of nodes varying between 23 to 125.

original image resolution. In both cases the adaptation is correct and the topol-

ogy is preserved independently of the scaling of the image. With existing GNG
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Table 4.3: The Topographic product for various data sets

Image (a) Image (b) Image (c) Image (d)
Nodes TP Nodes TP Nodes TP Nodes TP

26 -0.0301623 26 -0.021127 24 -0.017626 19 -0.006573
51 -0.030553 51 -0.021127 47 -0.047098 37 -0.007731
77 0.04862 77 0.044698 71 0.046636 56 0.027792

102 0.048256 102 0.021688 95 0.017768 75 0.017573
128 0.031592 128 0.011657 119 0.014589 94 0.018789
153 0.038033 153 0.021783 142 0.018929 112 0.016604
179 0.047636 179 0.017223 166 0.017465 131 0.017755
205 0.038104 205 -0.013525 190 0.017718 150 0.007332
230 0.037321 230 0.017496 214 -0.007543 168 0.007575

Figure 4.12: Comparative study for various hand postures. In all data sets the

approximate match is achieved with eT = 500 where P ≈ 0. P < 0 indicates low

match while P > 0 indicates a high match between the input and the latent space.

where the network size needs to be defined a priori the adaptation for smaller im-

ages can become excessive and fewer nodes can be used to define the condition of

finalisation.
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Figure 4.13: Time taken to insert the maximum number of nodes per data set.

Figure 4.14: Network adaptation to images sizes of 148×186 (left image) and 74×93

(right image) pixels with a network map of 72 nodes.

4.5 Summary

Based on the capabilities of GNG to readjust to new input patterns without restart-

ing the learning process, we developed an approach to minimise the user interven-

tion by utilising an automatic criterion for maximum node growth. This automatic

criterion for GNG is based on the object’s distribution and the similarity threshold
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(eT ) which determines the preservation of the topology. The model is then used to

the representation of motion in image sequences by initialising a suitable segmen-

tation. During testing we found that for different shapes there exists an optimum

number that maximises topology learning versus adaptation time and MSE. This

optimal number uses knowledge obtained from information-theoretic considera-

tions.
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Automatic Gesture Model

Acquisition and Neural Maps for

Motion

In this chapter we introduce and discuss the Active-GNG. The main idea is to

use the capabilities of the GNG and extend it so shapes can re-deform locally

if common regions are found. We achieve that by adding properties to the

network like restricted movement of the nodes based on local changes in the

shape, distance vector between the 1st frame and any successive k frames, and

the probability of the node to belong to the skin distribution. Applying these

updated rules an incrementally better learning algorithm is obtained.

5.1 Introduction

To motivate the representation of motion in image sequences with growing neu-

ral models we first discuss the main limitations of existing methods. When using
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shape or feature information or combination of the two to segment and track non-

rigid objects in video sequences, the most effective models are the Active Contour

Models (Snakes) introduced by Kass et al. [92] and their extensions [102, 183], the

Point Distribution Models (PDMs) and the Active Shape Models (ASMs) intro-

duced by Cootes and Taylor [32], and the Active Appearance Models (AAMs) [50].

In the case of snakes, the deformation of the model to an unseen image is achieved

by means of energy minimisation. The snake converges when all the forces achieve

an equilibrium state. This dynamic behaviour of the model to minimise its energy

function makes the snake active. The drawbacks with this method are:

• The snake has no a priori knowledge of the domain which means it can de-

form to match any contour. This attribute is not desirable if we want to keep

the specificity of the model or preserve the physical attributes such as geom-

etry, topological relations, etc.

• The active step is performed globally even if parts of the snake have already

converged. There is no mechanism in the model to re-deform locally and

minimise its energy function only at desirable image properties.

In PDM, which is the shape descriptor for both the ASM and the AAM models,

the deformation of the model to an unseen image is specific since a priori knowl-

edge such as expected size, shape and appearance is encoded in the model from a

training set of correctly annotated images. However, as with the snakes the defor-

mation of the model adheres to global shape transformations.

In the above models either a training set is required with correct annotation,

otherwise the model will not converge, or the models deform globally without

taking into consideration common regions in the shape or texture of the image.

Since we want the network to converge either globally or locally, we introduce
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here a nonparametric approach to modelling the objects which makes it ideally

suited for learning in dynamic environments. Our model is a modification to the

GNG network introduced by Fritzke [60], called Active Growing Neural Gas (A-

GNG) that has the characteristics of a snake, no a priori knowledge of the domain

and global properties, but is extended in three ways:

1. The correspondence of the nodes is performed locally, so the model re-deforms

only where differences in the input space between successive images exist

(Figure 5.1). Therefore, the active step is performed locally in contrast to the

global properties applied to the image by the snake.

2. The mean vector of the map and of any successive image is calculated and the

nodes update their position based on this mean difference. By doing this the

map first updates its position into the successive image and then examines a

region of the image around each node to determine a better displacement of

the node.

3. In order to improve efficiency, we restrict the nodes to their corresponding

place by adding a second dimension to the network with information about

the local feature structure of the image (Figure 5.2).

Figure 5.1 shows the local adaptation of the proposed method. The adaptation

of the network and the new topology preserving graph is achieved only to the

changes between the two shapes. The rest of the network stays unchanged. With

our method we overcome common restrictions in motion analysis like stiffness,

where the distance between points of objects does not change along the sequence,

and the assumption that movement is assumed common for all the points or re-

gions of the object.
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Figure 5.1: Example of 2D local adaptation with A-GNG. (a) Original shape. (b)

Signals are generated only to the new input distribution while the rest of the topol-

ogy of the network remains unchanged. (c) The winner node and its direct topo-

logical neighbours update their positions.

Figure 5.2 shows the best matching node denoted by the distance and the fea-

ture vector. Since we are interested in obtaining the geometry of the objects with-

out using a priori knowledge such as expected size, shape and appearance encoded

in the model from a training set, we compare our model with the neural growing

models NG and GNG. The advantage of our model is that it is unsupervised and

can be used for automatic model building.

The rest of this chapter is organised as follows. Section 5.2 introduces our ap-

proach to follow a non-stationary distribution by calculating the differences be-

tween successive frames and re-adjusting the nodes that belong to those differ-

ences. In Section 5.3 we apply it to track gestures based on the Active-GNG model

representation before conclusions are drawn in Section 5.4.
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Figure 5.2: The upper part of Image a shows the convergence of the GNG algo-

rithm to a local minimum. The top node with its direct neighbours can never

be winners. The lower part of Image a shows the fold-over that will occur after

a number of iterations. Not only point correspondences are lost but also topol-

ogy relations are violated. To overcome this problem for each node we compute a

2k + 1 dimensional feature vector which encapsulates feature information. Thus,

the node with the best feature vector times distance measure will be the winner

node. Image b shows the feature vector 2k + 1 added to each node.

5.2 Active-Growing Neural Gas (A-GNG)

To tackle the problems of GNG we propose Active-GNG, which features the same

network characteristics as GNG but with adding properties such as local adapta-

tion of the nodes, a translation vector between the 1st frame and any successive k

frames, and the probability of the node to belong to the skin distribution.

The main extensions of A-GNG are summarised as follows:

1. The correspondence of the nodes is performed locally, so the model re-deforms

only where differences in the input distribution between successive images

exist. In the GNG example (Figure 5.3GNG and Figure 5.4) the topology is lost
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and the network collapses since the winner node xν and its direct topolog-

ical neighbours xc move towards the input signal ξw without any stopping

criterion being applied to the nodes to prevent the network from shrinking.

In contrast, in A-GNG (Figure 5.3A−GNG and Figure 5.5) the topology is pre-

served since the updating rule ∆xν and ∆xc is performed only to the nodes

where changes in the input distribution have occurred. In the adaptation

A-GNG

GNG

Figure 5.3: Example of tracking a bump model using A-GNG and GNG. Sequences

a and b represent the original bump model used for tracking. c - f show the local

and global convergence of the nodes with A-GNG and GNG respectively. With

A-GNG correspondences are kept (circled corners) and only nodes closest to the

new distribution Y re-adjust their position. In GNG correspondences are lost and

the network gradually moves all the nodes to the new distribution Y .
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Figure 5.4: Image a shows the original map of the bump model. Image b shows the

fold-overs that occur after a number of iterations. Fold-overs of the network occur

between points 40 and 41 and between 46 and 47. Not only point correspondences

are lost, but also topology relations are violated.

Figure 5.5: Image a shows the original map. In image b only nodes 10 to 17 readapt

since they are the closest to the new input distribution. The rest of the map remains

constant.
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process the following action is performed. Let N be the set of nodes from

the original input distribution W and M < N the reduced set of nodes from

the new distribution Y . For every generated input signal ξy drawn from the

random vector Y , if the winner node and its direct topological neighbours

(xν , xc) ∈ W − Y then move the nodes towards the signal and update their

position. If not, then (xν , xc) ∈ W ∩ Y and no movement is performed (Fig-

ure 5.6). By applying this restriction the network keeps its original topology

structure.

Figure 5.6: In GNG all the nodes are moving (winner and direct topological neigh-

bours) while in A-GNG only the nodes that belong toW−Y which is the difference

between the original and the new distribution. The rest of the nodes, even if there

are direct neighbours to winner remain stationary.

2. In order to track a non-stationary distribution, we first calculate the mean

vectors xi and xj of the ith and the jth frame, and then we translate the net-

work ‖xi − xj‖ distance. The network readapts its position by examining a
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region of the image around each node to determine a better displacement

of the nodes. Calculating the translation vector is very important when a

rapidly moving distribution occurs. Figure 5.7 illustrates the ability of A-

GNG to track a jumping distribution due to the calculation of the distance

vector between the original and the rapidly moving distribution. In contrast

to GNG (Figure 5.8) which fails to readapt to the non-stationary input distri-

bution and the nodes become dead nodes.

Figure 5.7: A-GNG adaptation and tracking to a non-stationary discrete distribu-

tion. Sequences a - c represent the original and the final state of the nodes adapta-

tion to the non-stationary distribution.

3. In order to track a hand gesture in a cluttered background we add a new

component in the vector feature with skin colour information taken at each

node. The skin dataset is a combination of our own dataset from the Uni-

versity of Westminster, and the dataset from the University of Alicante. Skin

samples were collected from images taken under varying lighting conditions

and from various parts of the hand. The skin domain mainly contains white
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c

Figure 5.8: Incorrect adaptation and tracking to a moving distribution by GNG.

Sequences a and b represent the original states of the distribution as with A-GNG

(Figure 5.7). Sequence c represents the in-between states of the nodes adaptation

before convergence, and shows how the nodes become inactive (circled network),

and fail to readapt their position to the moving distribution. The topology is vio-

lated and the resources of the network are wasted.

skin samples from European and Asian origins. The skin distribution derives

from the standard technique of modelling a distribution using a mixture ofK

Gaussians [15]. If a node is represented as (x, y, P (g(x, y))), where x, y are po-

sitions, g(x, y) colour at x, y and P (g(x, y)) posterior probability of that gray

level, the strength of the node can then depend on the value of the posterior

probability (Figure 5.9).
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Figure 5.9: Network convergence after a sequence of k frames. The network is

defined by the shape S(x;P (g(x, y))) and the movement of the nodes depend on

the posterior probability P (g(x, y)). The highest the probability of a node to belong

to the skin prior probability the faster the node will re-adjust its position to the new

input distribution.

The main steps of the algorithm are as follows:

1. For every node calculate the probability of belonging to the skin Gaussian

probability density function by using the Bayes’s theorem:

p(k|x) =
p(k)p(x|k)

p(x)
=

πkN(x|µk,Σk)∑K
j=1 πjN(x|µj,Σj)

(5.1)

where µ and Σ represent the mean and the covariance of the kth Gaussian.

The total shape then is given as S(x;P (g(x, y))) where x is a 2n(x, y) node vec-

tor and P (g(x, y)) is the posterior probability of the node at g(x, y). The infor-

mation stored in the 1st and any subsequent frames is added to the TPGmap

and can be used for the learning in a sequence of k frames. The segmented
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frame and the stored colour information in each node is given by:

S(x;P (g(x, y); t) = p(k|x) ∝ P (g(x, y), t− 1), TPGt−1 (5.2)

2. Given | N | number of nodes calculate the mean vector x of the network,

where

x =
1

| N |

|N |∑
i=1

xi (5.3)

3. Calculate the image difference between the ith and the jth frame. Let W and

Y be two sets in Rn representing the original and the new distribution. The

Minkowski subtraction of Y from W is defined as:

W − Y =
⋂
y∈Y

Wy (5.4)

where y are the pixel coordinates of the successive frame.

4. Let C = W − Y be the new input distribution of the network.

5. Randomly generate input signals ξw to C and calculate as in step 2 the mean

vector for the jth frame.

6. Calculate the distance vector of the two means and swift the nodes towards

C. For each successive frame we calculate its deviation ∆x from the mean

where

∆x = xi − xj (5.5)

7. Randomly generate input signals ξw to C and find the winner node xν and its

direct topological neighbours xc.

8. For every frame, update the feature matrix P (g(x, y)) that underline each

node.
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9. For every frame, update the position of the nodes by moving them towards

the current signal by the weighted factors εx and εn same as in GNG.

10. Remove the used signal ξw from the input distribution.

11. Repeat iterations 1− 10 until the system converges.

As with the constant parameters in Section 3.5.1, the parameters for the A-GNG

algorithm should not be set too high or too low, if topology preservation is re-

quired from the network. Experimenting with these values has lead to the follow-

ing boundary values: λ = 100 to 1000, eT = 500, εx = 0.1, εn = 0.005, ∆xs1 = 0.5,

∆xi = 0.0005, αmax = 125, k = 5.

5.3 Experiments

In order to address the limitations of the existing GNG, and how these have been

improved with the A-GNG, we use a combination of artificial and real data sets.

The performance of the network is compared using the benchmark models, hand

and bump.

5.3.1 Hands

In our experiments, eight gestures (Figure 5.10) that frequently appear in sign lan-

guage were used as examples to testify our system performance. The gestures were

obtained from the University of Alicante, Spain and the University of Westminster,

UK using a simple webcam with image resolution 800 × 600. In total, we have

recorded over 12000 frames. In order to use a clean edge map that serves as the

distribution for the algorithm, we have performed all the gestures in front of a low

to medium cluttered background avoiding extremely cluttered backgrounds. We
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have performed the experiments having in mind specific applications, thus limit-

ing its applicability. The quality and stability of the results at close range makes it

worthwhile for webcam or green screen sign language applications which share a

close range viewing distance and a relatively uncluttered background.

Figure 5.10: g1 to g8 represent the most common gestures used in sign language.

We have also tested the system in a more generic background where shadows,

changes in lighting and extremely cluttered backgrounds are common. Figure 5.11

shows that when colour information is incorporated into the network the system is

able to represent the gesture and only a few nodes adjust to nearby similar pixels.

However, this is not the case when only intensity values are used in the map. The

input space is violated and the object representation is lost. However, since the

network has the ability to break up its map, objects of heterogeneous spaces will be

represented independently by groups of nodes. Gesture representation is possible

as long as no homogeneity is applied around the gesture.

For our experiments, tracking is possible without occlusion reasoning, since

all fingers are the same colour and the background is unambiguous. Therefore,

the network adapts either the fingers are self-occluded or not. However, if finger
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Figure 5.11: (a) Gestures in uniform backgrounds. (b) Examples of gestures in

cluttered backgrounds.

recognition is important, for example the system should be able to distinguish

between the middle and the ring fingers, then occlusion reasoning that takes into

account the structural and temporal kinematics of the hand should be applied.

To classify a region as a hand or face we take into account domain knowledge

information that respects always some proportions found in hands and human

faces [71]. To do that we find the centroid, height and width of the connected

nodes in the networks as well as the percentage of skin in the rectangular area

(Figure 5.12). Since the height to width ratio for hands and human faces fall into a

small range, we are able to reject or accept if the topology of a network represents

or not a hand. Studies [52, 71], have shown that the height to width ratio of human

face and hands fall within a range defined based on the well known Golden Ratio

(Equation 5.6). Thus, we consider a network as a hand or not if the height to

width ratio of the region falls within a range of the Golden Ratio ± Tolerance.

In the case where the hand is in a folded posture the rule still applies but with
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different percentage for the Tolerance. The values for the Tolerance were found

by experimentation, and range from 0.5 to 0.7 based on the hand posture.

ϕ ≡ height

width
≡ (1 +

√
5)

2
(5.6)

Figure 5.12: Example of correctly detected hands and face based on the golden

ratio regardless of the scale and the position of the hands and the face. (a) original

image, (b) after applying EM to segment skin region, and (c) hand and face detector

taking into account the connected nodes in the networks as well as the percentage

of skin in the rectangular area.

5.3.2 Bump

The Bump model used in Section 5.2 and in the Comparison study below, is a syn-

thetic object that exhibits a single mode of shape variation where the bump moves

along the top of the box. The model has one constant parameter, the rectangle and

only the bump represents the new input space to the network. The model captures

correctly the correspondence problem when the A-GNG is applied compared to

the GNG network, as shown in Figures 5.3 and 5.21.
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5.3.3 Comparison Study

In the following experiments we see the superiority of A-GNG against:

1. the methodology of active snake model that adheres only to global shape

transformations and

2. GNG which has only global properties and cannot preserve correspondences

when used for tracking.

Figure 5.13 show the tracking of a hand gesture using the A-GNG tracker, and how

it outperforms the GNG tracker. Figure 5.13(a) shows the initial A-GNG position.

The contour of the first image was extracted using the original GNG and the adap-

tation of the network at every 10th frame is done with the A-GNG. Images (b) to

(i) show the tracking of the nodes to a sequence of 190 frames. Our tracker is able

to track the fingers and updates the topology of the network every 5 iterations at

λ = 1000. Also, the execution time for A-GNG is approximately 3 times less com-

pared to the GNG. The computational and convergence results for these gestures

are summarised in Table 5.1.

Figure 5.14 shows the fitting results of a snake applied to the same gesture. Fig-

ure 5.14 (a) is the original state of the snake after manually locating an area around

the hand. The closer we allocate landmark points around the hand the faster the

convergence of the snake. The snake after a number of iterations converges to the

palm of the hand but fails to convergence around the thumb. The parameters for

the snake are summarised in Table 5.2.

Figure 5.15 indicates another tracking example to a sequence of 45 frames. Fig-

ure 5.15(a) shows the initial position of A-GNG. Images (b) and (c) show the adap-

tation after 1 iteration to a very subtle movement. Images (d), (f ) and (h) show
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Table 5.1: Convergence and Execution Time Results of GNG and A-GNG in 1D

topology

Method λ Convergence (Iteration times) Time (sec)
GNG 100 7 2.53

300 8 4.21
600 11 7.01

1000 14 15.04
A-GNG 100 2 0.73

300 2 1.22
600 3 2.17

1000 5 4.88

Table 5.2: Parameters and Performance for Snake

Hand Constants Iterations Time (sec)
Sequence (a) α = 0.05 40 15.29

β = 0
γ = 1
κ = 0.6

Dmin = 0.5
Dmax = 2

Sequence (b) α = 4 50 15.20
β = 1
γ = 2
κ = 0.6

Dmin = 0.5
Dmax = 2

Sequence (c) α = 4 40 12.01
β = 1
γ = 3
κ = 0.6

Dmin = 0.5
Dmax = 2

Sequence (d) α = 4 20 5.60
β = 1
γ = 3
κ = 0.6

Dmin = 0.5
Dmax = 2
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d

b

Figure 5.13: Tracking a gesture. The images correspond from left to right and from

top to bottom to every 10th frame of a 190 frame sequence. In each image the red

points indicate the nodes and their adaptation after 4 iterations.

the updated position of the network to a more jumping distribution and how the

network re-adapts again after 5 iterations.

Figure 5.16 shows a tracking example using the original GNG. Image (a) shows

the initial GNG position and images (b) to (i) show the GNG tracker to a sequence

of 120 frames. With the GNG tracker we see that the network is quite far from the

real boundaries of the hand and the network is not converging. The top nodes will

never be winners and the network collapses to local minima.

Figure 5.17 shows the 2D topology preserving map of the network on a skin

colour distribution. The topology of the 1st frame is extracted with the GNG net-
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Figure 5.14: (a) Manual initialisation of the snake. (b) to (d) adaptation of the snake

after a number of iterations.

work and the adaptation is performed with the A-GNG. If skin colour is falsely

detected the network will split into smaller networks. To classify each of these net-

works as hands or not we calculate the Golden Ratio as described in Section 5.3.1.
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Figure 5.15: Tracking a hand. The images correspond from left to right and from

top to bottom to every 5th frame of a 45 frame sequence.

The computational and convergence results for these gestures are summarised in

Table 5.3.

Figure 5.18 shows a contour tracking example on a uniform background. The

contour of the first image was extracted using the original GNG and the adaptation

of the network at every 10th frame is done with the A-GNG. Sequences (b) - (i)

show the tracking of the nodes to a sequence of 90 frames. Our tracker is able to

track the fingers and updates the topology of the network every 5 iterations.

Figure 5.19 indicates another 2D topology tracking example to a sequence of 90

frames. Sequences (a) - (h) show the adaptation of the network after 5 iterations

using the skin colour distribution as the input distribution to the A-GNG network.
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a b c

d e f

g h i

Figure 5.16: Tracking a gesture. The images correspond from left to right and from

top to bottom to every 10th frame of a 120 frame sequence. In each image the red

points indicate the nodes and their adaptation after 5 iterations. The GNG tracker

is quite far form the hand boundaries and the nodes collapse to local minimum.

Figure 5.20 shows the graphs with the topology preservation measures, Inverse

Quantisation Error (IQE), Topographic Product (TP) and the Geodesic Topographic

Product (GTP) for both images. It is observed that all measures considered are

suitable candidates to be used for the quantification of the topology preservation

of A-GNG. The low inverse quantisation error indicates the accuracy of the map in

representing its input, while the two topology measures with P ≈ 0 indicate good

adaptation.
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a b c

d e f

Figure 5.17: Tracking a gesture every 20th frame. The white rectangle around the

hand identifies the network whose height to width ratio falls under the golden

ratio.

Figure 5.18: Tracking a gesture every 10th frame.
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Table 5.3: Convergence and Execution Time Results of GNG and A-GNG in 2D

Topology

Method λ Convergence (Iteration times) Time (sec)
GNG 100 5 6.29

300 7 16.34
600 11 22.01

1000 15 29.38
A-GNG 100 3 2.34

300 5 6.36
600 7 8.48

1000 11 12.62

db

Figure 5.19: Tracking a gesture in a cluttered background. The images correspond

from left to right and from top to bottom to every 10th frame of a 90 frame se-

quence.

Figure 5.21 is an example of local adaptation of the network between a bump

model and a rectangle and how correspondences are improved using the A-GNG

compared to the original GNG. Image (a) and (b) show the map of the bump model
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Figure 5.20: Topology preservation during the tracking process of A-GNG for im-

ages a and b measured with the Inverse Quantisation Error (IQE), the Topographic

Product (TP) and the Geodesic Topographic Product (GTP).

and its superposition to the new image. Image (d) shows the mapping of the

GNG based only on distance measures. The network fails to converge since the

top nodes can never be winners. The network converges to a local minimum and

after a number of iterations a fold-over to the network will occur. Image (c) shows
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how the convergence is improved by calculating the mean vector of the map and

the new image, and then updating the position of the original map according to

this difference. The correspondence is improved but still it will take a number of

iterations before the top nodes converge.

Figure 5.21: Local convergence between a bump model and a rectangle. a shows

the models: the bump model represents the original state of the network and the

rectangle represents the final state after a number of 5 iterations. b shows the net-

work superimposed to the bump model and where should locally converge. c

shows the steps of the network map using the A-GNG algorithm and the correct

convergence to the rectangle. d shows the adaptation using the GNG algorithm

and how the network fails to converge after 5 iterations.
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Figure 5.22 indicates how feature information can add efficiency to the conver-

gence. Image (a) and (b) show the map and the movement of the finger. Image (c)

shows the GNG adaptation and the violation of the map based only on distance

measures while Image (d) and (e) show the correct correspondences based on the

mean and the feature information added to the network.

Figure 5.22: Convergence with and without the active steps of the GNG algorithm.

(a) shows the original image and the network map obtained using GNG. (b) after

the object has moved k frames. (c) adaptation of the GNG algorithm. (d) and (e)

adaptation with the A-GNG after 2 iterations.

Table 5.4 shows the topographic product between input and latent space for

both the bump and the finger model, and between any successive frames using

the GNG and the A-GNG. The topographic product P ≈ 0 indicates an approx-

imate match while P < 0 and P > 0 correspond to a too high and a too low
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Table 5.4: Method comparison

Topographic Product finger model bump model

original map 0.043116 0.016662

A-GNG 0.049377 0.036559

GNG -0.303199 -0.540280

Table 5.4, measures the neighbourhood preservation by calculating the map dif-

ference between neighbouring nodes in successive frames. In both examples the

topographic product for the GNG algorithm is P < 0 which indicates a low match

between the input and the latent space. For A-GNG P ≈ 0 which indicates a match

and accurate topology preservation.

match. The first row indicates a match between the input space and the latent

space for both the finger and the bump model. The mapping is preserved since

nearby points in the input space remain close in the latent space by computing

the Euclidean distance between neighbouring nodes. Table 5.4 shows that A-GNG

outperforms GNG and correct correspondences are established only when the map

is close enough to the new input distribution.

5.4 Summary

We have introduced a new nonrigid tracking and unsupervised modelling ap-

proach based on a model similar to snake, but with both global and local properties

of the image domain. Due to the number of features A-GNG uses, the topological

relations are preserved and nodes correspondences are retained between tracked

configurations. The proposed approach is robust to object transformations, and
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can prevent fold-overs of the network. No background modelling is required. The

model is learned automatically by tracking the nodes and evaluating their position

over a sequence of k frames. This is done by updating the map every 5th frame

based on the information obtained from a small region around each node. Then

the displacement is achieved on the features obtained from the skin distribution.

No training set is required and the user interaction is only necessary at initiali-

sation. The algorithm is computationally inexpensive, and can handle multiple

open/closed boundaries. Experiments were performed in hand gestures and the

superiority of our algorithm was compared, in real and artificial data set, with the

GNG algorithm. The quality of the object’s representation for both networks was

measured with the topographic product.
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Chapter 6

Conclusions

In this thesis we addressed the main limitations of nonrigid shape modelling

and tracking, and proposed an approach that overcomes problems like training

a set of examples, specifying shape features a priori in the model thus, model

and track in a supervised manner, and deforming the objects globally by us-

ing an unsupervised framework with global and local properties for automatic

model building. Below we summarise the entire work covered in the previous

chapters and propose areas of interest for future work.

6.1 Discussion

In Chapter 3 we presented an approach to automatically extract, label and cor-

respond points using only topological relations derived from competitive hebbian

learning. We addressed the correspondence problem as an unsupervised classifi-

cation problem where landmark points are the cluster centres (nodes) in a high-

dimensional vector space. We assumed that in a pre-processing stage the contours

of the objects were extracted using an efficient segmentation scheme. Points were
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extracted in the following way. First we used GNG to extract landmark points

along the contours and to form topology preserving maps. The result of this adap-

tation was a list of non-ordered nodes that defined a graph. Then we normalised

the graph by defining a re-ordering rule of the nodes. We have achieved that by

by defining a rule to delete the edges drawn onto a part of the input space that

does not belong to the contour, or by removing from the list of nodes created in the

learning process all the inappropriate cycles produced. The re-ordered list of nodes

was then projected into the shape space where synthesised shapes similar to the

training set were generated using the PDM. Furthermore, we have improved the

parameters of GNG by removing wrong edges between nodes that can be obtained

either due to limited time of the network to adapt or the nodes are too close and

the topology preserving graph cannot differentiate between winner and immedi-

ate neighbours. We have achieved that by defining a rule that compares the slope

defined by the edge formed from the last two nodes inserted, with the slopes of the

edges defined by the last node inserted and any of the candidate neighbours. Ex-

perimental evaluation was performed on two different data sets and comparisons

with other self-organising models were conducted. The accuracy of the model was

evaluated with the topology preserving measure the topographic product.

In Chapter 4 we presented an approach to minimise the user intervention in the

learning process of the network by utilising an automatic criterion for maximum

node growth based on different parameters. First we discussed various methods

on background modelling so to get an accurate initialisation of the first frame of the

GNG. We decided to use skin-colour segmentation based on probabilistic colour

models since our interest is in applications of gestures and hand shape modelling.

Then we introduced the automatic criterion of GNG based on the parameter that

the class probability of pixels belonging to the objects of interest should be above
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a particular similarity threshold. The global minimum and as such the optimal

number of this similarity threshold that best describes the topology of the network

without overfitting or underfitting the data set is derived from information theory

which can describe the complexity or simplicity of the model. Experimental eval-

uation was performed on a set of images with various gestures and hand postures.

During learning the efficiency of the network based on the optimum number that

maximises topology learning versus adaptation time and MSE was evaluated with

the topographic product.

In Chapter 5 we introduced Active-GNG which builds on the capabilities of

GNG but is extended in the following ways. First the correspondence of the nodes

is performed locally compared to the global approach we followed in Chapter 3.

This is achieved by adding a distance vector between the 1st frame and any suc-

cessive k frames. This distance vector calculates the mean of the input distribution

between the current and successive frames, and the nodes update their position

based on this mean difference. This is done by updating the map every 5th frame

based on the information obtained from a small region around each node. Then

the displacement is achieved on the features obtained from the skin distribution.

Gestures are tracked in an unsupervised manner in a sequence of k frames. The

highest the probability of a node to belong to the skin prior probability the faster

the node will adapt to the new input distribution. Experimental evaluation was

performed on hand gestures and the superiority of our algorithm was compared,

in real and artificial data set, with the GNG algorithm. The accuracy of the objects’

representation was evaluated with the topographic product.
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6.2 Future Work

Further research can be carried out in the following ways:

• Currently the A-GNG like all the Fully Self-Organising Artificial Neural Net-

work Models (FSONN) has no a priori knowledge about the object domain.

This attribute allows the model to vary its topology and model objects of

variable topology. There are many cases in medical imaging where this is

important, for example, osteoarthritis (OA) causes articulating cartilage of

load-bearing joints to erode thus changing the topology of the examples [39].

Due to the nature of A-GNG topological changes can be accommodated to

the shape model. However, what our model lacks is specificity, which means

to be able to represent only legal instances of the class of objects. For ex-

ample, in the case where a hand gesture is tracked in a sequence of frames

and occlusion occurs since no prior shape information is incorporated in the

model our tracked algorithm will fail to track the object and the quality of

the segmentation will degrade. This limitation could be overcome by com-

bining shape information with topological constrains in A-GNG. By doing so

assumptions about the global structure of the objects are incorporated in the

model.

• We defined global and local deformations by restricting the movement of

the nodes, taking the differences between successive frames and re-adjusting

only the nodes that belong to those differences, and by incorporating the

probability of the skin distribution to the network. While this is true in ap-

plications where skin colour information is obtainable, GNG requires initial-

isation only for the 1st frame since new TPGs are obtained from the features

added to the nodes, it is not the case in applications like surveillance sys-

133



CHAPTER 6. CONCLUSIONS

tems where colour cannot be used to perform segmentation. In that case

the segmented patches derived by frame differencing can be combined with

predictive algorithms like Kalman filters [90] to estimate the velocity and ac-

celeration of objects which can then be passed to the network.

• Finally, the framework has been developed for 2D (open and closed curves)

objects. We would like to extend our framework so 3D objects can be auto-

matically build and tracked in a sequence of k frames. This extension can be

of great interest in the recognition of gestures in a Virtual Reality (VR) system

using only visual information instead of the current complex electromagnetic

trackers.

134



Appendix A

Unsupervised Learning

In this appendix, we discuss the principles of competitive learning that are

relevant for this thesis. First, we give an exact definition of concepts derived

from computational geometry that are used in all self-organising neural net-

works. Second, we present the learning algorithm as used in this thesis and its

application in computer vision.

A.1 Computational Geometry

Computational geometry emerged from the field of algorithmic design and anal-

ysis back in the 1970s, and elevates real life problems as geometric problems that

require carefully designed geometric algorithms for their solution [41]. In the fol-

lowing, we give definitions of the most important geometric concepts as used in

this thesis.
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A.1.1 Convexity

Definition

A set S of points in a Euclidean space is convex if, for each possible choice of two

points P,Q ∈ S all the points on the line segment joining P and Q also lie in S. The

convex hull of S is the smallest convex set containing S and is denoted by 〈S〉. To

be more precise, it is the intersection of all convex sets that contain S. Figure A.1

shows examples of convex shapes and convex hulls.

Figure A.1: Left image, shows examples of 2D and 3D convex shapes. Right image

shows that the convex hull 〈P,Q,R, S, T, U〉 is the tetrahedron PQRS.

A.1.2 Triangulations

Definition

A triangulation is a strict subdivision in which each face is a triangle. A strict

subdivision of a surface is a subdivision in which:
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• Any two faces meet at a single edge, at a single vertex, or not at all;

• Each non-boundary edge belongs to two faces;

• Each edge that is part of the boundary belongs to just one face;

• No face meets itself, either at a vertex or at an edge;

• The union of all the faces meeting a given vertex, together with the vertex

and its incident edges, is homeomorphic to an open disc - or if the vertex lies

on the boundary, to an open half-disc.

Figure A.2 shows the conversion from strict subdivision into a triangulation.

Figure A.2: Conversion from strict subdivision into triangulation.

A.1.3 Voronoi Diagram and Delaunay Triangulation

Definition

Let P be a set of n nodes in the plane, the Voronoi diagram of P is the subdivision
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of the plane into n regions, such that the region of a node p ∈ P contains all points

in the plane for which p is the nearest node. The Voronoi diagram of P is denoted

by V or(P ) [41]. Assume there exists 10 nodes in R2 as depicted in Figure A.3.

The Voronoi diagram has the property that for each node every point in the region

around that node is closer to that node than to any of the other nodes.

Figure A.3: An input Data set D with 10 nodes in R2 is shown in (a). The Voronoi

diagram for this particular set of nodes is shown in (b).

If one connects all pairs of points for which the respective Voronoi regions share

an edge one gets the Delaunay Triangulation. This triangulation is special among

all possible triangulations since it has the additional property that for each triangle

of the triangulation, the circumcircle of that triangle does not contain any other

nodes. Figure A.4 shows the previous example together with the corresponding

Delaunay Triangulation.
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Figure A.4: Both the Delaunay triangulation and the Voronoi diagram.

A.2 GNG Algorithm

From the Neural Gas model [117, 118] and the Growing Cell Structures [59], Fritzke

developed the Growing Neural Gas model [60]. The growth mechanism inherited

from the Growth Cell Structure [59], and the Competitive Hebbian Learning (CHL)

rule [115] are combined to a new model that starts with two nodes and new ones

are inserted successively (Figure A.5).

This model has been used in applications such as robotics [66, 112], face recog-

nition [189], clustering [33, 45, 86], and 3D reconstruction [2, 35] among others. The

learning algorithm is as follows:

1. Initialise the set A with only two nodes c1 and c2

A = {c1, c2} (A.1)

with their respective reference vectors (weights) xc1 and xc2 randomly gener-

ated from the probability density function p(W ). Initialise the connection set
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Figure A.5: a) Initial, b) intermediate and c) final state of the GNG algorithm.

C, C ⊂ AxA, to the empty set:

C = ∅ (A.2)

2. Generate at random an input signal ξw according to the data distribution

p(W ).

3. Find the nearest node (winner node) xν and the second nearest xυ(xν , xυ ∈ A)

by:

xν = arg min c∈A ‖ ξw − xc ‖ (A.3)

and

xυ = arg min c∈A\{xν} ‖ ξw − xc ‖ (A.4)

4. If xν and xυ are not connected, create it:

C = C ∪ {(xν , xυ)} (A.5)

Set the age of the connection between the two nodes to 0.

age(xν ,xυ) = 0 (A.6)
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5. Add the squared distance between the input signal and the winner node to a

counter error of xν such as:

∆error(xν) =‖ ξw − xν ‖2 (A.7)

6. Move the winner node xν and its topological neighbours towards ξw by a

learning step εx and εn, respectively, of the total distance to the input signal:

∆xν = εx(ξw − xν) (A.8)

∆xc = εn(ξw − xc),∀c ∈ N (A.9)

7. Increase the age of all the edges emanating from xν :

age(xν ,i) = age(xν ,i) + 1 (∀i ∈ Nxν ) (A.10)

8. Remove the edges larger than amax. If this results in isolated nodes remove

them as well.

9. Every certain number λ of input signals generated, insert a new node as fol-

lows:

• Determine the node q with the maximum accumulated error:

q = arg max c∈AEc (A.11)

• Determine among the neighbours of q the node f with the maximum

accumulated error:

f = arg max c∈NqEc (A.12)

• Insert a new node r between q and its further neighbour f :

A = A ∪ {r} (A.13)

xr =
(xq + xf )

2
(A.14)

141



APPENDIX A. UNSUPERVISED LEARNING

• Insert new edges connecting the node r with nodes q and f , removing

the old edge between q and f .

C = C ∪ {(r, q), (r, f)} (A.15)

C = C ∪ \{(q, f)} (A.16)

• Decrease the error variables of nodes q and f multiplying them by a

fraction α:

∆error(q) = −αEq (A.17)

∆error(f) = −αEf (A.18)

• Initialize the error variable of r with the new value of the error variable

of q and f .

Er =
(Eq + Ef )

2
(A.19)

10. Decrease all error variables by multiplying them with a constant β:

∆error(c) = −βEc (A.20)

11. If the stopping criterion is not yet achieved (e.g. maximum size of the net-

work, time, etc.) go to step 2.

The parameters used in Figure A.5 are: λ = 600, εx = 0.05, εn = 0.0006, α = 0.5,

β = 0.0005, αmax = 88.

In summary, the adaptation of the network to the input distribution is produced

in step 6. Step 4 with the insertion of connections, provides the topological rela-

tions between the nodes. The elimination of connections (step 8) removes edges

that are no part of the topology. This is done by removing the connections be-

tween nodes that are no longer near or that have other nodes that are closer. The
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accumulation of the error (step 5) can identify those areas where it is necessary to

increase the number of nodes to improve the mapping.

Figure A.6 shows the learning algorithm.

Figure A.6: Flow chart of the growing neural gas network.
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Aligning the Training Set

In section 3.3 PDM was discussed as a method for statistical shape modelling.

In order to study the variations of the position of each landmark point through-

out the training set, all the shapes must be aligned to each other. This appendix

discusses the alignment of a pair of shapes with or without using a weighted

matrix. It generalises to many shapes.

B.1 Aligning A Pair of Shapes

Given two shapes x1 and x2 which are described by a vector of N coordinates:

x1 = (x1, y1, x2, y2, ......, xN , yN)T (B.1)

x2 = (x1, y1, x2, y2, ......, xN , yN)T (B.2)

we wish to find the parameters (θ, s, tx, ty) of the transformation matrix T that min-

imises the sum of the square distances:

E = |x1 − T (x2)|2 (B.3)
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where

T

 xi

yi

 =

 s(cosϑ)xi − s(sinθ)yi
s(sinϑ)xi + s(cosθ)yi

+

 tx

ty

 =

 a −b

b a

 x

y

+

 tx

ty

 (B.4)

for simplicity we write a = s(cosϑ) and b = s(sinϑ). We can write equation (B.3)

as:

E(a, b, tx, ty) = |x1 − T (x2)|2 =
n∑
i=1

(ax1i − by1i + tx − x2i)
2 + (bx1i + ay1i + ty − y2i)

2

(B.5)

This minimisation is a standard application of a least-square approach where

partial derivatives of E are calculated with respect to the unknown parameters

(θ, s, tx, ty). In order to find the parameters that best align shape x2 to x1 we par-

tially differentiate equation (B.5) with respect to (a, b, tx, ty) and by equating ∂E
∂a

= 0,
∂E
∂b

= 0, ∂E
∂tx

= 0, ∂E
∂ty

= 0 we solve a system of four linear equations:
x1 −y1 1 0

y1 x1 0 1

z 0 x1 y1

0 z −y1 x1

×

a

b

tx

ty

 =


x2

y2

c1

c2

 (B.6)

where

x1 =
n∑
i=1

x1i (B.7)

y1 =
n∑
i=1

y1i (B.8)

x2 =
n∑
i=1

x2i (B.9)

y2 =
n∑
i=1

y2i (B.10)

145



APPENDIX B. ALIGNING THE TRAINING SET

z =
n∑
i=1

x1
2
i + y1

2
i (B.11)

c1 =
n∑
i=1

x1ix2i + y1iy2i (B.12)

c2 =
n∑
i=1

x1iy2i − y1ix2i (B.13)

By solving the equations and by assuming that the centre of gravity of x2 is at

the origin we obtain:

a =
c1

|x1|2
(B.14)

b =
c2

|x1|2
(B.15)

tx = x2 (B.16)

ty = y2 (B.17)

and

θ = arctan(
b

a
) = arctan(

c2

c1

) (B.18)

Knowing a and b we can calculate the scaling parameter s from s2 = a2 + b2. By

knowing s, θ, tx, ty we can align two pair of shapes in Euclidean transformation.

B.2 Aligning A Pair of Shapes Using a Waited Matrix

The alignment of two shapes using a weighted matrix is exactly the same with the

previous method, with the only difference that the weighted matrix gives more

significance to the landmark points that tend to be more stable. The stability of

a point is measured by having less movement relative to the other points. The

weights given to the points are calculated based on: (1) the distances between

every pair of points in all the shapes; (2) the variance of the distance between every
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pair of points over all the shapes; (3) the inverse of the summation of the variances

of the distances from this point to all others.

The weighted matrix is given as:

wk = (
n∑
l=1

Vkl)
−1 (B.19)

where 0 ≤ k ≤ n, Vkl is the variance of the distance between landmark points k and

l, and n is the number of landmark points. The weighted matrix can be written as

the diagonal matrix W = diag(w1x, w1y, ......., wnx, wny).

Given two shapes x1 and x2 we wish to find the parameters (θ, s, tx, ty) of the

transformation matrix T that minimises the weighted sum:

E = (x1 − T (x2))TW(x1 − T (x2)) (B.20)

By equating ∂E
∂a

= 0, ∂E
∂b

= 0, ∂E
∂tx

= 0, ∂E
∂ty

= 0 we solve a system of four linear

equations: 
x1 −y1 W 0

y1 x1 0 W

z 0 x1 y1

0 z −y1 x1

×

a

b

tx

ty

 =


x2

y2

c1

c2

 (B.21)

where

x1 =
n∑
i=1

wkx1i (B.22)

y1 =
n∑
i=1

wky1i (B.23)

x2 =
n∑
i=1

wkx2i (B.24)

y2 =
n∑
i=1

wky2i (B.25)
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z =
n∑
i=1

wk(x1
2
i + y1

2
i ) (B.26)

c1 =
n∑
i=1

wk(x1ix2i + y1iy2i) (B.27)

c2 =
n∑
i=1

wk(x1iy2i − y1ix2i) (B.28)

B.3 Aligning All Shapes

Figure B.1 shows the algorithm for aligning a set of N shapes.

Figure B.1: Flow chart for aligning a set of N shapes.
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Human Brain MRI Data Set

This appendix compares to and presents results for the automatic landmark-

ing and shape modelling of a ventricles data set using three different self-

organising models.

C.1 Ventricles

The data set was obtained from the MNI BIC Centre for Imaging at McGill Uni-

versity, Canada. These images are 1 mm thick, 181 × 217 pixels per slice (1.0mm2

in-plane resolution), 3% noise and 20% INU. These images are used as ground

truth segmentation, as every voxel in the entire volume has been correctly labelled

to a tissue class by the McGill Institute. The entire brain volume consisted of 181

slices, from which we extracted those that contained ventricles (slices 49−91). The

images are 16 bit grey scale, which were manually segmented to remove all but

the outline of the ventricles. Since most typical clinical MRI volumes are on aver-

age 5mm thick, we selected 4 groups of 5 contiguous slices to produce our point

distribution model.
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In Figure C.1 the modes of variation for all four groups are displayed by vary-

ing the first shape parameter βi{±3σ} over the training set. The qualitative results

show that GNG leads to correct extraction of corners of anatomical shapes and are

compact when the topology preservation of the network is achieved (Figure C.3).

In Figure C.2 two shape variations from the automatically generated landmarks

Figure C.1: The first mode (m = 1) of variation for the four groups of 5 contiguous

slices taken from MR brain data. Range of variation −3
√
λ ≤ βi ≤ 3

√
λ.

were superimposed to groups 4 and 3 from the training set. These modes effec-

tively capture the variability of the training set and present only valid shape in-

stances. It is interesting to note that whilst there is significant difference between

64, and 169 nodes -not enough nodes to represent the object at specific time con-

straints (Image A) and too many nodes (Image D)- the mapping with 100 is good

and has no significant difference with the mapping of 144 nodes. The reason is that

for the current size of the images the distance between the nodes is short enough

so adding extra nodes does not give more accuracy in placement.
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Figure C.2: Superimposed shape instances to groups 4 and 3 from the training set.

Figure C.3: Automatic annotation with network size of 64 (Image A, E), 100 (Image

B, F), 144 (Image C, G) and 164 (Image D, H) nodes for two groups of the MRI

volumes of the ventricles.

Table C.1 shows the total variance achieved by maps containing varying num-

ber of nodes (64, 100, 144, 169) used for the automatic annotation (Figure C.3). The

map of 100 nodes is the most compact since it achieves the least variance compared

to 64, 144 and 169 nodes among the four groups. Figure C.4 shows superimposed

the mean shapes of each group and for all nodes. The red shape referring to the
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Table C.1: A quantitative comparison of various nodes adapted to the ventricle

model with total variance per group

Groups 64 (nodes) 100 (nodes) 144 (nodes) 169 (nodes)

VT 1 9.8340 1.9385 3.9668 3.9235

VT 2 13.1873 1.7284 4.3672 3.1617

VT 3 6.7822 2.0109 3.2260 4.0057

VT 4 2.2567 1.6198 2.8398 3.5861

100 nodes is the most compact mean shape.

Figure C.4: The means of the four groups and for different nodes. The blue outlines

represent the means of the 64, 144 and 169 nodes. The red outline represents the

most compact mean achieved with the mapping of 100 nodes.

We have tested and compared our method with two other SOMs, the Koho-

nen map and the NG map. Figure C.5 shows the quantisation error for the three
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self-organising maps (SOMs) for different number of nodes. From Figure C.5 one

can see that the distortion error for Kohonen is very big compared to NG and

GNG but for GNG the results are slightly better to NG, since it has less distortion

error thus better topology preservation, and the learning time is 20 times faster

compared to NG (Figure C.7). However, as the number of neurons increases the

distortion error decreases and stabilises for both networks. The better represen-

Figure C.5: Quadratic error for different SOMs and neurons.

tation of the GNG over the NG network is also calculated by taking the Mean

Squared Error (MSE) between the original shape and the back-projected from the

PCA space. Figure C.6 shows the comparative diagram. Kohonen and NG net-

works assume that the numbers of weights are known a priori and do not change

during the adaptation process. GNG overcomes this as it is a growth mechanism

and new nodes are inserted based on local error measurements. Thus, GNG can

give better preservation compared to the other two. The quantitative results show

that GNG is significantly faster compared to Kohonen and NG. Figure C.7 shows a

comparative diagram of the learning time of various SOMs and at different num-
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Figure C.6: Mean Squared Error for NG and GNG.

ber of nodes. The adaptation with 64 nodes is only 3 sec with GNG compared

to the 57 sec and 52 sec with Kohonen and NG, but with 64 nodes the topology

preservation in most of the shapes is lost independent of the selection of the SOM.

A good adaptation with 100 and 144 nodes takes 6 and 11 seconds respectively at

1000 patterns to adapt to the contour of the ventricles.

Figure C.7: Learning time for various SOMs and at various nodes.
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Expectation-Maximization (EM)

Algorithm

In this appendix, we briefly discuss the background of a statistical model which

has received wide application in Computer Vision. In particular, we discuss

the Expectation-Maximization (EM) algorithm, which is being used to find

maximum likelihood estimators in a problem with unobserved data.

D.1 Introduction

The classic EM algorithm can be dated back to Dempster, Laird, and Rubin’s

paper in 1977 [43]. It is a very general parameter estimation method applicable

to many statistical models such as Mixture-of-Experts (MOE), Gaussian Mixture

Models (GMM), and Vector Quantisation (VQ). These models are inter-related with

VQ being a special case of GMM, which in turn is a special case of the more general

MOE [101]. In GMM, as used in the work described in Chapter 4, EM is seeking

a maximum likelihood solution by iterating two steps, the Estimation (E) and the

155



APPENDIX D. EXPECTATION-MAXIMIZATION (EM) ALGORITHM

Maximization (M). The M-step maximizes a likelihood function that is refined in

each iteration by the E-step. The advantages of the algorithm are that it avoids the

calculation and storage of derivatives, is usually faster to converge than general

purpose algorithms, and can also be extended to deal with missing data [68, 141].

D.1.1 EM Algorithm for GMMs

The following notations are adopted:

• X = {xt ∈ RD; t = 1, ......, T} is the observation sequence, where T is the

number of observations and D is the dimensionality of xt.

• C = {C(1), .....C(J)} is the set of cluster mixture labels, where J is the number

of mixture components.

• Z = {zt ∈ C; t = 1, ......, T} is the set of unobserved data.

• θ = {θ(j); j = 1, ......, J} is the set of unknown parameters that define the

density function for approximating the true probability density of X .

• θ(j) = {π(j), ϕ(j)} where π(j) denotes the prior probability of the j − th com-

ponent density and ϕ(j) defines the j − th component density.

In a mixture model a density distribution is expressed as a linear combination

of basis functions, for example, a linear combination of Gaussians.

D.1.1.1 A GMM

Assume a Gaussian mixture model:

θ = {π(j), ϕ(j) = {µ(j),Σ(j)}; j = 1, ......, J} (D.1)
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where π(j) denotes the prior probability of expert j, and ϕ(j) = {µ(j),Σ(j)} denotes

the parameters mean µ(j), and full-rank covariance matrix Σ(j) of the expert. The

GMM’s output is given by:

p(xt|θ) =
J∑
j=1

π(j)p(xt|δ(j)
t = 1, ϕ(j)) (D.2)

where

p(xt|δ(j)
t = 1, ϕ(j)) = (2π)−

D
2 |Σ(j)|−

1
2 exp{−1

2
(xt − µ(j))T (Σ(j))−1(xt − µ(j))} (D.3)

is the j − th Gaussian density of the GMM.

The method for determining the parameters of a Gaussian mixture model from

a data set is based on maximising the data likelihood.

L(X|θn) ≡ log p(X|θn) =
∑
Z

P (Z|X, θn) log p(X|θn) (D.4)

Because the likelihood is a differentiable function it is possible to use general

purpose optimisation algorithms. One such iterative approach is the EM algorithm

which provides fast convergence.

D.1.2 EM steps

After the initialisation of θ0, the EM iteration is as follows:

1. E-step. As we do not know the class labels, but do know their probability

distribution, what we can do is to use the expected values of the class labels

given the current parameters.

For the n− th iteration we form the function Q(θ|θn) as follows:

Q(θ|θn) = E{log p(Z,X|θ)|X, θn}

=
T∑
t=1

J∑
j=1

E{δ(j)
t |xt, θn} log[p(xt|δ(j)

t = 1, ϕ(j))π(j)]
(D.5)
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and define

h(j)
n (xt) ≡ E{δ(j)

t |xt, θn} = P (δ
(j)
t = 1|xt, θn) (D.6)

Using Bayes’ theorem we can calculate h(j)
n (xt) as:

h(j)
n (xt) =

p(xt|δ(j)
t = 1, ϕ

(j)
n )π

(j)
n∑J

k=1 p(xt|δ
(k)
t = 1, ϕ

(k)
n )π

(k)
n

(D.7)

which is actually the expected posterior distribution of the class labels given

the observed data. In other words, the probability that xt belongs to group

j given the current estimates θn is given by h
(j)
n (xt). The calculation of Q is

the E-step of the algorithm and determines the best guess of the membership

function h(j)
n (xt).

2. To compute the new set of parameter values of θ (denoted as θ∗) we optimise

Q(θ|θn); that is:

θ∗ = arg max
θ
Q(θ|θn) (D.8)

This is the M-step of the algorithm. Specifically, the steps are:

• Maximise Q(θ|θn) with respect to θ to find θ∗.

• Replace θn by θ∗.

• Increment n by 1 and repeat the E-step until convergence.

To determine µ(k)∗, differentiate Q with respect to µ(k) and equate to zero

(ϑQ(θ|θn)

ϑµ(k)
= 0) which gives:

µ(k)∗ =

∑T
t=1 h

k
n(xt)xt∑T

t=1 h
k
n(xt)

(D.9)

To determine Σ(k)∗, differentiate Q with respect to Σ(k) and equate to zero

(ϑQ(θ|θn)

ϑΣ(k) = 0) which gives:

Σ(k)∗ =

∑T
t=1 h

k
n(xt)(xt − µ(k)∗)(xt − µ(k)∗)T∑T

t=1 h
k
n(xt)

(D.10)
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To determine π(k)∗, maximise Q(θ|θn) with respect to π(k) subject to the con-

straint ΣJ
j=1π

j = 1 which gives:

π(k)∗ =
1

T

T∑
t=1

hkn(xt) (D.11)

A detailed derivation of the above equations is given in [101].
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Publications

This thesis is mainly based on articles that were published during the research

work presented below in an inverse chronological order.

2011

A. Angelopoulou, A. Psarrou, and J. Garcı́a. A Growing Neural Gas Algorithm

with Applications in Hand Modelling and Tracking. In Proc. of the 11th Interna-

tional Work-Conference on Artificial Neural Networks, IWANN 2011, Advances in Com-

putational Intelligence, LNCS 6692, pages 236–243, Springer, 2011.

2010

A. Angelopoulou, A. Psarrou, J. Garcı́a, and G. Gupta. Tracking Gestures using

a Probabilistic Self-Organising Network. In Proc. of the International Joint Confer-

ence on Neural Networks (IJCNN 2010), IEEE WCCI 2010, pages 1–7, IEEE Catalogue

Number: CFP10IJS-DVD, ISBN: 978-1-4244-6917-8, 2010.
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2009

G. Gupta, A. Psarrou, and A. Angelopoulou. Generic colour image segmenta-

tion via multi-stage region merging. In Proc. of the 10th International Workshop on

Image Analysis for Multimedia Interactive Services, WIAMIS’09, pages 185–188, IEEE

Xplore, 2009.

2008

A. Angelopoulou, A. Psarrou, G. Gupta, and J. Garcı́a. Active-GNG: Model Ac-

quisition and Tracking in Cluttered Backgrounds. In Proc. of the ACM workshop

on Vision Networks for Behaviour Analysis, VNBA 2008, in conjunction with the ACM

Multimedia, pages 17–22, 2008.

2007

A. Angelopoulou, A. Psarrou, G. Gupta, and J. Garcı́a. Nonparametric Modelling

and Tracking with Active-GNG. Human Computer Interaction, IEEE International

Workshop, ICCV-HCI 2007, in conjunction with the ICCV 2007, LNCS 4796, pages 98–

107, Springer, 2007.

A. Angelopoulou, A. Psarrou, G. Gupta, and J. Garcı́a. Robust Modelling and

Tracking of NonRigid Objects Using Active-GNG. IEEE Workshop on Non-rigid Reg-

istration and Tracking through Learning, NRTL 2007, in conjunction with ICCV 2007,

IEEE Xplore, 2007.

2006

A. Angelopoulou, J. Garcı́a, and A. Psarrou. Learning 2D Hand Shapes Using The

Topology Preservation Model GNG. In Proc. of the 9th European Conference on Com-
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puter Vision, ECCV 2006, LNCS 3951, pages 313–324, 2006.

J. Garcı́a, A. Angelopoulou, and A. Psarrou. Growing Neural Gas (GNG): A Soft

Competitive Learning Method for 2D Hand Modelling. Transactions on Information

and Systems, E89-D(7):2124-2131, Oxford University Press, ISSN: 0916-8532, 2006.

2005

A. Angelopoulou, A. Psarrou, J. Garcı́a, and R. Kenneth. Automatic Landmarking

of 2D Medical Shapes Using The Growing Neural Gas Network. In Proc. of the

IEEE Workshop on Computer Vision for Biomedical Image Applications, CVBIA 2005,

LNCS 3765, pages 210–219, Springer, 2005.

2004

A.N. Angelopoulou, and A. Psarrou. Evaluating Statistical Shape Models for Au-

tomatic Landmark Generation on A Class of Human Hands. ISPRS-International

Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume

35: Part 3, Natural Resources, pages 749–753, ISSN: 1682-1750, 2004.
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”For the things we have to learn before we can do, we learn by
doing”

Aristotle (Greek philosopher, 384-322 BC)

187


	Angelopoulou
	phd_thesis

