1,038 research outputs found

    Continuous remote monitoring of COPD patients—justification and explanation of the requirements and a survey of the available technologies

    Get PDF
    Remote patient monitoring should reduce mortality rates, improve care, and reduce costs. We present an overview of the available technologies for the remote monitoring of chronic obstructive pulmonary disease (COPD) patients, together with the most important medical information regarding COPD in a language that is adapted for engineers. Our aim is to bridge the gap between the technical and medical worlds and to facilitate and motivate future research in the field. We also present a justification, motivation, and explanation of how to monitor the most important parameters for COPD patients, together with pointers for the challenges that remain. Additionally, we propose and justify the importance of electrocardiograms (ECGs) and the arterial carbon dioxide partial pressure (PaCO2) as two crucial physiological parameters that have not been used so far to any great extent in the monitoring of COPD patients. We cover four possibilities for the remote monitoring of COPD patients: continuous monitoring during normal daily activities for the prediction and early detection of exacerbations and life-threatening events, monitoring during the home treatment of mild exacerbations, monitoring oxygen therapy applications, and monitoring exercise. We also present and discuss the current approaches to decision support at remote locations and list the normal and pathological values/ranges for all the relevant physiological parameters. The paper concludes with our insights into the future developments and remaining challenges for improvements to continuous remote monitoring systems

    Smart vest for respiratory rate monitoring of COPD patients based on non-contact capacitive sensing

    Get PDF
    In this paper, a first approach to the design of a portable device for non-contact monitoring of respiratory rate by capacitive sensing is presented. The sensing system is integrated into a smart vest for an untethered, low-cost and comfortable breathing monitoring of Chronic Obstructive Pulmonary Disease (COPD) patients during the rest period between respiratory rehabilitation exercises at home. To provide an extensible solution to the remote monitoring using this sensor and other devices, the design and preliminary development of an e-Health platform based on the Internet of Medical Things (IoMT) paradigm is also presented. In order to validate the proposed solution, two quasi-experimental studies have been developed, comparing the estimations with respect to the golden standard. In a first study with healthy subjects, the mean value of the respiratory rate error, the standard deviation of the error and the correlation coefficient were 0.01 breaths per minute (bpm), 0.97 bpm and 0.995 (p < 0.00001), respectively. In a second study with COPD patients, the values were -0.14 bpm, 0.28 bpm and 0.9988 (p < 0.0000001), respectively. The results for the rest period show the technical and functional feasibility of the prototype and serve as a preliminary validation of the device for respiratory rate monitoring of patients with COPD.Ministerio de Ciencia e Innovación PI15/00306Ministerio de Ciencia e Innovación DTS15/00195Junta de Andalucía PI-0010-2013Junta de Andalucía PI-0041-2014Junta de Andalucía PIN-0394-201

    Hardware Prototype for Wrist-Worn Simultaneous Monitoring of Environmental, Behavioral, and Physiological Parameters

    Get PDF
    We designed a low-cost wrist-worn prototype for simultaneously measuring environmental, behavioral, and physiological domains of influencing factors in healthcare. Our prototype continuously monitors ambient elements (sound level, toxic gases, ultraviolet radiation, air pressure, temperature, and humidity), personal activity (motion tracking and body positioning using gyroscope, magnetometer, and accelerometer), and vital signs (skin temperature and heart rate). An innovative three-dimensional hardware, based on the multi-physical-layer approach is introduced. Using board-to-board connectors, several physical hardware layers are stacked on top of each other. All of these layers consist of integrated and/or add-on sensors to measure certain domain (environmental, behavioral, or physiological). The prototype includes centralized data processing, transmission, and visualization. Bi-directional communication is based on Bluetooth Low Energy (BLE) and can connect to smartphones as well as smart cars and smart homes for data analytic and adverse-event alerts. This study aims to develop a prototype for simultaneous monitoring of the all three areas for monitoring of workplaces and chronic obstructive pulmonary disease (COPD) patients with a concentration on technical development and validation rather than clinical investigation. We have implemented 6 prototypes which have been tested by 5 volunteers. We have asked the subjects to test the prototype in a daily routine in both indoor (workplaces and laboratories) and outdoor. We have not imposed any specific conditions for the tests. All presented data in this work are from the same prototype. Eleven sensors measure fifteen parameters from three domains. The prototype delivers the resolutions of 0.1 part per million (PPM) for air quality parameters, 1 dB, 1 index, and 1 °C for sound pressure level, UV, and skin temperature, respectively. The battery operates for 12.5 h under the maximum sampling rates of sensors without recharging. The final expense does not exceed 133€. We validated all layers and tested the entire device with a 75 min recording. The results show the appropriate functionalities of the prototype for further development and investigations

    Devices and Data Workflow in COPD Wearable Remote Patient Monitoring: A Systematic Review

    Get PDF
    Background: With global increase in Chronic Obstructive Pulmonary Disease (COPD) prevalence and mortality rates, and socioeconomical burden continuing to rise, current disease management strategies appear inadequate, paving the way for technological solutions, namely remote patient monitoring (RPM), adoption considering its acute disease events management benefit. One RPM’s category stands out, wearable devices, due to its availability and apparent ease of use. Objectives: To assess the current market and interventional solutions regarding wearable devices in the remote monitoring of COPD patients through a systematic review design from a device composition, data workflow, and collected parameters description standpoint. Methods: A systematic review was conducted to identify wearable device trends in this population through the development of a comprehensive search strategy, searching beyond the mainstream databases, and aggregating diverse information found regarding the same device. The Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines were followed, and quality appraisal of identified studies was performed using the Critical Appraisal Skills Programme (CASP) quality appraisal checklists. Results: The review resulted on the identification of 1590 references, of which a final 79 were included. 56 wearable devices were analysed, with the slight majority belonging to the wellness devices class. Substantial device heterogeneity was identified regarding device composition type and wearing location, and data workflow regarding 4 considered components. Clinical monitoring devices are starting to gain relevance in the market and slightly over a third, aim to assist COPD patients and healthcare professionals in exacerbation prediction. Compliance with validated recommendations is still lacking, with no devices assessing the totality of recommended vital signs. Conclusions: The identified heterogeneity, despite expected considering the relative novelty of wearable devices, alerts for the need to regulate the development and research of these technologies, specially from a structural and data collection and transmission standpoints.Introdução: Com o aumento global das taxas de prevalência e mortalidade da Doença Pulmonar Obstrutiva Crónica (DPOC) e o seu impacto socioeconómico, as atuais estratégias de gestão da doença parecem inadequadas, abrindo caminho para soluções tecnológicas, nomeadamente para a adoção da monitorização remota, tendo em conta o seu benefício na gestão de exacerbações de doenças crónicas. Dentro destaca-se uma categoria, os dispositivos wearable, pela sua disponibilidade e aparente facilidade de uso. Objetivos: Avaliar as soluções existentes, tanto no mercado, como na área de investigação, relativas a dispositivos wearable utilizados na monitorização remota de pacientes com DPOC através de uma revisão sistemática, do ponto de vista da composição do dispositivo, fluxo de dados e descrição dos parâmetros coletados. Métodos: Uma revisão sistemática foi realizada para identificar tendências destes dispositivos, através do desenvolvimento de uma estratégia de pesquisa abrangente, procurando pesquisar para além das databases convencionais e agregar diversas informações encontradas sobre o mesmo dispositivo. Para tal, foram seguidas as diretrizes PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses), e a avaliação da qualidade dos estudos identificados foi realizada utilizando a ferramenta CASP (Critical Appraisal Skills Programme). Resultados: A revisão resultou na identificação de 1590 referências, das quais 79 foram incluídas. Foram analisados 56 dispositivos wearable, com a ligeira maioria a pertencer à classe de dispositivos de wellness. Foi identificada heterogeneidade substancial nos dispositivos em relação à sua composição, local de uso e ao fluxo de dados em relação a 4 componentes considerados. Os dispositivos de monitorização clínica já evidenciam alguma relevância no mercado e, pouco mais de um terço, visam auxiliar pacientes com DPOC e profissionais de saúde na previsão de exacerbações. Ainda assim, é notória a falta do cumprimento das recomendações validadas, não estando disponíveis dispositivos que avaliem a totalidade dos sinais vitais recomendados. Conclusão: A heterogeneidade identificada, apesar de esperada face à relativa novidade dos dispositivos wearable, alerta para a necessidade de regulamentação do desenvolvimento e investigação destas tecnologias, especialmente do ponto de vista estrutural e de recolha e transmissão de dados

    Telemedicine in COPD: An Overview by Topics

    Get PDF
    Introduction: COPD is a major cause of morbidity and mortality worldwide and carries a huge and growing economic and social burden. Telemedicine might allow the care of patients with limited access to health services and improve their self-management. During the COVID-19 pandemic, patient's safety represents one of the main reasons why we might use these tools to manage our patients. The authors conducted a literature search in MEDLINE database. The retrieval form of the Medical Subject Headings (Mesh) was ((Telemedicine OR Tele-rehabilitation OR Telemonitoring OR mHealth OR Ehealth OR Telehealth) AND COPD). We only included systematic reviews, reviews, meta-analysis, clinical trials and randomized-control trials, in the English language, with the selected search items in title or abstract, and published from January 1st 2015 to 31st May 2020 (n = 56). There was a positive tendency toward benefits in tele-rehabilitation, health-education and self-management, early detection of COPD exacerbations, psychosocial support and smoking cessation, but the heterogeneity of clinical trials and reviews limits the extent to which this value can be understood. Telemonitoring interventions and cost-effectiveness had contradictory results. The literature on teleconsultation was scarce during this period. The non-inferiority tendency of telemedicine programmes comparing to conventional COPD management seems an opportunity to deliver quality healthcare to COPD patients, with a guarantee of patient's safety, especially during the COVID-19 outbreak.info:eu-repo/semantics/publishedVersio

    Holistic System Design for Distributed National eHealth Services

    Get PDF
    publishedVersio

    Clinical implementation of an algorithm for predicting exacerbations in patients with COPD in telemonitoring:a study protocol for a single-blinded randomized controlled trial

    Get PDF
    BACKGROUND: Acute exacerbations have a significant impact on patients with COPD by accelerating the decline in lung function leading to decreased health-related quality of life and survival time. In telehealth, health care professionals exercise clinical judgment over a physical distance. Telehealth has been implemented as a way to monitor patients more closely in daily life with an intention to intervene earlier when physical measurements indicate that health deteriorates. Several studies call for research investigating the ability of telehealth to automatically flag risk of exacerbations by applying the physical measurements that are collected as part of the monitoring routines to support health care professionals. However, more research is needed to further develop, test, and validate prediction algorithms to ensure that these algorithms improve outcomes before they are widely implemented in practice. METHOD: This trial tests a COPD prediction algorithm that is integrated into an existing telehealth system, which has been developed from the previous Danish large-scale trial, TeleCare North (NCT: 01984840). The COPD prediction algorithm aims to support clinical decisions by predicting the risk of exacerbations for patients with COPD based on selected physiological parameters. A prospective, parallel two-armed randomized controlled trial with approximately 200 participants with COPD will be conducted. The participants live in Aalborg municipality, which is located in the North Denmark Region. All participants are familiar with the telehealth system in advance. In addition to the participants’ usual weekly monitored measurements, they are asked to measure their oxygen saturation two more times a week during the trial period. The primary outcome is the number of exacerbations defined as an acute hospitalization from baseline to follow-up. Secondary outcomes include changes in health-related quality of life measured by both the 12-Item Short Form Survey version 2 and EuroQol-5 Dimension Questionnaire as well as the incremental cost-effectiveness ratio. DISCUSSION: This trial seeks to explore whether the COPD prediction algorithm has the potential to support early detection of exacerbations in a telehealth setting. The COPD prediction algorithm may initiate timely treatment, which may decrease the number of hospitalizations. TRIAL REGISTRATION: NCT05218525 (pending at clinicaltrials.gov) (date, month, year

    eHealth in Chronic Diseases

    Get PDF
    This book provides a review of the management of chronic diseases (evaluation and treatment) through eHealth. Studies that examine how eHealth can help to prevent, evaluate, or treat chronic diseases and their outcomes are included
    corecore