151,263 research outputs found

    ACon: A learning-based approach to deal with uncertainty in contextual requirements at runtime

    Get PDF
    Context: Runtime uncertainty such as unpredictable operational environment and failure of sensors that gather environmental data is a well-known challenge for adaptive systems. Objective: To execute requirements that depend on context correctly, the system needs up-to-date knowledge about the context relevant to such requirements. Techniques to cope with uncertainty in contextual requirements are currently underrepresented. In this paper we present ACon (Adaptation of Contextual requirements), a data-mining approach to deal with runtime uncertainty affecting contextual requirements. Method: ACon uses feedback loops to maintain up-to-date knowledge about contextual requirements based on current context information in which contextual requirements are valid at runtime. Upon detecting that contextual requirements are affected by runtime uncertainty, ACon analyses and mines contextual data, to (re-)operationalize context and therefore update the information about contextual requirements. Results: We evaluate ACon in an empirical study of an activity scheduling system used by a crew of 4 rowers in a wild and unpredictable environment using a complex monitoring infrastructure. Our study focused on evaluating the data mining part of ACon and analysed the sensor data collected onboard from 46 sensors and 90,748 measurements per sensor. Conclusion: ACon is an important step in dealing with uncertainty affecting contextual requirements at runtime while considering end-user interaction. ACon supports systems in analysing the environment to adapt contextual requirements and complements existing requirements monitoring approaches by keeping the requirements monitoring specification up-to-date. Consequently, it avoids manual analysis that is usually costly in today’s complex system environments.Peer ReviewedPostprint (author's final draft

    MORPH: A Reference Architecture for Configuration and Behaviour Self-Adaptation

    Full text link
    An architectural approach to self-adaptive systems involves runtime change of system configuration (i.e., the system's components, their bindings and operational parameters) and behaviour update (i.e., component orchestration). Thus, dynamic reconfiguration and discrete event control theory are at the heart of architectural adaptation. Although controlling configuration and behaviour at runtime has been discussed and applied to architectural adaptation, architectures for self-adaptive systems often compound these two aspects reducing the potential for adaptability. In this paper we propose a reference architecture that allows for coordinated yet transparent and independent adaptation of system configuration and behaviour

    Building the System: Follow-up, monitoring & adaptive management

    Get PDF
    Does impact assessment (IA) end when the license has been granted? While societal resources tend to focus on rigorous project approvals, what happens to the project, to the public and to the environment once approval is granted? Follow up and monitoring are often an afterthought for legislators, public servants and proponents. But they are critical to public confidence and to ensuring that proponents live up to their commitments in a rapidly changing world."This report draws from research funded by the Impact Assessment Agency as part of the Social Sciences and Humanities Research Council of Canada Knowledge Mobilization Grant on Informing Best Practice in Environmental and Impact Assessment.

    Data-driven Soft Sensors in the Process Industry

    Get PDF
    In the last two decades Soft Sensors established themselves as a valuable alternative to the traditional means for the acquisition of critical process variables, process monitoring and other tasks which are related to process control. This paper discusses characteristics of the process industry data which are critical for the development of data-driven Soft Sensors. These characteristics are common to a large number of process industry fields, like the chemical industry, bioprocess industry, steel industry, etc. The focus of this work is put on the data-driven Soft Sensors because of their growing popularity, already demonstrated usefulness and huge, though yet not completely realised, potential. A comprehensive selection of case studies covering the three most important Soft Sensor application fields, a general introduction to the most popular Soft Sensor modelling techniques as well as a discussion of some open issues in the Soft Sensor development and maintenance and their possible solutions are the main contributions of this work

    Report from GI-Dagstuhl Seminar 16394: Software Performance Engineering in the DevOps World

    Get PDF
    This report documents the program and the outcomes of GI-Dagstuhl Seminar 16394 "Software Performance Engineering in the DevOps World". The seminar addressed the problem of performance-aware DevOps. Both, DevOps and performance engineering have been growing trends over the past one to two years, in no small part due to the rise in importance of identifying performance anomalies in the operations (Ops) of cloud and big data systems and feeding these back to the development (Dev). However, so far, the research community has treated software engineering, performance engineering, and cloud computing mostly as individual research areas. We aimed to identify cross-community collaboration, and to set the path for long-lasting collaborations towards performance-aware DevOps. The main goal of the seminar was to bring together young researchers (PhD students in a later stage of their PhD, as well as PostDocs or Junior Professors) in the areas of (i) software engineering, (ii) performance engineering, and (iii) cloud computing and big data to present their current research projects, to exchange experience and expertise, to discuss research challenges, and to develop ideas for future collaborations
    corecore