16,492 research outputs found

    Non-negative mixed finite element formulations for a tensorial diffusion equation

    Full text link
    We consider the tensorial diffusion equation, and address the discrete maximum-minimum principle of mixed finite element formulations. In particular, we address non-negative solutions (which is a special case of the maximum-minimum principle) of mixed finite element formulations. The discrete maximum-minimum principle is the discrete version of the maximum-minimum principle. In this paper we present two non-negative mixed finite element formulations for tensorial diffusion equations based on constrained optimization techniques (in particular, quadratic programming). These proposed mixed formulations produce non-negative numerical solutions on arbitrary meshes for low-order (i.e., linear, bilinear and trilinear) finite elements. The first formulation is based on the Raviart-Thomas spaces, and is obtained by adding a non-negative constraint to the variational statement of the Raviart-Thomas formulation. The second non-negative formulation based on the variational multiscale formulation. For the former formulation we comment on the affect of adding the non-negative constraint on the local mass balance property of the Raviart-Thomas formulation. We also study the performance of the active set strategy for solving the resulting constrained optimization problems. The overall performance of the proposed formulation is illustrated on three canonical test problems.Comment: 40 pages using amsart style file, and 15 figure

    A fully-coupled discontinuous Galerkin method for two-phase flow in porous media with discontinuous capillary pressure

    Full text link
    In this paper we formulate and test numerically a fully-coupled discontinuous Galerkin (DG) method for incompressible two-phase flow with discontinuous capillary pressure. The spatial discretization uses the symmetric interior penalty DG formulation with weighted averages and is based on a wetting-phase potential / capillary potential formulation of the two-phase flow system. After discretizing in time with diagonally implicit Runge-Kutta schemes the resulting systems of nonlinear algebraic equations are solved with Newton's method and the arising systems of linear equations are solved efficiently and in parallel with an algebraic multigrid method. The new scheme is investigated for various test problems from the literature and is also compared to a cell-centered finite volume scheme in terms of accuracy and time to solution. We find that the method is accurate, robust and efficient. In particular no post-processing of the DG velocity field is necessary in contrast to results reported by several authors for decoupled schemes. Moreover, the solver scales well in parallel and three-dimensional problems with up to nearly 100 million degrees of freedom per time step have been computed on 1000 processors

    Discontinuous Galerkin approximations in computational mechanics: hybridization, exact geometry and degree adaptivity

    Get PDF
    Discontinuous Galerkin (DG) discretizations with exact representation of the geometry and local polynomial degree adaptivity are revisited. Hybridization techniques are employed to reduce the computational cost of DG approximations and devise the hybridizable discontinuous Galerkin (HDG) method. Exact geometry described by non-uniform rational B-splines (NURBS) is integrated into HDG using the framework of the NURBS-enhanced finite element method (NEFEM). Moreover, optimal convergence and superconvergence properties of HDG-Voigt formulation in presence of symmetric second-order tensors are exploited to construct inexpensive error indicators and drive degree adaptive procedures. Applications involving the numerical simulation of problems in electrostatics, linear elasticity and incompressible viscous flows are presented. Moreover, this is done for both high-order HDG approximations and the lowest-order framework of face-centered finite volumes (FCFV).Peer ReviewedPostprint (author's final draft

    Numerical computation of transonic flows by finite-element and finite-difference methods

    Get PDF
    Studies on applications of the finite element approach to transonic flow calculations are reported. Different discretization techniques of the differential equations and boundary conditions are compared. Finite element analogs of Murman's mixed type finite difference operators for small disturbance formulations were constructed and the time dependent approach (using finite differences in time and finite elements in space) was examined

    Numerical analysis for the pure Neumann control problem using the gradient discretisation method

    Full text link
    The article discusses the gradient discretisation method (GDM) for distributed optimal control problems governed by diffusion equation with pure Neumann boundary condition. Using the GDM framework enables to develop an analysis that directly applies to a wide range of numerical schemes, from conforming and non-conforming finite elements, to mixed finite elements, to finite volumes and mimetic finite differences methods. Optimal order error estimates for state, adjoint and control variables for low order schemes are derived under standard regularity assumptions. A novel projection relation between the optimal control and the adjoint variable allows the proof of a super-convergence result for post-processed control. Numerical experiments performed using a modified active set strategy algorithm for conforming, nonconforming and mimetic finite difference methods confirm the theoretical rates of convergence
    corecore