2,008 research outputs found

    Multi-Task Policy Search for Robotics

    No full text
    © 2014 IEEE.Learning policies that generalize across multiple tasks is an important and challenging research topic in reinforcement learning and robotics. Training individual policies for every single potential task is often impractical, especially for continuous task variations, requiring more principled approaches to share and transfer knowledge among similar tasks. We present a novel approach for learning a nonlinear feedback policy that generalizes across multiple tasks. The key idea is to define a parametrized policy as a function of both the state and the task, which allows learning a single policy that generalizes across multiple known and unknown tasks. Applications of our novel approach to reinforcement and imitation learning in realrobot experiments are shown

    An Information-theoretic On-line Learning Principle for Specialization in Hierarchical Decision-Making Systems

    Full text link
    Information-theoretic bounded rationality describes utility-optimizing decision-makers whose limited information-processing capabilities are formalized by information constraints. One of the consequences of bounded rationality is that resource-limited decision-makers can join together to solve decision-making problems that are beyond the capabilities of each individual. Here, we study an information-theoretic principle that drives division of labor and specialization when decision-makers with information constraints are joined together. We devise an on-line learning rule of this principle that learns a partitioning of the problem space such that it can be solved by specialized linear policies. We demonstrate the approach for decision-making problems whose complexity exceeds the capabilities of individual decision-makers, but can be solved by combining the decision-makers optimally. The strength of the model is that it is abstract and principled, yet has direct applications in classification, regression, reinforcement learning and adaptive control

    Statistical Machine Learning for Modeling and Control of Stochastic Structured Systems

    Get PDF
    Machine learning and its various applications have driven innovation in robotics, synthetic perception, and data analytics. The last decade especially has experienced an explosion in interest in the research and development of artificial intelligence with successful adoption and deployment in some domains. A significant force behind these advances has been an abundance of data and the evolution of simple computational models and tools with a capacity to scale up to massive learning automata. Monolithic neural networks with billions of parameters that rely on automatic differentiation are a prime example of the significant role efficient computation has had on supercharging the ability of well-established representations to extract intelligent patterns from unstructured data. Nonetheless, despite the strides taken in the digital domains of vision and natural language processing, applications of optimal control and robotics significantly trail behind and have not been able to capitalize as much on the latest trends of machine learning. This discrepancy can be explained by the limited transferability of learning concepts that rely on full differentiability to the heavily structured physical and human interaction environments, not to mention the substantial cost of data generation on real physical systems. Therefore, these factors severely limit the application scope of loosely-structured over-parameterized data-crunching machines in the mechanical realm of robot learning and control. This thesis investigates modeling paradigms of hierarchical and switching systems to tackle some of the previously highlighted issues. This research direction is motivated by insights into universal function approximation via local cooperating units and the promise of inherently regularized representations through explicit structural design. Moreover, we explore ideas from robust optimization that address model mismatch issues in statistical models and outline how related methods may be used to improve the tractability of state filtering in stochastic hybrid systems. In Chapter 2, we consider hierarchical modeling for general regression problems. The presented approach is a generative probabilistic interpretation of local regression techniques that approximate nonlinear functions through a set of local linear or polynomial units. The number of available units is crucial in such models, as it directly balances representational power with the parametric complexity. This ambiguity is addressed by using principles from Bayesian nonparametrics to formulate flexible models that adapt their complexity to the data and can potentially encompass an infinite number of components. To learn these representations, we present two efficient variational inference techniques that scale well with data and highlight the advantages of hierarchical infinite local regression models, such as dealing with non-smooth functions, mitigating catastrophic forgetting, and enabling parameter sharing and fast predictions. Finally, we validate this approach on a set of large inverse dynamics datasets and test the learned models in real-world control scenarios. Chapter 3 addresses discrete-continuous hybrid modeling and control for stochastic dynamical systems, which implies dealing with time-series data. In this scenario, we develop an automatic system identification technique that decomposes nonlinear systems into hybrid automata and leverages the resulting structure to learn switching feedback control via hierarchical reinforcement learning. In the process, we rely on an augmented closed-loop hidden Markov model architecture that captures time correlations over long horizons and provides a principled Bayesian inference framework for learning hybrid representations and filtering the hidden discrete states to apply control accordingly. Finally, we embed this structure explicitly into a novel hybrid relative entropy policy search algorithm that optimizes a set of local polynomial feedback controllers and value functions. We validate the overall switching-system perspective by benchmarking the open-loop predictive performance against popular black-box representations. We also provide qualitative empirical results for hybrid reinforcement learning on common nonlinear control tasks. In Chapter 4, we attend to a general and fundamental problem in learning for control, namely robustness in data-driven stochastic optimization. The question of sensitivity has a strong priority, given the rising popularity of embedding statistical models into stochastic control frameworks. However, data from dynamical, especially mechanical, systems is often scarce due to a high extraction cost and limited coverage of the state-action space. The result is usually poor models with narrow validity and brittle control laws, particularly in an ill-posed over-parameterized learning example. We propose to robustify stochastic control by finding the worst-case distribution over the dynamics and optimizing a corresponding robust policy that minimizes the probability of catastrophic failures. We achieve this goal by formulating a two-stage iterative minimax optimization problem that finds the most pessimistic adversary in a trust region around a nominal model and uses it to optimize a robust optimal controller. We test this approach on a set of linear and nonlinear stochastic systems and supply empirical evidence of its practicality. Finally, we provide an outlook on how similar multi-stage distributional optimization techniques can be applied in approximate filtering of stochastic switching systems in order to tackle the issue of exponential explosion in state mixture components. In summation, the individual contributions of this thesis are a collection of interconnected principles for structured and robust learning for control. Although many challenges remain ahead, this research lays a foundation for reflecting on future structured learning questions that strive to combine optimal control and statistical machine learning perspectives for the automatic decomposition and optimization of hierarchical models

    Model-Based Reinforcement Learning for Stochastic Hybrid Systems

    Full text link
    Optimal control of general nonlinear systems is a central challenge in automation. Enabled by powerful function approximators, data-driven approaches to control have recently successfully tackled challenging robotic applications. However, such methods often obscure the structure of dynamics and control behind black-box over-parameterized representations, thus limiting our ability to understand closed-loop behavior. This paper adopts a hybrid-system view of nonlinear modeling and control that lends an explicit hierarchical structure to the problem and breaks down complex dynamics into simpler localized units. We consider a sequence modeling paradigm that captures the temporal structure of the data and derive an expectation-maximization (EM) algorithm that automatically decomposes nonlinear dynamics into stochastic piecewise affine dynamical systems with nonlinear boundaries. Furthermore, we show that these time-series models naturally admit a closed-loop extension that we use to extract local polynomial feedback controllers from nonlinear experts via behavioral cloning. Finally, we introduce a novel hybrid relative entropy policy search (Hb-REPS) technique that incorporates the hierarchical nature of hybrid systems and optimizes a set of time-invariant local feedback controllers derived from a local polynomial approximation of a global state-value function

    Variational Hierarchical Mixtures for Learning Probabilistic Inverse Dynamics

    Full text link
    Well-calibrated probabilistic regression models are a crucial learning component in robotics applications as datasets grow rapidly and tasks become more complex. Classical regression models are usually either probabilistic kernel machines with a flexible structure that does not scale gracefully with data or deterministic and vastly scalable automata, albeit with a restrictive parametric form and poor regularization. In this paper, we consider a probabilistic hierarchical modeling paradigm that combines the benefits of both worlds to deliver computationally efficient representations with inherent complexity regularization. The presented approaches are probabilistic interpretations of local regression techniques that approximate nonlinear functions through a set of local linear or polynomial units. Importantly, we rely on principles from Bayesian nonparametrics to formulate flexible models that adapt their complexity to the data and can potentially encompass an infinite number of components. We derive two efficient variational inference techniques to learn these representations and highlight the advantages of hierarchical infinite local regression models, such as dealing with non-smooth functions, mitigating catastrophic forgetting, and enabling parameter sharing and fast predictions. Finally, we validate this approach on a set of large inverse dynamics datasets and test the learned models in real-world control scenarios.Comment: arXiv admin note: text overlap with arXiv:2011.0521

    The separate neural control of hand movements and contact forces

    Get PDF
    To manipulate an object, we must simultaneously control the contact forces exerted on the object and the movements of our hand. Two alternative views for manipulation have been proposed: one in which motions and contact forces are represented and controlled by separate neural processes, and one in which motions and forces are controlled jointly, by a single process. To evaluate these alternatives, we designed three tasks in which subjects maintained a specified contact force while their hand was moved by a robotic manipulandum. The prescribed contact force and hand motions were selected in each task to induce the subject to attain one of three goals: (1) exerting a regulated contact force, (2) tracking the motion of the manipulandum, and (3) attaining both force and motion goals concurrently. By comparing subjects' performances in these three tasks, we found that behavior was captured by the summed actions of two independent control systems: one applying the desired force, and the other guiding the hand along the predicted path of the manipulandum. Furthermore, the application of transcranial magnetic stimulation impulses to the posterior parietal cortex selectively disrupted the control of motion but did not affect the regulation of static contact force. Together, these findings are consistent with the view that manipulation of objects is performed by independent brain control of hand motions and interaction forces

    Multi-Task Policy Search

    No full text
    Learning policies that generalize across multiple tasks is an important and challenging research topic in reinforcement learning and robotics. Training individual policies for every single potential task is often impractical, especially for continuous task variations, requiring more principled approaches to share and transfer knowledge among similar tasks. We present a novel approach for learning a nonlinear feedback policy that generalizes across multiple tasks. The key idea is to define a parametrized policy as a function of both the state and the task, which allows learning a single policy that generalizes across multiple known and unknown tasks. Applications of our novel approach to reinforcement and imitation learning in real-robot experiments are shown

    A bioinspired hierarchical reinforcement learning architecture for modeling learning of multiple skills with continuous state and actions

    Get PDF
    Organisms, and especially primates, are able to learn several skills while avoiding catastrophic interference and enhancing generalisation. This paper proposes a novel hierarchical reinforcement learning (RL) architecture with a number of features that make it suitable to investigate such phenomena. The proposed system combines the mixture of experts architecture with the neural-network actor-critic architecture trained with the TD() reinforcement learning algorithm. In particular, responsibility signals provided by two gating networks (one for the actor and one for the critic) are used both to weight the outputs of the respective multiple (expert) controllers and to modulate their learning. The system is tested with a simulated dynamic 2D robotic arm that autonomously learns to reach a target in (up to) three different conditions. The results show that the system is able to appropriately allocate experts to tasks on the basis of the differences and similarities among the required sensorimotor mappings
    corecore