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Abstract

Organisms, and especially primates, are
able to learn several skills while avoiding
catastrophic interference and enhancing gen-
eralisation. This paper proposes a novel
hierarchical reinforcement learning (RL) ar-
chitecture with a number of features that
make it suitable to investigate such phenom-
ena. The proposed system combines the mix-
ture of experts architecture with the neural-
network actor-critic architecture trained with
the TD(λ) reinforcement learning algorithm.
In particular, responsibility signals provided
by two gating networks (one for the actor and
one for the critic) are used both to weight
the outputs of the respective multiple (ex-
pert) controllers and to modulate their learn-
ing. The system is tested with a simulated
dynamic 2D robotic arm that autonomously
learns to reach a target in (up to) three differ-
ent conditions. The results show that the sys-
tem is able to appropriately allocate experts
to tasks on the basis of the differences and
similarities among the required sensorimotor
mappings.

1. Introduction

During development children acquire a large reper-
toire of skills by autonomously interacting with the
environment. In particular, children learn to do
many differnt things in many different contexts. Al-
though social interactions are fundamental for hu-
man development, individual learning processes, in
particular those based on trial and error, have at
least a comparable importance.

The goal of the present research is to develop a
bioinspired hierarchical and (softly) modular rein-
forcement learning system suitable for studying the

autonomous acquisition of different skills through
trial and error learning. In particular, we are look-
ing for a system that may allow the study of the
brain processes for which skills that require similar
sensorimotor mappings are stored in the same neural
structures, so to favor generalization and fast learn-
ing, whereas skills that require different sensorimotor
mappings are stored in different neural structures,
so to avoid catastrophic interference. In this way,
we might be able to explain the neural mechanisms
behind the sensorimotor processes proposed by Pi-
aget (1953) to explain children development. In par-
ticular, the reuse of the same neural structures for
two different skills might correspond to the Piage-
tian concept of assimilation, while the acquisition
of new skills through the formation of new neural
representations might be related to the concept of
accommodation.

1.1 Biology of skill acquisition

Neuroscience suggests that basal ganglia are the prin-
cipal brain structures that support the acquisition of
multiple skills (Houk et al., 1995) as they seem to
underly both trial-and-error learning processes and
action selection. The striatum, which represents the
basal ganglia input, is formed by two kinds of struc-
tures: the matriosomes, which are supposed to en-
code actions at various levels of abstraction, and
the striosomes, which respond to rewards and cues
that predict them. Moreover, the striosomes are con-
nected to the areas (the substantia nigra pars com-
pacta and the ventral tegmental area) that produce
the dopaminergic learning signals that seem to mod-
ulate the plasticity of the synapses of both the ma-
triosomes and the striosomes.

The basal ganglia have also a hierarchical struc-
ture that is based on (partially) segregated loops
linked to different cortical areas. Different loops en-
code, for example, motor actions (e.g., the loops with
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motor and premotor cortex ), or context and goals
(e.g., loops with prefrontal cortex ). These loops seem
to be characterized by a (soft) modularity, possibly
encoding different actions and goals. Functionally,
hierarchy and modularity might have the two impor-
tant functions of (a) helping to avoid catastrophic in-
terference and (b) enhancing generalisation, in par-
ticular the storing of different behaviours involving
similar sensorimotor mappings in the same neural
structures.

1.2 Constraints used to build the model

The system presented here was developed with the
following constraints in mind: (a) using reinforce-
ment learning (RL) algorithms (Sutton and Barto,
1998) as models of skill acquisition based on indi-
vidual trial-and-error learning processes; (b) in par-
ticular, using the RL actor-critic architecture (Sut-
ton and Barto, 1998) as a model of biological action
learning in the basal ganglia; in particular, the ac-
tor is supposed to correspond to the matriosomes,
the critic to the striosomes, and the TD-error learn-
ing signal to phasic dopamine (Houk et al., 1995);
(c) using neural-networks (linear function appprox-
imators) to ease the comparison with brain struc-
tures and processes; (d) developing a hierarchical
system, in analogy with the basal ganglia, that may
autonomously decide whether encoding skills in the
same or in different neural structures on the basis of
the similarities and differences between the required
sensorimotor mappings; (e) developing a system that
can control an embodied system (here a simulated
robot) interacting with an environment with contin-
uous states through continuous actions. Note that
the simultaneous satesfaction of all these constraints
makes the proposed system considerably novel (see
sec. 1.3).

1.3 Related models

In the literature on neural networks the problem of
how avoiding catastrophic interference and exploit-
ing generalisation has been tackled with mixture of
experts models (Jacobs et al., 1991). This model
has a hierarchical modular architecture formed by a
number of experts, which compete to learn the train-
ing patterns, and a gating network, which learns to
decide when each expert should act and learn. This
system is central for this work but is wholly based
on supervised learning.

Within the RL framework, few models have been
developed for working with continuous actions and
states (e.g. Doya, 2000; Peters and Schaal, 2008) and
have been shown to work within embodied systems.
However, these systems are not hierarchical and have
not been designed to acquire multiple skills.

Hierarchical RL systems are particularly well-

suited for our purposes (see Barto and Mahadevan,
2003 for a review). These systems are capable of
performing task-decomposition, usually on the basis
of learning sub-tasks from a final goal. However, the
vast majority of these systems assume discrete states
and action spaces and have not been used in the con-
tinuum. Konidaris and Barto (2009) and Mugan and
Kuipers (inpr) have proposed two hierarchical sys-
tems that build skills in continuous spaces. The first
system is based on the idea of using the sets of states
from which a skill can be accomplished (initiation
sets) as the goal states of new skills to be acquired.
The second system (QLAP) builds models of the en-
vironment and uses them for discretising continuos
state variables and for learning actions that can re-
liably lead to certain effects. Although very inter-
esting, these systems do not directly face the prob-
lem tackled here of how storing different skills in the
same or different experts. Furthermore, they have
non-neural aspects that might hinder their mapping
to brain structures and processes.

Doya et al. (2002) have developed a Multi-
ple Model-Based Reinforcement Learning system
(MMRL) that can perform autonomous task de-
composition in continuous state-action spaces. The
model is based on several experts, each of which is
formed by a controller and a forward model. Con-
trol is allocated to the experts on the basis of the
performance of their forward models. Hence, in this
system task decomposition is based on the dynamical
characteristics of different parts of the sensorimotor
space, and not on the capabilities of each modules to
learn each skill.

Finally, Baldassarre (2002) proposed a modular
RL system that combines the mixture of experts idea
with the actor-critic RL, but was capable of dealing
only with discrete actions. In this paper we present
an evolution of this system that can deal with tasks
requiring continuous actions. In particular, our sys-
tem is tested in a task in which it controls a dynamic
simulated robotic arm that learns to reach the handle
of a cup with different orientations.

The rest of the paper is structured as follows: sec.
2 presents the simulated robot and environment; sec.
3 presents the model; sec. 4 presents the results of
the tests; finally, sec. 5 draws the conclusions.

2. Setup

2.1 The Simulated Robot and the Task

Fig. 1 shows the simulated robot and environment.
The simulated robot is formed by three components:
a simulated RGB camera, a 3D arm-hand (a sim-
ulation of the iCub robot based on the 3D physics
engine Newton: cf. Caligiore et al., 2008), and sim-
plified simulated muscles.

The camera always fixates the target of reaching



(cup-handle) on the basis of a simple hardwired fix-
ation reflex that makes the system look at the cen-
troid of the pixels having the colour of the target (cf.
Caligiore et al., 2008). The system controls only 2
DOFs of the arm working on the plane (one actuated
joint is on the shoulder and the other in the elbow).
This reflects the fact that, when learning to reach,
children tend to use few degrees of freedom (Berthier
et al., 2005, 1999). The hand is always kept straight
open.

Each of the muscle models (one for each of the two
controlled DOFs of the arm) is based on a Propor-
tional Derivative controller (PD) that offers a sim-
ple way of simulating the spring-like and dumping
properties of real muscles that are important for pro-
ducing stable and smooth reaching movements. The
PDs supply the torque to the arm joints in propor-
tion to the difference between the current joint angles
and the desired equilibrium points (EPs) generated
by the model (i.e., the desired shoulder and elbow
joint angles, see sec. 3.4). The torque applied to
each joint is decreased inversely to the current rate
of change (derivative) of the joint angle. As shown
in Berthier et al. (2005), simple muscle models as
these allow reproducing various aspects of real reach-
ing movements.

The environment is a working plane with a sim-
plified cup (achored to the table) whose handle can
be at either the left, the centre, or the right with
respect to the robot. The task requires that the arm
learns to touch the handle by starting from random
initial positions. When the hand touches the han-
dle, the system gets a reward of one; if the hand
touches the body of the cup the system gets a small
punishment (-0.2); in all other cases, the system re-
ceives a zero reinforcement. Notice that the task is
rather challenging for four reasons. First, to reach
the handle the model has to generate variable EPs
so that the dynamic arm follows a curved trajectory
(cf. Caligiore et al., 2008, 2010). Second, different
positions of the handle require very different senso-
rimotor mappings, thus making the overall problem
for the controller highly unlinear. Third, learning is
based exclusively on a very rare scalar value of re-
inforcement (Berthier et al., 2005). Fourth, the per-
ception of the system (see Sect. 2.1) is very limited:
in particular, the controller is informed only on the
kinematics (joint angles) of the arm but not on the
its dynamics (e.g., changes of joint angles and hand
velocity).

3. Architecture and Algorithms

The system (fig. 2) is composed of two main compo-
nents: an actor for controlling actions and a critic
for evaluating states. Both the actor and the critic
have a hierarchical architecture formed by a gating
network and a number of experts, as in the mixture

Figure 1: The robotic set-upin the three conditions: han-

dle on the left, centre, and right. The black sphere with

the grey appendix represents the body of the cup with

its handle. The larger sphere with the arrow represents

the eye gazing towards the centre of the handle.

of experts model (Jacobs et al., 1991). With re-
spect to the mixture of experts model the functioning
and learning algorithms of all components have been
modified for working with a continuous RL system
(cf. Baldassarre, 2002).

The system gets two types of inputs: (a) the gaze
direction of the camera, which indicates the posi-
tion of the target, and (b) the combined information
about the arm posture and the hand-target spatial
relationship. Both sources of information are en-
coded in neural maps with population codes (Pouget
and Latham, 2003): the closer the current posture
to the preferred posture of a neural unit, the higher
the unit activation. In particular, the camera pan
and tilt angles are encoded in a 2D eye-posture map
formed by 21 × 21 neural units. This map is acti-
vated on the basis of a Gaussian function (height =
1; width = distance between two neighbouring units
in the map) centred on the current posture. The
arm-posture/hand-target-distance information is en-
coded in a 3D arm-posture map. First, the arm pos-
ture is encoded in each of five 21 × 21-unit maps as
done for the eye-posture map. Then, the activation
of all units of four of these maps is scaled on the basis
of the distance (passed through a Gaussian function)
of the hand from the target with respect to a partic-
ular direction (i.e, each map is maximally activated
when the hand-target distance is maximal, respec-
tively, towards east, north, west, and south). The
last of the five maps is maximally activated, again
on the basis of a Gaussian function, when the hand-
target distance is zero.

Importantly, the information on gaze direction,
which is related to the task to be accomplished
(where to reach), constitutes the input of the gating
networks, whereas the combined information on arm
posture and hand-target relation, which is required
for producing appropriate control signals, constitutes
the input of the experts. The difference in the input
that the gating networks and the experts receive de-
pends on the different functions that they play in the



Figure 2: The architecture of the model.

hierarchical system: the gating networks have to de-
cide which expert to use depending on the task, while
the experts have to implement the sensorimotor map-
pings that produce appropriate behaviors. This ar-
rangement seems also to reflect the organization of
the basal ganglia, where high-level loops receive per-
ceptual information useful for selecting overall goals
(e.g., internal states, object identity), whereas low-
level loops receive proprioceptive and visual informa-
tion that are useful to control action (e.g., informa-
tion on object shape).

3.1 Functioning of the system

Both the actor and the critic are formed by a gating
network and four experts.
Actor gating network. The actor gating network
(AG) has four output units (indexed with e) which
receive input from the eye-posture map units zi (see
below) via connections with weights wAGei. The out-
put units are ranked in a decreasing order on the ba-
sis of their activation potential pAe, and their activa-
tion gAe, representing the expert prior responsibility,
is calculated as a function of the resulting ranks ke

(ke = 0, 1, 2, 3):

gAe = b−ke/

4
∑

e=1

b−ke (1)

where b is a constant that determines the differences
in the degree with which each expert contributes to
the global action depending on their rank (in the ex-
periments presented below b has been set to 6, so that
gAe = 0.834, 0.139, 0.023, 0.004). Differently from
the mixture-of-experts way of computing the prior
responsibilities, based on a soft-max function (Jacobs
et al., 1991), the use of the ranks guarantees that the
responsibility of all the experts is always different
from zero, even after prolonged training. This im-
plies that although one expert will tend become max-
imally specialized in encoding one skill, some other
experts might learn in “background” the same skill

as their responsibility is different from zero. Prelim-
inary tests, not reported here, show that this allows
a “latent duplication” of skills that can facilitate the
development of new skills from previously acquired
ones (a phenomenon which might be related to Pi-
agetian accommodation). This aspect of the model,
not further discussed here, will be investigated in fu-
ture work.
Actor experts. Each actor expert (AEe) has two
output units with sigmoidal activation aei which en-
code the control signals to the arm (the two desired
joint angles). These output units receive input from
the arm-posture map units xi (see below) via con-
nections with weights wAEeji. The global action aj

(desired EPs) of the actor is computed on the basis
of the prior responsibilities of the experts gAe:

aj =
∑

e

gAe · aej (2)

Critic gating network. The critic gating network
(CG) works analogously to the AG, on the basis of
the connection weights wCGei, the unit activation
potentials pCe, and the prior responsibilities of the
critic experts gCe.
Critic experts. Each critic expert (CE) has a linear
output unit ve encoding the evaluation of the current
state and receives input from the arm-posture map
units xi via connections with weights wCEei. The
global evaluation v of the critic is computed on the
basis of the prior responsibilities of the experts gCe:

v =
∑

e

gCe · ve (3)

3.2 Learning signals

Global TD-error. Couples of successive global
evaluations, together with the reward signal rt, are
used to compute the global TD-error (or surprise) st

for reinforcement learning (Sutton and Barto, 1998):

st =











rt − vt−1 if end of trial

(rt + γvt) − vt−1 if during trial

0 if start of trial

(4)

where γ is a discount factor (here γ = 0.99).
Experts TD-error. The expert TD-error (sur-
prise) signals are calculated as follows:

set =











rt − vet−1 if end of trial

(rt + γvet) − vet−1 if during trial

0 if start of trial

(5)

In the brain, the error signals st and set might cor-
respond to phasic dopaminergic signals.
Actor experts posterior responsibilities. To
train the actor experts and gating network the algo-
rithm computes the posterior responsibilities of the



actor experts as follows:

hAe =
cAe · gAe

∑

e [cAe · gAe]
(6)

where cAe is a measure of the correctness of the actor
expert e, defined as:

cAe = e−0.5(D[an

t−1
,aet−1])

2

(7)

where D
[

an
t−1,aet−1

]

is the Euclidian distance be-
tween the two vectors encoding respectively the
global action an

t−1 issued to the muscles model (sec.
3.4) and the action aet−1 computed by expert e.

Note that eq. 7 actually measures the similarity
of the expert action with the whole-system action,
and so favours a non-guided specialisation of the ac-
tor experts. Indeed, a true measure of correctness
should take into consideration not only such simi-
larity but also the quality of the whole-system ac-
tion based on the surprise, for example as follows:

cAe = e−0.5·st·(D[an

t−1
,aet−1])

2

. An alternative solu-
tion would be to use the surprise to modify eq. 10 be-
low as follows: ∆wAGei = ηAG ·st ·(hAe−gAe) ·zit−1.

Critic experts posterior responsibilities. The
posterior responsibilities of the critic experts are
computed as follows:

hCe =
cCe · gCe

∑

e [cCe · gCe]
(8)

where cCe is a measure of the correctness of the critic
expert e defined as:

cCe = e−0.5(set)
2

(9)

3.3 Learning

Actor gating network learning. The learning
of the AG network has been developed in analogy
with the mixture of experts model. Intuitively, the
learning rule tends to increase the responsibility of
an expert if its correctness (i.e., its similarity to the
executed action) is higher than average and to de-
crease it otherwise. Formally, the weights of the AG
network are updated as follows:

∆wAGei = ηAG · (hAe − gAe) · zit−1 (10)

where ηAG is the learning rate (here set to 3.0).

Actor experts learning. The weights of the actor
experts are trained on the basis of a TD(λ) learning
rule with replacing eligibility traces applied to linear
function approximators (Sutton and Barto, 1998). In
particular, at time t and for the expert e the eligi-
bility trace eAEejit of a connection weight wAEeji

is computed. If this eligibility is smaller than the
“decayed” old eligibility eAEejit−1, the latter is used

instead of the former to train the weights:

eAEejit = γ · λ · eAEejit−1

eb = hAe · (a
n
jt − aejt) · ȧejt · xit

if |eAEejit| <
∣

∣eb
∣

∣ then eAEejit = eb

wAEjit = wAEjit−1 + ηAE · st · eAjit−1 (11)

where eb is a buffer variable, ηAE is a learning rate
(set to 0.9), and ȧejt = aejt(1 − aejt) is the Sigmoid
derivative. The rationale of this formula is as follows.
By default, the new eligibility eAEejit is equal to the
old discounted (γ = 0.99) and decayed (λ = 0.94)
eligibility eAEejit−1 (cf. Sutton and Barto, 1998).
Then the potential new eligibility (stored in eb) is
computed and becomes the new actual eligibility if it
is higher, in absolute value, than the decayed old eli-
gibility. In either case, the resulting eligibility is used
to update the weights (in particular the previous eli-
gibility eAjit−1 is used to this purpose together with
the global surprise st). Importantly, eb is computed
on the basis of the input xit, the expert posterior
responsibility hAet (the update is stronger if the re-
sponsibility is higher), and the difference between the
executed action an

jt and the expert output aejt (the
expert action is moved towards the executed action
if st > 0, and away from it if st < 0).
Critic gating network learning. The weights of
the critic gating network are updated as follows:

∆wCGei = ηCG · (hCe − gCe) · zit−1 (12)

where ηCG is a learning rate (here set to 0.5). Again,
the rule has been developed in analogy with the mix-
ture of experts model: the responsibility of an expert
is increased if its correctness was higher (i.e., its re-
ward prediction error was smaller) than average, and
decreased otherwise.
Critic experts learning. As for the actor, the
weights of the critic experts are trained on the ba-
sis of replacing eligibility traces. In particular, for
expert e the eligibility trace at time t, eCEeit, of a
connection weight wCEei is computed on the basis of
the input xit and the expert responsibility hCet. If
this eligibility is smaller than the decayed old eligibil-
ity eCEeit−1 the latter is used instead of the former
to train the weight:

eCEeit = max [γ · λ · eCEeit−1, hCexit]

wCEeit = wCEeit−1 + ηCE · set · eCEeit−1 (13)

where λ is the decay coefficient of the eligibility trace
(here λ = 0.94), and ηCE is the learning rate (here
ηCE = 0.06). Note how, contrary to what done for
the actor, the comparison between the old decayed el-
igibility and the new potential eligibility can be done
without considering their absolute values as both val-
ues are positive: the sign of change of the weight is
given only by surprise set. Also note that, contrary



to the actor experts, the expert surprise set, and not
the global surprise st, is used to update the critic
expert weights.

Notice that the learning rates of gates (ηAG and
ηCG) are higher than those of the respective experts
(ηAE and ηCE) as this was found to ease the special-
isation of experts (cf. Baldassarre, 2002). Moreover,
the learning rate of the actor experts is higher than
that of the critic experts as the actor experts have
sigmoidal output units (implying a derivative ≤ 0.25
in the learning rule of eq. 11), whereas the critic
experts have linear output unit (implying a deriva-
tive = 1: eq. 13). The learning rate of the AG is
larger than that of the CG as the difference between
the prior and postirior responsibilities of the former
tend to be smaller than that of the latter (cf. eq. 10
and eq. 12).

3.4 Noise generator

To foster exploration, noise must be added to the
(continuous) actions produced by the actor. The
techniques used for noise generation when the con-
trol is based on torque (e.g., see Doya, 2000) are
not well suited when the control is based on desired
equilibrium points, as it happens in our system. The
reason is that if noise is added to the desired posture
the system tends to explore only the space around it.
To solve this problem, we use a method where noise
is generated with respect to the current posture Jt of
the arm, so this can “be pulled progressively away”
and explore the whole space. Furthermore, the noise
has an inertia as the arm inertia would average out
a white noise.

The method works as follows (for more details and
a study of the effects of this noise, see Caligiore
et al., 2010). First, we generate a inertial noise vec-
tor Nb

t on the basis of a two-dimensional random
vector Nrand (whose elements are uniformly drawn
in [−1, +1]):

Nb
t = (1 − σ) · Nn

t−1 + σ · Nrand (14)

where σ (σ = 0.05) is a time constant determining
the inertia of noise. Then, we re-scale the noise vec-
tor so that its maximum lenght is m (m = 10):

Nn
t =

{

Nb
t/

∣

∣

∣

∣

∣

∣
Nb

t

∣

∣

∣

∣

∣

∣
if 1 <

∣

∣

∣

∣

∣

∣
Nb

t

∣

∣

∣

∣

∣

∣

Nb
t otherwise

(15)

Nt = m ·Nn
t (16)

where
∣

∣

∣

∣

∣

∣
Nb

t

∣

∣

∣

∣

∣

∣
is the length of the non-scaled noise

vector. Finally, we average the noise vector with
the equilibrium point vector produced by the actor
(EPt), expressed with respect to the reference frame
centred on the current joint angles Jt and denoted
with EP r

t ), and then we obtain the final motor com-

(a) (b)

Figure 3: Cumulative reward of the one-expert and four-

expert systems in the experiments with one (a) and two

(b) handle positions.

mand EPn
t actually issued to the muscle models:

EPr
t = EPt − Jt

EPnr
t = (1 − A) · EPr

t + A ·Nt (17)

EPn
t = EPnr

t + Jt

where A is a parameter, linearly decreased during
training from 0.9 to 0.1, which weights the relative
importance of noise over the action signal (i.e., which
controls the exploration-exploitation ratio).

4. Results

The performance of the hierarchical system with four
experts was compared with a non-hierarchical system
composed of a single expert. The two systems were
compared in three experiments requiring to reach a
cup-handle in various conditions: (a) the handle is
always positioned on the left; (b) the handle can be
either on the left or on the right; (c) the handle can
be in one of three positions: on the left, on the right,
or in the centre. The last experiment was run only
with the four-expert system as the one-expert system
could not tackle this task (as it already failed in the
easier task with two handles, see below).

Fig. 3 shows the cumulative reinforcement of the
two systems during training in the one-handle and
two handles conditions; Table 1 and Fig. 4a show the
performance (percentage of successful reaches) in the
same two conditions during post-training tests of 64
trials in which the initial position of the arm was set
on one of the 8 × 8 vertexes of a regular grid in the
joint space. Different replications of the experiments
produced qualitatively similar results.

4.1 Experiment with one handle

Fig. 3 shows that the one-expert system learns faster
than the four-expert one. This is due to the fact that,
to solve the task, the one-expert system does not
need to train the gating networks aside the experts.
After some time, however, the four-expert systems
catches up, and its performance becomes similar to
the one of the one-expert system, as confirmed by
the tests reported in Fig. 4a and in Table 1.



Table 1: One-expert and four-expert systems: perfor-

mance with one, two, and three handles.

Experiment 1 exp. 4 exp.
One condition, right 100% 100%
Two conditions, right 14.06% 98.44%
Two conditions, left 82.81% 90.62%
Three conditions, right 93.75%
Three conditions, left 90.62%
Three conditions, centre 98.43%
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Figure 4: Test performance of the one-expert (black) and

the four experts (gray) systems. (a) Experiments with

one (left bars) and two handles (right bars). (b) Experi-

ment with two handles: performance when the handle is

on the left (left bars) and when it is on the right (right

bars).

4.2 Experiment with two handles: encoding

of skills in different experts

Fig. 3 shows that in the two-handles condition, after
an initial transient, the four-expert system starts to
outperform the one-expert system. This is even more
clearly indicated by the results of the post-training
tests (Table 1 and Fig. 4).

Indeed, the one-expert system managed to consis-
tently reach the handle only when this was on the
left (performance: 82.81%), while it reached a very
poor performance when the handle was on the right
(14.06%). This clearly shows the limitations of a
standard single reinforcement learning system when
dealing with more than one task. On the contrary,
the four-expert system succeeds in solving both tasks
through the exploitation of two different experts, one
for each task, for both the critic and the actor. This
indicates that the hierarchical system is both capa-
ble of discriminating the two tasks at the level of the
gating networks and to acquire different skills with
different experts. Fig. 5 shows some examples of the
trajectories exhibited by the two systems.

4.3 Experiment with three handles: encod-

ing of skills in the same expert

In the experiment with three handle positions, both
the actor and the critic of the four-expert system
learn to use the same expert for both the left and the
central handle while using a different expert for the

(a) (b)

Figure 5: Hand trajectories of the one-expert (a) and

four-expert systems (b) during tests after training in the

one-handle condition. See text for details.

right handle. The reason of this is that the system
discovered that the same movements can be used to
reach the handle both when it is on the left and when
it is in the centre.

Fig. 6 shows that at the beginning of the experi-
ment with three handle positions both the critic and
actor start to use different experts for the three han-
dles. With the progression of learning, however, the
actor starts to use the expert allocated for the cen-
tral handle (second expert) also for reaching the left
handle. The critic does exactly the opposite: after a
while it starts using the expert allocated for the left
handle also when the handle is in the centre. This
shows that both the actor and the critic gating net-
works can learn to allocate experts on the basis of
the similarity of the sensorimotor mappings required
for solving different tasks.

5. Conclusion

This article presented a hierarchical modular rein-
forcement leaning system that is able to acquire dif-
ferent skills by using different expert controllers on
the basis of (a) the different sensorimotor mappings
required by the skills and (b) the computational ca-
pability of the experts. The tests showed that the
system can autonomously learn to use the same ex-
pert for skills that require similar sensorimotor map-
pings and different experts for skills that require dif-
ferent mappings. Furthermore, thanks to the fact
that the system is hierarchical, is based on the neu-
ral biologically-plausible actor-critic model, and can
work with continuous actions and states, it seems to
be particularly well suited for studing developmental
processes (e.g., see Berthier et al., 2005). In partic-
ular, the results presented here provide preliminary
indications that the system can be profitably used
to investigate the assimilation/accommodation pro-
cesses proposed by Piaget.
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