1,627 research outputs found

    Fall Prediction and Prevention Systems: Recent Trends, Challenges, and Future Research Directions.

    Get PDF
    Fall prediction is a multifaceted problem that involves complex interactions between physiological, behavioral, and environmental factors. Existing fall detection and prediction systems mainly focus on physiological factors such as gait, vision, and cognition, and do not address the multifactorial nature of falls. In addition, these systems lack efficient user interfaces and feedback for preventing future falls. Recent advances in internet of things (IoT) and mobile technologies offer ample opportunities for integrating contextual information about patient behavior and environment along with physiological health data for predicting falls. This article reviews the state-of-the-art in fall detection and prediction systems. It also describes the challenges, limitations, and future directions in the design and implementation of effective fall prediction and prevention systems

    Gait Velocity Estimation using time interleaved between Consecutive Passive IR Sensor Activations

    Full text link
    Gait velocity has been consistently shown to be an important indicator and predictor of health status, especially in older adults. It is often assessed clinically, but the assessments occur infrequently and do not allow optimal detection of key health changes when they occur. In this paper, we show that the time gap between activations of a pair of Passive Infrared (PIR) motion sensors installed in the consecutively visited room pair carry rich latent information about a person's gait velocity. We name this time gap transition time and show that despite a six second refractory period of the PIR sensors, transition time can be used to obtain an accurate representation of gait velocity. Using a Support Vector Regression (SVR) approach to model the relationship between transition time and gait velocity, we show that gait velocity can be estimated with an average error less than 2.5 cm/sec. This is demonstrated with data collected over a 5 year period from 74 older adults monitored in their own homes. This method is simple and cost effective and has advantages over competing approaches such as: obtaining 20 to 100x more gait velocity measurements per day and offering the fusion of location-specific information with time stamped gait estimates. These advantages allow stable estimates of gait parameters (maximum or average speed, variability) at shorter time scales than current approaches. This also provides a pervasive in-home method for context-aware gait velocity sensing that allows for monitoring of gait trajectories in space and time

    Is the timed-up and go test feasible in mobile devices? A systematic review

    Get PDF
    The number of older adults is increasing worldwide, and it is expected that by 2050 over 2 billion individuals will be more than 60 years old. Older adults are exposed to numerous pathological problems such as Parkinson’s disease, amyotrophic lateral sclerosis, post-stroke, and orthopedic disturbances. Several physiotherapy methods that involve measurement of movements, such as the Timed-Up and Go test, can be done to support efficient and effective evaluation of pathological symptoms and promotion of health and well-being. In this systematic review, the authors aim to determine how the inertial sensors embedded in mobile devices are employed for the measurement of the different parameters involved in the Timed-Up and Go test. The main contribution of this paper consists of the identification of the different studies that utilize the sensors available in mobile devices for the measurement of the results of the Timed-Up and Go test. The results show that mobile devices embedded motion sensors can be used for these types of studies and the most commonly used sensors are the magnetometer, accelerometer, and gyroscope available in off-the-shelf smartphones. The features analyzed in this paper are categorized as quantitative, quantitative + statistic, dynamic balance, gait properties, state transitions, and raw statistics. These features utilize the accelerometer and gyroscope sensors and facilitate recognition of daily activities, accidents such as falling, some diseases, as well as the measurement of the subject's performance during the test execution.info:eu-repo/semantics/publishedVersio

    FITsense: employing multi-modal sensors in smart homes to predict falls.

    Get PDF
    As people live longer, the increasing average age of the population places additional strains on our health and social services. There are widely recognised benefits to both the individual and society from supporting people to live independently for longer in their own homes. However, falls in particular have been found to be a leading cause of the elderly moving into care, and yet surprisingly preventative approaches are not in place; fall detection and rehabilitation are too late. In this paper we present FITsense, which is building a Smart Home environment to identify increased risk of falls for residents, and so allow timely interventions before falls occurs. An ambient sensor network, installed in the Smart Home, identifies low level events taking place which is analysed to generate a resident’s profile of activities of daily living (ADLs). These ADL profiles are compared to both the resident’s typical profile and to known “risky” profiles to allow evidence-driven intervention recommendations. Human activity recognition to identify ADLs from sensor data is a key challenge. Here we compare a windowing-based and a sequence-based event representation on four existing datasets. We find that windowing works well, giving consistent performance but may lack sufficient granularity for more complex multi-part activities

    Locomotion Traces Data Mining for Supporting Frail People with Cognitive Impairment

    Get PDF
    The rapid increase in the senior population is posing serious challenges to national healthcare systems. Hence, innovative tools are needed to early detect health issues, including cognitive decline. Several clinical studies show that it is possible to identify cognitive impairment based on the locomotion patterns of older people. Thus, this thesis at first focused on providing a systematic literature review of locomotion data mining systems for supporting Neuro-Degenerative Diseases (NDD) diagnosis, identifying locomotion anomaly indicators and movement patterns for discovering low-level locomotion indicators, sensor data acquisition, and processing methods, as well as NDD detection algorithms considering their pros and cons. Then, we investigated the use of sensor data and Deep Learning (DL) to recognize abnormal movement patterns in instrumented smart-homes. In order to get rid of the noise introduced by indoor constraints and activity execution, we introduced novel visual feature extraction methods for locomotion data. Our solutions rely on locomotion traces segmentation, image-based extraction of salient features from locomotion segments, and vision-based DL. Furthermore, we proposed a data augmentation strategy to increase the volume of collected data and generalize the solution to different smart-homes with different layouts. We carried out extensive experiments with a large real-world dataset acquired in a smart-home test-bed from older people, including people with cognitive diseases. Experimental comparisons show that our system outperforms state-of-the-art methods

    Discovering user mobility and activity in smart lighting environments

    Full text link
    "Smart lighting" environments seek to improve energy efficiency, human productivity and health by combining sensors, controls, and Internet-enabled lights with emerging “Internet-of-Things” technology. Interesting and potentially impactful applications involve adaptive lighting that responds to individual occupants' location, mobility and activity. In this dissertation, we focus on the recognition of user mobility and activity using sensing modalities and analytical techniques. This dissertation encompasses prior work using body-worn inertial sensors in one study, followed by smart-lighting inspired infrastructure sensors deployed with lights. The first approach employs wearable inertial sensors and body area networks that monitor human activities with a user's smart devices. Real-time algorithms are developed to (1) estimate angles of excess forward lean to prevent risk of falls, (2) identify functional activities, including postures, locomotion, and transitions, and (3) capture gait parameters. Two human activity datasets are collected from 10 healthy young adults and 297 elder subjects, respectively, for laboratory validation and real-world evaluation. Results show that these algorithms can identify all functional activities accurately with a sensitivity of 98.96% on the 10-subject dataset, and can detect walking activities and gait parameters consistently with high test-retest reliability (p-value < 0.001) on the 297-subject dataset. The second approach leverages pervasive "smart lighting" infrastructure to track human location and predict activities. A use case oriented design methodology is considered to guide the design of sensor operation parameters for localization performance metrics from a system perspective. Integrating a network of low-resolution time-of-flight sensors in ceiling fixtures, a recursive 3D location estimation formulation is established that links a physical indoor space to an analytical simulation framework. Based on indoor location information, a label-free clustering-based method is developed to learn user behaviors and activity patterns. Location datasets are collected when users are performing unconstrained and uninstructed activities in the smart lighting testbed under different layout configurations. Results show that the activity recognition performance measured in terms of CCR ranges from approximately 90% to 100% throughout a wide range of spatio-temporal resolutions on these location datasets, insensitive to the reconfiguration of environment layout and the presence of multiple users.2017-02-17T00:00:00

    Monitoring health in smart homes using simple sensors.

    Get PDF
    We consider use of an ambient sensor network, installed in Smart Homes, to identify low level events taking place which can then be analysed to generate a resident's profile of activities of daily living (ADLs). These ADL profiles are compared to both the resident's typical profile and to known 'risky' profiles to support evidence-based interventions. Human activity recognition to identify ADLs from sensor data is a key challenge, a windowbased representation is compared on four existing datasets. We find that windowing works well, giving consistent performance. We also introduce FITsense, which is building a Smart Home environment to specifically identify increased risk of falls to allow interventions before falls occurs
    corecore