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Abstract. As people live longer, the increasing average age of the pop-
ulation places additional strains on our health and social services. There
are widely recognised benefits to both the individual and society from
supporting people to live independently for longer in their own homes.
However, falls in particular have been found to be a leading cause of the
elderly moving into care, and yet surprisingly preventative approaches
are not in place; fall detection and rehabilitation are too late. In this
paper we present FITsense, which is building a Smart Home environ-
ment to identify increased risk of falls for residents, and so allow timely
interventions before falls occurs. An ambient sensor network, installed in
the Smart Home, identifies low level events taking place which is anal-
ysed to generate a resident’s profile of activities of daily living (ADLs).
These ADL profiles are compared to both the resident’s typical profile
and to known ”risky” profiles to allow evidence-driven intervention rec-
ommendations. Human activity recognition to identify ADLs from sen-
sor data is a key challenge. Here we compare a windowing-based and a
sequence-based event representation on four existing datasets. We find
that windowing works well, giving consistent performance but may lack
sufficient granularity for more complex multi-part activities.

Key words: Human Activity Recognition·Smart Homes·Sensors

1 Introduction

In this work we examine the opportunities to support assisted living environ-
ments with ambient sensors in a Smart House solution to monitor health trends
in the home. A Case-Based Reasoning (CBR) approach is proposed which ex-
ploits the pattern of activities identified by the sensors to infer information about
the health of the resident. In particular, the initial solution aims to predict in-
creased risk of falls for residents of 16 Smart Homes being built near Inverness
in Scotland.

The country is facing an ageing population with many people living longer.
10 million people in the UK are currently over 65 with a further increase of 5.5



million projected over the next 20 years. 3 million people are aged over 80 which
is expected to double by 2030 [1]. An ageing population puts additional strains on
health and social services with both a smaller proportion of working population
available to support services, and with the elderly having more complex medical
needs. Furthermore, with modern lifestyles, carers from within the family are less
available. More people are tending to live alone as families live further apart with
increased levels of relocation for work. In this changing scenario it is important
that we help people with mobility or social needs to live independently for longer,
and so reduce their reliance on more expensive health care solutions.

In particular, falls are an ongoing problem accounting for over 4 million bed
days a year in the UK [2]. They are the most common cause of death for over
65s [3] with on average 35,848 fall-related deaths occurring annually in the EU
between 2010 and 2012 [4]. One study performed in Torbay found 28% of falls
proved to either be fatal or became so within 12 months, highlighting that re-
search into preventative measures may be a more promising approach than reha-
bilitation after falls have occurred. Identifying preventative measures to be taken
against falls could reduce morbidity, while also reducing costs and workload on
health services. In addition to direct physical health concerns, falls have a lasting
psychological effect which can reduce a person’s confidence in their independent
abilities, leading to an increase in sedentary behaviour and depression [5]. Ef-
fective methodologies for anticipating falls would be invaluable and the benefits
associated with prevention appear to outweigh those of rehabilitation.

Recent developments in a number of technologies (sensors, Internet of Things,
Cloud Computing, and increased computational power), along with reduced
costs have resulted in substantial interest in the development of Smart Homes
for automation, security and to a lesser extent health. Smart Homes offer a ubiq-
uitous computing solution, in which a house utilises many sensors to deliver a
safer environment. The core design of the common devices (e.g. IR, magnets,
temperature) have remained unchanged over the last decade although size, cost
and efficiency have all improved. Newer technologies are also beginning to be
relevant, such as Wi-Fi and radar. Ambient sensors are practical for continuous
monitoring in health application; lacking the overhead associated with wearables,
or privacy concerns with video.

In this paper, we explore the use of everyday, low-cost ambient sensors in-
stalled in new-build Smart Homes with the aim of supporting tenants to live
independently for longer. Specifically, we identify and discuss the main chal-
lenges in designing and deploying a real-world health monitoring system that
senses and predicts the level of risk of falling attributed to Smart Home res-
idents. Data is captured by a range of sensors installed in specially-designed,
technology-enabled “FitHomes”. Targeting specific activities identified as pre-
cursors to falls, the system analyses data derived from these sensors to identify
patterns of activity, and changes in these patterns which could be linked to an
increased risk of falling. It is hoped that evidence-based alerts will enable fami-
lies and agencies to intervene with preventative measures before incidents occur.
An outline solution is developed and initial experiments are undertaken to evalu-



ate alternative approaches to classifying activity with low level, raw data inputs
from multiple multi-modal sensors. The key contributions of the work are:

– to outline a novel CBR solution for identifying the risk of falls for residents
in Smart Homes; and

– to evaluate alternative representations for activity recognition from the low-
level, data inputs delivered from sensors.

The remainder of this paper describes our approach to employing ambient,
non-intrusive sensors for monitoring and predicting risk of falls in purpose-built
assisted homes, and presents experiments that evaluate alternative representa-
tions for activity recognition. In Section 2 we review existing research on the
use of Smart Homes for health monitoring and risk of fall prediction. Section
3 discusses, in more detail, the specific scenario being faced in this real world
development along with the associated challenges that we plan to address. Our
proposed 2-part solution, which first employs Machine Learning (ML) to gen-
erate a more abstract case-structure on which we can then build an effective
CBR system is outlined in Section 4. In Section 5 we introduce four datasets
that we use to evaluate alternative feature representations for our initial activity
recognition task. Finally, we draw our conclusions in Section 6.

2 Related Work

Activities of Daily Living (ADLs) are events in daily life which would be consid-
ered intrinsic to a person’s ability to live independently. Typical ADLs include
being able to dress oneself, get out of bed, and feed oneself. Katz [6] originally
proposed the term along with a scale for rating a person’s independent ability
using their performance in simple ADLs. He suggests that there may be a proce-
dural decline in ADL capability. While this was not proven, the concept of losing
ADLs as we age has influenced future research in the field by identifying that
specific ADLs are more indicative of reduced capability than others. Observing
variances in ADL performance, such as missing a key step in an activity or per-
forming steps out of order, can aid the identification of degenerative mental and
physical capability which in turn may contribute to an increased risk of falling.

Physiological expressions, such as movement, can also be used to identify an
increased risk of falling. Vestergaard [7] performed a study in which a relation-
ship between performance in a 400-meter walk test and subsequent mortality
in older adults was observed. This test (and other shorter variants) is usually
performed in laboratory or hospital conditions, in which a physician would also
be able to consider the patients condition and other metrics from the test. These
include but are not limited to, whether or not a break was taken, variation in
lap times and existing health conditions. However, lab-based testing is time con-
suming, costly and impractical for many patients, especially those with mobility
issues. In addition, some studies have been able to identify risk of falling, and
other potential health issues, in the elderly using gait velocity alone [8–10]. So



while gait and other expressions of movement are indicative of many underly-
ing conditions, measuring all aspects of gait such as swing and stride length
requires specialist equipment, e.g. vision-based sensors. Gait velocity, however,
can be measured using simpler equipment and still provides excellent insight
into subject movement. For instance, Rana [11] performed a study in which gait
velocity was estimated using simple infra-red motion sensors. We plan to adopt
this approach and, while lab-based testing can provide higher accuracy, we hope
accessible in-home testing can contribute to early detection of health problems.

Housing installations with ubiquitous simple sensors offer an opportunity
to provide continuous behavioural and physiological monitoring of residents.
These simple sensors can range from binary magnetic switches [12], to IoT-
monitored motion sensors [13], all of which can provide insight into behavioural
and physiological expressions. ADLs can then be reconstructed and modelled by
identifying temporal patterns in these sensor outputs.

Modelling and classifying activities from sensor data typically involves apply-
ing ML techniques best adapted for pattern recognition. Several manually anno-
tated datasets taken from Smart Home installations have been produced for the
purpose of activity recognition [12, 14, 15]. Tapia made use of an extended Naive
Bayes classifier to identify activities in their labelled dataset, whereas Kasteren
made use of Hidden Markov Models (HMM) and Conditional Random Fields
(CRF). All these techniques have demonstrable strengths in activity recogni-
tion, however the use of generative methods, such as HMMs and CRFs allow for
the use of sequential data to train a model based on successive activities [16].
We use these existing datasets in our experiments to explore the effectiveness of
alternative modelling and ML approaches.

3 FitHomes & Predicting Falls

FitHomes is an initiative, lead by Albyn Housing Society Ltd (AHS) in partner-
ship with Carbon Dynamic, that aims to support independent living with the
supply of custom-built Smart Homes fitted with integrated non-invasive sensors.
16 houses are being built and near completion at Alness near Invergordon. These
houses are part of a development cycle with a further 32 FitHomes, funded by
the Inverness City Deal, planned to be built within the Inverness area within 3
years. FITsense is a one year Data Lab3 funded project that aims to exploit the
sensor data to develop a prototype fall prediction system for these FitHomes.

3.1 Sensors

One of the first considerations in designing a Smart Home focused on health
monitoring is the choice of what type and mix of sensors to use in order to
provide a cost-effective solution that is also acceptable to residents. AHS have
conducted initial research and it was clear that their tenants wanted an unob-
trusive system that supported them in their homes, but did not take over. Both

3 The Data Lab, Scotland. https://www.thedatalab.com/



video and wearables were considered too intrusive for continuous in-home use;
video due to privacy issues and wearables due to the ongoing overhead associ-
ated with 24 hour operation. As a result, the focus in this project has been on
simple everyday sensors, many of which are already widely used in security and
automation applications. FITsense is an applied project and with this approach
we can establish the limits of existing technology now, rather than developing
new solutions for the future. A plug and play design will be adopted such that
new sensors can be easily integrated as new technologies become main stream. A
further benefit is provision of a low cost solution from the hardware perspective
but with additional challenges for the data analysis.

FITsense aims to identify increased risk of falls and so a key focus for moni-
toring is to identify activity levels, patterns and speeds. However, the monitoring
can go beyond just movement to consider other factors that have been shown to
be related to falls, including dehydration, tiredness and mental health. Gaining
information on these additional factors requires monitoring to also capture data
on more general activities such as eating & drinking behaviours, sleep patterns,
and toileting & grooming habits. With these criteria in mind a range of sensors
have been selected for the FitHomes, that include:

– IR motion sensors that capture movement in each room;
– contact sensors to capture room, cupboard, and fridge door opening/closing;
– pressure sensors that identify use of the bed and chairs;
– IR beam break sensor to identify gait speed;
– electricity smart meters to identify power usage pattern;
– float sensors identifying toilet flushing;
– humidity sensors to identify shower use; and
– temperature sensors integrated with the humidity sensors.

Figure 1 shows typical sensors being used, including from left to right: a
motion sensor; a presence sensor, being considered to identify presence of car-
ers; a contact sensor; and electricity usage sensor, being considered for specific
electrical items.

Fig. 1. Example of the sensors used in FITsense

Most of the sensors chosen have a binary output that simply activate when
the event they are monitoring takes place e.g. a door opening; however others



Fig. 2. Annotated floorplan of a FitHome

output continuous readings provided at fixed polling rates. The data fusion task
across multiple sensors with different output modes becomes one of the main
challenges in employing large numbers of sensors.

3.2 Smart Homes

The FitHomes are factory manufactured and supplied on-site ready to connect
to site services, providing a cost effective build method for multiple properties.
Sensor installation currently takes place on-site. Positioning and orientation of
the sensors is important to give as much information as possible but also to con-
sider building constraints, for example to give access to an electricity connection
and remove reliance on battery usage. Figure 2 gives a plan layout view of the
FitHomes with positioning identified for many of the sensors, including 6 motion
sensors (one in each room), contact & pressure sensors, humidity & temperature
sensors, electricity meter, and a float sensor in the toilet.

A Samsung SmartThings hub is used as the data centre to collect output from
the sensors via ZigBee and pass the data on over the internet to cloud storage
that allows API access for data analysis at a later date as required. The key
challenge in employing multiple ambient sensors of varying types is to transform
the low-level largely event-driven individual sensor activations (e.g. movement
in kitchen) into meaningful activities on which to reason (e.g. food preparation).



4 Case-Based Approach

The elements of the CBR solution are first to identify patterns in the data that
allow us to create representations from the low-level, raw sensor data that cap-
ture the residents activities and behaviours of daily living, e.g. sleeping, dressing,
showering, cooking etc., and then to assemble these activities into personalised
daily and weekly profiles. The second stage is the analysis of these activity pro-
files to enable both the identification of changing trends in the residents activities
over time and to make comparisons with data collected from other similar resi-
dents. Changes in the Smart Home residents own activity patterns over time can
then be used to detect deterioration in health linked to falls, while comparisons
with the patterns of other Smart Home residents can provide benchmark mea-
sures of health. The data thus supports evidence-driven intervention tailored to
the resident and their specific circumstances.

4.1 Classifying ADLs

Human Activity Recognition (HAR) to identify ADLs is challenging in Smart
Home scenarios because large volumes of data is generated from multi-modal
sensors in real time making patterns associated with specific activities difficult
to identify. Simple sensors (e.g. door open/closed sensors) are binary and record
events, while more complex sensors (e.g. electricity consumption meters) poll
data at fixed intervals to produce single or multi-dimensional time series outputs.

X     Motion sensors: PIR, WiFi, RF, …  

        Contact sensors: Door, Window, Fridge, … 
        Pressure sensors: Bed, Chair, Carpet, … 

Other sensors:  
fluid flow,             

smart meters, … 

Activity Profile 
Events 

Sitting in Lounge 
Walking in Lounge 
Walking to Hall 
To/from Kitchen 
Walking to Bed  
Lying in Bed 
To/from Kitchen 
 

Time Sensors 

Chair 

Hall 

Kitchen 

Lounge 

Bed 

Durations 

Sensor Carpet 

Sensor Data 

Fig. 3. Identifying activities from sensor activations

Figure 3 shows a diagram with examples of sensor activations for motion
sensors in a hall, kitchen and lounge together with pressure sensors on the chair
and bed. Simple events can be inferred from this data to generate activities. A
mix of approaches will be adopted to identify activities and to then generate the
residents daily activity profile. For the simple activities shown (e.g. time sitting,
time in bed, number of toilet visits, number of room transitions) only one or two



sensor activations are required to identify the activity; a rule-based approach
with simple human generated rules is sufficient to identify the activity. Where
effective this approach will be adopted.

However, more complex activities can only be recognised by the interaction
of several sensors e.g. food preparation, showering, grooming, disturbed sleep.
For these more complex activities a ML approach will be adopted. HAR typically
employs a windowing approach to create a single aggregated vector representa-
tion on which ML (e.g. kNN, Support Vector Machines or Naive Bayes) can be
applied for classification. These approaches can work well but are perhaps less
able to handle the data fusion scenarios from Smart Homes because of difficulties
in selecting appropriate time windows for different activities; and due to the loss
of information when the sequence of events is not maintained, by aggregating
within a window. In this paper we investigate using a sequence-based represen-
tation, in which the events are placed in order based on their time stamp.

4.2 Reasoning with ADLs

Identifying ADLs in themselves does not give an indication of health. However,
it has been shown that one of the best ways to evaluate the health status of
older adults is through functional assessment [17]; ADLs are lost as we age and
in FITsense the plan is to monitor changes in ADL activity as an indicator
of deteriorating health and increased risk of falls. To do this a CBR approach
is adopted. With CBR, new problems are solved by retrieving similar, previ-
ously solved problems and reusing their solutions. In our scenario, a set of ADL
templates (together with contextual information) will be used as the problem
representation to retrieve similar profiles from a case base of existing profiles. So-
lutions will identify interventions, where required, and their previous outcomes.

Fig. 4. CBR Approach to Identifying ’Risky’ Behaviours



Figure 4 presents an overview of our approach. Low-level, time-stamped
events identified by the sensors are transformed into a daily user profile. The
profiles are a set of ADLs with mixed data types: some ADLs are binary, e.g.
disturbed sleep; some ADLs are counts, e.g. number of room transitions or stand
up from seat count; some are cumulative daily time spans, e.g. time sitting, or
time in bed; while others are numeric, e.g. average gait speed. Whatever the
data type a similarity measure is associated with each ADL so that comparison
can be made between them. A set of daily ADL profiles for a resident can then
be compared with those in the case base, on the right of Figure 4. Retrieval
of similar profiles labelled as at risk identifies the need to recommend inter-
vention, and falling similarity with the user’s own previous profiles identifies
changing behaviours. Importance in determining similarity for FITsense is given
to ADLs known to correlate with falls. For other health conditions the similarity
knowledge could be refined to reflect specific conditions e.g. gait for falls, erratic
behaviour for Dementia, general physical activity level for obesity, etc.

A key challenge is to identify risky or deteriorating behaviour. Labelled pos-
itive cases (identifying a fall is likely) are rare because people don’t fall that
often. The initial approach is to generate template solutions with guidance
from health care professionals. Then, as real data becomes available, we can
learn/refine/supplement these hand-crafted templates with the addition of real
experiences as they occur in the data generated both by the user and by others.

5 Evaluation

The initial task is to assess our effectiveness at classifying ADLs from raw sen-
sor data. We do not yet have live data being generated by tenants from the
FitHomes, so for this evaluation we use existing datasets. The aim of the eval-
uation is to compare the performance of different ML algorithms when applied
to the window-based and sequence-based representations.

5.1 Datasets

Four publicly available datasets are used in our experiments: CASAS4 (adl-
normal), Van Kasteren5 (kasteren) and two from the Massachusetts Institute of
Technology6 (tapia1/2). These datasets share similar properties to that expected
from the FitHomes with a focus on activity recognition using simple sensors in
Smart Home installations. They all capture binary sensor activation data from
the homes and have been labelled with class information, i.e. the ADL identified
during the specified time period. The activities are of varying length.

Table 1 gives an overview of the structure of the datasets. These are relatively
small datasets with between 120 and 295 instances, reflecting the high cost of

4 http://casas.wsu.edu/datasets/adlnormal.zip
5 https://sites.google.com/site/tim0306/kasterenDataset.zip
6 http://courses.media.mit.edu/2004fall/mas622j/04.projects/home/thesis_

data_txt.zip



Table 1. Overview of the datasets used.

Dataset Classes Attributes Instances

adlnormal 5 39 120

kasteren 7 14 242

tapia1 22 76 295

tapia2 24 70 208

manual labelling. The number of attributes varies between 14 and 76 reflecting
differences in the number of sensors present in different installation set ups.
Likewise, there are differences in the number of activities being monitored (i.e.
classes) depending on the focus of the particular study; tapia in particular has
a large number of different activity labels, some of which would not be relevant
for predicting falls. Some activities are more popular than others and as a result
most datasets do not have balanced class distributions. In table 2, the activity
classes present in each dataset are shown, along with a count of the number of
times the activity is recorded in the dataset.

The average sequence length of activities identified in the datasets varies
between 4.7 in kasteren and 34.4 in adlnormal, as can be seen in table 3.
The datasets feature complete representations of sensor activations, including
timestamps and durations, which allows us to build both a window-based and
sequence-based representation.

The window-based representation is a fixed-length vector which does not
change with varying activity lengths. If we count the number of sensors in the
installation there will be one problem-side attribute for each sensor. The at-
tribute value being a count of the number of times the sensor is activated during
an activity timespan. The solution is a single class label, namely the labelled
activity.

Fig. 5. Example Sequence-based representation for a shortened kasteren dataset.

The sequence-based representation captures temporal relationships between
attributes. The intuition is that this additional information will aid activity clas-
sification performance, with the ordered sequences of sensor activations allowing
more detailed understanding of activities and the underlying sensor network in



the installation. A fixed length representation set to the length of the longest ac-
tivity sequence in the dataset is used. Hence, as shown in figure 5, each problem-
side attribute in a case is a sensor activation identified by its unique id, or a null
padding value. As with the window-based representation, the solution is a single
class label, identifying the activity. The longest activity length in the shortened
“kasteren” example, is 20, and a sequence of 17 sensor activations is recorded
in this activity. Hence, the first 3 attributes are null. As the maximum activity
length increases, the number of null attribute values in shorter activities (which
form the majority of datasets) will increase.

5.2 Experiment Set-Up

Popular ML algorithms that delivered good performance on these datasets were
selected from the default Weka library to run on the window-based represen-
tation of each dataset [18]. These were compared to CRFs run on both the
window-based and sequential-based representation. CRFs were selected for use
with sequence-based representation as they can train based on the probability
of previous sequences reoccurring. By modelling state-to-state dependencies the
context of a sequence within a meta-sequence can be considered during training.
Weka does not natively support learning with CRFs, and so for CRF learning,

Table 2. Details on the distribution of activities across datasets.

Dataset Activities (in order of expression)

adlnormal 24 x Phone Call, 24 x Wash hands, 24 x Cook, 24 x Eat, 24 x Clean

kasteren 34 x Leave House, 113 x Use Toilet, 23 x Take Shower, 23 x Go to Bed,
20 x Prepare Breakfast, 10 x Prepare Dinner, 19 x Get Drink

tapia1 1 x Going out for entertainment, 15 x Preparing a snack, 19 x Do-
ing laundry, 4 x Dressing, 1 x Washing hands, 8 x Washing dishes,
3 x Watching TV, 14 x Preparing breakfast, 12 x Going out to work,
2 x Putting away dishes, 37 x Grooming, 9 x Cleaning, 2 x
Putting away groceries, 18 x Bathing, 8 x Preparing dinner, 17 x
Preparing lunch, 1 x Other, 2 x Putting away laundry, 2 x Go-
ing out for shopping, 1 x Lawnwork, 15 x Preparing a beverage, 84 x
Toileting

tapia2 4 x Talking on telephone, 1 x Lawnwork, 3 x Cleaning, 5 x Dress-
ing, 16 x Preparing a snack, 2 x Home education, 17 x Listen-
ing to music, 2 x Grooming, 37 x Toileting, 15 x Watching TV, 2 x
Other, 14 x Taking medication, 13 x Preparing breakfast, 5 x Work-
ing at computer, 3 x Going out for shopping, 20 x Preparing lunch, 20 x
Washing dishes, 1 x Preparing a beverage, 1 x Putting away groceries,
1 x Going out for entertainment, 3 x Bathing, 3 x Putting away dishes,
1 x Putting away laundry, 14 x Preparing dinner



Table 3. Average and maximum length of activities.

Sequence Length Temporal Length

Dataset Avg (cnt) Max (cnt) Avg Time (sec) Max Time (sec)

adlnormal 34.4 127 203.3 658

kasteren 4.7 92 8588.4 38193

tapia1 9.4 156 732.5 8132

tapia2 9.4 184 1824.5 14936

the CRF++ toolkit was used. Both tools make use of different data formats, so
each dataset was converted to ARFF (for use in Weka), and CSV (for use with
CRF++).

– Bayes Network: Using the BayesNet bayes classifier.

– k-NN: Using the IBk lazy classifier (with k=3).

– SVM: Using the SMO function classifier.

– J48: Using the J48 tree classifier.

– CRF-Win: Using CRFs on the window-based representation.

– CRF-Seq: Using CRFs on sequenced-based representation.

Given the limited data available, Leave-One-Out cross validation was applied
on all experiments. In addition to recording average accuracy results, confusion
matrices were plotted for each dataset and ML algorithm combination using
Matplotlib7 (for CRFs), and Weka (for other algorithms).

Table 4. Experiment results (in accuracy %).

Dataset BayesNet k-NN SVM J48 CRF-Win CRF-Seq

adlnormal 98.3 91.6 92.5 92.5 95.0 96.7

kasteren 92.6 94.2 81.0 93.4 80.6 93.0

tapia1 50.8 54.2 56.3 54.2 61.0 55.6

tapia2 28.3 34.6 35.1 47.1 47.1 42.0

7 https://matplotlib.org/



5.3 Results and Discussion

The performance of BayesNet, k-NN, SVM, J48 and CRFs when used with
Windowed data, and CRFs when used with Sequenced data are compared. The
results can be seen in table 4 with the highest accuracy achieved on each dataset
in bold.

On the window-based representation, high accuracies, generally in excess of
90%, are achieved on adlnormal and kasteren compared to highs of 61% and 47%
on tapia1 and 2 respectively. The differences reflect that both tapia datasets
present a much harder classification task with over 20 fine grained activities,
many of which are hard to distinguish even with over 70 sensors. adlnormal and
kasteren have fewer activities being identified (5 and 7 respectively) and fewer
sensors (39 and 14 respectively). kasteren in particular is more in line with the
type of activities and sensor network we plan for FITsense.
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Fig. 6. Confusion matrix for CRFs on tapia1 windowed data.



With the algorithms applied to the window-based representation, there is
not a clear winner. BayesNet, k-NN and J48 all provide good performance on
the simpler datasets (adlnormal and kasteren); k-NN gives highest accuracy on
kasteren which having the fewest sensors and shortest activity sequences is likely
to have few noisy attributes. BayesNet gives highest accuracy on adlnormal
which is distinguished by having long sensor sequences associated with activities.
CRF-Win gives highest accuracies on the more complex tapia datasets, which
seems to indicate that the relationship between sensor activations becomes more
important for distinguishing similar activities from each other.

On the sequence-based dataset representation, CRF-Seq outperformed CRF-
Win on the simpler datasets, although it was beaten by BayesNet on adlnormal
and k-NN on kasteren. On the tapia datasets CRF-Seq did not perform as well as
CRF-Win, although its performance was competitive with the other algorithms.
These results are slightly surprising as we anticipated that knowledge of sensor
activation sequence would improve classification.

Figure 6 shows an example confusion matrix (CRF-Win on tapia1). This view
of the results identifies specific activities that get miss-classified and interestingly
the activity they get miss-classified as. There are errors that might be expected,
for example confusing preparing breakfast with preparing lunch and vice-versa.
Generally, activities associated with specific sensors such as Taking Medication
or Toileting tend to classify better than activities performed in shared spaces
with several sensors used across many activities e.g. preparing dinner.

6 Conclusions

In this paper we have presented a Smart Home approach to predicting increased
risk of falls for residents in 16 assisted living houses being built in Scotland.
Simple ambient sensors are employed to monitor activities of daily living. We
propose a two stage approach in which activities are first classified based on low
level sensor data inputs. Daily/weekly activity profiles are then assembled for
each resident and compared to their own past data and known risky profiles.

Overall, the initial experiment results on activity classification are promising
and we can expect accurate identification of activities in FITsense, providing
that the classes are not too fine-grained. It appears that the window-based rep-
resentation is sufficient for effective classification, although the results are not
clear and additional comparisons will be made when data becomes available from
FitHomes. It may be that a hybrid approach is required with the assumption
that attributes are independent being an effective simplification for simple activ-
ities; but for more complex activities, methods that take advantage of attribute
interaction and event sequences may be more effective.
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