1,778 research outputs found

    Continuity-Aware Scheduling Algorithm for Scalable Video Streaming

    Get PDF
    The consumer demand for retrieving and delivering visual content through consumer electronic devices has increased rapidly in recent years. The quality of video in packet networks is susceptible to certain traffic characteristics: average bandwidth availability, loss, delay and delay variation (jitter). This paper presents a scheduling algorithm that modifies the stream of scalable video to combat jitter. The algorithm provides unequal look-ahead by safeguarding the base layer (without the need for overhead) of the scalable video. The results of the experiments show that our scheduling algorithm reduces the number of frames with a violated deadline and significantly improves the continuity of the video stream without compromising the average Y Peek Signal-to-Noise Ratio (PSNR)

    Video-on-Demand over Internet: a survey of existing systems and solutions

    Get PDF
    Video-on-Demand is a service where movies are delivered to distributed users with low delay and free interactivity. The traditional client/server architecture experiences scalability issues to provide video streaming services, so there have been many proposals of systems, mostly based on a peer-to-peer or on a hybrid server/peer-to-peer solution, to solve this issue. This work presents a survey of the currently existing or proposed systems and solutions, based upon a subset of representative systems, and defines selection criteria allowing to classify these systems. These criteria are based on common questions such as, for example, is it video-on-demand or live streaming, is the architecture based on content delivery network, peer-to-peer or both, is the delivery overlay tree-based or mesh-based, is the system push-based or pull-based, single-stream or multi-streams, does it use data coding, and how do the clients choose their peers. Representative systems are briefly described to give a summarized overview of the proposed solutions, and four ones are analyzed in details. Finally, it is attempted to evaluate the most promising solutions for future experiments. Résumé La vidéo à la demande est un service où des films sont fournis à distance aux utilisateurs avec u

    Multipath streaming: fundamental limits and efficient algorithms

    Get PDF
    We investigate streaming over multiple links. A file is split into small units called chunks that may be requested on the various links according to some policy, and received after some random delay. After a start-up time called pre-buffering time, received chunks are played at a fixed speed. There is starvation if the chunk to be played has not yet arrived. We provide lower bounds (fundamental limits) on the starvation probability of any policy. We further propose simple, order-optimal policies that require no feedback. For general delay distributions, we provide tractable upper bounds for the starvation probability of the proposed policies, allowing to select the pre-buffering time appropriately. We specialize our results to: (i) links that employ CSMA or opportunistic scheduling at the packet level, (ii) links shared with a primary user (iii) links that use fair rate sharing at the flow level. We consider a generic model so that our results give insight into the design and performance of media streaming over (a) wired networks with several paths between the source and destination, (b) wireless networks featuring spectrum aggregation and (c) multi-homed wireless networks.Comment: 24 page

    Novel Techniques for Large-Scale and Cost-Effective Video Services

    Get PDF
    Despite the advance of network technologies in the past decade, providing video services to a large number of users remains a major technical challenge. This is especially true when it comes to serving high-definition videos. This thesis makes two contributions towards providing large-scale and cost-effective video services. 1) We consider the problem of periodic broadcast of popular videos in client/server video systems and present two novel techniques. Our research advances the state of the art with a segmentation rule that can generate a series of broadcast designs, among which we can choose the one that results in the smallest broadcast latency. We show that this rule allows us to design the broadcast technique that is the fastest up to date. 2) We then look at the problem of service scheduling in fully distributed peer-to-peer video systems, where a large number of hosts collaborate for the purpose of video sharing. Our proposed technique allows a client to be served by a server that is beyond its own file look up scope and can dynamically adjust client and server matches as new video requests arrive in the system. Our performance evaluation shows that these features dramatically improve the system performance to a large extent in terms of reducing service latency under a range of simulation settings

    On the Optimization of BitTorrent-Like Protocols for Interactive On-Demand Streaming Systems

    Get PDF
    This paper proposes two novel optimized BitTorrent-like protocols for interactive multimedia streaming: the Simple Interactive Streaming Protocol (SISP) and the Exclusive Interactive Streaming Protocol (EISP). The former chiefly seeks a trade-off between playback continuity and data diversity, while the latter is mostly focused on playback continuity. To assure a thorough and up-to-date approach, related work is carefully examined and important open issues, concerning the design of BitTorrent-like algorithms, are analyzed as well. Through simulations, in a variety of near-real file replication scenarios, the novel protocols are evaluated using distinct performance metrics. Among the major findings, the final results show that the two novel proposals are efficient and, besides, focusing on playback continuity ends up being the best design concept to achieve high quality of service. Lastly, avenues for further research are included at the end of this paper as well.Comment: 20 page

    Mathematical analysis of scheduling policies in peer-to-peer video streaming networks

    Get PDF
    Las redes de pares son comunidades virtuales autogestionadas, desarrolladas en la capa de aplicación sobre la infraestructura de Internet, donde los usuarios (denominados pares) comparten recursos (ancho de banda, memoria, procesamiento) para alcanzar un fin común. La distribución de video representa la aplicación más desafiante, dadas las limitaciones de ancho de banda. Existen básicamente tres servicios de video. El más simple es la descarga, donde un conjunto de servidores posee el contenido original, y los usuarios deben descargar completamente este contenido previo a su reproducción. Un segundo servicio se denomina video bajo demanda, donde los pares se unen a una red virtual siempre que inicien una solicitud de un contenido de video, e inician una descarga progresiva en línea. El último servicio es video en vivo, donde el contenido de video es generado, distribuido y visualizado simultáneamente. En esta tesis se estudian aspectos de diseño para la distribución de video en vivo y bajo demanda. Se presenta un análisis matemático de estabilidad y capacidad de arquitecturas de distribución bajo demanda híbridas, asistidas por pares. Los pares inician descargas concurrentes de múltiples contenidos, y se desconectan cuando lo desean. Se predice la evolución esperada del sistema asumiendo proceso Poisson de arribos y egresos exponenciales, mediante un modelo determinístico de fluidos. Un sub-modelo de descargas secuenciales (no simultáneas) es globalmente y estructuralmente estable, independientemente de los parámetros de la red. Mediante la Ley de Little se determina el tiempo medio de residencia de usuarios en un sistema bajo demanda secuencial estacionario. Se demuestra teóricamente que la filosofía híbrida de cooperación entre pares siempre desempeña mejor que la tecnología pura basada en cliente-servidor
    • …
    corecore