6 research outputs found

    Symmetrization inequalities in the fractional case and Besov embeddings

    Get PDF
    We prove new extended forms of the Pólya-Szegö symmetrization principle in the fractional case. As a consequence we determine new results for rearrangement invariant hulls of generalized Besov spaces

    On restrictions of Besov functions

    Full text link
    In this paper, we study the smoothness of restrictions of Besov functions. It is known that for any fB_p,qs(RN)f\in B\_{p,q}^s(\mathbb{R}^N) with qpq\leq p we have f(,y)B_p,qs(Rd)f(\cdot,y)\in B\_{p,q}^s(\mathbb{R}^d) for a.e. yRNdy\in \mathbb{R}^{N-d}. We prove that this is no longer true when p\. Namely, we construct a function fB_p,qs(RN)f\in B\_{p,q}^s(\mathbb{R}^N) such that f(,y)B_p,qs(Rd)f(\cdot,y)\notin B\_{p,q}^s(\mathbb{R}^d) for a.e. yRNdy\in \mathbb{R}^{N-d}. We show that, in fact, f(,y)f(\cdot,y) belong to B_p,q(s,Ψ)(Rd)B\_{p,q}^{(s,\Psi)}(\mathbb{R}^d) for a.e. yRNdy\in\mathbb{R}^{N-d}, a Besov space of generalized smoothness, and, when q=q=\infty, we find the optimal condition on the function Ψ\Psi for this to hold. The natural generalization of these results to Besov spaces of generalized smoothness is also investigated

    Continuity envelopes of spaces of generalised smoothness, entropy and approximation numbers

    Get PDF
    We study continuity envelopes in spaces of generalised smoothness Bpq(s,[Psi]) and Fpq(s,[Psi]) and give some new characterisations for spaces Bpq(s,[Psi]). The results are applied to obtain sharp asymptotic estimates for approximation numbers of compact embeddings of type id:Bpq(s1,[Psi])(U)-->B[infinity][infinity]s2(U), where and U stands for the unit ball in . In case of entropy numbers we can prove two-sided estimates.http://www.sciencedirect.com/science/article/B6WH7-4CJ46BP-2/1/657c23c999826d1ddc7f151a129df17

    (Métodos logarítmicos de interpolación, medida de no compacidad de operadores bilineales y espacios de funciones de tipo Lorentz-Sobolev)

    Get PDF
    Tesis inédita de la Universidad Complutense de Madrid, Facultad de Ciencias Matemáticas, Departamento de Análisis Matemático y Matemática Aplicada, leída el 24-03-2021The guiding theme and main topic of this monograph is Interpolation Theory. However, as it is suggested by the title, we can distinguish three different parts: the first one covers Chapters 3‐7 and it focuses on the study of the so‐called logarithmic interpolation methods. As for the second one, it consists of Chapter 8 and concentrates on the research of some properties related to the interpolation of bilinear operators, this time by the real method and some of its variants. Finally, the third part, containing Chapters 9 and 10, examines function spaces of Lorentz‐Sobolev type, in particular, Besov‐Lorentz and Triebel‐Lizorkin‐Lorentz spaces and it studies some of its properties by means of different interpolation results.Interpolation Theory is a branch of Functional Analysis with important applications to Partial Differential Equations, Harmonic Analysis, Approximation Theory, Function Spaces and Operators Theory, among other areas in mathematics. Reference sources for the subject are, for example, the books by Bennett and Sharpley [6], Bergh and Löfström [11], Butzer and Berens [23], Brudnyĭ and Krugljak [22], König [84] and Triebel [110]...El hilo conductor y tema central de esta memoria es la Teoría de Interpolación. Sin embargo, como indica su título, podemos diferenciar en ella tres partes: la primera comprende los Capítulos 3‐7 y se centra en estudiar los llamados métodos de interpolación logarítmicos. En cuanto a la segunda, consta del Capítulo 8 y se enmarca en la investigación de propiedades de interpolación de operadores bilineales, esta vez por el método real y algunas de sus variantes. Por último, la tercera parte, que comprende los Capítulos 9 y 10, se enfoca en la investigación de los espacios de funciones de tipo Lorentz‐Sobolev, en concreto, en los espacios de Besov‐Lorentz y Triebel‐Lizorkin‐Lorentz y el estudio de algunas de sus propiedades a través de distintos resultados de interpolación. La Teoría de Interpolación es una rama del Análisis Funcional que tiene importantes aplicaciones en Ecuaciones en Derivadas Parciales, Análisis Armónico, Teoría de Aproximación, Espacios de Funciones y Teoría de Operadores, entre otras áreas de las matemáticas. Manuales de referencia en este tema son, por ejemplo, los libros de Bennett y Sharpley [6], Bergh y Löfström [11], Butzer y Berens [23], Brudnyĭ y Krugljak [22], König [84] y Triebel [110]...Fac. de Ciencias MatemáticasTRUEunpu
    corecore