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SYMMETRIZATION INEQUALITIES IN THE FRACTIONAL
CASE AND BESOV EMBEDDINGS

JOAQUIM MARTÍN

Abstract. We prove new extended forms of the Pólya-Szegö symmetrization

principle in the fractional case. As a consequence we determine new results
for rearrangement invariant hulls of generalized Besov spaces.

1. Introduction

Recently sharp forms of the Sobolev embedding theorem have been obtained
using new symmetrization inequalities. In [2] it was shown that the oscillation of
the decreasing rearrangement of f, f∗o (t) = f∗∗(t)− f∗(t) can be estimated by

(1.1) f∗o (t) ≤ cnt
1/n |∇f |∗∗ (t), f ∈ C∞0 (Rn)

where f∗∗(t) = 1
t

∫ t
0
f∗(s)ds, and f∗ is the non-increasing rearrangement of f .

The formulation of inequalities in terms of the oscillation f∗o (t) leads to general
forms of the Sobolev embedding theorem that are sharp up to the endpoints and
particularly useful in the study of higher order Sobolev inequalities (see [2], [20],
[22], [25].)

In [18] we studied the fractional case and we obtained the following estimate:
Let X(Rn) be a rearrangement-invariant Banach function space (r.i. space) and
f ∈ X(Rn). Then

(1.2) f∗o (t) ≤ c
ωX(f, t1/n)
φX(t)

,

where φX(t) denotes the fundamental function of X(Rn) and ωX(f, t) is the mo-
dulus of continuity of f ∈ X (Rn) with respect to the X (Rn)–norm (see Section 2
below).

For higher order derivatives the Pólya-Szegö symmetrization principle, which
underlies the validity of (1.1) and (1.2), fails. Nevertheless, it was shown in [19]
that starting from (1.1) one can develop an iteration argument that leads to a sharp
higher order version of (1.2) when one works on Rn, but for domains an estimate
like (1.2) is still unknown, even in the case of functions that vanish at the boundary.

The main purpose of this paper is to study Besov-type inequalities involving r.i.
spaces. We do this by determining estimates like (1.2) on domains.

The paper is organized as follows. Section 2 contains background material on
r.i. spaces, together with the definitions and results required later on.

Key words and phrases. Symmetrization, Besov spaces, Sobolev spaces, rearrangement invari-
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In Section 3 we shall obtain rearrangement inequalities involving the moduli of
continuity on domains. Our main result of this Section (see Theorem 1 below)
states that given Ω an open bounded domain in Rn with Lipschitz boundary (for
the sake of simplicity we fix |Ω| = 1, and we write Ω ∈ Lip1), X(Ω) a r.i. space and
k ∈ N, k ≥ 0, then for all f ∈W k,X(Ω) and 0 < t < 1 we have that
(1.3)

f∗∗(t) ≤ c
∑
|α|=k

∫ 1

t

s
k
n

(
ωX(Ω)(Dαf, s

1
n ) + s

1
n ‖Dαf‖X

)
φX(s)

ds

s
+

k∑
j=0

∑
|α|=j

‖Dαf‖X(Ω) ,

where the constant c > 0 is independent of f .
Here W k,X(Ω), is the Sobolev space defined by

W k,X(Ω) = {f : Dαf ∈ X(Ω), for all α, |α| ≤ k} ,
endowed with the norm

‖f‖Wk,X(Ω) =
∑

0≤|α|≤k

‖Dαf‖X(Ω) ,

(W k,X(Ω) = X(Ω), if k = 0).
We will also use the following notation for the the X(Ω)−modulus of continuity

of f :
ωX(Ω)(f, t) = sup

0<|h|≤t

∥∥(f(·+ h)− f(·))χΩ(h)

∥∥
X(Ω)

,

with Ω(h) = {x ∈ Ω : x+ ρh ∈ Ω, 0 ≤ ρ ≤ 1} and h ∈ Rn.
In Section 4 the estimate (1.3) will be used in order to obtain sharp embedding

results for generalized Besov space BρX(Ω),q (see Section 2 below), i.e. the function
space endowed with the norm

‖f‖Bρ
X,q

:= ‖f‖X +
(∫ 1

0

(
ωX(f, t)k+1

ρ(t)

)q
dt

t

)1/q

,

where ωX(f, t)k+1 is the (k+1)−modulus of continuity of f ∈ X(Ω), ρ a function in
Λk (i.e ρ(t)/tk is equivalent to a quasiconcave function and there are 0 < γ < ε < 1
such that ρ(t)/tk+ε is almost decreasing and ρ(t)/tk+γ is almost increasing1) and
1 ≤ q ≤ ∞. For example, if ρ(t) = tσ, t ∈ (0, 1], 0 < σ < ∞, and X = Lp, then
BρX,q is the classical Besov spaces Bσp,q.

Our main result of this Section is Theorem 2 which states that we can associate
with the Besov space BρX(Ω),q a weight w = wρ,X,q such that

(1.4) BρX(Ω),q ⊂ Γq(w),

where Γp(w) is the Lorentz space defined by those measurable functions f , such
that the functional

‖f‖Γp(w) =
(∫ 1

0

f∗∗(s)pw(s)ds
)1/p

is finite (1 ≤ p ≤ ∞, with the usual change if p = ∞). Moreover in Theorem 4 we
shall see that (1.4) is optimal among the possible target r.i. spaces, in the sense
that if Y = Y (Ω) is any r.i. space, then

BρX(Ω),q ⊂ Y ⇔ Γq(w) ⊂ Y.

1A typical example is provided by ρ(t) = tσ(1 + |log t|)b, k < σ < k + 1, b ∈ R.
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We finish this Section considering some “Hardy–type inequalities” (in the sense
of [28]) and with two applications of Theorems 2 and 4 in the particular cases of
classical Besov spaces and Besov spaces of generalized smoothness.

Finally in Section 5, following the ideas introduced in [22], we consider rearrange-
ment invariant sets expressed in terms of the oscillation of f∗, defined as follows

Sq(v) =

{
f ∈M(Ω) : ‖f‖Sq(v) =

(∫ 1

0

f∗o (t)qv(t)dt
)1/q

+ ‖f‖L1 <∞

}
.

We shall see that if X = X(Ω) is a r.i. space satisfying some mild conditions, then
we can associate to the generalized Besov space BρX,q a weight v = vρ,X,q such that
BρX,q ⊂ Sq(v). Moreover if Y = Y (Ω) is a r.i. space such that BρX,q ⊂ Y , then
Sp(v) ⊂ Y . This result extends and sharpens, in the limiting case, some results
given in the previous section.

As usual, the symbol f ' g will indicate the existence of a universal constant
c > 0 (independent of all parameters involved) so that (1/c)f ≤ g ≤ c f , while the
symbol f � g means that f ≤ c g.

2. Preliminaries

We shall briefly collect some definitions, notations and properties about functions
and function spaces involved in our discussion.

Fundamental Indices of functions. (See [3] and [16]). Let ψ be an increasing
function on (0, 1) such that ψ(0+) = 0. The fundamental indices of ψ are defined
by

βψ = inf
t>1

lnMψ(t)
ln t

and β
ψ

= sup
0<t<1

lnMψ(t)
ln t

,

where

Mψ(t) = sup
s∈(0,min(1,1/t))

ψ(ts)
ψ(s)

, t > 0.

It is well known (see [16]) that 0 ≤ β
ψ
≤ βψ ≤ ∞.

Lemma 1. Let ψ be a quasiconcave function defined on (0, 1), such that ψ(0+) = 0.
Then 0 ≤ β

ψ
≤ βψ ≤ 1. Moreover

(1) If βψ < 1, then for every βψ < γ < 1 the function ψ(s)/sγ is almost
decreasing (i.e. ∃c > 0 s.t. ψ(s)/sγ ≤ cψ(t)/tγ whenever t ≤ s).

(2) If β
ψ
> 0, then for every 0 < γ < β

ψ
the function ψ(s)/sγ is almost

increasing (i.e. ∃c > 0 s.t. ψ(s)/sγ ≤ cψ(t)/tγ whenever t ≥ s).
(3) If β

ψ
> 0, there exist a concave function ψ̂ and constant c > 0 such that

c−1ψ(t) ≤ ψ̂(t) ≤ cψ(t) and c−1ψ̂(t)/t ≤ ∂

∂t
ψ̂(t) ≤ cψ̂(t)/t.

Proof. Parts (1) and (2) are a simple exercise. For example to see (1), it follows
from the definition of fundamental indices that if γ > βψ, then there is c > 0 such
that

Mψ(t) ≤ ctγ , if t ≥ 1.
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Thus
ψ(ts)
ψ(s)

≤ ctγ , for all 0 < s < 1/t.

Considering u = st, v = u/t, then v ≤ u and

ψ(u)
ψ(v)

≤ c
(u
v

)γ
.

For part (3) see [26, Theorem 2.4].

We will say that a continuos increasing function ρ : [0, 1] → [0,∞) belongs to
the class Λk (k ∈ N) if there is a quasiconcave function Ψ such that

ρ(t)/tk ' Ψ(t), with 0 < β
Ψ
≤ βΨ < 1,

Obviously, if ρ ∈ Λk, then k < β
ρ
≤ βρ < k + 1.

Rearrangement Invariant Spaces. (See [3] and [16]). A rearrangement
invariant space (r.i. space) X(Rn) is a Banach lattice of Lebesgue measurable
functions on Rn endowed with a norm ‖ · ‖X that satisfies the Fatou property and
is such that, if f ∈ X and g∗ = f∗, then g ∈ X and ‖g‖X = ‖f‖X .

Given any measurable subset Ω of Rn, if we let

X(Ω) = {fχΩ : f ∈ X(Rn)} ,

it is obvious that, by defining

‖f‖X(Ω) := ‖fχΩ‖X(Rn) ,

X(Ω) is a rearrangement invariant space.
The fundamental function of a r.i. space X(Ω) is defined by

φX(s) = ‖χA‖X
(where A is any measurable subset of Ω with |A| = s.)

The fundamental indices β
X

and βX of X are defined as the fundamental
indices of its fundamental function φX(s).

Finally recall that every r.i. space X has a representation as a function space on
X̂(0, |Ω|) such that

‖f‖X(Ω) = ‖f∗‖X̂(0,|Ω|) .

When the measure space is clear in the context we will “drop the hat” and use the
same letter X to indicate the different versions of the space X that we use.

Hardy’s operators and weights. We shall make use of the weighted inequal-
ities collected in the next result:

Proposition 1. (See [23]) Let P and Q be the Hardy operators defined by

Ph(t) =
1
t

∫ t

0

h(s)ds; Qh(t) =
∫ 1

t

h(s)
ds

s
.

Let w, v be weights (positive and measurable functions) on (0, 1). Then
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(1)
P : Lq(w) → Lq(v) is bounded

if and only if

(2.1)


(∫ 1

r

w(t)
tq

dr

)1/q (∫ r

0

v(r)−q
′+1dr

)1/q′

≤ c, if 1 ≤ q <∞,

w(r)
r

∫ r

0

dt

v(t)
≤ c, if q = ∞.

(2)
Q : Lq(w) → Lq(v) is bounded

if and only if

(2.2)


(∫ r

0

w(t)dt
)1/q

(∫ 1

r

v(t)−q
′/q

tq′
dt

)1/q′

≤ c, if 1 ≤ q <∞,

w(t)
∫ 1

r

1
v(t)

dt

t
≤ c, if q = ∞,

where ‖f‖Lq(w) =
(∫ 1

0

|f(t)|qw(t)dt
)1/q

and, as usual, 1/q + 1/q′ = 1.

The next two lemmas will be useful in the following sections.

Lemma 2. Let ρ ∈ Λk and 1 ≤ q ≤ ∞. Define w(t) = t(k+1)q−1/ρ(t)q. Then
P : Lq(w) → Lq(w) and Q : Lq(w) → Lq(w) are bounded.

Proof. We need to check that conditions (2.1) and (2.2) hold. By Lemma 1 we have
that∫ 1

t

w(s)
sq

ds =
∫ 1

t

(
sk

ρ(s)

)q
ds

s
'
∫ 1

t

(
ρ(s)
sk

)1−q
∂

∂s

(
ρ(s)
sk

)
ds ≤

(
tk

ρ(t)

)q
and similarly∫ t

0

w(s)−q
′+1ds =

∫ t

0

(
ρ(s)
sk

)q′
ds

s
'
∫ t

0

(
ρ(s)
sk

)q′−1
∂

∂s

(
ρ(s)
sk

)
ds �

(
ρ(t)
tk

)q′
.

To see condition (2.2) chose 0 < γ < 1 such that ρ(t)/tk+γ is almost decreasing.
Then ∫ t

0

w(x)dx =
∫ t

0

(
xk+γ

ρ(x)

)q
dx

x1−q+γq �
(
tk+γ

ρ(t)

)q
tq(1−γ) =

(
tk+1

ρ(t)

)q
and ∫ 1

t

w(x)−q
′+1

xq′
dx =

∫ 1

t

(
ρ(x)
xk+γ

)q′
dx

xq′−γq′+1
�
(
ρ(t)
tk+1

)q′
.

Lemma 3. Let ρ ∈ Λk and X be a r.i. space. Consider the function

v(t) =


(
φX(t)
ρ(t1/n)

)q 1
t
, if 1 ≤ q <∞,

φX(t)
ρ(t1/n)

, if q = ∞.
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If ρ ∈ Λk (k ≥ 1) and
β
X

= βρ/n,

then
Q : Lq(tq/nv(t)) → Lq(tq/nv(t)) (1 ≤ q ≤ ∞)

is bounded. Moreover for 1 ≤ q <∞ we have that∫ 1

0

tq/nv(t)dt <∞ .

Proof. To establish the boundedness of Q on Lq(tq/nv(t)) we need to check that
conditions (2.2) are fulfilled. To this end we first prove that if ψ ∈ Λk, 1 ≤ q < ∞
and

(2.3) β
X
> βψ/n,

then

(2.4)
∫ r

0

(
φX(s)
ψ(s1/n)

)q
ds

s
'
(
φX(r)
ψ(r1/n)

)q
,

and

(2.5) 1 +
∫ 1

r

(
ψ(s1/n)
φX(s)

)q
ds

s
'
(
ψ(r1/n)
φX(r)

)q
.

Effectively, since 0 < β̄ψ/n < β
X

, Proposition 1 ensures that ∂
∂sφX(s) ' φX(s)/s.

Thus ∫ r

0

(
φX(s)
ψ(s1/n)

)q
ds

s
≥
(

1
ψ(r1/n)

)q ∫ r

0

φX(s)q
ds

s

'
(

1
ψ(r1/n)

)q ∫ r

0

φX(s)q−1 ∂

∂s
φX(s)ds

'
(
φX(r)
ψ(r1/n)

)q
.

Conversely, using that ψ ∈ Λk and (2.3), Lemma 1 allows us to choose

β
X
> β >

γ + k

n
>
β̄ψ
n
> 0

such that φX(s)/sβ is almost increasing and ψ(s)/sk+γ is almost decreasing. There-
fore ∫ r

0

(
φX(s)
ψ(s1/n)

)q
ds

s
=
∫ r

0

(
φX(s)
sβ

)q (
s

γ+k
n

ψ(s1/n)

)q
s(β−

γ+k
n )q ds

s

�
(
φX(r)
rβ

)q (
r

γ+k
n

ψ(r1/n)

)q ∫ r

0

s(β−
γ+k

n )q ds
s

�
(
φX(r)
ψ(r1/n)

)q
.

Finally, to see (2.5) set φ(r) =
∫ r
0

(
φX(s)
ψ(s1/n)

)q
ds
s , then by (2.4), we have that∫ 1

r

(
ψ(s1/n)
φX(s)

)q
ds

s
'
∫ 1

r

1
φ(r)

ds

s
'
∫ 1

r

φ(r)′

φ(r)2
ds =

1
φ(r)

− 1
φ(1)

.



SYMMETRIZATION AND BESOV EMBEDDINGS 7

Now, to prove Lemma 3, consider ψ(t) = ρ(t)/t. Since ρ ∈ Λk (k ≥ 1) and

β
X

=
βρ
n
>
βρ − 1
n

=
βψ
n
,

(2.4) and (2.5) holds for ψ(t) = ρ(t)/t, and now, an easy computation shows that
conditions (2.2) are fulfilled. Moreover∫ 1

0

tq/nv(t)dt =
∫ r

0

(
t1/nφX(s)
ρ(s1/n)

)q
ds

s
'
(
φX(1)
ρ(1)

)q
<∞.

Generalized Besov spaces. (See [3], [14], [24] and the references quoted
therein). Let Ω ⊂ Rn be an open domain, and X = X(Ω) be a r.i. space. We set

Ω(h) = {x ∈ Ω : x+ ρh ∈ Ω, 0 ≤ ρ ≤ 1} , h ∈ Rn.
Given r = 1, 2, . . ., the r−modulus of continuity ωX(Ω)(f, t)r of a function f ∈
X(Ω) is defined by

ωX(Ω)(f, t)r = sup
0<|h|≤t

∥∥∆r
hfχΩ(rh)

∥∥
X
,

where

∆1
hf(x) = f(x+ h)− f(x) and ∆r+1

h f(x) = ∆1
h(∆

r
h)f(x), r = 1, 2, 3, · · ·

If r = 1 we write ωX(Ω)(f, t) instead of ωX(Ω)(f, t)1, and in what follows we shall
write X instead of X(Ω), whenever it is clear which subset we are working with.

Let ρ ∈ Λk, let X = X(Ω) be a r.i. space, and let 1 ≤ q ≤ ∞. The generalized
Besov space BρX,q is the function space endowed with the norm

(2.6) ‖f‖Bρ
X,q

:= ‖f‖X +
(∫ 1

0

(
ωX(f, t)k+1

ρ(t)

)q
dt

t

)1/q

= ‖f‖X + |f |Bρ
X,q

,

(with the usual change if q = ∞).

Example 1. If ρ(t) = tσ, t ∈ (0, 1], 0 < σ < ∞, and X = Lp, then BρX,q is the
classical Besov space Bσp,q.

If ρ(t) = tσΨ(t), t ∈ (0, 1], 0 < σ < ∞, Ψ is a slowly varying function (see
Section 4 below) and X = Lp, then

BρX,q = B(σ,Ψ)
p,q

where the space B(σ,Ψ)
p,q is the Besov space of generalized smoothness (see [15], [21],

[8], [17], [10] and the references quoted therein.)

Proposition 2. Let ρ ∈ Λk, X = X(Ω) be a r.i. space and 1 ≤ q ≤ ∞. If r varies
over all positive integers with r ≥ k + 1, then

(2.7) ‖f‖Bρ
X,q

' ‖f‖X +
(∫ 1

0

(
ωX(f, t)r
ρ(t)

)q
dt

t

)1/q

.

Moreover, considering the norm defined by

(2.8) ‖f‖∗Bρ
X,q

:=
∑

0≤|α|≤k

‖Dαf‖X +
∑
|α|=k

(∫ 1

0

(
tkωX(Dαf, t)

ρ(t)

)q
dt

t

)1/q
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we get that ‖·‖∗Bρ
X,q

and ‖·‖Bρ
X,q

are equivalent. In particular

BρX,q ⊂W k,X(Ω).

Proof. Assume that ρ ∈ Λk for some k ≥ 1 (in the case k = 0 (2.6) and (2.8)
coincide). Obviously condition ‖f‖∗Bρ

X,q
<∞ implies f ∈ W k,X(Ω). Thus (see [14,

formula (2.4)])
ωX(f, t)k+1 ≤ ctk

∑
|α|=k

ωX(Dαf, t),

and therefore
‖f‖Bρ

X,q
≤ c ‖f‖∗Bρ

X,q
.

For the converse, first of all notice that for all 1 ≤ j ≤ k, Lemma 1 implies that∫ 1

0

(
ρ(t)
tj

)q′
dt

t
≤
∫ 1

0

(
ρ(t)
tk

)q′
dt

t
'
∫ 1

0

(
ρ(t)
tk

)q′−1
∂

∂t

(
ρ(t)
tk

)
dt <∞.

Suppose ‖f‖Bρ
X,q

<∞, then for all 1 ≤ j ≤ k, we have that

∫ 1

0

ωX(f, t)k+1

tj
dt

t
≤
(∫ 1

0

(
ωX(f, t)k+1

ρ(t)

)q
dt

t

)1/q
(∫ 1

0

(
ρ(t)
tj

)q′
dt

t

)1/q′

(2.9)

≤ c ‖f‖Bρ
X,q

<∞,

which implies that (see [14, formula (2.7) ])

(2.10) ωX(Dαf, t) �
∫ t

0

ωX(f, s)k+1

sk
ds

s
= P (ωX(f, s)k+1/s

k+1)(t) |α| = k

and (see [14, formula (2.6)])

(2.11) ‖Dαf‖X � ‖f‖X +
∫ 1

0

ωX(f, s)k+1

sj
ds

s
1 ≤ |α| ≤ k.

Thus

‖f‖∗Bρ
X,q

� ‖f‖X +
∫ 1

0

ωX(f, s)k+1

sj
ds

s
+
∑
|α|=k

(∫ 1

0

(
tkωX(Dαf, t)

ρ(t)

)q
dt

t

)1/q

(by (2.11))

� ‖f‖Bρ
X,q

+
∑
|α|=k

(∫ 1

0

(
tkωX(Dαf, t)

ρ(t)

)q
dt

t

)1/q

(by (2.9))

� ‖f‖Bρ
X,q

+
∑
|α|=k

(∫ 1

0

(
tk+1P (ωX(f, s)k+1/s

k+1)(t)
ρ(t)

)q
dt

t

)1/q

(by (2.10))

� ‖f‖Bρ
X,q

+
∑
|α|=k

(∫ 1

0

(
ωX(f, t)k+1

ρ(t)

)q
dt

t

)1/q

(by Lemma 2)

� ‖f‖Bρ
X,q

.

Claim (2.7) follows easily from Marchaud-type inequality (see [14, formula (2.5)])

ωX(f, t)j � tj ‖f‖X + tj
∫ 1

t

ωX(f, t)r
tj

dt

t
(1 ≤ j ≤ r − 1)

and Lemma 2.
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Inequalities for higher order derivatives. We shall need some estimates
from [19] which we state here for the benefit of the reader. Given a vector u ∈ RN
we denote by |u| its `2(RN )-norm.

If g is a locally integrable function having weak derivatives of order r ∈ N, we
denote by drg the vector

(
Dαg

)
|α|=r of all derivatives of order |α| = r.

Lemma 4. Let Ω ∈ Lip1. Suppose f ∈W k,X(Ω), k ≥ 1.
(1) If k = 1, then

f∗o (t) ≤ ct1/n |∇f |∗∗ (t), (0 < t < 1/2).

(2) If k ≥ 2, then

f∗o (t) ≤ ct1/n

∫ 1/2

t

s
k−1

n

(
dkf

)∗∗
(s)

ds

s
+
k−1∑
j=1

∥∥∣∣djf ∣∣∥∥
L1

 , (0 < t < 1/2),

where the constant c := c(n, k) > 0 is independent of f.

3. Symmetrization type inequalities in the fractional case

In this section we shall obtain rearrangement inequalities for moduli of continuity.
We start with an extension of (1.2) for domains. To this end, let us see that if
Ω ∈ Lip1 and X (Ω) is a r.i. space, then there exists an operator E such that

E : X (Ω) → X (Rn) and E : W 1,X(Ω) →W 1,X(Rn)

is linear, bounded and
Ef(x) = f(x), x ∈ Ω,

(in what follows the operator E will be called an extension operator.)
To prove this claim, recall that since Ω has Lipschitz boundary (see [27] and [4]

for more information about extension methods) there exists an extension operator
E such that

Ef(x) = f(x), x ∈ Ω.
Moreover

E : L1 (Ω) → L1 (Rn) , E : W 1,1(Ω) →W 1,1(Rn)
and

E : L∞ (Ω) → L∞ (Rn) , E : W 1,∞(Ω) →W 1,∞(Rn)
is linear and bounded.

So, by interpolation we obtain the following inequalities in terms ofK−functionals2

(3.1) K(t, Ef, L1 (Rn) , L∞ (Rn)) ≤ cK(t, f, L1 (Ω) , L∞ (Ω))

and

(3.2) K(t, Ef,W 1,1 (Rn) ,W 1,∞ (Rn)) ≤ cK(t, f,W 1,1(Ω),W 1,∞(Ω)).

2Recall that given a compatible pair of Banach spaces (X0, X1) the K−functional

K(f, t, X0, X1) is defined for f ∈ X0 + X1 and t > 0 by

K(f, t, X0, X1) = inf
f=f0+f1

{
‖f0‖X0

+ t ‖f1‖X1

}
.

We refer the reader to [3] and [16] for further information about interpolation theory.
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Inequality (3.1) is equivalent to (see [3, Chapter 5, Theorem 1.6])

(3.3)
∫ t

0

(Ef)∗ (s)ds ≤ c

∫ t

0

f∗(s)ds =
∫ t

0

((Ef)χΩ)∗ (s)ds

and inequality (3.2) is equivalent to (see [3, Chapter 5, Theorem 5.11] for the left
hand side, and [9, Theorem 2] for the right hand side)

∫ t

0

(
(Ef)∗ (s) + (∇(Ef))∗ (s)

)
ds ≤ c

∫ t

0

(
f∗(s) + (∇f)∗ (s)

)
ds

(3.4)

= c

∫ t

0

(
(Ef)χΩ)∗ (s) + (∇ ((Ef)χΩ))∗ (s)

)
ds.

It follows from (3.3) (see [3, Chapther 2, Corollary 4.7]) that for any rearrangement
invariant space X(Rn)

‖Ef‖X(Rn) = ‖E (fχΩ)‖X(Rn) � ‖f‖X(Ω) .

Similarly, from (3.4) we obtain

‖Ef‖W 1,X(Rn) = ‖E (fχΩ)‖W 1,X(Rn) � ‖f‖W 1,X(Ω) .

Let us also recall that since Ω has Lipschitz boundary (see [14, Theorem 1] and
[3, Chapter 5, exercise 13, pag. 430]) we get that

K(t, g;X (Ω) ,W 1,X (Ω)) = inf
g∈W 1,X(Ω)

(
‖f − g‖X(Ω) + t ‖g‖W 1,X(Ω)

)
(3.5)

' ωX(g, t) + t ‖g‖X , 0 < t < 1.

In the next set of results we shall obtain pointwise estimates that will play a
central role in what follows.

Lemma 5. Let Ω ∈ Lip1 and f ∈ X (Ω). Then

(3.6) (Ef)∗∗ (t)− (Ef)∗ (t) ≤ c
ωX(f, t1/n) + t1/n ‖f‖X

φX(t)
, 0 < t < 1,

where E is any extension operator.

Proof. Since the extension operator E is linear and bounded we have

K(t, Ef,X (Rn) ,W 1,X (Rn)) = inf
g∈W 1,X(Rn)

(
‖Ef − g‖X(Rn) + t ‖g‖W 1,X(Rn)

)
≤ inf
g∈W 1,X(Ω)

(
‖Ef − Eg‖X(Rn) + t ‖Eg‖W 1,X(Rn)

)
≤ c inf

g∈W 1,X(Ω)

(
‖f − g‖X(Ω) + t ‖g‖W 1,X(Ω)

)
= cK(t, f ;X (Ω) ,W 1,X (Ω)).

Obviously,

inf
g∈W 1,X(Rn)

(
‖Ef − g‖X(Rn) + t ‖∇g‖X(Rn)

)
≤ K(t, Ef,X (Rn) ,W 1,X (Rn)).
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But (see [3, page 341])

ωX(Rn)(Ef, t) ' inf
g∈W 1,X(Rn)

(
‖Ef − g‖X(Rn) + t ‖∇g‖X(Rn)

)
and (see [18, Theorem 2])

(Ef)∗∗ (t)− (Ef)∗ (t) ≤ c
ωX(Rn)(Ef, t1/n)

φX(t)
.

Thus we conclude that

(Ef)∗∗ (t)− (Ef)∗ (t) ≤ c
ωX(Rn)(Ef, t1/n)

φX(t)
� K(t1/n, Ef,X (Rn) ,W 1,X (Rn))

φX(t)

� K(t1/n, f ;X (Ω) ,W 1,X(Ω))
φX(t)

�
ωX(Ω)(f, t1/n) + t1/n ‖f‖X(Ω)

φX(t)
(by (3.5)).

Corollary 1. Let Ω ∈ Lip1. Let X = X(Ω) be a r.i. space such that Hardy’s
operators P and Q are bounded on X. Then for all f ∈ C∞0 (Ω)

f∗∗(t)− f∗(t) ≤ c
ωX(f, t1/n) + t1/n ‖f‖X

φX(t)
, 0 < t < 1.

Proof. Let E be the Calderón extension operator (see [1, Theorem 5.28] and [12]).
Since f ∈ C∞0 (Ω)

Ef(x) = f̃(x)

where f̃ is the zero extension of f . Therefore

(Ef)∗ (t) = (f̃)∗(t) = f∗(t)

and Lemma 5 applies.

The following result is the counterpart of Lemma 5, for k ≥ 1.

Lemma 6. Let Ω ∈ Lip1. Assume that k ≥ 1 and f ∈W k,X(Ω). Then

f∗o (t) ≤ ct1/n

∑
|α|=k

∫ 1

t

s
k−1

n (ωX(Dαf, s
1
n ) + s

1
n ‖Dαf‖X)

φX(s)
ds

s
+

k∑
j=0

∥∥∣∣djf ∣∣∥∥
X

 ,

where the constant c := c(n, k) > 0 is independent of f.

Proof. We first assume that k = 1. By Lemma 4 we know that

f∗o (t) ≤ cnt
1/n |∇f |∗∗ (t), 0 < t < 1/2.

For 1/2 ≤ t < 1, we get that

(3.7) f∗o (t) ≤ f∗∗(t) ≤ 2f∗∗(1) = 2 ‖f‖L1 .

Combining both inequalities we obtain

(3.8) f∗o (t) � t1/n |∇f |∗∗ (t) + ‖f‖L1 , 0 < t < 1.

Let E be an extension operator, and let

h = |∇f | .
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From Eh(x) = h(x) for a.e. x ∈ Ω, it follows that h∗∗ ≤ (Eh)∗∗. Thus, by (3.6)
we get that

|∇f |∗∗ (s) ≤ (Eh)∗∗(s) =
∫ 1

s

((Eh)∗∗(x)− (Eh)∗(x))
ds

s
+ (Eh)∗∗(1)(3.9)

≤
∫ 1

s

(
ωX(h, t1/n) + t1/n ‖h‖X

φX(t)

)
dt

t
+ ‖Eh‖L1(Rn) .

Obviously,

(3.10) ‖Eh‖L1(Rn) ≤ c ‖h‖L1 = ‖|∇f |‖L1 .

Combining (3.8), (3.9) and (3.10) we conclude that

f∗o (t) ≤ ct1/n

∑
|α|=1

∫ 1

t

(ωX(Dαf, s
1
n ) + s

1
n ‖Dαf‖X)

φX(s)
ds

s
+

1∑
j=0

∥∥∣∣djf ∣∣∥∥
X

 .

In the case k > 1, Lemma 4 shows that

f∗o (t) ≤ ct1/n

∫ 1/2

t

s
k−1

n

∣∣dkf ∣∣∗∗ (s)
ds

s
+
k−1∑
j=1

∥∥∣∣djf ∣∣∥∥
L1

 , 0 < t < 1/2,

whence, using again (3.7), we obtain

f∗o (t) � t1/n

∫ 1

t

s
k−1

n

∣∣dkf ∣∣∗∗ (s)
ds

s
+
k−1∑
j=0

∥∥∣∣dkf ∣∣∥∥
L1

 , 0 < t < 1.

Now, as in the previous case, let E be an extension operator, and let h =
∣∣dkf ∣∣.

Since Eh(x) = h(x) a.e. x ∈ Ω, we have h∗∗ ≤ (Eh)∗∗ and again by (3.6)∣∣dkf ∣∣∗∗ (s) ≤ (Eh)∗∗(s) =
∫ 1

s

((Eh)∗∗(x)− (Eh)∗(x))
ds

s
+ (Eh)∗∗(1)

≤
∫ 1

s

(
ωX(h, t1/n) + t1/n ‖h‖X

φX(t)

)
dt

t
+ ‖Eh‖L1(Rn) ,

with ‖Eh‖L1(Rn) ≤ c ‖h‖L1 =
∥∥∣∣dkf ∣∣∥∥

L1 . Finally by Fubini’s theorem

f∗o (t) � t1/n
∫ 1

t

(
s

k−1
n

∫ 1

s

(
ωX(h, z1/n) + z1/n ‖h‖X

φX(z)

)
dz

z

)
ds

s
+ t1/n

k∑
j=0

∥∥∣∣djf ∣∣∥∥
L1

� t1/n

∫ 1

t

s
k−1

n

(
ωX(h, s1/n) + s1/n ‖h‖X

)
φX(s)

ds

s
+

k∑
j=0

∥∥|djf |∥∥
L1

 .

Theorem 1. Let Ω ∈ Lip1. Let k ≥ 0, and f ∈W k,X(Ω). Then

f∗∗(t) �
∫ 1

t

s
k
n

(∑
|α|=k

(
ωX(Dαf, s

1
n ) + s

1
n ‖Dαf‖X

))
φX(s)

ds

s
+

k∑
j=0

∥∥∣∣djf ∣∣∥∥
X
.
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Proof. Case k = 0. Given f ∈ X(Ω), by Lemma 5 we get

(Ef)∗∗ (t)− (Ef)∗ (t) �
ωX(f, t1/n) + t1/n ‖f‖X

φX(t)
.

Thus

(Ef)∗∗ (t) �
∫ 1

t

(
ωX(f, s1/n) + s1/n ‖f‖X

φX(s)

)
ds

s
+ (Ef)∗∗ (1).

Since Ef(x) = f(x) a.e. x ∈ Ω, we have that f∗∗ ≤ (Ef)∗∗, and obviously

(Ef)∗∗ (1) ≤ ‖Ef‖L1(Rn) � ‖f‖L1 � ‖f‖X .

Thus

f∗∗(t) �
∫ 1

t

(
ωX(f, s1/n) + s1/n ‖f‖X

φX(s)

)
ds

s
+ ‖f‖X .

Case k ≥ 1. Given f ∈W k,X(Ω) the result follows easily using again that

f∗∗(t) =
∫ 1

t

f∗o (s)
ds

s
+ f∗∗(1),

Lemma 6, and Fubini’s theorem.

4. Embedding Theorems of generalized Besov spaces into r.i. spaces

The principal goal of this section is to prove embedding theorems of generalized
Besov spaces into r.i. spaces. Throughout what follows we shall assume that
Ω ∈ Lip1, X = X(Ω) is a r.i. space, ρ ∈ Λk (k ∈ N) and 1 ≤ q ≤ ∞.

Definition 1. Associated with the generalized Besov space BρX,q we consider the
function

mBρ
X,q

(r) = m(r) :=


∫ 1

r

(
ρ(s1/n)
φX(s)

)q′
ds

s
, if 1 < q ≤ ∞,

sup
s∈[r,1)

ρ(s1/n)
φX(s)

, if q = 1.

m will be called the associated function of BρX,q.
Associated with m we considerer the function

wBρ
X,q

(r) = w(r) =



1
(1 +m(t)) t

, if q = 1,

|m′(t)|
(1 +m(t))q

, if 1 < q ≤ ∞,

1
1 +m(t)

, if q = ∞.

w will be called the associated weight of BρX,q.

Theorem 2. Let 1 < q ≤ ∞. Then,

BρX,q ⊂ Γq(w),

where w is the associated weight of BρX,q.
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Proof. Let ρ ∈ Λk. Given f ∈ BρX,q ⊂W k,X(Ω) consider

H(s
1
n ) = s

k
n

∑
|α|=k

(
ωX(Dαf, s

1
n ) + s

1
n ‖Dαf‖X

)
.

By Theorem 1, we get

(4.1) f∗∗(t) �
∫ 1

t

H(s
1
n )

φX(s)
ds

s
+

k∑
j=0

∥∥∣∣djf ∣∣∥∥
X
.

In the case that 1 < q <∞, let

v(t) :=
(
φX(t)
ρ(t1/n)

)q 1
t
.

An easy computation shows that(∫ r

0

w(t) dt
)1/q

(∫ 1

r

v(t)−q
′/q

tq′
dt

)1/q′

�
(

m(r)
1 +m(r)

)1/q′

≤ 1,

i.e. condition (2.2) holds. Combining (4.1) and Propositions 1 and 2 we conclude
that

‖f‖Γq(w) �

(∫ 1

0

(∫ 1

t

H(s
1
n )

φX(s)
ds

s

)q
w(t) dt

)1/q

+
(∫ 1

0

w(t) dt
)1/q k∑

j=0

∥∥∣∣djf ∣∣∥∥
X

�

(∫ 1

0

(
H(s

1
n )

φX(s)

)q
v(s)ds

)1/q

+
k∑
j=0

∥∥∣∣djf ∣∣∥∥
X
� c ‖f‖Bρ

X,q
.

When q = ∞, let

v(t) :=
φX(t)
ρ(t1/n)

.

Since

w(r)
∫ 1

r

1
v(t)

dt

t
=

m(r)
1 +m(r)

≤ 1,

condition (2.2) holds, and again (4.1) and Propositions 1 and 2 yield

‖f‖Γ∞(w) � sup
0<t<1

((∫ 1

t

H(s
1
n )

φX(s)
ds

s

)
w(t)

)
+
(

sup
0<t<1

w(t)
) k∑
j=0

∥∥∣∣djf ∣∣∥∥
X

� sup
0<t<1

(
H(s

1
n )

φX(s)
v(t)

)
+

k∑
j=0

∥∥∣∣djf ∣∣∥∥
X
� c ‖f‖Bρ

X,q
.

We shall see now that our result is the best possible when we work in the scale
of r.i. spaces.

Theorem 3. Let Y = Y (Ω) be a r.i. space. Then

(4.2) BρX,q ⊂ Y ⇔ Γq(w) ⊂ Y,

where w is the associated weight of BρX,q.
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Proof. It is clear that Theorem 2 holds for a bounded domain of measure 1 with
Lipschitz boundary if and only if it holds for all bounded domains of measure 1
with Lipschitz boundary. Thus we can assume that Ω = (0, 1)n. To prove (4.2), let
us see first that there is 0 < ε < 1 such that the function ρ(t)/φX(tn)ε is almost
increasing: We know that φX(t)/t is decreasing and by Lemma 1 we can choose
0 < β < 1, such that ρ(t)/tβ+k is almost increasing. Hence if v ≤ u, then

ρ(v)
φX(vn)ε

=
ρ(v)
vβ+k

(
vn

φX(vn)

)ε
vβ+k−nε ≤ c

ρ(u)
φX(un)ε

( v
u

)β+k−nε
.

Therefore, taking any 0 < ε < β
n , we get that

ρ(v)
φX(vn)ε

≤ c
ρ(u)

φX(un)ε
.

Hence, by [24, Theorem 1 and Remark 3], there is c > 0 such that{
g : ∃f ∈ BρX,q with ‖f‖Bρ

X,q
≤ 1 such that g∗(t) ≤ f∗(t)

}
=
{
g : ‖g‖Γq(w) ≤ c

}
.

We are now ready to prove (4.2). Given g ∈ Γq(w) with ‖g‖Γq(w) ≤ c, there exists
f ∈ BρX,q, with ‖f‖Bρ

X,q
≤ 1 such that g∗(t) ≤ f∗(t). Thus

‖g‖Y ≤ ‖f‖Y � ‖h‖Bρ
X,q

≤ 1

i.e. Γq(w) ⊂ Y.
Conversely, given g ∈ Γq(w) with ‖g‖Γq(w) ≤ c, there exists f ∈ BρX,q, with

‖f‖Bρ
X,q

≤ 1 such that g∗(t) ≤ f∗(t). Then

(4.3) ‖g‖Y � ‖g‖Γq(w) ≤ ‖f‖Γq(w) .

By Theorem 2 we know that BρX,q ⊂ Γq(w), and therefore it follows from (4.3) that
BρX,q ⊂ Y .

Let us briefly consider the case q = 1.

Theorem 4. Let w be the associated weight of BρX,1. Assume that

(4.4)
∫ r

0

dt

w(t)
� φX(r)
ρ(r1/n)

.

Then

(4.5) BρX,1 ⊂ Γ1 (w) .

Moreover, if Y is a r.i. space, then

(4.6) BρX,1 ⊂ Y ⇔ Γ1(w) ⊂ Y.

Proof. The proof is similar to the one given in the case 1 < q ≤ ∞. To see (4.5) let

v(t) :=
φX(t)
ρ(t1/n)t

.

From (4.4) we conclude that

1
r

∫ r

0

1
(1 +m(s))

ds

s
� v(r),
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i.e. condition (2.2) holds. Using again (4.1) and Proposition 1 we get

‖f‖Γ1(w) �

(∫ 1

0

(∫ 1

t

H(s
1
n )

φX(s)
ds

s

)
w(t) dt

)
+
(∫ 1

0

w(t) dt
) 1∑
j=0

∥∥∣∣djf ∣∣∥∥
X

�
∫ 1

0

H(s
1
n )

φX(s)

q

v(s) ds+
1∑
j=0

∥∥∣∣djf ∣∣∥∥
X
� c ‖f‖Bρ

X,q
.

With the same argument given in the proof of Theorem 3 the claim (4.6) follows.

Remark 1. With the same proof of Theorem 3 it is easily seen that

BρX,1 ⊂ Y ⇒ Γ1(w) ⊂ Y

holds without assuming condition (4.4).

Remark 2. A similar result to (4.2) and (4.6) was established in [24, Proposition
3], but under the stronger restriction that in a certain sense Y is “separated” from
X.

Remark 3. Theorem 2 (resp. Theorem 4) remains true if instead of X we take
any rearrangement invariant space F with φF ' φX . Thus we have the following
self improving property: if X,Y are r.i. spaces, then

BρX,q ⊂ Y ⇒ BρM(X),q ⊂ Y,

where M(X) = {f : ‖f‖M(X) = supt>0{f∗∗(t)φX(t)} < ∞} is the Marcinkiewicz
space associated with X.

Following [28] let us briefly consider some “Hardy–type inequalities”.

Given a generalized Besov space BρX,q, set ψ(t) = 1/(1 +m(t))1/q
′
, where m is

its associated function. An easy computation shows that if 1 < q ≤ ∞, and w is
its associated weight, then
(4.7)

‖f‖Γq(w) =
(∫ 1

0

(
f∗∗(t)

1 +m(t)

)q
|m′(t)| dt

)1/q

'
(∫ 1

0

(ψ(t)f∗∗(t))q
ψ′(t)
ψ(t)

dt

)1/q

.

Moreover, since ψ is increasing, by [28, Proposition 12.2],
(4.8)

sup
0<t<1

ψ(t)f∗∗(t) �
(∫ 1

0

(ψ(t)f∗∗(t))u1 ψ
′(t)
ψ(t)

dt

)1/u1

�
(∫ 1

0

(ψ(t)f∗∗(t))u0 ψ
′(t)
ψ(t)

dt

)1/u0

provided 1 ≤ u0 < u1 <∞.
In fact,

(4.9)
(∫ 1

0

(ψ(t)f∗∗(t))u1 ψ
′(t)
ψ(t)

dt

)1/u1

�
(∫ 1

0

(ψ(t)f∗∗(t))u0 ψ
′(t)
ψ(t)

dt

)1/u0

if and only if 1 ≤ u0 ≤ u1 ≤ ∞.
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Theorem 5. Let 1 < q ≤ ∞, let BρX,q be a generalized Besov space and let ψ(t) =
1/(1 + m(t))1/q

′
. Let κ(t) be a positive decreasing function on [0, 1], and let 1 ≤

u ≤ ∞. Then there is a constant c > 0 such that

(4.10)
(∫ 1

0

(κ(t)ψ(t)f∗∗(t))u
ψ′(t)
ψ(t)

dt

)1/u

≤ c ‖f‖Bρ
X,q

, ∀f ∈ BρX,q

if and only if κ is bounded and 1 < q ≤ u ≤ ∞.

Proof. By Theorem 2, (4.7) and (4.8) we get that

(4.11) sup
0<t<1

ψ(t)f∗∗(t) � ‖f‖Γq(w) � ‖f‖Bρ
X,q

.

Inequality (4.8) implies

sup
0<t<1

κ(t)ψ(t)f∗∗(t) �
(∫ 1

0

(κ(t)ψ(t)f∗∗(t))u
ψ′(t)
ψ(t)

dt

)1/u

.

Thus if (4.10) holds, then

sup
0<t<1

κ(t)ψ(t)f∗∗(t) ≤ c for all ‖f‖Bρ
X,q

≤ 1.

Whence, by (4.11), we have that κ(t) ≤ c′ uniformly with respect to t. The fact
that 1 < q ≤ u ≤ ∞ follows from (4.9).

Remark 4. In the case q = 1 and β
X
> βρ/n, the associated function satisfies

(see Remark 7 below)

(4.12) m(r) ' 1 +
∫ 1

r

ψ(s1/n)
φX(s)

ds

s
.

Considering ψ(t) = 1/(1 +m(t))t, it follows from (4.12) that

‖f‖Γ1(w) =
∫ 1

0

f∗∗(t)
1 +m(t)

dt

t
'
∫ 1

0

ψ(t)f∗∗(t)
ψ′(t)
ψ(t)

dt,

and then Theorem 5 holds for 1 ≤ q ≤ ∞.

4.1. The embedding BρX,q ⊂ L∞.

Theorem 6. Let BρX,q be a generalized Besov space. Suppose its associated function
m satisfies that m(0) <∞. Then

(4.13) BρX,q ⊂ L∞.

Proof. Given ρ ∈ Λk, k ∈ N , we know that BρX,q ⊂ W k,X(Ω) therefore by Theo-
rem 1, given f ∈ BρX,q, we have that

f∗∗(t) �
∫ 1

t

s
k
n

(∑
|α|=k

(
ωX(Dαf, s

1
n ) + s

1
n ‖Dαf‖X

))
φX(s)

ds

s
+

k∑
j=0

∥∥∣∣djf ∣∣∥∥
X

= I + II.

Let H(s1/n) = s
k
n

∑
|α|=k

(
ωX(Dαf, s

1
n ) + s

1
n ‖Dαf‖X

)
. By Hölder inequality

I ≤

(∫ 1

0

(
H(s1/n)
ρ(s1/n)

)q
ds

s

)1/q (∫ 1

t

(
ρ(s1/n)
φX(s)

)q′
ds

s

)1/q′

= J(H)m(t)1/q
′
.
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Moreover

J(H) �
∑
|α|=k

((∫ 1

0

(
ωX(Dαf, t)
ρ(t)/tk

)q
dt

t

)1/q

+ ‖Dαf‖X

(∫ 1

0

(
tk+1

ρ(t)

)q
dt

t

)1/q
)
.

Since ρ ∈ Λk, by Lemma 1, there is 0 < ε < 1 such that ρ(t)
tk+ε is almost decreasing,

so

(4.14)
∫ 1

0

(
tk+1

ρ(t)

)q
dt

t
=
∫ 1

0

(
tk+ε

ρ(t)

)q
t(1−ε)qdt

t
�
(

1
ρ(1)

)q ∫ 1

0

t(1−ε)qdt

t
<∞.

Thus I ≤ ‖f‖∗Bρ
X,q

� ‖f‖Bρ
X,q

, and

‖f‖L∞ = sup
0<t<1

f∗∗(t) � m(0)1/q
′
‖f‖Bρ

X,q
.

The relation between condition m(0) <∞ and indices is given in the next result.

Proposition 3. Let m be the associated function of BρX,q. Suppose m(0) < ∞.
Then

(1) β
X
< βρ/n if 1 < q ≤ ∞.

(2) β
X
≤ βρ/n if q = 1.

Proof. 1) Recall that for 1 < q ≤ ∞, the associated function of BρX,q is

m(t) =
∫ 1

t

(
ρ(s1/n)
φX(s)

)q′
ds

s
.

Thus, for all 0 < t < 1

m(0)1/q
′
>

(∫ t

0

(
ρ(s1/n)
φX(s)

)q′
ds

s

)1/q′

=

∫ 1

0

(
ρ((zt)1/n)
φX(zt)

)q′
dz

z

1/q′

=

∫ 1

0

(
ρ((zt)1/n)
ρ(z1/n)

φX(z)
φX(zt)

ρ(z1/n)
φX(z)

)q′
dz

z

1/q
′

≥ inf
0≤z≤1

ρ((zt)1/n)
ρ(z1/n)

inf
0≤z≤1

φX(z)
φX(zt)

m(0)1/q
′
.

Whence,

1 > inf
0≤z≤1

ρ((zt)1/n)
ρ(z1/n)

inf
0≤z≤1

φX(z)
φX(zt)

= inf
0≤s≤1

ρ(st1/n)
ρ(s)

inf
0≤z≤1

φX(z)
φX(zt)

=
1

Mρ(1/t1/n)
1

MφX
(t)
,

which implies
logMρ(1/t1/n) + logMφX

(t) > 0.
Now, since

logMφX
(t)

log t
+

logMρ(1/t1/n)
log t

=
logMφX

(t)
log t

− 1
n

logMρ(1/t1/n)
log 1/t1/n

< 0,
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we conclude that

lim
t→0

logMφX
(t)

log t
− 1
n

lim
t→0

logMρ(1/t1/n)
log 1/t1/n

= β
X
−
βρ
n
< 0.

2) In this case m(t) = sup
s∈[t,1)

ρ(s1/n)
φX(s)

. Thus, since m(0) <∞, there is c > 0 such

that
ρ(s1/n) ≤ cφX(s) 0 ≤ s ≤ 1.

Therefore
ρ((ts)1/n)
ρ(s1/n)

φX(s)
φX(ts)

≤ c
φX(s)
ρ(s1/n)

and then

1
Mρ(1/t1/n)

1
MφX

(t)
=

(
inf

0≤s≤1

ρ((ts)1/n)
ρ(s1/n)

)(
inf

0≤s≤1

φX(s)
φX(ts)

)
≤ c

1
m(0)

,

and now we finish the proof as in the previous case.

4.2. Examples.

4.2.1. Classical Besov spaces. For ρ(t) = tσ, t ∈ (0, 1], 0 < σ <∞, and X = Lp(Ω),
the space BρX,q is the classical Besov space Bσp,q. When Theorems 2 and 4 are
particularized to this case we obtain:

Theorem 7. Let 1 ≤ p <∞. The following assertions are true:
(1) If σ < n

p and r = 1
1
p−

σ
n

, then

‖f‖Γq(tq/r−1) = ‖f‖Lr,q
=
(∫ 1

0

(
f∗∗(t)t1/r

)q dt
t

)1/q

≤ c ‖f‖Bσ
p,q

(1 ≤ q ≤ ∞.)

(2) If σ = n
p , then

‖f‖Γq(w) =
(∫ 1

0

(
f∗∗(t)

1 + |ln t|

)q
dt

t

)1/q

≤ c ‖f‖
B

n
p

p,q

(1 < q <∞)

and

‖f‖Γ∞(w) = sup
0<t<1

f∗∗(t)
1 + |ln t|

≤ c ‖f‖
B

n
p

p,∞
.

(3) Let 1 ≤ q ≤ ∞. Then

(4.15) Bσp,q ⊂ L∞ ⇔
{
σ > n

p , or
σ = n

p and q = 1.

Proof. Part (1). It is a simple matter to see that the associated function of Bσp,q
satisfies

m(t) '


t

(
σ

n
−

1
p

)
q′

− 1, if 1 < q ≤ ∞,

t

(
σ

n
−

1
p

)
, if q = 1.

Now (1) is a direct application of Theorems 2 and 4.
Part (2). The associated function of Bσp,q is m(t) = |ln t| and as in the previous

case, Theorems 2 and 4 apply.
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Part (3). Assume that conditions on the right hand side of (4.15) hold. Then
the associated function of Bσp,q satisfies m(0) < ∞. Therefore by Theorem 3,
Bσp,q ⊂ L∞. Conversely, suppose Bσp,q ⊂ L∞, but σ < n

p (or σ = n
p and q 6= 1).

By part (1) ‖f‖Γq(tq/r−1) ⊂ Bσp,q. Since Bσp,q ⊂ L∞, Theorem 3 ensures that
Γq(tq/r−1) ⊂ L∞, which is a contradiction.

4.2.2. Besov spaces of generalized smoothness. A function Ψ : [0, 1] → [0,∞), such
that Ψ(1) = 1 is said to be slowly varying (Ψ ∈ SV (0, 1)) if for each ε > 0, the
function t−εΨ(t) is almost decreasing and tεΨ(t) is almost increasing.

Proposition 4. (See [11]) Let Ψ ∈ SV (0, 1). Then

(1) Ψr ∈ SV (0, 1) for each r ∈ R.
(2) If ε > 0, then there are positive constants c = c(ε) and C = C(ε) such that

for every t > 0

(4.16) cmin(t−ε, tε) ≤ sup
s∈(0,min(1,1/t))

Ψ(ts)
Ψ(s)

= MΨ(t) ≤ Cmax(t−ε, tε).

(3) If α > 0 and 1 ≤ q ≤ ∞, then for all 0 < r < 1∫ r

0

(tαΨ(t))q
dt

t
' (rαΨ(r))q and 1 +

∫ 1

r

1
(tαΨ(t))q

dt

t
' 1

(rαΨ(r))q
.

Remark 5. It follows readily from (4.16) that functions Ψ ∈ SV (0, 1) satisfy
β

Ψ
= βΨ = 0.

Let ρ(t) = tσΨ(t), t ∈ (0, 1], 0 < σ < ∞, where Ψ is a slowly varying function,
and X = Lp(Ω). Let BρX,q = B

(σ,Ψ)
p,q be the Besov space of generalized smoothness.

Then we have the following (see [5], [6] and [13] for related results):

Theorem 8. Let 1 ≤ p <∞. Then the following assertions are true:
(1) Suppose σ < n

p and r = 1
1
p−

σ
n

, then

‖f‖L(r,Ψ),q
=

(∫ 1

0

(
f∗∗(t)

t1/r

Ψ(t1/n)

)q
dt

t

)1/q

≤ c ‖f‖
B

(σ,Ψ)
p,q

, if 1 ≤ q ≤ ∞.

(2) Suppose σ = n
p and

∫ 1

0
Ψ(t)q

′ dt
t = ∞. Then

(a) If 1 < q <∞, then

‖f‖Γq(w) =

(∫ 1

0

(
f∗∗(t)

1 +
∫ 1

t
Ψ(s)q′ dss

)q
dt

t

)1/q

≤ c ‖f‖
B

( n
p

,Ψ)
p,q

.

(b) If q = ∞, then

‖f‖Γ∞(w) = sup
0<t<1

f∗∗(t)

1 +
∫ 1

t
Ψ(s)dss

≤ c ‖f‖
B

( n
p

,Ψ)
p,∞

.

(c) If q = 1 and∫ r

0

dt(
1 + sup

s∈[t,1)

Ψ(s1/n)

)
t

� 1
Ψ(r1/n)

,
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then

‖f‖Γ1(w) =
∫ 1

0

f∗∗(t)
1 + sup

s∈[t,1)

Ψ(s1/n)
dt

t
≤ c ‖f‖

B
( n

p
,Ψ)

p,1

.

(3) Let 1 ≤ q ≤ ∞, then

B(σ,Ψ)
p,q ⊂ L∞ ⇔

{
σ > n

p , or
σ = n

p and Ψ ∈ Lq′(dt/t).

Proof. Claim (1). By Proposition 4 the associated function of B(σ,Ψ)
p,q satisfies that

1 +m(t) =
∫ 1

t

(
s

σ
n−

1
p Ψ(s1/n)

)q′ ds
s
'
(
t

σ
n−

1
p Ψ(t1/n)

)q′
, 1 < q ≤ ∞

and
m(t) = sup

s∈[t,1)

s
σ
n−

1
p Ψ(s1/n) ' t

σ
n−

1
p Ψ(t1/n), q = 1.

Whence (1) follows from Theorems 2 and 4.
Claim (2). Here the associated function of B(σ,Ψ)

p,q is

m(t) =
∫ 1

t

Ψ(s1/n)q
′ ds

s
, 1 < q ≤ ∞

and
m(t) = sup

s∈[t,1)

Ψ(s1/n), q = 1,

and again Theorems 2 and 4 apply.
Claim (3). Conditions on indices ensure that m(0) < ∞, thus by Theorem 3

B
(σ,Ψ)
p,q ⊂ L∞. Conversely, assume that B(σ,Ψ)

p,q ⊂ L∞ but σ < n
p (or σ = n

p and
Ψ /∈ Lq

′
(dt/t)). Then Theorem 3 and Remark 1 imply that Γq(w) ⊂ L∞, where

Γq(w) denotes the Lorentz space that appears in parts (1) and (2). Since obviously
L∞ ⊂ Γq(w) we get that L∞ = Γq(w) which is not possible.

5. Embedding Theorems on rearrangement invariant sets

Our aim in this section will be to extend Theorem 2 to more general r.i. sets.
Since Theorem 3 states that our conditions are optimal in the target of r.i. spaces,
following the ideas introduced in [22], we shall modify the definition of the Lorentz
spaces Γq(v) by replacing f∗∗ by the quantity

f∗o (t) = f∗∗(t)− f∗(t)

which measures the oscillation of f∗.

Definition 2. Let ρ ∈ Λk and X be a r.i. space. Consider the function

v(t) =


(
φX(t)
ρ(t1/n)

)q 1
t
, if 1 ≤ q <∞,

φX(t)
ρ(t1/n)

, if q = ∞.

The rearrangement invariant set Sq(v) is defined by

Sq(v) =

{
f ∈M(Ω) : ‖f‖Sq(v) =

(∫ 1

0

(f∗∗(t)− f∗(t))q v(t)dt
)1/q

+ ‖f‖L1 <∞

}
,
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with the usual changes when q = ∞. (Functional properties of Sp(w) were studied
in [7]).

Theorem 9. Let BρX,q be a generalized Besov space. Then

‖Ef‖Sq(v) � ‖f‖Bρ
X,q

, for all f ∈ BρX,q,

(where E is any extension operator (see Section 3)).
Moreover if X is a r.i. space such that the operators P and Q are bounded on

X, then
‖f‖Sq(v) � ‖f‖Bρ

X,q
, for all f ∈ C∞0 (Ω).

Proof. By Lemma 5 we have that for all f ∈ BρX,q

(Ef)∗∗ (t)− (Ef)∗ (t) ≤ c
ωX(f, t1/n) + t1/n ‖f‖X

φX(t)
,

which easily implies that
‖Ef‖Sq(v) � ‖f‖Bρ

X,q
.

If f ∈ C∞0 (Ω), then by Corollary 5 we get that

f∗∗(t)− f∗(t) ≤ c
ωX(f, t1/n) + t1/n ‖f‖X

φX(t)
.

Theorem 10. Let BρX,q be a generalized Besov space with ρ ∈ Λk (k ≥ 1). Assume
that

(5.1) β
X

= βρ/n.

Then
BρX,q ⊂ Sq(v).

Proof. Let ρ ∈ Λk, k ≥ 1. Set

H(s) = s
k−1

n

∑
|α|=k

(
ωX(Dαf, s

1
n ) + s

1
n ‖Dαf‖X

φX(s)

)
.

In the case that 1 ≤ q < ∞, Lemma 6 ensures that for all f ∈ BρX,q the following
inequality holds:

f∗o (t) ≤ ct1/n

∫ 1

t

H(s)
ds

s
+

k∑
j=0

∥∥∣∣djf ∣∣∥∥
X

 , 0 < t < 1.

Thus

‖f‖Sq(v) �
(∫ 1

0

(QH(t))q tq/nv(t)dt
)1/q

+
k∑
j=0

∥∥∣∣djf ∣∣∥∥
X

(∫ 1

0

tq/nv(t)dt
)1/q

= I + II.
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By Lemma 3,

I �
∑
|α|=k

[(∫ 1

0

(
tkωX(Dαf, t)

ρ(t)

)q
dt

t

)1/q

+ ‖Dαf‖X

(∫ 1

0

(
tk+1

ρ(t)

)q
dt

t

)1/q
]

�
∑
|α|=k

[(∫ 1

0

(
tkωX(Dαf, t)

ρ(t)

)q
dt

t

)1/q

+ ‖Dαf‖X

]
(by (4.14))

and

II �
k∑
j=0

∥∥∣∣djf ∣∣∥∥
X
.

Collecting both estimates, we obtain

‖f‖Sq(v) � ‖f‖Bρ
X,q

.

The case q = ∞ is similar to the previous one.

Let us now see a result that shows that our conditions are best posible.

Theorem 11. Let BρX,q a generalized Besov spaces. Suppose Y is a r.i. space such
that

BρX,q ⊂ Y.

Then
Sq(v) ⊂ Y.

Proof. In the case that 1 < q ≤ ∞, since BρX,q ⊂ Y by Theorem 3 it follows that
Γq(w) ⊂ Y , (where w is the associated weigh of BρX,q). Thus it is enough to see that
Sq(v) ⊂ Γq(w). Since ∂

∂tf
∗∗(t) = (f∗∗(t)− f∗(t))/t, by the fundamental theorem of

Calculus

f∗∗(t) =
∫ 1

t

(f∗∗(s)− f∗(s))
ds

s
+
∫ 1

0

f∗(s)ds.

Therefore,

‖f‖Γq(w) = ‖f∗∗‖Lq(w) ≤ ‖Q(f∗∗ − f∗)‖Lq(w) +
(∫ 1

0

w(t) dt
)1/q ∫ 1

0

f∗(s) ds

� ‖(f∗∗ − f∗)‖Lq(v) +
∫ 1

0

f∗(s) ds (by Proposition 1)

= ‖f‖Sq(v) .

For q = 1, the same proof works, but using Theorem 2 instead of Theorem 3.

Example 2. Let B(σ,Ψ)
p,q be a Besov space of generalized smoothness. Let 1 < p <∞.

Assume that σ = n
p . Then for all f ∈ C∞0 (Ω) we have that(∫ 1

0

(
f∗∗(t)− f∗(t)

Ψ(t)

)q
dt

t

)1/q

≤ c ‖f‖
B

( n
p

,Ψ)
p,q

(1 ≤ q <∞)

and

sup
0<t<1

f∗∗(t)− f∗(t)
Ψ(t)

≤ c ‖f‖
B

( n
p

,Ψ)
p,∞

.

We end this section by showing that Sq(v) = Γq(w).
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Proposition 5. Let ρ ∈ Λk and X be a r.i. space. Suppose

(5.2) β
X
> βρ/n.

Then, we have that
Sq(v) = Γq(w).

Proof. If 1 < q ≤ ∞, then it follows from the proof of Lemma 3 that

1 +
∫ 1

r

(
ρ(s1/n)
φX(s)

)q′
ds

s
'
(
ρ(r1/n)
φX(r)

)q′
.

For q = 1, obviously

sup
s∈[r,1)

ρ(s1/n)
φX(s)

≥ ρ(r1/n)
φX(r)

.

Taking

β
X
> β >

γ + k

n
>
β̄ρ
n
> 0,

we get

sup
s∈[r,1)

ρ(s1/n)
φX(s)

= sup
s∈[r,1)

(ρ(s1/n)
s

γ+k
n

sβ

φX(s)
s

γ+k
n −β

)
�
(
ρ(r1/n)

r
γ+k

n

rβ

φX(r)

)
sup
s∈[r,1)

s
γ+k

n −β

=
ρ(r1/n)
φX(r)

.

Summarizing, we have proved that
1 +m(r) '

(
ρ(r1/n)
φX(r)

)q′
, if 1 < q ≤ ∞,

sup
s∈[r,1)

ρ(s1/n)
φX(s)

' ρ(r1/n)
φX(r)

, if q = 1.

And from here it is easy to see that Γq(w) = Γq(v). In fact, by Theorem 11, and
taking into account that Γq(w) ⊂ L1 (since Γq(w) is a r.i. space on (0, 1)) we have
that

‖f‖Γq(v) ' ‖f‖Γq(w) � ‖(f
∗∗ − f∗)‖Lq(v) + ‖f‖L1

= ‖f‖Sq(w) ≤ ‖f
∗∗‖Lq(v) + ‖f‖L1

= ‖f‖Γq(v) + ‖f‖L1 � ‖f‖Γq(v) .

Remark 6. The previous result states that under the condition β
X
> βρ/n, Sq(v)

is a r.i. space. Then Theorems 2 and 4 imply that ‖f‖Γq(w) ' ‖f‖Sq(v) . Similarly,
(see Proposition 3) β

X
< βρ/n is closely related with the embedding BρX,q ⊂ L∞.

Therefore Theorem 10 is useful in order to measure the type of essential unbound-
edness of functions of BρX,q when (5.1) holds.
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Remark 7. Let m be the associated function of BρX,1. If β
X
> βρ/n, then we have

seen in Proposition 5 that m(r) ' ρ(r1/n)
φX(r)

. Moreover by (2.5) we also have that

m(r) ' 1 +
∫ 1

r
ψ(s1/n)
φX(s)

ds
s .
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