14,244 research outputs found

    One-Tape Turing Machine Variants and Language Recognition

    Full text link
    We present two restricted versions of one-tape Turing machines. Both characterize the class of context-free languages. In the first version, proposed by Hibbard in 1967 and called limited automata, each tape cell can be rewritten only in the first dd visits, for a fixed constant d≄2d\geq 2. Furthermore, for d=2d=2 deterministic limited automata are equivalent to deterministic pushdown automata, namely they characterize deterministic context-free languages. Further restricting the possible operations, we consider strongly limited automata. These models still characterize context-free languages. However, the deterministic version is less powerful than the deterministic version of limited automata. In fact, there exist deterministic context-free languages that are not accepted by any deterministic strongly limited automaton.Comment: 20 pages. This article will appear in the Complexity Theory Column of the September 2015 issue of SIGACT New

    Unbounded-error quantum computation with small space bounds

    Full text link
    We prove the following facts about the language recognition power of quantum Turing machines (QTMs) in the unbounded error setting: QTMs are strictly more powerful than probabilistic Turing machines for any common space bound s s satisfying s(n)=o(log⁥log⁥n) s(n)=o(\log \log n) . For "one-way" Turing machines, where the input tape head is not allowed to move left, the above result holds for s(n)=o(log⁥n)s(n)=o(\log n) . We also give a characterization for the class of languages recognized with unbounded error by real-time quantum finite automata (QFAs) with restricted measurements. It turns out that these automata are equal in power to their probabilistic counterparts, and this fact does not change when the QFA model is augmented to allow general measurements and mixed states. Unlike the case with classical finite automata, when the QFA tape head is allowed to remain stationary in some steps, more languages become recognizable. We define and use a QTM model that generalizes the other variants introduced earlier in the study of quantum space complexity.Comment: A preliminary version of this paper appeared in the Proceedings of the Fourth International Computer Science Symposium in Russia, pages 356--367, 200

    A Universal Framework for (nearly) Arbitrary Dynamic Languages

    Get PDF
    Today\u27s dynamic language systems have grown to include features that resemble features of operating systems. It may be possible to improve on both by unifying a language system with an operating system. Complete unification does not appear possible in the near-term, so an intermediate system is described. This intermediate system uses a common call graph to allow components in arbitrary languages to interact as easily as components in the same language. Potential benefits of such a system include significant improvements in interoperability, improved reusability and backward compatibility, simplification of debugging and some administrative tasks, and distribution over a cluster without any changes to application code

    An Ada implementation for fault detection, isolation and reconfiguration using a fault-tolerant processor

    Get PDF
    The design and implementation, in Ada, of the Fault Detection, Isolation, and Reconfiguration (FDIR) Manager for the triply redundant, tightly synchronized, Fault Tolerant Processor (FTP) are covered. It also examines the suitability of Ada, in the context of the FTP, for real time control tasks. The operational concepts behind the FTP are explained, and the structure of the resultant Ada code is discussed

    Ada (trademark) projects at NASA. Runtime environment issues and recommendations

    Get PDF
    Ada practitioners should use this document to discuss and establish common short term requirements for Ada runtime environments. The major current Ada runtime environment issues are identified through the analysis of some of the Ada efforts at NASA and other research centers. The runtime environment characteristics of major compilers are compared while alternate runtime implementations are reviewed. Modifications and extensions to the Ada Language Reference Manual to address some of these runtime issues are proposed. Three classes of projects focusing on the most critical runtime features of Ada are recommended, including a range of immediately feasible full scale Ada development projects. Also, a list of runtime features and procurement issues is proposed for consideration by the vendors, contractors and the government

    Features for Killer Apps from a Semantic Web Perspective

    Get PDF
    There are certain features that that distinguish killer apps from other ordinary applications. This chapter examines those features in the context of the semantic web, in the hope that a better understanding of the characteristics of killer apps might encourage their consideration when developing semantic web applications. Killer apps are highly tranformative technologies that create new e-commerce venues and widespread patterns of behaviour. Information technology, generally, and the Web, in particular, have benefited from killer apps to create new networks of users and increase its value. The semantic web community on the other hand is still awaiting a killer app that proves the superiority of its technologies. The authors hope that this chapter will help to highlight some of the common ingredients of killer apps in e-commerce, and discuss how such applications might emerge in the semantic web
    • 

    corecore